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Chapter 8
Potential Energy and Conservation of Energy
In this chapter we will introduce the following concepts:

Potential Energy
Conservative and non-conservative forces  
Mechanical Energy                                                            
Conservation of Mechanical Energy

The conservation of energy theorem will be used to solve a variety of 
problems

As was done in Chapter 7 we use scalars such as work ,kinetic 
energy, and mechanical energy  rather than vectors.  Therefore the 
approach is mathematically simpler.  



Gravitational Potential Energy
• An object in motion has kinetic energy
• An object may possess energy by virtue of its position relative to the earth – such an object is said 
to have gravitational potential energy

Wgravity = mgh0 – mghf
∆y=ho-hf

• The gravitational potential energy PE is the energy that an object of mass m has by virtue of its 
position relative to the surface of the earth. That position is measured by the height h of the object 
relative to an arbitrary zero level.

PE=U = mgh SI unit: joule (J)

• The gravitational potential energy belongs to the object and the earth as a system although one 
often speaks of the object alone as possessing the gravitational potential energy.

Initial gravit. 
potential energy 
PE0 =U0

Final gravit. 
potential energy 
PEf =Uf

mg
U W∆ = −
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Work and Potential Energy:

Consider the tomato of mass m shown in the figure.  The 
tomato is taken together with the earth as the system we 
wish to study.  The tomato is thrown upwards with initial 
speed vo at point A.  Under the action of the gravitational 
force it slows down and stops completely at point B.  
Then the tomato falls back and by the time it reaches 
point A its speed has reached the original value vo.

Below we analyze in detail what happens to the tomato-earth system.         
During the trip from A to B the gravitational force Fg does negative work           
W1 = -mgh.  Energy is transferred by Fg from the kinetic energy of the 
tomato to the gravitational potential energy U of the tomato-earth system.                          
During the trip from B to A the transfer is reversed.  The work W2 done by Fg
is positive ( W2 = mgh ).   The gravitational force transfers energy from the 
gravitational potential energy U of the tomato-earth system to the kinetic 
energy of the tomato.  The change in the potential energy U is defined as: 

U W∆ = −
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Consider the mass m attached to a spring of spring 
constant k as shown in the figure.  The mass is taken 
together with the spring as the system we wish to study.  
The mass is given an initial speed vo at point A.  Under 
the action of the spring force it slows down and stops 
completely at point B which corresponds to a spring 
compression x.  Then the mass reverses the direction of its 
motion and by the time it reaches point A its speed has 
reached the original value vo.

As in the previous example we analyze in detail what happens to the mass-
spring system . During the trip from A to B the spring force Fs does negative 
work  W1 = -kx2/2 .  Energy is transferred by Fs from the kinetic energy of 
the mass to the potential energy U of the mass-spring system.                          
During the trip from B to A the transfer is reversed.  The work W2 done by Fs
is positive ( W2 = kx2/2 ).   The spring force transfers energy from the 
potential energy U of the mass-spring system to the kinetic energy of the 
mass.  The change in the potential energy U is defined as: 

U W∆ = −
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Conservative and non-conservative forces.
The gravitational force as the spring force are 
called “conservative” because they can transfer 
energy from the kinetic energy of part of the 
system to potential energy and vice versa.    

Frictional and drag forces on the other hand are called “non-conservative”
for reasons that are explained below.  

Consider a system that consists of a block of mass m and the floor on which it 
rests. The block starts to move on a horizontal floor with initial speed vo at 
point A. The coefficient of kinetic friction between the floor and the block is 
μk.  The block will slow down by the kinetic friction fk and will stop at point 
B after it has traveled a distance d.  During the trip from point A to point B 
the frictional force has done work Wf = - μkmgd.  The frictional force 
transfers energy from the kinetic energy of the block to a type of energy 
called thermal energy.  This energy transfer cannot be reversed. Thermal 
energy cannot be transferred back to kinetic energy of the block by the kinetic 
friction.  This is the hallmark of non-conservative forces.



Path Independence of Conservative Forces

In this section we will give a test that will help us 
decide whether a force is conservative or       
non-conservative.

A force is conservative if the net work done on a particle during a round trip is 
always equal to zero (see fig.b).  

