Poverty Measurement: History and Recent Developments

Natalie Naïri Quinn
St John's College/Dept. Economics
University of Oxford
January 22, 2014

Outline

Motivation

Historical Background
Early History
Late 20th Century Consensus
Recent Developments
Developments within framework
Multiple Dimensions of Poverty
Time: Chronic and Intertemporal Poverty
A Taste of My Research
Representation of a Separable Preorder
Framework and Information
Two (or Three) Fundamental Principles
A Theorem

Outline

Motivation

Historical Background
Early History
Late 20th Century Consensus
Recent Developments
Developments within framework
Multiple Dimensions of Poverty
Time: Chronic and Intertemporal Poverty
A Taste of My Research
Representation of a Separable Preorder
Framework and Information
Two (or Three) Fundamental Principles
A Theorem

Motivation

Summary measures and indicators:

- Guide policy.
- Impact on resource allocation
- Embody assumptions:
- Information
- Ethical principles
- Dangerous! Does it do what it says on the tin?

Examples:

- World Bank/MDG 1 'Dollar a Day’ Poverty Measure.
- UK Child Poverty Measure.
- MDG 5 Maternal Mortality.

Motivation

Does it do what it says on the tin?

- Opportunity for analysis.
- Information:
- Explicit analytical framework.
- Should reflect information content of data.
- Ethical Principles:
- Perhaps not for the economist to decide!
- What principles does the policymaker choose?
- What do desired principles entail for form of the measure?
- Exactly which measures embody such principles?

Outline

Motivation

Historical Background
Early History
Late 20th Century Consensus
Recent Developments
Developments within framework
Multiple Dimensions of Poverty
Time: Chronic and Intertemporal Poverty
A Taste of My Research
Representation of a Separable Preorder
Framework and Information
Two (or Three) Fundamental Principles
A Theorem

Early History

- Non-bureaucratic support (or not) for the destitute (family, community, local religious institutions)
- Europe: bureaucratisation in 16th and 17th centuries (UK: dissolution of the monasteries under Henry VIII \rightarrow social problems \rightarrow Old Poor Law mandates parishes of Church of England to provide for the poor).
- Information gathered and utilised locally but determined liability for taxation: 1691 William and Mary's four shilling Quarterly Poll instituted by act of Parliament 'for raiseing money by a Poll payable quarterly for One year for the carrying on a vigorous War against France'.
- 1696: Gregory King: 55\% of the population of England and Wales found to be insolvent (excused from William and Marys Quarterly Poll)

Early History

- 1895, Charles Booth: Poverty Maps of London

Early History

- 1902, Benjamin Rowntree, census in York
- 1920s: statistics! so we can use survey data
- General approach headcount (number of individuals/proportion of population below 'poverty line'). Still used: World Bank (Ravallion), Millennium Development Goals.

Late 20th Century Consensus

- Vector of individual incomes $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, poverty line z.
- The framework: Sen (1976) distinguished identification and aggregation.
- Many measures suggested 1976-1984; some have nice properties, some do not.
- FGT (1984) introduced P_{α} family: nice properties and conceptually straightforward \rightarrow gold standard
- Meanwhile Foster and Shorrocks (1991) characterised entire class of unidimensional measures with nice properties:

$$
P(x ; z)=\frac{1}{n} \sum_{i=1}^{n} \phi\left(x_{i}\right)
$$

where $\phi\left(x_{i}\right)$ is non-increasing, zero above z and continuous except possibly at z.

Late 20th Century Consensus

- Class of unidimensional measures with nice properties:

$$
P(x ; z)=\frac{1}{n} \sum_{i=1}^{n} \phi\left(x_{i}\right)
$$

where $\phi\left(x_{i}\right)$ is non-increasing, zero above z and continuous except possibly at z.

- Nice properties plus
- Monotonicity if $\phi\left(x_{i}\right)$ is decreasing below z (e.g. $\left.P_{1}\right)$.
- Transfer if if $\phi\left(x_{i}\right)$ is convex below z (e.g. P_{2}).
- P_{α} measures belong to this class but do not exhaust it! - but well-established.
- Little further exploration of this class...

