MAHATMA GANDHI UNIVERSITY MEDICAL SCIENCES & TECHNOLOGY

BIOMECHANICS OF POSTURE

Associate Profe MPT Ortho/Musculosket MGUMST JAI

Definition

Posture is the attitude assumed by the body either with support during muscular inactivity,or by means of the co-ordinated action of many muscles working to maintain stability

INTRODUCTION

•Static and Dynamic Posture •Posture Control •Major Goals and Basic Elements of Control

Static and Dynamic Posture

Static- body and its segments are aligned and maintained.Eg's Sitting, Standing.
Dynamic- body or its segments are moving.Eg's Walking, Running

Erect bipedal stance

Advantage: freedom for upper extremities Disadv: -increases work of heart -increase stress on vertebral col.,pelvis,LE -reduces stability -small BOS and high COG

Quadrupedal stance

-Body weight is distributed b/w UE and LE -Large BOS and low COG

Postural Control

It is a persons' ability-maintain stability of body and body segments in response to forces that disturb the bodys' structural equilibrium •Posture control depends on integrity of CNS,visual, vestibular and musculoskeletal system

•It also depends on information from receptors located in and around joints (jt.capsules,tendons and ligaments) and from the sole of feet

Major Goals and Basic Elements of Control

Major goals:

•Control the bodys' orientation •Maintain bodys' COG over BOS •Stabilize the head vertically- eye gaze is appropriately oriented

-Absent or altered inputs:

•In absence of normal gravitational force in weightless conditions during space flight

•Occurs in decreased sensation of LE -Altered outputs:

•Inability of the muscles to respond app. to signals from the CNS

• ms of a person in peripheral nerve damage

Muscle synergies

"PERTURBATION" is any sudden change in conditions that displaces the body posture away from equilibrium

Perturbation

sensory mechanical (altering of visual input)

(displacements- movts of body segments or of entire body)

Postural responses to perturbations caused by either platform or by pushes or pulls are called REACTIVE or COMPENSATORY response

These responses are a.k.a SYNERGIES or STRATEGIES

Synergies

•Fixed- support synergies

•Change-in-support synergies

Fixed-support synergies:

patterns of muscle activity in which the BOS remains fixed during the perturbation and recovery of equilibrium •stability is regained through movements of parts of the body but,the feet remain fixed on BOS eg:Ankle synergy,Hip synergy

Ankle Synergy

Ankle synergy consists of discrete bursts of muscle activity on either the anterior or posterior aspects of the body that occur in a distal-toproximal pattern in response to forward and backward movements of the supporting platform respectively

Hip Synergy

Hip synergy consists of discrete bursts of muscle activity opposite to ankle pattern in a proximal-distal pattern of activation

Change-in-support Synergies

 Includes stepping (forward,backward, sideways) and grasping (using one's hands to grasp a bar or other fixed support) in response to movements of the platform

•Maintains stability in the instance of large perturbation

Head Stabilizing Strategies

•Proactive strategy: occur in anticipation of initiation of internally generated forces

•Used in dynamic equilibrium situation Eg: maintain the head during walking

Strategies for maintaining the vertical stability of head

•Head stabilization in space (HSS)

•Head stabilization on trunk (HST)

•HSS : modification of head position in anticipation of displacements of the body's COG

•HST : head and trunk move as a single unit

Kinetics and Kinematics of Posture

>External forces: Inertia,Gravity and Ground Reaction Forces(GRF's)

>Internal forces: muscle activity,passive tension in ligaments,tendons,jt. capsules and other soft tissue structures

Inertia

•In the erect standing posture the body undergoes a constant swaying motion called postural sway or sway envelope

•Sway envelope for a normal individual,standing with 4" b/w the feet – 12° in sagittal plane and 16° in frontal plane

Gravity

•Gravitational forces act downward from the body's COG

•In static erect standing posture,the LOG must fall within the BOS,which is typically the space defined by the two feet

GROUND REACTION FORCES

Whenever the body contacts the ground, the ground pushes back on the body. I GRF
GRF
GRF to a composite (resultant) force having 3 components

- One vertical component force - Two horizontal component forces

medial-lateral anterior-posterior

Ground Reaction Forces

•GRFV is equal in magnitude but opposite in direction to the gravitational force in erect standing posture

•The point of application of GRFV is at the body's centre of pressure(COP) •COP is located in the foot in unilateral stance and b/w the feet in bilateral standing postures

Coincident Action Lines

The GRFV and the LOG have coincident action lines in static erect posture

Optimal or Ideal Posture

-An ideal posture is one in which the body segments are aligned vertically and LOG passes through all the jt. axes

-Normal body structures makes it impossible to achieve,but is possible to attain a posture,close to ideal one -In normal standing posture,the LOG falls close to,but not through most jt. axes

-Compressive forces are distributed over the weight bearing surfaces of jt's; no excessive tension exerted on ligamentous or required muscles

Analysis of Posture

•Skilled observational analysis of posture involves identification of the location of body segments relative to the LOG •Body segments-either side of LOGsymmetrical •A plumb line is used to represent the LOG

