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Abstract 
 
Molecular biology developments have led to fast growth in new methods for fish 
disease diagnosis. Molecular diagnostic methods are rapid and more specific, more 
sensitive than the culture of pathogens, serology, histology, and biochemical methods 
which are traditionally utilized to identify causative agents of fish disease. Molecular 
diagnostic methods are valuable for detecting specific pathogen that are difficult to 
culture in vitro or require a long cultivation period and it significantly more rapid in 
providing results compared to culture. It enables earlier informed decision-making and 
rapid diagnosis of bacteremia, particularly for low levels of bacteria in specimens. 
Molecular techniques which have the major significance are mainly PCR-based 
molecular diagnostic methods including Polymerase Chain Reaction (PCR), Real-Time 
Polymerase Chain Reaction (RT-PCR), Multiplex Polymerase Chain Reaction (multiplex-
PCR), and Random Amplified Polymorphic DNA (RAPD), etc. These have been 
increasingly utilized to diagnose fish disease for the last recent years. Molecular 
diagnostic methods can detect pathogens from asymptomatic fish, so disease 
outbreaks could be prevented. As a consequence, antibiotic treatment can be reduced 
and the development of antibiotic-resistant bacteria can be eliminated.  In this review 
paper, we attempt to summarize the potentiality of PCR-based molecular diagnostic 
methods and their application in fish pathogen identification.  
 

Introduction 
 

Aquaculture industries are major contributors to 
the economy of Bangladesh (Ahmed, 2013; Dey et al., 
2008) as well as many countries and an increasingly 
important component in global food supply 
(Charoonnart et al., 2018). The fast expansion of 
aquaculture has been accompanied by the spread of 
infectious diseases and accountable for vital economic 
losses (Leung & Bates, 2013; Tavares-Dias & Martins, 
2017). In the attempt to combat infectious diseases, 

biocides and antimicrobials are used worldwide, with 
subsequent hazardous outcomes to the environment 
and workers' health, and the increased chance of the 
emergence of resistant strains (Cabello, 2006; Defoirdt 
et al., 2011;). The fish diseases are a greater problem in 
the sustainable development of Fish culture (Bondad-
Reantaso et al., 2005) in Bangladesh as well as in the 
world (Rodger, 2016). Bacteria and virus are the leading 
causative agents of diseases (Plumb & Hanson, 2010; 
Wolf, 2019) in freshwater fishes (Pridgeon & Klesius, 
2012) and marine fishes (Muroga, 2001).  
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Fish disease diagnosis has progressed from the 
traditional approaches of isolation and phenotypic 
characterization of the pathogen to the modern 
methods of molecular biology (Austin, 2019). 
Traditionally, the diagnosis of the disease is operated by 
agar cultivation and then observation of phenotypic and 
serological properties of the pathogen and sometimes 
histological examination (Gilligan, 2013; Kumar et al., 
2014). In many developing countries, fish pathogens are 
usually identified based on traditional biochemical 
identification methods (Adhikari et al., 2015; Váradi et 
al., 2017) which are time-consuming and most regularly 
could no longer confirm the pathogen specifically 
(Foddai & Grant, 2020; Franco-Duarte et al., 2019). 
Some experiments have been made using biochemical 
tests, DNA homology, and protease variability (Kumar et 
al., 2014; Zdzalik et al., 2013), these strategies have 
some negative aspects such as the need for previous 
isolation of the pathogen and inadequate sensitivity to 
detect low levels of the pathogen (Altinok et al., 2008; 
Wakabayashi et al., 2016).  

In contrast, molecular identification techniques are 
very robust and precise (Adzitey et al., 2013; Franco-
Duarte et al., 2019) and currently practiced in different 
developed (Bigarré et al., 2017) and developing 
countries (Sarowar et al., 2019). During the last fifteen 
years or so, molecular methods have been increasingly 
more utilized to diagnose fish diseases (Altinok & Kurt, 
2003). Since molecular diagnostic strategies are quicker 
and greater sensitive (Dwivedi et al., 2017; Kociolek, 
2017) than traditional diagnostic techniques, pathogens 
could be identified from asymptomatic fish resulting in 
prevention of diseases before an outbreaks. 

Fish health management is a term utilized in 
aquaculture to describe management practices that are 
planned to avoid fish infection (Assefa & Abunna, 2018; 
Opiyo et al., 2018). Once fish get in poor health it can be 
challenging to salvage them. Successful fish health 
management starts with the prevention of disease as an 
alternative to treatment (Francis-Floyd, 2011; Noga, 
2010). Under intensive aquaculture conditions, the risk 
of stress increases, and a massive proportion of the 
stock might also come to be infected (Datta, 2012; 
Huntingford & Kadri, 2014; Rehman et al., 2017). 
Therefore, the detection of the pathogen from carrier 
fish is necessary for effective fish disease management 
(Sadler & Goodwin, 2007). In this aspect, the main 
objectives of this review are to explore the potentiality 
of six PCR based molecular diagnostic methods: i. PCR; 
ii. Multiplex-PCR; iii. RT-PCR; and iv. RAPD applied for 
fish pathogen identification v. Nested PCR vi Loop-
mediated isothermal amplification (LAMP). 

 
Glance of Molecular Diagnostic Methods 
 

Diagnosis is the process of identifying the disease 
or any abnormal condition which is explain and derived 
from the host's sign and symptoms. The data required 
for diagnosis is normally derived from a history and 

physical test of the host organism seeking care (Abdisa 
& Abdisa, 2017; Neshati et al., 2018), sometimes, one or 
more diagnostic procedures like clinical tests, are also 
accomplished during the procedure (Balogh et al., 
2015). According to Aggarwal (2015) “Diagnosis may be 
defined as the determination or identification of the 
cause or nature of an illness by evaluation and analysis 
of the signs, symptoms and supportive tests in an 
individual patient. Diagnostic criteria are a set of signs, 
symptoms, and tests for use in routine clinical care to 
guide the care of individual patients” (Aggarwal et al., 
2015). According to Patrinos et al. (2017) “Molecular 
diagnostics is referred to as the detection of genomic 
variants, aiming to facilitate diagnosis, sub-
classification, prognosis, and monitoring response to 
therapy”. Molecular diagnostics is the compiled result of 
fruitful interaction amongst laboratory medicine, 
genomics, and technological knowledge in the area of 
molecular genetics, in particular with significant 
discoveries in the subject of molecular genomic 
technologies (Dwivedi et al., 2017;). All these factors 
make a contribution to the identification and high-
quality characterization of the genetic foundation of the 
pathogen which, in turn, is fundamental for the accurate 
provision of diagnosis  (Dwivedi et al., 2017). Molecular 
diagnostics is a series of methods used to analyze 
markers in the genome and proteome the individual's 
genetic code and how their cells express their genes as 
proteins by way of applying molecular biology to clinical 
testing (Orakpoghenor & Markus, 2020; Shen, 2019). 
Molecular techniques can keep away from problems 
inherent in the study of organisms for which no in-vitro 
culture medium or technique is available, and have the 
possibility to significantly increase the sensitivity of 
detection (Francy et al., 2009; Rhoads et al., 2012). 
Many molecular techniques for diagnosis are available 
to detect the genetic variation among pathogen genes 
(Amjad, 2020; Procop, 2007). Such as Polymerase Chain 
Reaction (PCR) based are: Real-Time Polymerase Chain 
Reaction (RT- PCR) (Logan et al., 2009; Wong & 
Medrano, 2005), Multiplex Polymerase Chain Reaction 
(multiplex-PCR) (Mahoney & Chernesky, 1995;), 
Random Amplified Polymorphic DNA (RAPD) (Butler, 
2012) etc. , and non-PCR based are: Restriction fragment 
length polymorphism (RFLP) (Mittal et al., 2013), the 
enzyme-linked immunosorbent assay (ELISA)(Drijvers et 
al., 2017), etc. 