Late 20th Century Consensus

ϕ functions for P_{α} measures:

Illustrate implicit interpersonal tradeoffs.

Outline

Motivation

Historical Background
Early History
Late 20th Century Consensus
Recent Developments
Developments within framework Multiple Dimensions of Poverty
Time: Chronic and Intertemporal Poverty
A Taste of My Research
Representation of a Separable Preorder
Framework and Information
Two (or Three) Fundamental Principles
A Theorem

Developments within framework

General form:

$$
P(x ; z)=\frac{1}{n} \sum_{i=1}^{n} \phi\left(x_{i}\right)
$$

where the x_{i} s are real-valued indicators of individual/household wellbeing.

- Consumption vs income data (Ravallion 1994)
- Individual vs household indicators (intra-HH distribution)
- 'Targeted' poverty measures focussing on the 'poorest of the poor' (Alkire and Foster 2012); within Foster and Shorrocks (1991) framework, new functional forms for $\phi\left(x_{i}\right)$
- ϕ functions for P_{α} measures:

- ϕ functions for targeted P_{α} measures:

Multiple Dimensions of Poverty

Rationale:

- If we lived in a world of complete and perfect markets (first fundamental welfare theorem) then individual command over income can be argued to be a sufficient measure of wellbeing.
- But we do not! Consumption of health, education etc...

Approaches:

- Dashboard (MDGs etc)
- Aggregate: over society/within dimension first (Human Poverty Index: HDR 1997 - 2009)
- Aggregate: over dimensions/within individual-first (Tsui 2002, Bourguignon and Chakravarty 2003, Alkire and Foster 2010, Multidimensional Poverty Index: HDR 2010 onward).

Multiple Dimensions of Poverty

Aggregating over dimensions/within individual-first retains the general functional form:

$$
P(x ; z)=\frac{1}{n} \sum_{i=1}^{n} \phi\left(x_{i}\right)
$$

but now the x_{i} 's are vectors of individual indicators in multiple dimensions; requires detailed, representative household survey

Example MPI: Data from DHS, ϕ is an indicator function $(0,1)$ of \{a weighted average of indicator functions representing 'poverty' according to the following indicators\} being greater than $1 / 3$:

- Health (nutrition, child mortality)
- Education (years of schooling, enrollment)
- Living standards (6 standard DHS indicators)

Time: Chronic and Intertemporal Poverty

General functional form:

$$
P(x ; z)=\frac{1}{n} \sum_{i=1}^{n} \phi\left(x_{i}\right)
$$

Now x_{i} is a trajectory of wellbeing indicators.

Literature

'Spells' Approach:

- 'Still poor after x years'; compare headcount.
- Chronic Poverty Reports (CPRC, 2005 and 2009)
'Components' Approach:
- Poverty of permanent component of (or average) income; transient fluctuations.
- Rodgers and Rodgers (1993; US); Jalan and Ravallion (2000). Both based on poverty-gap-squared (Foster, Greer and Thorbecke, 1984).

Literature

More recent proposals (all indices aggregating over individuals and time):

- Calvo and Dercon (2009), Foster (2009), Gradin, Del Rio and Canto (2011), Hoy and Zheng (2011), Bossert, Chakravarty and D'Ambrosio (2012), Foster and Santos (2013), Porter and Quinn $(2008,2014)$.

None combine all of the properties that we might want a chronic poverty measure to embody:

- Either: Not sensitive to chronicity/persistence (so more appropriate to measure 'total' intertemporal poverty)
- Or: Discontinuities lead to counter-intuitive ordering of trajectories

Representation of a Separable Preorder

Outline

Motivation

'listorical Background
Early History
Late 20th Century Consensus
Recent Develonments
Developments within framework
Multiple Dimensions of Poverty
Time: Chronic and Intertemporal Poverty
A Taste of My Research
Representation of a Separable Preorder
Framework and Information
Two (or Three) Fundamental Principles
A Theorem

Analytical Approach

Clearest method of analysis: characterisation of poverty and social welfare measures.