•Postural analysis may be performed using; radiography,photography,EMG, electrogoniometry,force plates, 3-dimensional computer analysis

alignment in the	e Sagittal plane
LOG Posterior to joint axis	Gravitational Moment Extension
н	IP
Passive Opposing Forces : Iliofemoral, Ischiofemoral Ligaments	Active Opposing forces Iliopsoas

and the second se		littal plane
through the b L5 and close axis of rotati LS joint	to the ion of	Gravitational Moment : Very Slight Extension moment
		osacral int
Passive Opp Forces Ant Longitudir Ligamer	terior nal	

in the of	agittal plane
LOG Anterior to joint axis	Crevitational Moment Flexion type motion
Paseive Onnorm	acroiliac Joint
Forces Sacrotuberous, Sacrospinous, Sacroiliac Ligaments	Active Opposing Forces :

LOG : Poste		Gravitational Moment : Extensi
		IMN
Passive Opp Forces An longitudinal lig	terior	

LOG Anterior transverse axis for and extensior	flexion	Gravitational moment Flexion
	ATLA OCCI JO	PITAL
Passive Opposing I : ligamentum nucl tectorial membra	hae,	Active Opposing Forces Posterior Neck muscles

Lateral view- Deviations from optimal alignment

•Foot and Toes: -Claw toe -Hammer toe •Knee: -Flexed Knee Posture

-Genu Recurvatum •Pelvis:

-Excessive Anterior Pelvic Tilt

•Vertebral coloumn: -Lordosis -Kyphosis •Head: •

-Forward Head Posture

Claw Toes

•Deformity of toes- hyperextension of MTP jt., flexion of PIP and DIP jt.'s •Callus- dorsal aspect of flexed phalanges •Affects all toes (2nd through 5th)

Hammer Toe

Deformity-hyperextension of MTP and DIP jt.'s

flexion of PIP jt.

Callus on superior surface of PIP jt.'s

FLEXED KNEE POSTURE

Flexed knee standing posture

LOG – posterior to joint axis

flexion moment

activity of quadriceps to maintain erect position (22% quadriceps force – 15° Knee flexion) (51% quadriceps force – 30° Knee flexion)

Excessive compressive stress on TF and PF

FLEXED KNEE POSTURE

knee flexion in upright stance hip flexion and ankle dorsiflexion I LOG – anterior to hip joint axis and more ior to ankle joint axis oment at hip & more dorsiflexion flexion m t at ankle hip extensors muscle activity & increased nuscle activity more compressive stress on joints & more ergy expenditure

GENU RECURVATUM LOG is very anterior to knee joint axis increase in the extensor moment considerable tension stress in posterior joint capsule (adaptive lengthening)

abnormal compression on anterior joint surfaces on the femoral condyles and anterior portion of tibial plateaus

degenerative changes in joint surfaces

DEVIATION	COMPRESSION	DISTRACTION	STRETCHING	SHORTENING
Excessive anterior tilt of pelvis	Posterior vertebral bodies Interdiskal pressure L5-S1 increased	Lumbosacral angle increased Shearing forces at L5:S1 Likelihood of forward slippage of L5 on S1 increased	Abdominals	lliopsoas

Lordosis

It refers to an abnormal increase in the normal anterior convexities of either the cervical or lumbar regions of the vertebral column

DEVIATION	COMPRESSION	DISTRACTION		SHORTENING
Excessive Lumbar Lordosis	Posterior vertabral bodies and facet joints Interdiskal pressures increased Intervertebral foramina narrowed	Anterior annulus fibers	Anterior longitudinal ligament	Posterior longitudinal ligament ligaments Ligamentum Flavum Lumbar extensors

	COMPRESSION	DISTRACTION	STRETCHING	SHORTENING
Excessive cervical lordosis	Posterior vertebral bodies and facet joints Interdiskal pressure increased Intervertebral foramina narrowed	Anterior annulus fibers	Anterior longitudinal ligament	Posterior ligaments Neck extensors

Kyphosis

It refers to an abnormal increase in the normal posterior convexity of the thoracic vertebral column

	KY	PHOSI	S	
DEVIATION	COMPRESSION	DISTRACTION	STRETCHING	SHORTENING
Excessive dorsal kyphosis	Anterior vertebral bodies Intradiskal pressures increased	Facet joint capsules and posterior annulus fibers	Dorsal back extensors Posterior ligaments Scapular muscles	Anterior longitudinal ligament Upper abdominals Anterior shoulder girdle musculature

Gibbus

•a.k.a Hump Back is a deformity that may occur as result of TB

•It forms a sharp posterior angulation in the upper thoracic region of vertebral column

Dowager's Hump

•Found in post-menopausal women with osteoporosis

•Anterior aspect of bodies of series of vertebra collapse due to osteoporotic weakening and therefore, increase in post. convexity of thoracic area

DEVIATION	STRUCTURAL COMPONENTS	LONG-TERM EFFECTS ON STRUCTURAL FUNCTION
ORWARD HEAD	Constant isometric muscle tension to support head	Muscle ischemia pain, fatigue