  
The Potential Beneficial Role of Molecular Diagnostic 
Methods in Aquaculture 
 

Successful fish health management starts with the 
prevention of disease as an alternative to 
treatment(Faisal et al., 2017). Under intensive 
aquaculture conditions, the risk of disease outbreak, 
anti-biotic resistant bacteria, aquatic pollution, stock 
mortality etc. are common phenomena (Preena et al., 
2020; Santos & Ramos, 2018). Once fish get in poor 
health it is very challenging to manage them (Assefa & 
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Abunna, 2018). Therefore, the detection of pathogen 
from the host is necessary for effective fish disease 
management (Altinok & Kurt, 2003; Austin, 2019). 

 
Prevention of Disease Outbreak 

The molecular method for disease detection is now 
a world-recognized system (Dwivedi et al., 2017). The 
fish pathogen can be detected accurately with the help 
of molecular diagnostic methods (Cai et al., 2014). In 
case of traditional biochemical tests, many fish 
pathogens cannot be detected even closely related 
pathogenic species cannot be differentiated (Adhikari et 
al., 2015; Bajinka, 2017). In most cases of aquaculture, 
accurate identification of causative agents of diseases is 
not practiced, so it is quite difficult to apply the proper 
management for preventing and using appropriate 
drugs for controlling the diseases (Assefa & Abunna, 
2018). As consequence, an outbreak of diseases 
occurred frequently ( Lindahl & Grace, 2015; Sharma et 
al., 2012). If pathogens can be detected and recognized 
in the environment, for example, between harvesting 
and re-stocking, then this can be extremely useful in the 
prevention of disease outbreaks (Assefa & Abunna, 
2018; Dwivedi et al., 2017). 

 
Reducing the Chance of Developing Antibiotic-
Resistant Bacteria 
 

Antibiotic-resistant bacteria is a burning issue in 
Aquaculture. The capacity of Antimicrobial resistance 
(AMR) genes to pass between microbes, a technique 
known as horizontal gene transfer (HGT), is thought to 
underlie the quick rise in safe pathogens seen over the 
globe. (Thornber et al., 2020; Watts et al., 2017). This 
process can happen between irrelevant bacterial 
species, meaning that resistance genes display in non-
pathogenic, natural microbes can be exchanged to the 
creature or human pathogenic microbes and posture a 
danger to the creature and human wellbeing (Fletcher, 
2015; Peterson & Kaur, 2018; Thornber et al., 2020). 
Accurate diagnosis of disease allows for the selection of 
appropriate antimicrobials, and avoidance of antibiotics 
in human health (Abadi et al., 2019; Llor & Bjerrum, 
2014). Therefore, antibiotic treatment can be reduced 
and the development of antibiotic-resistant bacteria 
may also be eliminated. 

 
Other Beneficial Role of Molecular Diagnostic Methods  
 

Molecular methodologies offer numerous 
advantages to the clinical laboratory. These include: 

 
Turnaround Time  

 
In comparison with standard conventional culture 

strategies, molecular techniques ordinarily offer way 
better turnaround times from receipt to result 
announcing (Leung & Bates, 2013; Lievens et al., 2011). 

Application Area 
 
Broader applications can be found with molecular 
methodologies such as infectious diseases, genetic 
testing, drug resistance, and tumor marker detection 
etc. (samples collected from fish tissue, blood, etc.) 
(Debnath et al., 2010; Emmadi et al., 2011; Marwal & 
Gaur, 2020).  
 
PCR Based Methods in Fish Pathogen Identification 
 
Polymerase Chain Reaction (PCR) 
 

In 1983, the Polymerase Chain Reaction (PCR) was 
discovered by Kary Mullis (Mullis et al., 1986). PCR 
resembles an in vitro and elementary form of DNA 
replication, a physiological process used by all living cells 
to duplicate their genetic material before cell division 
(Baynes & Dominiczak, 2009). 

 
Denaturation 
 
DNA Template contains the sequences that will be 
amplified by PCR (Kalle et al., 2014). In this stage, 
melting temperature (Tm) generally 92-94°C makes the 
double-stranded DNA separate into the single-stranded 
(Borah, 2011; Sarah Maddocks & Jenkins, 2017). 
 
Annealing 
 
The short DNA fragments are called “Primers” that bind 
by complementary base pairing to opposite DNA strands 
at the annealing temperature generally 55-60°C (Borah, 
2011; Tymoczko et al., 2011).  
 
Elongation 
 
DNA polymerases copy DNA molecules during the PCR 
reaction (Caetano-Anollés, 2013; Drouin et al., 2007). 
DNA polymerase is an enzyme responsible for DNA 
replication and only able to add nucleotides to the 5´ to 
3' end(Cox et al., 2015).  

Theoretically, the increase in the amount of 
product after each round will be geometric (Rimstad et 
al., 1990). In every cycle of PCR, approximately the 
amount of DNA increased to double, as well as it is 
repeating in the following cycle and, a new strand of 
DNA subsequently acts as a template for replication. 
This results in an exponential increase in the number of 
targeted segments of DNA during PCR. A total of 25–40 
PCR cycles is carried out and depending on the expected 
yield of the PCR products (Baynes & Dominiczak, 2009). 
Usually, at least a millions copy of a particular region of 
a DNA molecule can be produced and the PCR product 
can be detected via gel electrophoresis (McPhearson et 
al., 1991). The amplified product may then be used for 
analytical detection, sizing, cloning, or sequencing 
(Wages, 2005).  
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Major Advantages of PCR 
 

PCR method is valuable for detecting specific 
pathogens that are difficult to culture in vitro or require 
a long cultivation period (Yamamoto, 2002) and it 
significantly more rapid in providing results compared to 
culture. It enables earlier informed decision-making by 
the rapid diagnosis of bacteremia, particularly for low 
levels of bacteria in specimens (Maurer et al., 2017). It is 
useful in detecting cases in extrapulmonary specimens 
which may be missed by smear and/or culture 
(Narayana et al., 2018). PCR is still considered an adjunct 
test for certain diagnostic tests that still rely on smear 
and culture (Yang & Rothman, 2004). 

 
Disadvantages of PCR 
 

PCR still need culture for testing for drug/antibiotic 
susceptibility and genetic typing (Cockerill, 1999). PCR 
results should not be used as the sole basis of a patient 
treatment management decision. All results should be 
interpreted by a trained professional in conjunction with 
the review of the patient’s history and clinical signs and 
symptoms. False-negative results can arise from 
improper sample collection/transport, an insufficient 
amount of specimen, degradation of nucleic acids 
(typically RNA) during shipping or storage, detecting 
organisms representative of normal flora near specimen 
collection site, acid-fast bacilli in water, and 
contaminants in the lab, specimen mix-up, etc 
(Narayana et al., 2018). 