- Within a certain framework, characterise the class of exactly those measures that satisfy certain properties (axioms). Limitations in the literature (even the most elegant papers):
- Information framework too restrictive in relation to data.
- Limited by topological assumptions.
- Continuity: what about poverty lines and more complex extensions?
- Connected domain: what about categorical or discrete information?
- Properties imposed without good normative motivation.
- The poverty measure is twice continuously differentiable...
- The poverty measure has a particular, rather odd, functional form. . .

Background: Key Literature

- Foster and Shorrocks (1991), Subgroup Consistent Poverty Indices
- Relies on Gorman (1968), The Structure of Utility Functions
- Relies on Debreu (1960), Topological Methods in Cardinal Utility Theory

Limiting assumptions:

- Continuity of the ordering (typically in Euclidean topology but clearly generalisable - dependent on topology)
- Connectedness of the domain

Similar issues:

- Characterisation of generalised utilitarian social welfare functions (Blackorby, Bossert and Donaldson, 2005)
- Dutta, Pattanaik and Xu (2003)

Representation of a Separable Preorder

The relationship between separability of a preorder and existence of an additively separable representation is well known:

- Leontief (1947) and Samuelson (1947) require continuous differentiability of the representing function; this imposes restrictions on the structure of the domain and the preorder.
- Debreu (1960), extended by Gorman (1968) relax differentiability, but require:
- Connectedness of the domain.
- Continuity of the preorder.

The main result of this paper:

- Relax topological conditions to point of necessity.
- Introduce symmetry.

Framework and Information

The poverty analyst:

- Has information $x_{i} \in X$ relating to each individual i in a population of size $n \in \mathbb{N}, n \geq 3$.
- Note: no restriction on X.
- Continuous, discrete, categorical data
- Individual, social, environmental characteristics
- Multidimensional, intertemporal. . .
- (Implicitly comparable across individuals - see later)
- So: domain of analysis is

$$
\mathcal{X}=\bigcup_{n=3}^{\infty} X^{n}
$$

Framework and Information

Domain of analysis

$$
\mathcal{X}=\bigcup_{n=3}^{\infty} X^{n} .
$$

The poverty analyst:

- Evaluates poverty according to some binary relation \precsim on \mathcal{X}, the poverty ordering.
- For profiles $Y, Z \in \mathcal{X}$ such that $Y \precsim Z$, reads ' Z contains more poverty than Y^{\prime}.

Two (or Three) Fundamental Principles

- Anonymity
- Subset Consistency
- Representability

1: Anonymity

1: Anonymity

Informally:

- The poverty analyst evaluates as equivalent profiles which differ only by a permutation of characteristics among individuals.
Formally equivalent to permutation-symmetry of the poverty ordering:
- A permutation on n is a bijective function $p:\{1,2, \ldots, n\} \rightarrow\{1,2, \ldots, n\}$. Define a function $f_{p}: X^{n} \rightarrow X^{n}$ such that $f_{p}: x \mapsto f_{p}(x)$ where $\left[f_{p}(x)\right]_{i}=x_{p(i)}$ for each $i \in\{1,2, \ldots, n\}$.
- A binary relation R on a symmetric product space X^{n} is a permutation-symmetric relation if, for every permutation on n, p, and for every $x, y \in X^{n}, f_{p}(x) R f_{p}(y) \Leftrightarrow x R y$.

Representation of a Separable Preorder

2: Subset Consistency

$$
\text { If } Y \precsim Z
$$

2: Subset Consistency

then $Y^{\prime} \precsim Z^{\prime}$

2: Subset Consistency

and $Y^{\prime \prime} \precsim Z^{\prime \prime}$

2: Subset Consistency

Informally:

- If the measure of poverty increases in a subset of the population while the profile of individual characteristics remains unchanged in the rest of the population then overall poverty must increase.
- (Regardless of the number of individuals and the profile of their characteristics in the unchanging part of the population.)

