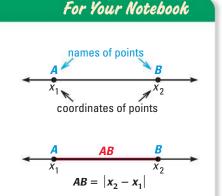
1.2 Use Segments and Congruence

Before	You learned about points, lines, and planes.
Now	You will use segment postulates to identify congruent segments.
Why?	So you can calculate flight distances, as in Ex. 33.

Key Vocabulary

- postulate, axiom
- coordinate
- distance
- between
- congruent segments


In Geometry, a rule that is accepted without proof is called a **postulate** or **axiom**. A rule that can be proved is called a *theorem*, as you will see later. Postulate 1 shows how to find the distance between two points on a line.

POSTULATE

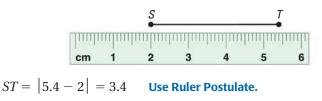
POSTULATE 1 Ruler Postulate

The points on a line can be matched one to one with the real numbers. The real number that corresponds to a point is the **coordinate** of the point.

The **distance** between points *A* and *B*, written as AB, is the absolute value of the difference of the coordinates of *A* and *B*.

In the diagrams above, the small numbers in the coordinates x_1 and x_2 are called subscripts. The coordinates are read as "x sub one" and "x sub two."

The distance between points A and B, or AB, is also called the *length* of \overline{AB} .

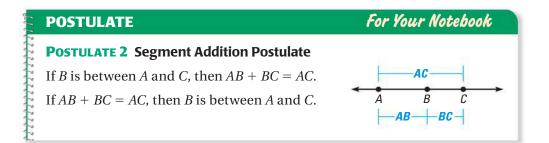

EXAMPLE 1 **Apply the Ruler Postulate**

Measure the length of \overline{ST} to the nearest tenth of a centimeter.

Solution

Align one mark of a metric ruler with S. Then estimate the coordinate of T. For example, if you align *S* with 2, *T* appears to align with 5.4.

The length of \overline{ST} is about 3.4 centimeters.


ADDING SEGMENT LENGTHS When three points are collinear, you can say that one point is **between** the other two.

Point *B* is between points *A* and *C*.

Point *E* is not between points *D* and *F*.

EXAMPLE 2 Apply the Segment Addition Postulate

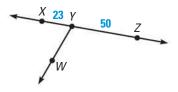
MAPS The cities shown on the map lie approximately in a straight line. Use the given distances to find the distance from Lubbock, Texas, to St. Louis, Missouri.

Solution

Because Tulsa, Oklahoma, lies between Lubbock and St. Louis, you can apply the Segment Addition Postulate.

LS = LT + TS = 380 + 360 = 740

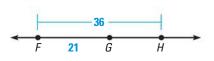
The distance from Lubbock to St. Louis is about 740 miles.


GUIDED PRACTICE for Examples 1 and 2

Use a ruler to measure the length of the segment to the nearest $\frac{1}{9}$ inch.

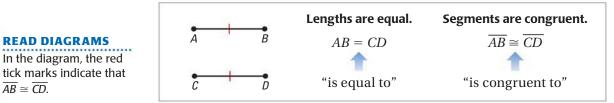
1. M

In Exercises 3 and 4, use the diagram shown.


- **3.** Use the Segment Addition Postulate to find *XZ*.
- 4. In the diagram, *WY* = 30. Can you use the Segment Addition Postulate to find the distance between points *W* and *Z*? *Explain* your reasoning.

EXAMPLE 3 Find a length

Use the diagram to find GH.


Solution

Use the Segment Addition Postulate to write an equation. Then solve the equation to find *GH*.

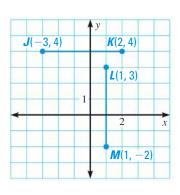
FH = FG + GH	Segment Addition Postulate
36 = 21 + GH	Substitute 36 for FH and 21 for FG.
15 = GH	Subtract 21 from each side.

CONGRUENT SEGMENTS Line segments that have the same length are called **congruent segments**. In the diagram below, you can say "the length of *AB* is equal to the length of \overline{CD} ," or you can say " \overline{AB} is congruent to \overline{CD} ." The symbol \cong means "is congruent to."

EXAMPLE 4 **Compare segments for congruence**

Plot *J*(−3, 4), *K*(2, 4), *L*(1, 3), and *M*(1, −2) in a coordinate plane. Then determine whether \overline{JK} and \overline{LM} are congruent.

Solution


To find the length of a horizontal segment, find the absolute value of the difference of the *x*-coordinates of the endpoints.

$$JK = |2 - (-3)| = 5$$
 Use Ruler Postulate.

To find the length of a vertical segment, find the absolute value of the difference of the *y*-coordinates of the endpoints.