FORWARD HEAD POSTURE

DEVIATION	STRUCTURAL COMPONENTS	LONG-TERM EFFECTS ON STRUCTURAL FUNCTION
INCREASE IN CERVICAL LORDOSIS	Narrowing of intervertebral foramina and compression of nerve roots	Damage to nerve roots causing paralysis
	Compression of zygapophyseal	Damage to cartilage and increased

FORWAR	FORWARD HEAD POSTURE					
DEVIATION	STRUCTURAL COMPONENTS	LONG-TERM EFFECTS ON STRUCTURAL FUNCTION				
INCREASE IN CERVICAL LORDOSIS	Compression of posterior annulus fibrosus Adaptive shortening of posterior ligaments	Changes in collagen and early disk degeneration Decrease in cervical flexion ROM				

DEVIATION	STRUCTURAL	LONG-TERM
	COMPONENTS	EFFECTS ON STRUCTURAL FUNCTION
INCREASE IN CERVICAL LORDOSIS	Adaptive lengthening of anterior ligaments	Decrease in anterior stability
	Increase in compression on posterior vertebral bodies	Osteophyte formation

DEVIATION	STRUCTURAL COMPONENTS	LONG-TERM EFFECTS ON STRUCTURAL FUNCTION
MEDIAL ROTATION OF SCAPULA	Adaptive lengthening of upper posterior back muscles	Increase in dorsal kyphosis and loss of height
	Adaptive shortening of anterior shoulder muscles	Decrease in vital capacity and ROM of shoulder and arm

Optimal alignr Body segments	ment-Anterior aspect LOG location
 Head 	Middle of forehead, nose, chin
 Chest 	 Middle of xyphoid process
 Abdomen/hips 	 Through umbilicus
 Hips/pelvis 	 Line equidistant from rt and lt ASIS and through symphysis pubis
• Knees	 Equidistant from medial femoral condyles
Ankles/feet	 Equidistant from the medial malleoli

Optimal alignment-Posterior aspect

- HeadShoulders/spine
- Shoulders/s
- Hips/pelvis
- Knees
- Ankles/feet
- Middle of head
 Along vertebral column in a straight line, which should bisect the back into two symmetrical halves
 Through gluteal cleft of buttocks and equidistant from PSIS

Middle of head

 Equidistant from medial jt. aspects Anterior-posterior View – Deviations from the optimal alignment

•Foot and Toes: -Pes planus -Pes cavus -Hallux valgus •Knees: -Genu valgum -Genu varum -Squinting or cross-eyed patella -Grasshopper eyes patella •Vertebral column: -Scoliosis

Pes Planus(flat foot)

•It is characterized by reduced or absent arch,which may be either rigid or flexible

•Talar head-displaced-ant.,med.,inf. and causes depression of navicular bone and lenghthening of tibialis post. muscle

•Navicular lies below the Feiss line and may even rest on the floor in severe conditions

•Rigid flat foot: it is a structural deformity where the medial longitudinal arch of foot is absent in NWB,WB and toe standing

•Flexible flat foot: the arch is reduced during normal wt. bearing,but reappears during toe standing and non wt. bearing

Pes Cavus

•The medial longitudinal arch of foot may be unusually high •A high arch is called pes cavus

•It is a more stable position of foot than pes planus,Wt. borne-lat. borders of foot

•Lateral lig. and peroneus longus muscle stretched

Hallux Valgus

•It is a very fairly common deformity- medial deviation of the first metatarsal at tarsometatarsal it. and lateral deviation of phalanges at MTP jt.

•Bursa on the medial aspect of first MTP head may be inflammed- Bunion

Genu Valgum (knock knee)

•In genu valgum,mechanical axes of LE are displaced lat. and patella may be displaced lat.

•If genu valgum exceeds 30° and persists beyond 8yrs of age – structural changes occur

•Medial knee jt. structures – abnormal tensile or distraction stress •Lateral knee jt. Structures – abnormal compressive stress

Genu varum (bow legs)

•Knees are widely seperated when the feet are together •Cortical thickening on medial concavity – on femur and tibia – increased compressive

force •Patella may be displaced medially

Squinting or Cross-Eyed Patella

•A.k.a in-facing patella

•Tilted/rotated position of patella

•Superior medial pole of patella faces medially

•Inferior pole faces laterally

•Q-angle may be increased

Grasshopper Eyes Patella

•High laterally displaced position of patella

•Patella faces upward and outward

Scoliosis

Lateral deviations of a series of vertebrae from the LOG in one or more regions of the spine may indicate the presence of lateral spinal curvature

Idiopathic Scoliosis

•Lateral flexion moment present

•Deviation of vertebrae with rotation •Compression of vertebral body on the side of

concavity of curve •Therfore,inhibition of growth of vertebral body

on that side

•This leads to wedging of vertebra •Shortening of trunk muscle on concavity

•Convexity- stretching of muscles, ligaments and joint capsules

Non-structural Scoliosis

•A.k.a functional curves •Can be reversed if the cause of curve is corrected •These curves are a result of correctable imbalance such as limb length discrepancy or a muscle spasm

References

 Joint Structure and Function by Pamela K. Levangie & Cynthia C. Norkin (5th Edition).

THANK YOU

•