Formally equivalent to full separability of the poverty ordering:

- Too much notation?

2: Full Separability: Notation

- For $n \geq 2$, let A be any proper subset of $\left\{X_{1}, \ldots, X_{n}\right\}$ (neither $\left\{X_{1}, \ldots, X_{n}\right\}$ nor the empty set) and let $\bar{A}=\left\{X_{1}, \ldots, X_{n}\right\} \backslash A$. Let \mathbf{X}_{A} be the Cartesian product of the elements of $A, \mathbf{X}_{A}=\prod_{i \mid X_{i} \in A} X_{i} . \mathbf{X}_{A}$ is a subspace of \mathbf{X}.
- Let $\mathbf{X}_{\bar{A}}$ be the Cartesian product of the elements of \bar{A}, $\mathbf{X}_{\bar{A}}=\prod_{i \mid X_{i} \in \bar{A}} X_{i} . \mathbf{X}_{A}$ and $\mathbf{X}_{\bar{A}}$ are complementary subspaces of X.

2: Full Separability: Definition

- Let \precsim be a partial preorder on a product space \mathbf{X} with complementary subspaces \mathbf{X}_{A} and $\mathbf{X}_{\bar{A}}$.
- Given an element $\bar{a} \in \mathbf{X}_{\bar{A}}$, define a conditional order $\precsim_{\bar{a}}$ on \mathbf{X}_{A} such that for all $a, b \in \mathbf{X}_{A}, a \precsim \bar{a} b$ if and only if $x \precsim y$ where $x=x(a, \bar{a}) \in \mathbf{X}$ and $y=x(b, \bar{a}) \in \mathbf{X}$.
- We say that the subspace \mathbf{X}_{A} is separable under $\precsim i f$, for all $\bar{a}, \bar{b} \in \mathbf{X}_{\bar{A}}$ and for all $a, b \in \mathbf{X}_{A}, a \precsim_{\bar{a}} b \Leftrightarrow a \precsim_{\bar{b}} b$.
- We say that the partial preorder \precsim is fully separable on \mathbf{X} if \mathbf{X}_{A} is separable under \precsim for all subspaces \mathbf{X}_{A} of \mathbf{X}.

3: Representability

Given a non-empty set A and a binary relation \precsim on A :

- The real valued function $u: A \rightarrow \mathbb{R}$ represents \precsim on A if for all $x, y \in A, x \precsim y \Leftrightarrow u(x) \leq u(y)$.
- Alternatively u is order-preserving.

A question:

Precisely which binary relations on A may be represented by a real valued function $u: A \rightarrow \mathbb{R}$?

- Well known that completeness and transitivity of \precsim on A are necessary for existence of u. So \precsim is a total preorder.
- But not sufficient: Debreu (1954) gives the classic counterexample of the lexicographic ordering of \mathbb{R}^{2}.

3: Representability

- If A is finite or countable, completeness and transitivity of \precsim are sufficient. (So the lexicographic ordering of \mathbb{Q}^{2} is representable.)
- If A is \mathbb{R}^{n}, add Euclidean continuity: sufficient but not necessary.
- Debreu (1954) established general necessary and sufficient conditions; some debate over the validity of his proof but Jaffray (1975) gives an elegant - and correct - proof.

Debreu's representation theorem (paraphrased)

Given a set A and a total preorder \precsim on A, there exists on A a real function $u: A \rightarrow \mathbb{R}$ representing \precsim if and only if the preorder topology is second countable.

The Theorem

Informally: For fixed population size, subset consistency and anonymity are necessary and sufficient for representation of a (representable) poverty ordering by a symmetric additive function.

Theorem

Given a set X, a natural number $n \geq 3$ and a binary relation \precsim on X^{n}, there exists a real function $u: X^{n} \rightarrow \mathbb{R}$ representing \precsim of the form

$$
u: x \mapsto \sum_{i=1}^{n} \phi\left(x_{i}\right)
$$

where $\phi: X \rightarrow \mathbb{R}$, if and only if \precsim is a fully separable and permutation-symmetric total preorder whose preorder topology is second countable.

