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INTRODUCTION

Finite difference method is suitable to used if the structure to be 
analysed has the specific governing differential equation. 

For structures which are so complex that is difficult or impossible 
to determine the governing differential equation, a powerful 
method for analysing such complex structures is the finite 
element method.



The way finite element analysis obtains the temperatures, 
stresses, flows, or other desired unknown parameters in 
the finite element model are by minimizing an energy 
functional. An energy functional consists of all the 
energies associated with the particular finite element 
model. Based on the law of conservation of energy, the 
finite element energy functional must equal zero.

The finite element method obtains the correct solution 
for any finite element model by minimizing the energy 
functional. The minimum of the functional is found by 
setting the derivative of the functional with respect to the 
unknown grid point potential for zero. Thus, the basic 
equation for finite element analysis is:
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where F is the energy functional and p is the unknown grid 
point potential (In mechanics, the potential is 
displacement) to be calculated. This is based on the 
principle of virtual work, which states that if a particle is 
under equilibrium, under a set of a system of forces, then 
for any displacement, the virtual work is zero. Each finite 
element will have its own unique energy functional.



PRINCIPLE OF MINIMUM 
POTENTIAL ENERGY

For conservative systems, of all the kinematically admissible 
displacement fields, those corresponding to equilibrium extremize 
the total potential energy. If the extremum condition is a minimum, 
the equilibrium state is stable.

Satisfy the single-valued nature of displacements (compatibility) 
and the boundary conditions.



SPRING EXAMPLE
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STRAIN ENERGY

When loads are applied to a body, they will deform the 
materials.  Provided no energy is lost in the form of heat, the 
external work done by the loads will be converted into internal 
work called strain energy.  This energy, which is always 
positive, is stored in the body and is caused by the action of 
either normal or shear stress.



STRAIN ENERGY DUE TO NORMAL STRESS
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In general, if the body is subjected only to a uniaxial normal 
stress σ, acting in a specified direction, the strain energy in the 
body is then

2V
W dVσε
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Also, if the material behaves in a linear-elastic manner, Hooke’s 
law applies, σ=Eε, and therefore:
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STRAIN ENERGY DUE TO SHEAR STRESS
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In general, if the body is subjected only to a shear stress τ, the 
strain energy due to shear stress in the body is then

2V
W dVτγ

= ∫

Also, if the material behaves in a linear-elastic manner, Hooke’s 
law applies, τ=Gγ, therefore:
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STRAIN ENERGY DUE TO MULTIPLE STRESSES
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STRAIN ENERGY – PURE BENDING
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STRAIN ENERGY IN BEAM DUE TO TRANSVERSE 
SHEAR
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EXTERNAL WORK – BAR ELEMENT

Consider the work done by an axial force applied 
to the end of the bar. As the magnitude of force, F 
is gradually increased from zero to some limiting 
value F=P, the bar displaced from x=0 to x=∆.
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( )

( )
( )

0

0

0

2 2

1
2
1
2

dx

kx dx

k xdx

k

k

P

∆

∆

∆

=

=

=

= ∆

= ∆ ∆

= ∆

∫
∫
∫

F

O ∆

P

x ∆

P

x



EXTERNAL WORK DUE TO BODY FORCES
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EXTERNAL WORK DUE TO SURFACE TRACTIONS
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CONSERVATION OF ENERGY

Most energy methods used in mechanics are based on a balance of 
energy, often referred to as the conservation of energy. The energy 
developed by heat effects will be neglected. As a result, if a loading 
is applied slowly to a body, so that kinetic energy can also be 
neglected, then physically the external loads tend to deform the body 
so that the loads do external work We as they are displaced. This 
external work caused by the loads is transformed into internal work
or strain energy Wi, which is stored in the body. Furthermore, when 
the loads are removed, the strain energy restores the body back to its 
original undeformed position, provided the material’s elastic limit is 
not exceeded. The conservation of energy for the body can therefore 
be stated mathematically as

e iW W=



CONSERVATION OF ENERGY - EXAMPLE
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DIFFERENT CONCEPT IN ENERGY METHOD
External Work = Internal Work
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THE FOUR-NODE QUADRILATERAL (2D)
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STRAIN-STRESS RELATIONSHIP
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STRESS-STRAIN RELATIONSHIP
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POTENTIAL ENERGY
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Collecting equations A1, A2, …, A’n’ one gets the element 
equilibrium equation:
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PROCEDURE OF FINITE ELEMENT ANALYSIS 

• Assemble the element equilibrium equation (ku=f) for all 
finite elements in the structure and form global equilibrium 
equation, KU=F

• Consider boundary condition and modify the K matrix, U
and F vectors. Form the following equation: AX=B where X 
= unknown vectors, B = known vectors.

• Solve the equation AX=B
• Calculate other parameters – displacements, strains, stresses 

etc
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