 
Application of PCR to Identify Fish Pathogens 
 

A lot of Polymerase chain reaction (PCR) assays are 
already developed to identify the specific fish pathogen 
(Table 1), e.g. a fish pathogen Vibrio harveyi can be 
detected by a specific primer set. 

 
Multiplex Polymerase Chain Reaction (multiplex-PCR) 
 

Multiplex polymerase chain reaction (Multiplex 
PCR) alludes to the utilize of polymerase chain response 
to intensify a few diverse DNA arrangements at the 
same time (as in case performing numerous isolated PCR 
responses all together in one reaction) (Kechin et al., 
2020; Markoulatos et al., 2002). Multiplex-PCR was first 
described in 1988 as a method to detect deletions in the 
dystrophin gene (Chamberlain et al., 1988). In multiplex 
PCR, two or more primer sets planned for the expansion 
of diverse targets are included within the same PCR 
reaction. (Shen, 2019a). This technique intensifies DNA 
in tests utilizing numerous primers and a temperature-
mediated DNA polymerase in a warm cycler (Lorenz, 
2012). The preliminary plan for all primer sets should be 
optimized so that all primer sets can work at the same 
annealing (strengthening) temperature amid PCR (Sint 
et al., 2012). The multiplex polymerase chain reaction is 
a widespread molecular technique utilized for the 

amplification of multiple targets in just one PCR 
experiment (Rollinson & Hay, 2012; Zebardast et al., 
2014). 

 
Advantages of Multiplex- Polymerase Chain Reaction 
(multiplex-PCR) 
 

In multiplex PCR Less input material is required and 
provides more information (Elnifro et al., 2000). It is Cost 
effective (fewer dNTPs, enzymes, and other 
consumables) (Mahony et al., 2009) and time-saving 
(versus conventional culture methods) (Giantsis et al., 
2017). It has increased accuracy of data analysis and 
fewer pipetting errors (Lee et al., 2007). It can be used 
to identify exonic and intronic sequences in specific 
genes (Hernandez-Rodriguez, 2012). 

 
Disadvantages of Multiplex- Polymerase Chain 
Reaction (multiplex-PCR) 
 

The self-inhibition among different sets of primers 
can be occurred. In this PCR, it is important the design 
of primers because they must be characterized by 
adherence to specific DNA sequences at similar 
temperatures. However, it may require several trials to 
achieve the standardization of the procedure (Jackson et 
al., 2004). 

Application Multiplex- polymerase chain reaction 
(multiplex-PCR) in fish pathogen detection: 

Numerous Multiplex- polymerase chain reaction 
(multiplex-PCR) assays are already examined and 
studied to detect the fish pathogenic bacteria and 
viruses (Table 2), such as Aeromonas hydrophila, 
Edwardsiella tarda and Photobacterium damselae can 
be detected in a single run of PCR by using multiple sets 
of primers. Fish pathogenic virus like infectious 
pancreatic necrosis virus (IPNV), infectious 
hematopoietic necrosis virus (IHNV), and viral 
hemorrhagic septicemia virus (VHSV) can be identified 
by multiplex PCR (Williams et al., 1999) 

 
Real-Time Polymerase Chain Reaction (RT- PCR) 
 

In the area of molecular diagnostics, real-time PCR-
based assays have acquired favor in the recent past 
(Gunson et al., 2006; Mackay, 2007). A real-time 
polymerase chain reaction (real-time PCR), additionally 
recognized as quantitative Polymerase Chain Reaction 
(qPCR), is a laboratory technique of molecular biology-
based totally on the polymerase chain response (PCR) 
(Foroni et al., 2017; García-Giménez et al., 2019; Mauger 
& Deleuze, 2019). It observes the amplification of a 
targeted DNA molecule in the course of the PCR (i.e., in 
real-time), not at its end, as in conventional PCR. Real-
time PCR can be used quantitatively (quantitative real-
time PCR) (Kralik & Ricchi, 2017). Real-time PCR is 
carried out in a thermal cycler with the ability to 
illuminate every sample with a beam of light of at least 
one particular wavelength and realize the fluorescence 
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  Table 1. A shortlist of pathogen-specific primers used in polymerase chain reaction (PCR) methods to identify fish pathogens 

Fish Pathogen  Host Primer’s name and sequence References 

Vibrio parahaemolyticus Shrimp Forward: AP4-F1- 5´ATGAGTAACAATATAAAACATGAAAC3´ 
Reverse: AP4-R1- 5´ACGATTTCGACGTTCCCCAA3´ 

(Dangtip et al., 
2015) 

Forward: AP4-F2-5´TTGAGAATACGGGACGTGGG3´ 
Reverse: AP4-R2 5´GTTAGTCATGTGAGCACCTTC3´ 

Koi herpesvirus (KHV) Koi, Goldfish, 
Common Carp 

Forward: KHV-F-5´GACGACGCCGGAGACCTTGTG3´, 
Reverse: KHV-R- 5´CACAAGTTCAGTCTGTTCCTCAAC3´ 

(Meyer et al., 
2012) 

Forward: KHV-TKf 5´GGGTTACCTGTACGAG3´ 
Reverse: KHV-TKr 5´CACCCAGTAGATTATGC3´ 
Forward: KHV-Gray-2F- 5´GACACCACATCTGCAAGGAG3´ 
Reverse: KHV-Gray-2R-5´GACACATGTTACAATGGTGGC3´ 

Vibrio harveyi Sea bream Forward: 5´GAGTTCGGTTTCTTTCAAG3´ 
Reverse: 5´TGTAGTTTTTCGCTAATTTC3´ 

(Haldar et al., 
2010) 

Pseudomonas aeruginosa Freshwater culture 
system 

Forward: 5´ATGGAAATGCTGAAATTCGGC3´ 
Reverse: 5´CTTCTTCAGCTCGACGCGACG3´ 

(Tripathy et al., 
2007) 

Renibacterium salmoninarum Salmon Forward: 5´GATCGTGAAATACATCAAG3´ 
Reverse: 5´GGATCGTGTTTI'ATCCACCC3´ 

(León et al., 1994) 

Tenacibaculum soleae Senegalese sole fish, 
Wedge sole fish, Brill, 

Turbot 

Forward: G47F- 5´ATGCTAATATGTGGCATCAC3´ 
Reverse: G47R- 5´CGTAATTCGTAATTAACTTTGT3´ 

(López et al., 2011) 

Flavobacterium 
psychrophilum 

Rainbow trout, coho 
salmon, eel (Anguilla 
anguilla), Cyprinids, 

Pale chub 

1st step 
Forward: 20F- 5´ AGAGTTTGATCATGGCTCAG3´ 
Reverse: 1500R- 5´ GGTTACCTTGTTACGACTT3´ 
2nd step 
Forward: PSY1-5´GTTGGCATCAACACACT3´ 
Reverse: PSY2-5´CGATCCTACTTGCGTAG3´ 

(Wiklund et al., 
2000) 