Such a round trip along a closed path is shown in fig.b.  In the examples  of 
the tomato-earth and mass-spring system Wnet = Wab,1 + Wba,2 = 0

We shall prove that if a force is conservative then the work done on a particle 
between two points a and b does not depend on the path.                                
From fig. b we have: Wnet = Wab,1 + Wba,2 = 0   Wab,1 = - Wba,2 (eqs.1)

From fig.a  we have: Wab,2 = - Wba,2 (eqs.2) 

If we compare eqs.1 and eqs.2 we get:

0netW =

,1 ,2ab abW W=
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Consider a particle of mass  moving vertically along the -axis 
from point  to point .  At the same time the gravitational force

Gravitational Potential 
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Consider the block-mass system shown in the figure.  
The block moves from point  to point .  At the same time
 the spring force does wor

Potential Energy of a sprin

k  on the block which cha

g

n s
t

:

ge  
i fx x

W
he potential energy of the block-spring system by an amount 

( )         
f f f

i i i

x x x

x x x

W F x dx kxdx k xdx U W= = − = − ∆ = − →∫ ∫ ∫

2

2
kxU =



Problem 6. A .50 kg snowball is fired from a cliff 12.5 m high. The snowball initial velocity is 14.0 m/s, directed 41.0°
Above the horizontal. (a) How much work is done on the snowball by the gravitational force during its flight to the flat 
ground below the cliff? (b) What is the change in the gravitational potential energy of the snowball-Earth system 
during the flight? (c) If that gravitational potential energy is taken to be zero at the height of the cliff, what is its value 
when the snowball reaches the ground?

(a) The force of gravity is constant, so the work it does is given by W F d= ⋅



, where 


F  
is the force and 



d  is the displacement. The force is vertically downward and has 
magnitude mg, where m is the mass of the snowball. The expression for the work reduces 
to W = mgh, where h is the height through which the snowball drops. Thus 
 
 2(1.50 kg)(9.80 m/s )(12.5 m) 184 JW mgh= = = . 
 
(b) The force of gravity is conservative, so the change in the potential energy of the 
snowball-Earth system is the negative of the work it does: ∆U = –W = –184 J. 
 
(c) The potential energy when it reaches the ground is less than the potential energy when 
it is fired by |∆U|, so U = –184 J when the snowball hits the ground. 



Problem 7. A thin rod of length L=2.00 m and negligible mass is pivoted about one end and is capable to rotate 
in a vertical circle. A ball of mass 5.00 kg is attached to the other end. The rod is pulled aside to angle 30.0° and 
released with initial velocity vo=0. AS the ball descends to the lowest point, (a) how much work does the 
gravitational force do on it, and (b) what is the change in the gravitational potential energy of the ball-Earth 
system? (c)  if the gravitational potential energy is taken to be zero at the lowest point, what is its value just as 
the ball is released? (d) Do the magnitudes of the answers to (a) through © increase, decrease, or remain the 
same if angle θ is increased?

The main challenge in this type of problem seems to be working out the trigonometry in 
order to obtain the height of the ball (relative to the low point of the swing) h = L – L cos 
θ (for angle θ measured from vertical). Once this relation is established, then the 
principal results of this problem follow from Wg=mgdcosϕ and U=mgy 
 
(a) The vertical component of the displacement vector is downward with magnitude h, so 
we obtain 

2

(1 cos )

(5.00 kg)(9.80 m/s )(2.00 m)(1 cos30 ) 13.1 J
g gW F d mgh mgL θ= ⋅ = = −

= − ° =




 

 
 
(b) From Eq. 8-1, we have ∆U = –Wg = –mgL(1 – cos θ ) = –13.1 J. 
 
(c) With y = h, Eq. 8-9 yields U = mgL(1 – cos θ ) = 13.1 J. 
 
(d) As the angle increases, we intuitively see that the height h increases (and, less 
obviously, from the mathematics, we see that cos θ decreases so that 1 – cos θ increases), 
so the answers to parts (a) and (c) increase, and the absolute value of the answer to part (b  
also increases. 

θ
L

Lcosθ

h=L-Lcosθ



 of a system is defined as the sum of potential and kinetic energies
We assume that the system is isolated i.e. no ext

Mechanical 
Conservation of Mechanical Energy:        
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al mechE K U= + orces change 
the energy of the system.  We also assume that all the forces in the system are
conservative. When an interal force does work W on an object of the 
system this changes the kinetic energy b

( ) 12 1 2 1 1 2 2

y   (eqs.1)      This amount of work 
also changes the potential energy of the system by an amount     (eqs.2)
If we compare equations 1 and 2 we have:  

    This 
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principle of conservation of mechanical energy
equation is known as the

. It can be summarized as:

0mechE K U∆ = ∆ + ∆ =

For an isolated system in which the forces are a mixture of conservative and
non conservative forces the principle takes the following form

mech ncE W∆ =

Here,   is defined as the work of all non-consrvativethe  of t f heorce  sys stemncW



Wc + Wnc = 1/2mvf
2 – 1/2mv0

2

Wc = Wgravity = mg(h0 – hf)

mg(h0 – hf) + Wnc = 1/2mvf
2 – 1/2mv0

2

Wnc = (1/2mvf
2 – 1/2mv0

2) + (mghf – mgh0)

Wnc = (KEf – KE0) + (PEf – PE0)

Wnc = ΔKE + ΔPE

The conservation of mechanical energy:

E = KE + PE    - total mechanical energy

The Work-Energy Theorem

Net work done by 
nonconserv. forces

Change to kinetic 
energy

Change in 
potential energy



Conservation of Mechanical Energy
• E = KE + PE   total mechanical energy
• Wnc = (KEf – KE0) + (PEf – PE0) = (KEf + PEf) – (KE0 + PE0)
The net work done by external nonconservative forces changes the total mechanical energy from an 
initial value E0 to a final value of Ef
• Suppose Wnc = 0   =>  Ef = E0 1/2mvf

2 + mghf = 1/2mv0 + mgh0
total mechanical energy conserved

The total mechanical energy (E = KE + PE) of an object remains 
constant as the object moves provided that the net work done by 
external nonconservative forces is zero, Wnc = 0 J



Conservation of Mechanical Energy
E = KE + PE = constant if Wnc = 0

If friction and wind resistance are ignored, a bobsled run illustrates how kinetic and potential 
energy can be interconverted while the total mechanical energy remains constant. The total 
mechanical energy is all potential energy at the top and all kinetic energy at the bottom.



An example of the principle of conservation 
of mechanical energy is given in the figure.  
It consists of a pendulum bob of mass m
moving under the action of the gravitational 
force

The total mechanical energy of the 
bob-earth system remains constant.  
As the pendulum swings, the total 
energy E is transferred back and forth 
between kinetic energy K of the bob 
and potential energy U of the          
bob-earth system

We assume that U is zero at the lowest point 
of the pendulum orbit. K is maximum in 
frame a, and e (U is minimum there). U is 
maximum in frames c and g (K is minimum 
there)



A golf ball of mass 50g released from a height of 1.5m above a concrete floor bounces back to a 
height of 1.0m

a) What is the kinetic energy of the ball just before contact with the floor begins? Ignore air 
friction.

b) What is the kinetic energy of the ball just after contact with the floor ends?
c) What is the loss of energy during contact with the floor?



A pendulum consists of a mass “m” tied to one end of a string of length “l”. The other end of the 
string is attached to a fixed point on the wall. Suppose that the pendulum is initially held at an angle 
of 90° with the vertical. If the pendulum is released from this position, what will be the speed of the 
pendulum at the instant it passes through its lowest point?



In a rollercoaster, a car starts on the top of a 30m high mountain. It rolls down into a valley and 
then up a 20m high mountain. What is the speed of the car at the bottom of the valley, at ground 
level? What is the speed of the car at the top of the second mountain?



A block of mass m slides down an inclined plane into a loop of radius R. a) Neglecting friction, what 
is the minimum speed the block must have at the highest point of the loop to stay in the loop. b) At 
what vertical height on the inclined plane (in terms of radius of the loop) must the block be released 
if it is to have the required minimum speed at the top of the loop?



Problem 32. A chain is held on a frictionless table with one forth of its 
length hanging over the edge. If the chain has length L=28 cm and mass 
m=0.012 kg, how much work is required to put the hanging part back into 
the table. 

The work required is the change in the gravitational potential energy as a result of the 
chain being pulled onto the table. Dividing the hanging chain into a large number of 
infinitesimal segments, each of length dy, we note that the mass of a segment is (m/L) dy 
and the change in potential energy of a segment when it is a distance |y| below the table 
top is  
 

dU = (m/L)g|y| dy = –(m/L)gy dy 
 
since y is negative-valued (we have +y upward and the origin is at the tabletop). The total 
potential energy change is 
 

U mg
L

y dy mg
L

L mgL
L

= − = =
−z  1

2
4 322

4

0
( ) .

/
 

 
The work required to pull the chain onto the table is therefore  
 

W = ∆U = mgL/32 = (0.012 kg)(9.8 m/s2)(0.28 m)/32 = 0.0010 J. 