Representation of a Separable Preorder

Sketch of Proof

'Only if' is straightforward (necessity of properties).
'If' (sufficiency of properties) is less straightforward:

- Lemma 1: Establish Hexagon Condition for $n=3$.
- Lemma 2: Establish sufficiency for $n=3$.
- Extend to all natural numbers $n>3$ by induction.

Lemma 1

Lemma 1

Given a non-empty set X, let $X^{3}=X \times X \times X$. Let \precsim be a fully separable p-symmetric partial preorder on X^{3} with derived symmetric relation \sim. For all $a, b, c, d \in X^{3}$ such that $a \sim b, c \sim d, a_{i}=c_{i}$, $b_{j}=d_{j}$ and $a_{k}=b_{k}=c_{k}=d_{k}$ for distinct $i, j, k \in\{1,2,3\}$, there exist $e, f \in X^{3}$ such that $e_{i}=b_{i}, e_{j}=c_{j}, f_{i}=d_{i}, f_{j}=a_{j}$ and $e_{k}=f_{k}=a_{k}$, and furthermore, $e \sim f$.

Lemma 1

Lemma 1

Given a non-empty set X, let $X^{3}=X \times X \times X$. Let \precsim be a fully separable p-symmetric partial preorder on X^{3} with derived symmetric relation \sim. For all $a, b, c, d \in X^{3}$ such that $a \sim b, c \sim d, a_{i}=c_{i}$, $b_{j}=d_{j}$ and $a_{k}=b_{k}=c_{k}=d_{k}$ for distinct $i, j, k \in\{1,2,3\}$, there exist $e, f \in X^{3}$ such that $e_{i}=b_{i}, e_{j}=c_{j}, f_{i}=d_{i}, f_{j}=a_{j}$ and $e_{k}=f_{k}=a_{k}$, and furthermore, $e \sim f$.

Lemma 1

Lemma 1

Given a non-empty set X, let $X^{3}=X \times X \times X$. Let \precsim be a fully separable p-symmetric partial preorder on X^{3} with derived symmetric relation \sim. For all $a, b, c, d \in X^{3}$ such that $a \sim b, c \sim d, a_{i}=c_{i}$, $b_{j}=d_{j}$ and $a_{k}=b_{k}=c_{k}=d_{k}$ for distinct $i, j, k \in\{1,2,3\}$, there exist $e, f \in X^{3}$ such that $e_{i}=b_{i}, e_{j}=c_{j}, f_{i}=d_{i}, f_{j}=a_{j}$ and $e_{k}=f_{k}=a_{k}$, and furthermore, $e \sim f$.

Lemma 1

Without loss of generality write $x=\left(x_{i}, x_{j}, x_{k}\right)$ for all $x \in X^{3}$.
a) First demonstrate that e and f are elements of X^{3}. Consider $a, b, c, d \in X^{3}$ such that $a_{i}=c_{i}=\alpha, b_{j}=d_{j}=\beta$ and $a_{k}=b_{k}=c_{k}=d_{k}=\gamma$ for distinct $i, j, k \in\{1,2,3\}$. Let $a_{j}=\delta, b_{i}=\epsilon, c_{j}=\zeta$ and $d_{i}=\eta$. It follows from symmetry of X^{3} that $\{\alpha, \beta, \gamma, \delta, \epsilon, \zeta, \eta\} \subseteq X$; they need not all be distinct. $X^{3}=X \times X \times X$, therefore $e=(\epsilon, \zeta, \gamma) \in X^{3}$ and $f=(\eta, \delta, \gamma) \in X^{3}$.