Aeromonas 
salmonicida 

Salmonids Forward: 27f-5´GAGTTTGATCCTGGCTCAG-3´ 
Reverse: 1492r-5´TACGGYTACCTTGTTACGACTT3´ 
Forward: PAAS1 -5´CGTTGGATATGGCTCTTCCT -3´ 
Reverse: PAAS2 -5´CTCAAAACGGCTGCGTACCA3´ 
Forward: AP1 -5´GGCTGATCTCTTCATCCTCACCC3´ 
Reverse: AP2 -5´CAGAGTGAAATCTACCAGCGGTGC3´ 
Forward: MIY1-5´AGCCTCCACGCGCTCACAGC3´ 
Reverse: MIY2-5´AAGAGGCCCCATAGTGTGGG3´ 

(Byers et al., 2002) 

Tenacibaculum soleae Turbot, Dover sole, 
Senegalese sole, Sea 

bass, Atlantic salmon, 
Coho salmon 

 

Forward: Sol-Fw-5´TGCTAATATGTGGCATCACAA3´ 
Reverse: Sol-Rv-5´CAACCCATAGGGCAGTCATC3´ 

(García-González 
et al., 2011) 

Vibrio anguillarum Several fishes Forward: van-ami8-5´ACAT CATCCATTTGTTAC3´ 
Reverse: van-ami417-5´CCTTATCACTATCCAAATTG3´ 

(Hong et al., 2007) 

Flavobacterium 
psychrophilum 

Rainbow 
Trout, Salmonids 

Forward: FP1 -5´GTTAGTrGGCATCAACAC3´ 
Reverse: FP2-5´TCGATCCTACTTGCGTAG3´ 
Forward: 5´AGAGTTTGATCATGGCTCAG3´ 
Reverse: FP2-5´CGGTTACCTTGTTACGACTT3´ 

(Urdaci et al., 
1998) 

Myxobolus cerebralis Salmonids, Brown 
Trout, Rainbow Trout, 

Gibel Carp 

Forward: Tr5-17-5´GCCCTATTAACTAGTTGGTAGTATAGAAGC3´ 
Reverse: Myx18-996R-5´GCGGTCTGGGCAAATGC3´ 
Forward: Tr3-17-5´GGCACACTACTCCAACACTGAATTTG3´ 
Reverse: Myx18-909f-R-5´TGCTGTAACTGAATAACATTCAGTCAAAG3´ 

(Andree et al., 
1998; Eszterbauer 
et al., 2019; Kelley 

et al., 2004) 

Sphaerothecum destruens Salmonids Forward: Sd-1F-5´CGACTTTTCGGAAGGGATGTATT3´ 
Reverse: Sd-1R -5´AGTCCCAAACTCGACGCACACT3´ 
Forward: Sd-2F -5´CCCTCGGTTTCTTGGTGATTCATAATAACT3´ 
Reverse: Sd-2R -5´CTCGTCGGGGCAAACACCTC3´ 

(Mendonca & 
Arkush, 2004) 

Amyloodinium ocellatum Several marine fishes Forward: Dino5’UF-5´CAACCTGGTGATCCTGCCAGT3´ 
Reverse: ITSR -5´TCCCTGTTCATTCGCCATTAC3´ 
Forward: AO18SF1 -5´GACCTTGCCCGAGAGGG3´ 
Reverse: AO18SR1-5´GAAAGTGTGGTGAATCTTAAC3´ 

(Levy et al., 2007) 

Myxobolus pseudodispar Cyprinid fish Forward: Tub16SF-5´AACGGCCGCGGTATCCTG3´ 
Reverse: Tub16SR-5´TAARCCAACATYGAGGTGCCA3´ 
Forward: MpF1-5´TGTGCTTCTGGTGCGTCTGC3´ 
Reverse: PseudoR-5´AAGCACCGAAGCACAGTCAA3´ 

(Beauchamp et al., 
2001; Marton & 

Eszterbauer, 2012) 

Ascaridoidea (Anisakis 
pegreffi, A. physeteris, A. 
simplex, Contracaecum 
osculatum, C. radiatum, C. 
rudolphi, Hysterothylacium 
aduncum Porrocaecum 
angusticolle, P. crassum, P. 
depressum, and P. 
ensicaudatum) 

Several freshwater 
and marine fishes 

Forward: NC5-5´GTAGGTGAACCTGCGGAAGGATCATT3´ 
Reverse: NC2-5´TTAGTTTCTTTTCCTCCGCT3´ 

(Kijewska et al., 
2002; Zhu et al., 

1998) 

Anisakid Nematodes Black scabbardfish, 
Chub mackerel, Blue 

jack mackerel 

Forward: Primer A-
5´GTCGAATTCGTAGGTGAACCTGCGGAAGGATCA3´ 
Reverse: Primer B1-5´GCCGGATCCGAATCCTGGTTAGTTTCTTTTCCT3´ 

(Pontes et al., 
2005) 

Gyrodactylus sp. Rainbow trout , 
Brown trout, Salmon, 

Grayling 

Forward: ITS1F-5´GTTTC CGTAG GTGAA CCT3´ 
Reverse: ITS2R-5´GGTAA TCACG CTTGAATC3´ 

(Rokicka et al., 
2007) 
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emitted by using the excited fluorophore (Ahrberg et al., 
2016). The PCR technique usually consists of a sequence 
of temperature changes that are repeated 25-50 times 
(Chen et al., 2019). The recommended temperature and 
the duration for RT-PCR used for every cycle depend on 
a variety of parameters and factors, such as the 
concentration of divalent ions, the enzyme used to 
synthesize the DNA, deoxyribonucleotides (dNTPs) in 
the reaction, and the annealing temperature of the 
primers, etc. (Sambrook, 2001; Shaheen Shahzad et al., 
2020; van Pelt-Verkuil et al., 2008).  

 

Advantages of Real-Time Polymerase Chain Reaction 
(RT- PCR) 
 

Real-time PCR is not influenced by non-specific 
amplification (Dorak, 2007). This assay required less 
amount of the template material (Staahlberg et al., 
2005). The major advantage over the other PCR 
technique is the quantification and it quantifies the 
template DNA or RNA present in the sample (Tom et al., 
2004). By this method, amplification can be monitored 
in real-time (Mackay et al., 2002) and it enables high 

Table 2. A shortlist of Multiplex Polymerase chain reaction (multiplex-PCR) assay used to detect fish pathogens. 