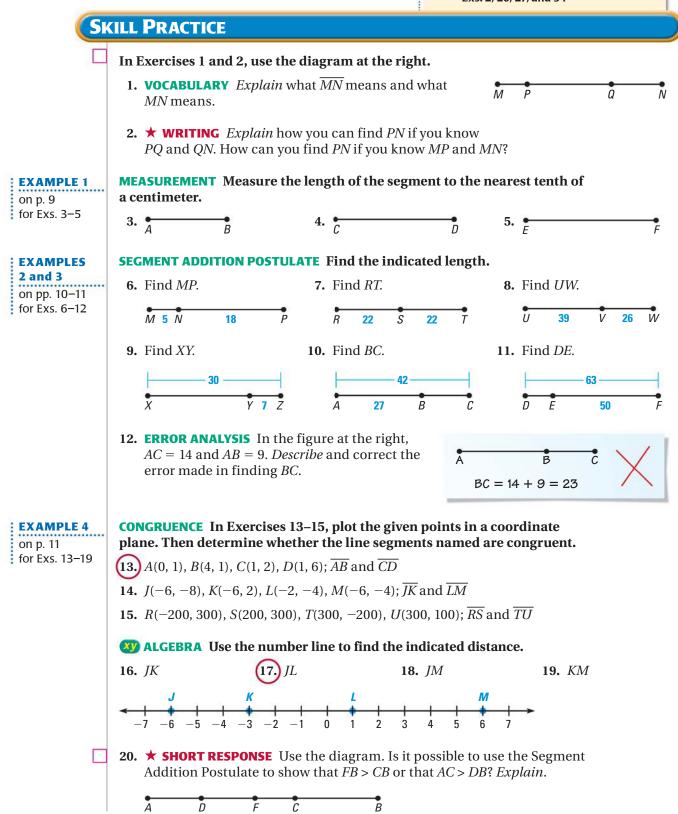
$$LM = |-2 - 3| = 5$$
 Use Ruler Postulate.

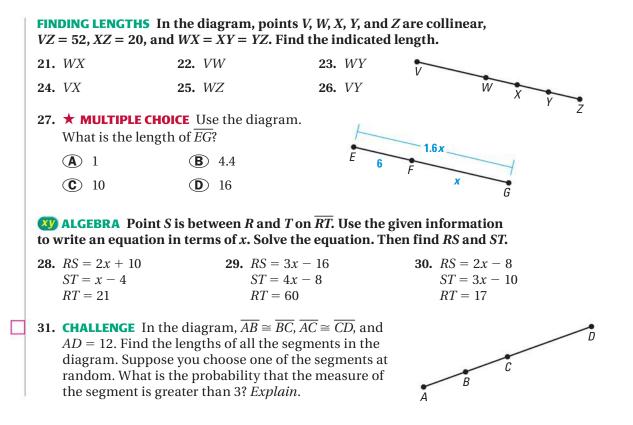
▶ \overline{JK} and \overline{LM} have the same length. So, $\overline{JK} \cong \overline{LM}$.

GUIDED PRACTICE for Examples 3 and 4

- 5. Use the diagram at the right to find *WX*.
- 6. Plot the points A(-2, 4), B(3, 4), C(0, 2), and D(0, -2) in a coordinate plane. Then determine whether \overline{AB} and \overline{CD} are congruent.

REVIEW USING A COORDINATE PLANE For help with using a coordinate plane, see p. 878.


READ DIAGRAMS


 $\overline{AB} \cong \overline{CD}.$

1.2 EXERCISES

HOMEWORK

KEY

PROBLEM SOLVING

32. SCIENCE The photograph shows an insect called a walkingstick. Use the ruler to estimate the length of the abdomen and the length of the thorax to

the nearest $\frac{1}{4}$ inch. About how much longer is the

walkingstick's abdomen than its thorax?

@HomeTutor for problem solving help at classzone.com

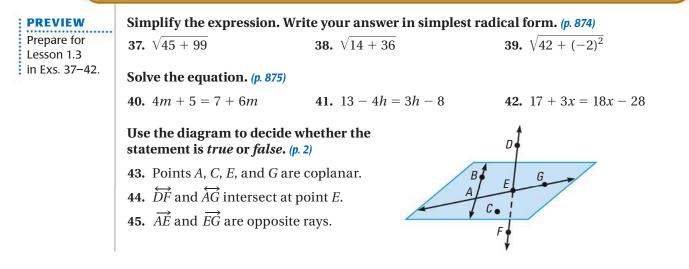
abdomen thorax abdomen thorax arriviterin period a peri

EXAMPLE 2 on p. 10 for Ex. 33 **33. MODEL AIRPLANE** In 2003, a remote-controlled model airplane became the first ever to fly nonstop across the Atlantic Ocean. The map shows the airplane's position at three different points during its flight.

- a. Find the total distance the model airplane flew.
- **b.** The model airplane's flight lasted nearly 38 hours. Estimate the airplane's average speed in miles per hour.

```
@HomeTutor for problem solving help at classzone.com
```

- 34. ★ SHORT RESPONSE The bar graph shows the win-loss record for a lacrosse team over a period of three years.
 - **a.** Use the scale to find the length of the yellow bar for each year. What does the length represent?
 - **b.** For each year, find the percent of games lost by the team.
 - **c.** *Explain* how you are applying the Segment Addition Postulate when you find information from a stacked bar graph like the one shown.


- **35. MULTI-STEP PROBLEM** A climber uses a rope to descend a vertical cliff. Let *A* represent the point where the rope is secured at the top of the cliff, let *B* represent the climber's position, and let *C* represent the point where the rope is secured at the bottom of the cliff.
 - **a. Model** Draw and label a line segment that represents the situation.
 - **b. Calculate** If *AC* is 52 feet and *AB* is 31 feet, how much farther must the climber descend to reach the bottom of the cliff?

Animated Geometry at classzone.com

36. CHALLENGE Four cities lie along a straight highway in this order: City A, City B, City C, and City D. The distance from City A to City B is 5 times the distance from City B to City C. The distance from City A to City D is 2 times the distance from City A to City B. Copy and complete the mileage chart.

	City A	City B	City C	City D
City A		?	?	?
City B	?		?	?
City C	?	?		10 mi
City D	?	?	?	

MIXED REVIEW

