

Definition

INTRODUCTION

-Static and Dynamic Posture
-Posture Control
-Major Goals and Basic Elements

Static and Dynamic Posture

-Static- body and its segments are osture is the attitude assumed by the body either with support during muscular inactivity,or by means of the co-ordinated action of many muscles working to maintain stability
of Control
aligned and maintained.Eg's
Sitting, Standing.
-Dynamic- body or its segments are moving.Eg's Walking, Running

Erect bipedal stance

Advantage: freedom for upper extremities
Disadv: -increases work of heart -increase stress on vertebral col., pelvis,LE
-reduces stability
-small BOS and high COG

Quadrupedal stance
-Body weight is distributed b / w
UE and LE
-Large BOS and low COG

Postural Control

It is a persons' ability-maintain stability of body and body segments in response to forces
that disturb the bodys' structural equilibrium
-Posture control depends on integrity of CNS, visual, vestibular and musculoskeletal system
-It also depends on information from receptors located in and around joints (jt.capsules, tendons and ligaments) and from the sole of feet

Major Goals and Basic Elements of Control

Major goals:
-Control the bodys' orientation
-Maintain bodys' COG over BOS
-Stabilize the head vertically- eye gaze is appropriately oriented

-Absent or altered inputs:

In absence of normal gravitational force in weightless conditions during space flight
-Occurs in decreased sensation of LE
-Altered outputs:
-Inability of the muscles to respond app. to signals from the CNS

- ms of a person in peripheral nerve damage

Muscle synergies

"PERTURBATION" is any sudden change in conditions that displaces the body posture away from equilibrium

sensory
(altering of visual input)
mechanical (displacements- movts of body segments or of entire body

Postural responses to perturbations caused by either platform or by pushes or pulls are called REACTIVE or COMPENSATORY response

These responses are a.k.a SYNERGIES or STRATEGIES

Ankle Synergy

Ankle synergy consists of discrete bursts of muscle activity on either the anterior or posterior aspects of the body that occur in a distal-toproximal pattern in response to forward and backward movements of the supporting platform respectively

Fixed-support synergies:

patterns of muscle activity in which the BOS remains fixed during the perturbation and recovery of equilibrium
-stability is regained through
movements of parts of the body but, the feet remain fixed on BOS eg:Ankle synergy,Hip synergy

\qquad

ANKLE SYNERGY

Hip Synergy

Change-in-support Synergies

Hip synergy consists of discrete bursts of muscle activity opposite to ankle pattern in a proximal-distal pattern of activation
-Includes stepping (forward,backward sideways) and grasping (using one's hands to grasp a bar or other fixed support) in response to movements of the platform

- Maintains stability in the instance of large perturbation

Head Stabilizing Strategies

-Proactive strategy: occur in anticipation of initiation of internally generated forces
-Used in dynamic equilibrium situation
Eg: maintain the head during walking

Strategies for maintaining the vertical stability of head
-Head stabilization in space (HSS)
-Head stabilization on trunk (HST)
-HSS : modification of head position in anticipation of displacements of the body's COG
-HST : head and trunk move as a single unit

Kinetics and Kinematics of Posture

$>$ External forces: Inertia,Gravity and Ground Reaction Forces(GRF's)
>Internal forces: muscle
activity, passive tension in
ligaments,tendons, jt. capsules and other soft tissue structures

Inertia

-In the erect standing posture the body undergoes a constant swaying motion called postural sway or sway envelope
-Sway envelope for a normal individual, standing with $4 " \mathrm{~b} / \mathrm{w}$ the feet -12° in sagittal plane and 16° in frontal plane

Gravity

-Gravitational forces act downward from the body's COG
-In static erect standing posture, the LOG must fall within the BOS, which is typically the space defined by the two feet

Ground Reaction Forces

- GRFV is equal in magnitude but opposite in direction to the gravitational force in erect standing posture
-The point of application of GRFV is at the body's centre of pressure(COP) \cdot COP is located in the foot in
unilateral stance and b / w the feet in bilateral standing postures

Coincident Action Lines

Optimal or Ideal Posture

-An ideal posture is one in which the body segments are aligned vertically and LOG passes through all the jt.
-In normal standing posture, the LOG falls close to, but not through most jt. axes
axes
-Normal body structures makes it
impossible to achieve, but is possible to
-Compressive forces are distributed over the weight bearing surfaces of jt's; no excessive tension exerted on ligamentous or required muscles

Analysis of Posture

- A plumb line is used to
-A plumb line is use
represent the LOG
-Skilled observational analysis of posture involves identification of the location of body segments relative to the LOG
-Postural analysis may be performed using;
-Body segments-either side of LOGradiography,photography,EMG,
electrogoniometry,force plates, electrogoniometry,force plates, 3-dimensional computer analysis

LATERAL VIEW : Optimal alignment in the Sagittal plane

Lateral view- Deviations from optimal alignment
-Foot and Toes:
-Claw toe
-Hammer toe
-Knee:
-Flexed Knee Posture
-Genu Recurvatum
-Pelvis:
-Excessive Anterior Pelvic Tilt
-Vertebral coloumn:
-Lordosis
-Kyphosis
-Head:
-Forward Head Posture