Host  Fish pathogen 
Target gene of 

pathogen 
Primer name and sequences References 

Sea bream Red sea bream 
iridoviruses (RSIV) 

RNRS gene Forward: VF- 5´GCATGTATGCTGTTTAGACA3´ 
Reverse : VR- 5´GAGCATCAAGCAGGCGATCT3´ 

(Jeong et al., 
2004) 

ATPase gene Forward: 3F- 5´CAAACCACAGCGCGGCAAGT3´ 
Reverse : 3R- 5´AGTAGCGCACCATGTCCTCC3´ 

DPOL gene Forward: 4F- 5´CGGGGGCAATGACGACTACA3´ 
Reverse : 4R- 5´CCGCCTGTGCCTTTTCTGGA3´ 

Pst I fragment Forward: 1F- 5´CTCAAACACTCTGGCTCATC3´ 
Reverse : 1R- 5´GCACCAACACATCTCCTATC3´ 

Rainbow trout Lactococcus garvieae Internal 
transcribed 

spacer gene (ITS) 

Forward: Lg F- 5´ACTTTATTCAGTTTTGAGGGGTCT3´ 
Reverse : Lg R- 5´TTTAACGTCTTCGTTGACCAGA3´ 

(Chapela et al., 
2018; Keeling et 

al., 2012; 
Marancik & 

Wiens, 2013) 
Yersinia ruckeri glnA gene Forward: YR glnA F-5´TCCAGCACCAAATACGAAGG3´ 

Reverse : YR glnA R-5´ACATGGCAGAACGCAGATC3´ 
Flavobacterium 
psychrophilum 

Unknown protein Forward: Fp Sig F-5´GGTAGCGGAACCGGAAATG3´ 
Reverse : Fp Sig R-5´TTTCTGCCACCTAGCGAATACC3´ 

Yellow 
croaker 

Vibrio alginolyticus Collagenase gene Forward: VA-F-5´CGAGTACAGTCACTTGAAAGCC3´ 
Reverse : VA-R-5´CACAACAGAACTCGCGTTACC3´ 

(Liu et al., 2016) 

Vibrio 
parahaemolyticus 

Collagenase gene Forward: VP-F-5´GAAAGTTGAACATCAGCACGA3´ 
Reverse : VP-R-5´GGTCAGAATCAAACGCCG3´ 

Vibrio harveyi ToxR Forward: VH-F-5´GAAGCACTCACCGAT3´ 
Reverse: VH-R-5´GGTGAAGACTCAGCA3´ 

Tilapia , 
Japanese eel, 
Flounders 

Aeromonas 
hydrophila 

16s rRNA Forward: Ah-F- 5´GTAATGCCTGGGAAAT3´ 
Reverse : Ah-R- 5´TTGATACGTATAGGCA3´ 

(Chang et al., 
2009) 

Edwardsiella tarda Forward: Et-F- 5´ACGTAACGTCGCAAGA3´ 
Reverse : Et-R- 5´CCGTGTATATACAGGA3´ 

Photobacterium 
damselae 

Forward: Pd-F- 5´GCTTGAATACATTCGAG3´ 
Reverse : Pd-R- 5´CACCTTTCGGTCTTGCT3´ 

Streptococcus iniae Forward: Si-F- 5´CACTAATCCAAAGAGTT3´ 
Reverse : Si-R- 5´TTAGGCGGCTGGCTCCTAA3´ 

Rainbow trout Renibacterium 
salmoninarum 

unknown Forward: Rs1-5´CAAGGTGAAGGGAATTCTTCCACT3´ 
Reverse: Rs2-5´GACGGCAATGTCCGTTCCCGGTTT3´ 

(Altinok et al., 
2008; Brown et al., 

1994) 
 

Aeromonas 
hydrophila 

Forward: AH1-5´GAAAGGTTGATGCCTAATACGTA3´ 
Reverse: AH2-5´CGTGCTGGCAACAAAGGACAG3´ 

(Altinok et al., 
2008; Nielsen et 

al., 2001) 
Yersinia ruckeri Forward: YerF-5´GCGAGGAGGAAG GGTTAAGTG3´ 

Reverse: YerR-5´GAA GGCACCAAGGCATCTCTG-3´ 
(Altinok et al., 
2001, 2008) 

Aeromonas 
salmonicida 

Forward: ASF-5´CGTTGGATATGGCTCTTCCT3´ 
Reverse: ASR-5´CTCAAAACGGCTGCGTA3´ 

(Altinok et al., 
2008; Hiney et al., 

1992) 
Flavobacterium 

columnare 
Forward: FCF-5´AAGGCAACGATGGGTAG3´ 
Reverse: 161B-5´GCACGGAGTTAGCCGATC3´ 

(Altinok et al., 
2008; Yeh et al., 

2006) 
Brown trout, 
grayling, pike, 
and whitefish 

Infectious Pancreatic 
Necrosis Virus (IPNV) 

VP2 gene Forward: WB1-5´CCGCAACTTACTTGAGATCCATTATGC3´ 
Reverse: WB2-5´CGTCTGGTTCAGATTCCACCTGTAGTG3´ 

(Williams et al., 
1999) 

Infectious 
Hematopoietic 

Necrosis Virus (IHNV) 

N gene Forward: IHN3-5GTTCAACTTCAACGCCAACAGG3´ 
Reverse: IHN4-5´TGAAGTACCCCACCCCGAGCATCC3´ 

Viral Hemorrhagic 
Septicemia Virus 

(VHSV) 

G gene Forward: VHS3-5´CGGCCAGCTCAACTCAGGTGTCC3´ 
Reverse: VHS4-5´CCAGGTCGGTCCTGATCCATTCTGTC3´ 
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confidence detection of low copy targets. It needs no 
post PCR processing (Hanna et al., 2005). 

 
Disadvantages of Real-Time Polymerase Chain 
Reaction (RT- PCR) 
 

Real-time PCR (RT-PCR) technique will only 
indicate the presence of antigenic material during 
infection and will not indicate if a host was infected. It 
needs specialized bio-containment laboratories, 
operated by highly trained technicians, which makes it 
an expensive test and difficult to scale. Real-time PCR 
(RT-PCR) kits are not available for all kind of genes and 
disorders and the technical and standardized protocols 
are limited. Furthermore, higher expertise and technical 
skills are required for developing an RT-PCR assay. 

 
Application Real-Time Polymerase Chain Reaction (RT- 
PCR) in Fish Pathogen Detection 
 

RT-PCR has been increasingly utilized to identify 
fish pathogens (both virus and bacteria) since the 
beginning of the twenty-first century (Table 3), e.g. 
Tilapia lake virus (TiLV) can be detected by real-time 
PCR. 

 
Random Amplified Polymorphic DNA (RAPD) 
 

It is a PCR-based technique, however, the 
difference is segments of DNA that are randomly 
amplified (Kumari & Thakur, 2014; Zia et al., 2020). The 
scientist performing RAPD creates numerous arbitrary, 
short primers normally 10 bp (range can be 8-12 
nucleotides sometimes more than that) (Rocco et al., 
2014; Shekhawat et al., 2019), then operated with the 
PCR, the usage of a large template of genomic DNA, 
hoping that fragments will be amplified (Arora et al., 
2013). By resolving the resulting patterns, a semi-unique 
to a unique profile can be picked up from an RAPD 
reaction (Galanis et al., 2015). Unlike standard PCR 
analysis, RAPD does no longer requires any precise 
understanding of the DNA sequence of the target 
organism (Galanis et al., 2015; Martín et al., 2014). The 
segment of DNA, whether it will be amplified or not, it 
depends on positions of primers (generally identical 10-
mer) which are complementary to DNA sequences 
(Premkrishnan & Arunachalam, 2012). For example, no 
fragment will produce if primers are annealed too far 
distance from opposite annealed primer or they are not 
facing each other which means they are in the same 
direction (Clark et al., 2019; Hommelsheim et al., 2014). 

