

Potential ILC contributions from Cornell

Georg Hoffstaetter for Cornell Laboratory for Accelerator Based Sciences and Education

Cornell has experience in using CESR to study wiggler-dominated ILC damping rings; has verified electron beam simulations against experiments from source to high energy; and has developed and operated SRF components.

1) Accelerator design

- a) Electron source optimization
- b) Electron beam-transport optimization, including space charge, CSR, micro-bunching, polarization.
- c) Damping-ring design / simulation / optimization

2) SRF topics

- a) SRF material qualification
- b) Vertical bare cryogenic cavity tests
- c) Horizontal dressed cavity testing in Cornell's HTC
- d) SRF component testing, e.g. cold tuners, HOM absorbers, couplers
- e) HOM absorber material studies
- f) SRF simulations, cavity design, RF component design

3) Damping ring dynamics

- a) Permanent magnet optics (from CBETA experience)
- b) Superconducting wigglers (from CESR experience)

4) Positron production

a) Helical undulators (from optical stochastic cooling experience at CESR)

CBETA 1-st 4-turn SRF ERL

Georg.Hoffstaetter@Cornell.edu - October 19, 2020 – American Linear Collider Workshop

Potential Cornell SRF Contributions

SRF simulations, cavity design CST Studio, ACE3P,...

Niobium material qualification

E.g., trapped flux studies

SRF cavity fabrication

Including in-house EB welding

Cavity preparation

BCP, EP, CBP, furnace treatments, doping...

Vertical cryogenic cavity tests (200MHz–6GHz) Inside liquid helium bath With LHe in cavity tank only (e.g., for tuner testing)

Potential Cornell SRF Contributions

SRF component design and testing

E.g. cavity tuner, HOM absorbers, RF coupler HOM absorber material studies

Horizontal dressed cavity testing in Cornell's

Horizontal-Test-Cryomodule (HTC)

1-cavity cryomodule, e.g. used for first LCLS-II HE 9-cell cavity cryomodule test Horizontal test bed to study cavity performance, RF coupler performance, cavity operation, LLRF controls...

Cornell SRF Group Capabilities

Design and cryomodule fabrication to full RF design

Material characterization

In-house cavity fabrication

Cavity surface preparation

SRF cavity vertical testing

Component R&D / testing

Cryomodule design, assembly, and testing

Georg.Hoffstaetter@Cornell.edu - October 19, 2020 – American Linear Collider Workshop

Cornell opportunity: Cathode production (incl. polarized)

Occasionally, during operation a charge-dependent structure on the beam profile was seen

- As early as the beginning of the second pass
- Charge dependent
- Single bunch effect
- Optics dependent
- → Capability to investigate CSR, CSR shielding, and micro bunching.

1) Accelerator design

- a) Electron source optimization
- b) Electron beam-transport optimization, including space charge, CSR, micro-bunching, polarization.
- c) Damping-ring design / simulation / optimization

2) SRF topics

- a) SRF material qualification
- b) Vertical bare cryogenic cavity tests
- c) Horizontal dressed cavity testing in Cornell's HTC
- d) SRF component testing, e.g. cold tuners, HOM absorbers, couplers
- e) HOM absorber material studies
- f) SRF simulations, cavity design, RF component design

3) Damping ring dynamics

- a) Permanent magnet optics (from CBETA experience)
- b) Superconducting wigglers (from CESR experience)

4) Positron production

a) Helical undulators (from optical stochastic cooling experience)

Questions ?

Georg.Hoffstaetter@Cornell.edu - October 19, 2020 – American Linear Collider Workshop