Claw Toes
•Deformity of toes- hyperextension of MTP jt.,
flexion of PIP and DIP jt.'s
•Callus- dorsal aspect of flexed phalanges
•Affects all toes (2 $2^{\text {nd }}$ through $\left.5^{\text {th }}\right)$

Hammer Toe
•Deformity-hyperextension of MTP and
DIP jt.'s \quad - flexion of PIP jt.
•Callus on superior surface of PIP jt.'s

Lordosis

It refers to an abnormal
increase in the normal anterior convexities of either the cervical
or lumbar regions of the
vertebral column

Lordosis
It refers to an abnormal increase in the normal anterior convexities of either the cervical or lumbar regions of the vertebral column

Kyphosis

It refers to an abnormal increase in the normal posterior convexity of the thoracic vertebral column

Gibbus
-a.k.a Hump Back is a deformity that
may occur as result of TB
-It forms a sharp posterior angulation
in the upper thoracic region of
vertebral column

Dowager's Hump

-Found in post-menopausal women with osteoporosis

- Anterior aspect of bodies of series of vertebra collapse due to osteoporotic weakening and therefore, increase in post. convexity of thoracic area

FORWARD HEAD POSTURE

Optimal alignment-Anterior aspect	
Body segments	LOG location
- Head	- Middle of forehead,nose, chin
- Chest	- Middle ofxyphoid process
- Abdomen/hips	- Through umbilicus
- Hips/pelvis	- Line equidistant from rt and It ASIS and through symphysis pubis
- Knees	- Equidistant from medial femoral condyles
- Ankles/feet	- Equidistant from the medial malleoli

| Optimal alignment-Posterior aspect |
| :--- | :--- |
| - Head - Middle of head
 - Shoulders/spine Along vertebral column in a
 straight line, which should
 bisect the back into two
 symmetrical halves
 - Hips/pelvis Through gluteal cleft of
 buttocks and equidistant from
 - Knees
 - Ankles/feet - Equidistant from medial jt.
 aspects |

Anterior-posterior View - Deviations from the optimal alignment
-Foot and Toes: -Pes planus
-Pes cavus
-Hallux valgus

-Knees: -Genu valgum

-Genu varum
-Squinting or cross-eyed patella -Grasshopper eyes patella
-Vertebral column:-Scoliosis

Pes Planus(flat foot)

-It is characterized by reduced or absent arch, which may be either rigid or flexible
-Talar head-displaced-ant.,med.,inf. and causes depression of navicular bone and lenghthening of tibialis post. muscle

- Navicular lies below the Feiss line and may even rest on the floor in severe conditions
-Rigid flat foot: it is a structural
deformity where the medial
longitudinal arch of foot is absent in NWB,WB and toe standing
-Flexible flat foot: the arch is reduced during normal wt. bearing, but reappears during toe standing and non wt. bearing

Pes Cavus

-The medial longitudinal arch of foot may be unusually high

- A high arch is called pes cavus
-It is a more stable position of foot than pes planus,Wt. borne-lat. borders of foot
-Lateral lig. and peroneus longus muscle stretched

Hallux Valgus
-It is a very fairly common deformity- medial
deviation of the first metatarsal at
tarsometatarsal jt. and lateral deviation of
phalanges at MTP jt.
-Bursa on the medial aspect of first MTP head
may be inflammed- Bunion

Genu Valgum (knock knee)

-In genu valgum,mechanical axes of LE are displaced lat. and patella may be displaced lat.
-If genu valgum exceeds 30° and persists beyond 8 yrs of age - structural changes occur
-Medial knee jt. structures - abnormal tensile or distraction stress
-Lateral knee jt. Structures - abnormal compressive stress

-Knees are widely seperated when the feet are together
-Cortical thickening on medial concavity on femur and tibia - increased compressive force
-Patella may be displaced medially

Squinting or Cross-Eyed Patella
-A.k.a in-facing patella
-Superior medial pole of patella faces medially
-Inferior pole faces laterally
-Q-angle may be increased

Grasshopper Eyes Patella
-High laterally displaced position of patella

Scoliosis
Lateral deviations of a series of vertebrae from the LOG in one or more regions of the spine may indicate the presence of lateral spinal curvature

Idiopathic Scoliosis

-Lateral flexion moment present
-Deviation of vertebrae with rotation
-Compression of vertebral body on the side of concavity of curve
-Therfore, inhibition of growth of vertebral body on that side
-This leads to wedging of vertebra

- Shortening of trunk muscle on concavity
-Convexity- stretching of muscles,ligaments and joint capsules

Non-structural Scoliosis

-A.k.a functional curves
-Can be reversed if the cause of curve is corrected
-These curves are a result of
correctable imbalance such as limb
length discrepancy or a muscle
spasm

References
- Joint Structure and Function by Pamela K.
Levangie \& Cynthia C. Norkin (5 $5^{\text {th }}$ Edition).