  
Advantages of Random Amplified Polymorphic DNA 
(RAPD) 
 

It requires no DNA probes and sequence 
information for the design of specific primers (Hadrys et 
al., 1992). It involves no blotting or hybridization steps, 
hence, it is quick, simple and efficient (Kumar & 

Gurusubramanian, 2011). It requires only small amounts 
of DNA (about 10 ng per reaction) and the procedure can 
be automated (Kumar & Gurusubramanian, 2011). It 
produces a high number of fragments (Rieseberg, 1996). 
Additional findings supported the use of RAPD analysis 
as an effective tool in species identification and cross-
contamination test among different cell lines (Guo et al., 
2001). The RAPD-PCR method can be applied to detect 
genetic diversity and similarity in numerous organisms 
using various primers (Andrighetto et al., 2001; Berthier 
& Ehrlich, 1999). For all of these reasons, the RAPD assay 
has been used to construct phylogenetic trees for 
resolving taxonomic problems in many organisms 
(Chalmers et al., 1992). 

 
Disadvantages of Random Amplified Polymorphic 
DNA (RAPD) 
 

Nearly all RAPD markers are dominant (Lynch & 
Milligan, 1994), i.e. it is not possible to distinguish 
whether a DNA segment is amplified from a locus that is 
heterozygous (1 copy) or homozygous (2 copies). 
Codominant RAPD markers, observed as different-sized 
DNA segments amplified from the same locus, are 
detected only rarely (Kumar & Gurusubramanian, 2011). 
The RAPD technique is notoriously laboratory-
dependent and needs carefully developed laboratory 
protocols to be reproducible (Caliskan, 2012). 
Mismatches between the primer and the template may 
result in the total absence of PCR product as well as in a 
merely decreased amount of the product (Caliskan, 
2012). RAPD results can be difficult to interpret and lack 
of prior knowledge on the identity of the amplification 
products. It has problems with reproducibility (sensitive 
to changes in the quality of DNA, PCR components and 
PCR conditions). Gel electrophoresis can separate DNA 
quantitatively, cannot separate equal-sized fragments 
qualitatively (i.e. according to base sequence) (Nandani 
& Thakur, 2014). 

 
Application RAPD in Fish Pathogen Detection 
 

Comparing to other PCR-based molecular 
diagnostic methods, a few RAPD has been studied to 
identify fish pathogens (Table 4), e.g. marine fish 
pathogen Tenacibaculum maritimum can be identified 
by using RAPD. 

 
Nested PCR 
 

Nested PCR is an improved adaptation of PCR 
designed to enhance the sensitivity and specificity of the 
procedure (Shen et al., 2019; Carr et al., 2010). At first 
Kamolvarin (1993) described the nested PCR method. 
Nested PCR entails the employment of two primer sets 
and two PCR reactions in succession. The first set of 
primers is used in an initial PCR reaction and is designed 
to anneal to sequences upstream from the second set of 
primers. The first PCR reaction's amplicons are utilized 
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  Table 3. A shortlist of real time polymerase chain reaction (RT-PCR) assay used for fish pathogen identification 

Fish pathogen Host Primer name and sequences References 

Infectious 
myonecrosis virus 
(IMNV) 

Shrimp Forward: IM-MCP3571-3592F- 5´CGCGCCAGTCTTTCCATTTAGT3´ 
Reverse : IM-MCP3688-3706R- 5´CCAATGTTCGAGCACCCTC3´ 

(Kokkattunivarthil et 
al., 2018) 

Forward: IM-MCP3572-3593F- 5´GCGCCAGTCTTTCCATTCAGTG3´ 
Reverse :  IM-MCP3698-3716R- 5´CCAATGTTCGAGCACCCTC3´ 

Tilapia lake virus 
(TiLV) 

Tilapia, White leg 
shrimp 

Forward: Nested ext-1- TATGCAGTACTTTCCCTGCC3´ 
Forward: ME1- 5´GTTGGGCACAAGGCATCCTA3´ 
Reverse :  7450/150R/ME2- 5´TATCACGTGCGTACTCGTTCAGT3´ 

(Dong et al., 2017; 
Eyngor et al., 2014, 

2014) 
Forward: TiLV-Seg1-F- 5´TCATTCGCCTATATAGTTAC3´ 
Reverse :  TiLV-Seg1-R- 5´TTAATTACGCACTATTACTG3´ 
Forward: TiLV-Seg5-F-  5´TTTTTCTCAGTTTACCACTC3´ 
Reverse :  TiLV-Seg5-R-  5´TTATCTCAGACTCCAATAGC3´ 
Forward: TiLV-Seg9-F-  5´ACGTCCTTAAAGTCATACTT3´ 
Reverse :  TiLV-Seg9-R-  5´ACAAGTCCGATTACTTTTTC3´ 

Viral hemorrhagic 
septicemia virus 
(VHSV) 

Olive flounder, 
Rainbow trout, 

Turbot 

Forward: VHSV-Universal-F- 5´GWGGAGARGGACGGGTRCTTGT3´ 
Reverse :  VHSV- universal-R- 5´TCTGTCACCTTGATCCCCTCCAG3´ 

(Hwang et al., 2018) 

Forward: VHSV-I-F- 5´AGAGTGACTTATCGAGTCACCTGTTCG3´ 
Reverse :  VHSV-I-R- 5´GAACAGGTGTCCTTCTAGTGTTTCCGAC3´ 
Forward: VHSV-IV-F- 5´TCCATCCTTATTTCCATGAGAGGAGAAGGA3´ 
Reverse :  VHSV-IV-R- 5´TCCAGTAGACTCCTTGCCAGTGGGTTG3´ 

Vibrio harveyi Seabass, 
shrimps, 
mollusks, 

crustaceans 

Forward: mreB11F- 5´TGAAGCTGTGATCAACTACG3´ 
Reverse :  mreB9bisR- 5´CCTGACAGTGGCTCTTGTAA3´ 

(BAILLIE et al., 2015; 
Mougin et al., 2020; 

Pang et al., 2006) Forward: Vh. topA-F- 5´TGGCGCAGCGTCTATACG3´ 
Reverse :  Vh.topA-R- 5´TATTTGTCACCGAACTCAGAACC3´ 
Forward: toxRF1- 5´GAAGCAGCACTCACCGAT3´ 
Reverse :  toxRR1- 5´GGTGAAGACTCATCAGCA3´ 

Streptococcus 
agalactiae 

Nile tilapia Forward: 5´CATTTGCGTCTTGTTAGTTTTGAG3´ 
Reverse :  5´GGAGCCTAGCGGATCGA3´ 

(Asencios et al., 2016) 

Enteromyxum 
scophthalmi 

Turbot Forward: ENTEROMYX F- 5´GGCTTAATTTGACTCAACA3´  
Reverse :  ENTEROMYX R- 5´CTCCACCAACTAAGAACG3´ 

(Alonso et al., 2015) 

Francisella 
noatunensis 
subsp. orientalis 

Tilapia, Atlantic 
cod Atlantic 

Salmon, Striped 
bass, Ornamental 

cichlids 

Forward: iglC- 5´GGGCGTATCTAAGGATGGTATGAG3´ 
Reverse:  iglC-5´AGCACAGCATACAGGCAAGCTA3´ 
Probe: FAM-5´ATCTATTGATGGGCTCACAACTTCACAA3´ BHQ-1 

(Soto et al., 2010) 

Ichthyophthirius 
multifiliis 

Several 
freshwater fishes 

Forward: IMRf1- 5´ AGTGACAAGAAATAGCAAGCCAGGAG3´ 
Reverse:  IMRr1-5´ ACCCAGCTAAATAGGCAGAAGTTCAA3´ 
 

(Jousson et al., 2005) 