Existence of e and f arises directly from symmetry.
b) Now show that $e \sim f$.
i) Let $a \sim b$ and $c \sim d$. It follows from full separability of \precsim and thus \sim that $\left(\alpha, \delta, x_{k}\right) \sim\left(\epsilon, \beta, x_{k}\right)$ and $\left(\alpha, \zeta, x_{k}\right) \sim\left(\eta, \beta, x_{k}\right)$ for all $x_{k} \in X$. In particular, $(\alpha, \delta, \beta) \sim(\epsilon, \beta, \beta)$ and $(\alpha, \zeta, \beta) \sim(\eta, \beta, \beta)$.
ii) By p-symmetry of \precsim and thus \sim we may permute j and k to obtain $(\alpha, \beta, \delta) \sim(\epsilon, \beta, \beta)$ from $(\alpha, \delta, \beta) \sim(\epsilon, \beta, \beta)$. It follows from full separability of \precsim and thus \sim that $\left(\alpha, x_{j}, \delta\right) \sim\left(\epsilon, x_{j}, \beta\right)$ for all $x_{j} \in X$. In particular, $(\alpha, \zeta, \delta) \sim(\epsilon, \zeta, \beta)$.
iii) Recall from part (i) that $(\alpha, \delta, \beta) \sim(\epsilon, \beta, \beta)$. Recall from part (ii) that $(\alpha, \beta, \delta) \sim(\epsilon, \beta, \beta)$. By transitivity of \sim, therefore, we have $(\alpha, \beta, \delta) \sim(\alpha, \delta, \beta)$. It follows from full separability of \precsim and thus \sim that $\left(x_{i}, \beta, \delta\right) \sim\left(x_{i}, \delta, \beta\right)$ for all $x_{i} \in X$. In particular, $(\eta, \beta, \delta) \sim(\eta, \delta, \beta)$.

Lemma 1

iv) Recall from part (i) that $\left(\alpha, \zeta, x_{k}\right) \sim\left(\eta, \beta, x_{k}\right)$ for all $x_{k} \in X$.

In particular, $(\alpha, \zeta, \delta) \sim(\eta, \beta, \delta)$. From part (ii)
$(\alpha, \zeta, \delta) \sim(\epsilon, \zeta, \beta)$ and from part (iii) $(\eta, \beta, \delta) \sim(\eta, \delta, \beta)$ therefore by transitivity (applied twice) $(\epsilon, \zeta, \beta) \sim(\eta, \delta, \beta)$.
v) It follows from full separability that $\left(\epsilon, \zeta, x_{k}\right) \sim\left(\eta, \delta, x_{k}\right)$ for all $x_{k} \in X$ and in particular $(\epsilon, \zeta, \gamma) \sim(\eta, \delta, \gamma)$. But $(\epsilon, \zeta, \gamma)=e$ and $(\eta, \delta, \gamma)=f$, therefore $e \sim f$.

Lemma 2

Lemma 2

Given a non-empty set X, let $X^{3}=X \times X \times X$. Let \precsim be a fully separable p-symmetric total preorder on X^{3} whose preorder topology is second countable. There exists a function $u: X^{3} \rightarrow \mathbb{R}$, which represents \precsim, such that $u: x \mapsto \phi\left(x_{1}\right)+\phi\left(x_{2}\right)+\phi\left(x_{3}\right)$ for some function $\phi: x \rightarrow \mathbb{R}$.

Steps in proof:

- Existence of representation for induced preorder on X.
- Map into \mathbb{R}^{2}.
- Invoke Lemma 1 and Thomsen-Blaschke Theorem (cf Debreu 1960) to obtain additive representation.
- Invoke symmetry and separability to extend to \mathbb{R}^{3}.
- Map back to X^{3}.

Application to Poverty Measurement

- Information $y_{i} \in X$ (X unrestricted) relating to each individual i in a population of size $n \in \mathbb{N}, n \geq 3$.
- Domain of analysis

$$
\mathcal{X}=\bigcup_{n=3}^{\infty} X^{n}
$$

Informally: an real-valued poverty measure $\mathcal{P}: \mathcal{X} \rightarrow \mathbb{R}$ represents a poverty ordering with the properties anonymity and subset consistency if and only if it has the form

$$
\mathcal{P}: Y \mapsto g\left(\sum_{i=1}^{n(Y)} \phi\left(y_{i}\right)\right) .
$$

where $\phi: X \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ is strictly increasing.