Finding the Force ( ) analytically 
from the potential energy ( )

F x
U xO

x. . .
x x + Δx

FA B

Consider an object that moves along the x-axis under the influence of an 
unknown force F whose potential energy U(x) we know at all points of the 
x-axis. The object moves from point A (coordinate x) to a close by point B 
(coordinate x + x ).  The force does work W on the object given by the equation:

      eqs.1
The work of the force changes the potential energy  of the system by the amount:
W F x

U

∆
= ∆

∆     eqs.2            If we combine equations 1 and 2 we get:

       We take the limit as 0 and we end up with the equation:

U W
UF x
x

= −
∆

= − ∆ →
∆

( )( ) dU xF x
dx

= −



The potential Energy Curve

If we plot the potential energy U versus x for a 
force F that acts along the x-axis we can get a 
wealth of information about the motion of a 
particle on which F is acting.  The first parameter 
that we can determine is the force F(x) using the 
equation:

( )( ) dU xF x
dx

= −

An example is given in the figures below.                                                                        
In fig.a we plot U(x) versus x.                                                                                           
In fig.b we plot F(x) versus x.

For example at x2 , x3 and x4 the slope of the  U(x) vs  x  curve is zero, thus F = 0.  

The slope dU/dx between x3 and x4 is negative;  Thus F > 0 for the this interval.         
The slope dU/dx between x2 and x3 is positive;  Thus F < 0 for the same interval 



The total mechanical energy is ( ) ( )
This energy is constant  (equal to 5 J in the figure)
and is thus represented by a horizontal line. We can 
solve this

Turning 

 equation for ( ) and 

Point

g

s:

mecE K x U x

K x

= +

et:  
 ( ) ( )   At any point  on the -axis
we can read the value of ( ).  Then we can solve 
the equation above and determine 

mecK x E U x x x
U x

K

= −

2

From the definition of  the kinetic energy cannot be negative.  
2

This property of K allows us to determine which regions of the x-axis 
motion is allowed.   ( )  ( ) ( )
If 0 ( ) 0

mec

mech

mvK

K x K x E U x
K E U x

=

= = −
> → − >

1

   
If 0 ( ) 0    
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for the motion.  For example  is the turning
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 versus   plot above.  At the turning point   0 U x K =



Given the U(x) versus x curve the turning points 
and the regions for which motion is allowed 
depends on the value of the mechanical energy Emec

In the picture to the left consider the situation when Emec = 4 J (purple line)  The 
turning points (Emec = U )  occur at x1 and x > x5.  Motion is allowed for   x > x1 If 
we reduce Emec to 3 J or 1 J the turning points and regions of allowed motion change 
accordingly.

Equilibrium Points: A position at which the slope dU/dx = 0 and thus F = 0 is 
called an equilibrium point. A region for which F = 0 such as the region x > x5 is 
called a region of neutral equilibrium.  If we set Emec = 4 J  the kinetic energy K = 0 
and any particle moving under the influence of U will be stationary at any point with    
x > x5   

Minima in the U versus x curve are positions of stable equilibrium
Maxima in the U versus x curve are positions of unstable equilibrium



Positions of Stable Equilibrium. An example is point x4 where U has a 
minimum. If we arrange Emec = 1 J then K = 0 at point x4.  A particle  with          
Emec = 1 J is stationary at x4.  If we displace slightly the particle either to the right 
or to the left of x4 the force tends to bring it back to the equilibrium position.  This 
equilibrium is stable.  

Positions of Unstable Equilibrium. An example is point x3 where U has a 
maximum. If we arrange Emec = 3 J then K = 0 at point x3.  A particle  with Emec = 
3 J is stationary at x3.  If we displace slightly the particle either to the right or to 
the left of x3 the force tends to take it further away from the equilibrium position.  
This equilibrium is unstable

Note: The blue arrows in the figure  
indicate the direction of the force F as 
determined from the equation: 

( )( ) dU xF x
dx

= −



Work done on a System by an External Force

(no friction involved)

Up to this point we have considered only 
isolated systems in which no external forces  
were present.  We will now consider a system in 
which there are forces external to the system

The system under study is a bowling ball being hurled by a player.  The 
system consists of the ball and the earth taken together.  The force exerted on 
the ball by the player is an external force.  In this case the mechanical energy 
Emec of the system is not constant. Instead it changes by an amount equal to 
the work W done by the external force according to the equation: 

mecW E K U= ∆ = ∆ + ∆



Work done on a System by an External Force (friction involved)

m m

A B
vofk fk
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•2nd Newton’s Law for x component F-fk=ma

•Since a=const, v2 = vo
2 +2ad, solving for a 

and substituting the result in Newton’s Eq.