Ceratomyxa 
shasta 

Salmonid fishes Forward: Cs-1034F- 5´CCAGCTTGAGATTAGCTCGGTAA3´ 
Reverse:  Cs-1104R-5´CCCCGGAACCCGAAAG3´ 
Probe: 1058T 6-FAM-CGAGCCAAGTTGGTCTCT CCGTGAAAACTA-MRA 

(Hallett & 
Bartholomew, 2006) 

Anisakids 
(nematodes) 

Several marine 
fishes 

Forward: COI F- 5´GGKCYATTAAYTYTATRACWACTAC3´ 
Reverse:  COI R -5´AAAGAWGTATTMARRTTACGRTCVG3´ 
Probe: COI PROBE- FAM-TCTATTTCTTTGGARCAYA-TAM 

(Herrero et al., 2011) 

Ichthyobodo spp. Salmon, Halibut, 
and several 

fishes 

Forward: CosF1-5′AATAGGAGGTCTGCGAACG3´ 
Forward: CosF2 -5′CCTGAGAAACAGCTACCACT3´ 
Reverse: CosR4 -5′CCGAGCGGTCTAAGAATTTC3´ 
Reverse: CosR5-5′TTCCTGTACTGGTAAGGTTCC3´ 
Forward: Costia F-5′ACGAACTTATGCGAAGGCA3´ 
Reverse: Costia R-5′TGAGTATTCACTYCCGATCCAT3´ 
Probe: Costia (FAM)- 5′ TCCACGACTGCAAACGATGACG-3´ (TAMRA) 

(Isaksen et al., 2012) 

Myxobolus 
cerebralis 

Rainbow trout, 
Salmonid 

Forward: Tr5-3-5′CGTGAGACTGCGGACGGCTCAG3′ 
Reverse: Tr3-1-5′CGGTGTGTACAAAGGGCAGGGAC3′ 
Forward: Tr5-6-5′GGCAGCGTTAAAACTGTCTCACG3′ 
Reverse: Tr3-6-5′CCTCACAGTCTCTCCATGACAC3′ 
Forward: MX5-5′CTGCGGACGGCTCAGTAAATCAGT3′ 
Reverse: MX3-5′CCAGGACATCTTAGGGCATCACAGA3′ 
Forward: Tr5-16-5′GCATTGGTITACGCTGATGTAGCGA3′ 
Reverse: Tr5-17-5′GCCCTATTAACTAGTTGGTAGTATAGAAGC3′ 
Forward: Tr3-16-5′GAATCGCCGAAACAATCATCGAGCTA3′ 
Reverse: Tr3-17-5′GGCACACTACTCCAACACTGAMTTG3′ 

(Andree et al., 1997, 
1998; Kelley et al., 

2006) 

Thelohanellus 
kitauei, 

Carp Forward: UEP-F-5′ACCTGGTTGATCCTGCCAG3′ 
Reverse: UEP-R-5′CTTCCGCAGGTTCACCTACGG3′ 
Forward: TkF-1-5′GCCCAGTAATCTACTATTCGACG3′ 
Reverse: TkR-1-5′GCTATTGATCTGTTAATCCTATC3′ 

(Barta et al., 1997; Seo 
et al., 2012) 

Anisakis pegreffii,  Crustaceans 
(Krill), Fish and 

Squids 

Forward: RTpegF-5′CTTTTGGAGGTTGATAATCG3′ 
Reverse: RTpegR-5′CCCACAAATCTCTGAACATT3′ 
Probe: pegHyPr-5′CTTGGGCTTTGCCTAGGATGTC3′ (6FAM/BHQ) 

(Paoletti et al., 2018) 

A. simplex Forward: RTsimF-5′CTTTAATTTTGGTTGCTCAGAT3′ 
Reverse: RTsimR-5′CGATTATCAACCTCCAAAAG3′ 
Probe: simHyPr-5′ATGACCAGTGACTTTCACAGTCAAAT3′ (5-CY/BBQ) 

Pseudoterranova
decipiens, 

Forward: RTdecF-5′GGCTTGATAAATTTGGACAG3′ 
Reverse: RTdecR-5′ATAAAATACCTCTCATAGCATCC3′ 
Probe: decHyPr-5′CTTCCGGCGATGTAATTCAT3′ (YAK/BHQ) 

P. bulbosa Forward: RTbulF-5′CTGGTCATCARTGGTATTGA3′ 
Reverse: RTbulR-5′CCTCTCATAGCATCCAACTT3′ 
Probe: bulHyPr-5′ACAACCGTTGTGTTGTTCCTT3′ (6FAM/BHQ) 

P. krabbei Forward: RTkraF-5′GTTGATCAGTTGGAGTTGG3′ 
Reverse: RTkraR-5′CAAATCTCAGAACACTGACC3′ 
Probe: kraHyPr-5′TTCTTGGGCTTTGCCTAGAA3′ (LC640/BHQ) 

Hysterothylacium 
aduncum 

Forward: RThystF-5′ATTTGACTATCAAGGTAACTGGT3′ 
Reverse: RThystR-5′TTAATAGCCATTCTAGGCAAA3′ 
Probe: hystHyPr-5′GATCACACAACGGTTATCCACCTCT3′ (YAK/BHQ) 
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as a template for a second set of primers and a second 
amplification step (Shen et al., 2019). With this 
approach, the sensitivity and specificity of DNA 
amplification might be greatly improved.  

 
Advantages of Nested PCR 
 

The first and most efficient point of nested PCR is 
that the specificity and sensitivity were higher than 
those of conventional PCR methods (Liop et al., 2000). 
Another benefit of nested PCR is that it uses less target 
DNA (Liop et al., 2000). It can also help with the 
amplification of low-abundance genes.  

 
Disadvantages of Nested PCR 
 

However, adding a second amplification step and 
manipulating previously amplified material at the same 
time could result in a large rise in false positives due to 
cross contamination, making this strategy too 
precarious for routine analysis (Liop et al., 2000). 

 
Application of Nested PCR in Fish Pathogen Detection 
 

Nested PCR has been used as a viable tool for the 
detection of pathogens causing fish diseases where a 
single round of PCR is insufficient. Researchers around 
the globe have successfully developed nested PCR 
protocols for the identification of perilous fish 
pathogens including Vibrio vulnificu, Ranibacterium 
salmoninarum, Flavobacterium psychrophilum, 

Flavobacterium columnare, Tenacibaculum maritimum, 
Photobacterium damselae, Myxobolus cerebralis 
(Andree et al., 1998), Tenacibaculum maritimum 
(Avendaño-Herrera et al., 2004), Flavobacterium 
columnare (Bader et al., 2003), Enterocytozoon salmonis 
(Barlough et al., 1995), microsporidium seriolae (Bell et 
al., 1999) , Flexibacter maritimus (Cepeda et al. 2003), 
Cyprinid herpesvirus-3 (El-Matbouli et al., 2007), 
Flavobacterium psychrophilum (Izumi et al., 2005), 
Pseudomonas plecoglossicida (Izumi et al., 2007), 
Sphaerothecum destruens (Men- donca and Arkush 
2004), Myxobolus cerebralis (Skirpstunas et al., 2006), 
Flavobacterium psychrophilum (Wiklund et al., 2000) etc 
(Jimenez et al., 2011; Baliarda et al., 2002; Osorio et al., 
1999; Osorio et al., 2000; Chase and Pascho, 1998; Arias 
et al., 1995) 

 
Loop-Mediated Isothermal Amplification (LAMP) 
 

Loop-mediated isothermal amplification (LAMP) is 
a DNA amplification technique introduced in the year 
2000 that amplifies DNA with high specificity, efficiency 
and rapidity under isothermal conditions (Notomi et al., 
2000). The LAMP reaction uses a DNA polymerase with 
high strand displacement activity and pairs of specially 
designed inner and outer primers. At the three prime 
terminal, each of the inner primers has a sequence that 
is complementary to one chain of the amplification 
region and identical to the inner region of the same 
chain at the five prime terminal. Using the 
aforementioned stem loop areas as a stage, DNA 

Table 4. A short list of Random Amplified Polymorphic DNA (RAPD) assay used for fish pathogen identification 

Host Pathogen Primer name and sequences References 

Sea bream, Sea 
bass 

Photobacterium 
damselae subsp. 
piscicida (Vibrionaceae) 

RAPD: AA- 5´GGTGTCGGGCTACCACTACGGG3´ RAPD: BC- 
5´ACCACTTCGGGTTTCATGCCC3´ 

(Dalla Valle et al., 
2002) 

Salmonid fish Aeromonas salmonicida 1st step, RAPD: A05-5´AGCAGCGCCTCA3´ 
2nd step, Forward primer:  5´AGCCTCCACGCGCTCACAGC3´ 

Reverse primer: 5´AAGAGGCCCCATAGTGTGGG3´ 

(Inglis & Aoki, 
1996) 

Yellowtail, 
Rainbow trout 

Lactococcus garvieae 1st step, Forward primer:  PLG-1- 5′CATAACAATGAGAATCGC3′ 
Reverse primer: PLG-2- 5′GCACCCTCGCGGGTTG3′ 

2nd step, RAPD: P1-5′GGTGCGGGAA3′, P2- 5′GTTTCGCTCC3′, P3-  
5′GTAGACCCGT3′, P4- 5′AAGAGCCCGT3′,  P5-
5′AACGCGCAAC3′, P6-  5′CCCGTCAGCA3′ 

(Ravelo et al., 
2003) 

Turbot, 
Salmon, Sole, 
Gilthead 
seabream 

Tenacibaculum 
maritimum 

RAPD: P1- 5′GGTGCGGGAA3′, P2- 5′GTTTCGCTCC3′, P3- 
5′GTAGACCCGT3′, P4- 5′AAGAGCCCGT3′, P5- 
5′AACGCGCAAC3′, P6- 5′CCCGTCAGCA3′ 

(Avendaño-
Herrera et al., 
2004) 

Trout, Salmon Aeromonas salmonicida 
and Aeromonas 
hydrophila 

RAPD: A05- 5′AGCAGCGCCTCA3′, A07- 5′TGCCTCGCACCA3′, A09-  
5′CCGCAGTTAGAT3′ 

(Miyata et al., 
1995) 

Rainbow trout, 
Coho salmon 

Flavobacterium 
psychrophilum 

RAPD: Primer 1- 5′TTCGCAGATCCCAACAACAA3′, Primer 2- 
5′CTAAGTACCGCCCCGATC3′ 

(Crump et al., 
2001) 

Trout 
and Carp 

Argulus sp. RAPD: OPA4-5′AATCGGGCTG3′, OPA11-5′CAATCGCCGT3′, OPA14- 
5′TCTGTGCTGG3′, OPC11-5′AAAGCTGCGG3′, OPC15-
5′GACGGATCAG3′, OPC19-5′GTTGCCAGCC3′, OPH11-
5′CTTCCGCAGT3′, OPY2-5′CATCGCCGCA3′, OPY20-
5′AGCCGTGGAA3′ 

(Sahoo et al., 
2013) 
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polymerase-mediated strand-displacement synthesis 
repeats the elongation events in a sequential manner. 
This approach works on the basis of producing a large 
number of DNA amplification products with a mutually 
compatible sequence and an alternating, repeating 
structure. 

 
Advantages of LAMP 
 

LAMP is very easy and simple method to execute 
as soon as the suitable primers are prepared, requiring 
a DNA polymerase, four primers and a regular 
laboratory water bath or heat block for reaction. 
Moreover, it is extremely precise for the target 
sequence and amplifies DNA with high efficiency 
producing 109 copies of target sequence less than an 
hour. Another benefit of LAMP is that it may efficiently 
amplify RNA sequences when used in conjunction with 
reverse transcription.  

 
Disadvantages of LAMP 
 

LAMP is less versatile than conventional PCR. 
Kermekchiev et al. (2009) found lower sensitivity of 
LAMP than PCR in case of complex sample like blood. 
Due to difficulty in proper primer designing, LAMP is not 
useful for cloning purposes but for useful as a diagnostic 
or detection technique (Torres et al., 2011). 

 
Application of LAMP in Fish Pathogen Detection 
 

In the investigation of fish diseases, LAMP has been 
employed frequently due to its advantageous context 
over other PCR based techniques. Rapid screening of 
different fish pathogenic bacteria including Edwardsiella 
ictaluri (Yeh et al., 2005), Flavobacterium columnare 
(Yeh et al., 2006), Nocardia seriolae (Itano et al., 2006), 
Vibrio anguillarum (Kulkarni et al., 2009; Gao et al., 
2010) Yersinia ruckeri (Saleh et al., 2008), Lactococcus 
garvieae (Tsai et al., 2013), Streptococcus inae (Zhou et 
al., 2018), Myxobolus cerebralis (El-Matbouli and Soli- 
man 2005a), Tetracapsuloides bryosalmonae (El-
Matbouli and Soli- man 2005b), koi herpes virus 
(Gunimaladevi et al., 2004), hematopoietic necrosis 
virus (Gunimaladevi et al., 2005), Edwardsiella tarda 
(Savan et al., 2004), spring viraemia of carp virus 
(Shivappa et al. 2008), viral hemorrhagic septicaemia 
virus (Soliman et al., 2006) were executed engaging 
LAMP technique. 

 

Conclusion 
 

In case of disease outbreaks, quick diagnosis and 
rapid removal of infected fish are necessary for the 
successful implementation of effective control and 
health management strategies in aquaculture. Past 
diagnostic methods tend to be expensive, labor-
intensive, time-consuming, and might not lead to a 
specific diagnosis, even when compared with 

histological evidence. PCR-based molecular diagnostic 
methods help to prevent disease outbreaks and 
reducing the potentiality of producing antibiotics 
resistant microorganisms. It has the capacity for rapid, 
sensitive diagnosis even it can detect pathogen from 
asymptomatic fishes. The main aim of the PCR-based 
molecular diagnostic methods are epidemiological 
studies as well as identifying causes of disease outbreaks 
and identifying the presence of pathogens. In recent 
years, the number of new publications describing new 
molecular techniques has increased significantly. These 
publications demonstrate the development of new 
molecular diagnostic methods that appear very 
promising and useful. This is the high time to wide-scale 
adoption and application of PCR based molecular 
diagnostic methods.  
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