Fd=1/2mv2-1/2mvo
2+fkd=∆K+fkd

•Through experiment, we find that the increase in thermal energy by 
sliding : ∆Eth=fkd 

•Fd is the work W done by external force F on the block floor system

•Hence, W=∆Emec+∆Eth energy statement for the work done on a 
system by an external force when friction is involved.



Problem 42. A worker pushed a 27 kg block 9.2 m along a level floor at 
constant speed with a force directed 32 degree below the horizontal. If the 
coefficient of kinetic friction between block and floor was 0.20, what were 
(a) the work done by the worker’s force and (b) the increase in thermal 
energy of the block-floor system?

. Since the velocity is constant, a = 0 and the horizontal component of the worker's 
push F cos θ (where θ = 32°) must equal the friction force magnitude fk = µk FN. Also, the 
vertical forces must cancel, implying 
 
 FN.=Fsinθ +mg, on the other hand Fcos θ=µk FN 
 
which is solved to find F = 71 N. 
 
(a) The work done on the block by the worker is, using Eq. 7-7, 
 

W Fd= = ° = ×cos .θ 71 56 102 N 9.2 m cos32 J .b gb g  
 
(b) Since fk = µk (mg + F sin θ ), we find 2

th (60 N)(9.2m) 5.6 10 J.kE f d∆ = = = ×  



Conservation of Energy

Energy cannot magically appear or disapear. It can be transferred to or 
from objects and systems by means of work done on a system. 

The total energy E of a system can change only by amounts of energy 
that are transferred to or from the system.

W=∆E=∆Emec+∆Eth+∆Eint
The law of conservation of energy is not something we have derived from basic physics principles. Rather it 
is a law based on countless experiments.  We have never found an exception to it.

Isolated System
If a system is isolated from its environment, there can be no energy 
transfers to or from it. The total energy E of an isolated system 
cannot change.



Problem 61. A stone with a weight of 5.29 N is launched vertically from 
ground level with an initial speed of 20.0 m/s, and the air drag on it is 0.265 
N throughout the flight. What are (a) the maximum height reached by the 
stone and (b) its speed just before it hits the ground?

(a) The maximum height reached is h. The thermal energy generated by air resistance as 
the stone rises to this height is ∆Eth = fh by Eq. 8-31. We use energy conservation in the 
form of Eq. 8-33 (with W = 0): 
 

K U E K Uf f i i+ + = +∆ th  
 
and we take the potential energy to be zero at the throwing point (ground level). The 

initial kinetic energy is K mvi =
1
2 0

2 , the initial potential energy is Ui = 0, the final kinetic 

energy is Kf = 0, and the final potential energy is Uf = wh, where w = mg is the weight of 

the stone. Thus, wh fh mv+ =
1
2 0

2 , and we solve for the height: 

2 2
0 0

2( ) 2 (1 / )
mv vh
w f g f w

= =
+ +

. 

 
Numerically, we have, with m = (5.29 N)/(9.80 m/s2)=0.54 kg,  
 

 
2

2

(20.0 m/s) 19.4 m
2(9.80 m/s )(1 0.265/5.29)

h = =
+

. 



(b) We notice that the force of the air is downward on the trip up and upward on the trip 
down, since it is opposite to the direction of motion. Over the entire trip the increase in 

thermal energy is ∆Eth = 2fh. The final kinetic energy is K mvf =
1
2

2 , where v is the speed 

of the stone just before it hits the ground. The final potential energy is Uf = 0. Thus, using 
Eq. 8-31 (with W = 0), we find 
 

1
2

2 1
2

2
0
2mv fh mv+ = .  

 
We substitute the expression found for h to obtain 
 

2
2 20

0
2 1 1

2 (1 / ) 2 2
fv mv mv

g f w
= −

+
 

which leads to 
 

2 2
2 2 2 2 20 0

0 0 0 0
2 2 21

(1 / ) (1 / )
fv fv f w fv v v v v

mg f w w f w w f w f
  −

= − = − = − = + + + + 
 

 
where w was substituted for mg and some algebraic manipulations were carried out. 
Therefore, 

0
5.29 N 0.265 N(20.0 m/s) 19.0 m/s
5.29 N 0.265 N

w fv v
w f

− −
= = =

+ +
. 


	PH 221-3A Fall 2010
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33

