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Notation Points
• Upper case for dc quantities.

• Lower case for ac quantities.

• Angle brackets < > for averages.
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Notation Points

• Time-varying average (moving average):
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Time-Varying Average

(Moving average)
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Notation Points

RMS (Root Mean Square):
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Power Electronic System

Electrical source.

Conversion.

Load.
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Power Electronic System

Source Load

Conversion
components
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The Switch Matrix

If a converter has m input lines and n
output lines, an m x n matrix allows all 
possible interconnections.
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Conversion

• Consider switches alone (no storage 
elements). The most complicated arrangement 
possible is:

n output lines

m
input
lines

m x n
switches

SWITCH MATRIX
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Conversion

• Polyphase case:
– Three inputs, three outputs

• High-voltage dc:
– Up to 48 or more input lines
– Perhaps 6 output lines

• Typical case:
– 2 x 2 matrix



Engineering at IllinoisEngineering at Illinois

124

Conversion

• Typical case with only 4 switches:

2 x 2 =
4 switches
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Power Electronics Focus

1) Build a switch matrix.
Hardware.

2) Determine how to operate matrix to get a 
desired result.

Software.
3) Use storage elements to interface with in/out.

Interface.
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Conversion

n output lines

m
input
lines

m x n
switches

Direct switch matrix   (No storage)
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Conversion

Matrix MatrixSource Load

Indirect switch matrix

Energy transfer
point
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Methods

• The usual method for design and analysis of 
indirect switch matrix converters is to cascade 
two direct switch matrices and place the storage 
components between them.

• Cascaded converters are common:
– Rectifier-inverter sets for motor drives
– Rectifier-dc sets for power supplies
– Dc-dc converter cascades for flexibility
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Source Conversion
• Energy conversion is not a generic process.
• User expectations:

– Voltage source.
• Generalization:
• Electrical input: (Ideal) Source.
• Electrical load: User wants ideal source.
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Source Conversion

Matrix Load

Ideal
source

Ideal
source



Engineering at IllinoisEngineering at Illinois

131

Source Conversion
Implications: We can analyze the circuit this way.

Matrix VOUTVIN

Power Electronic Circuit: Exchange energy among 
ideal sources.
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Source Conversion

Large C  Little change in Vc (= Vout).

MatrixVIN
C

R

Interface



Engineering at IllinoisEngineering at Illinois

133

Source Conversion

• The following slide shows a logical source 
conversion approach.

• The input and output are ideal dc voltages, and 
a switch matrix sits between them as a direct 
converter.

• Check the configurations.
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Source Conversion

VIN

VOUT
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Source Conversion
One configuration would be:

VIN

100 V

VOUT

5 V

Circuit laws:
KVL :    Vloop = 0
KCL :    Inode = 0

wire resistance
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Circuit Laws

• There is a problem here!
• It would seem that the sum of voltages 

around the loop is nonzero!
• The reality is that wires and real devices 

have some (small) resistance.
• A large current will flow – and we hope will 

blow a fuse.
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Circuit Laws

• KVL problem: Cannot
interconnect unlike 
voltages.

• Trouble: switches do
not “know” KVL. 

• Power converter: Can attempt a violation.
• But a violation will not really occur – only a 

problem (or a fire).
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The Reality of KVL

• We see that KVL has a concrete meaning in 
power electronics.

• The Law becomes:  Do not interconnect unlike 
voltage sources.

• There is a real and often costly penalty for a 
violation.

• For design, we can think in terms like “Do not 
even try to violate KVL.”
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Reality of Circuit Laws

Implication: unequal voltage sources 
cannot be interconnected.

In power electronics (not in other fields), we 
can build a circuit that tries to “violate” KVL.
Attempts to connect unlike voltages yield 
extreme currents and failures.

KVL:  Σ vloop = 0
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Reality of Circuit Laws

•In the top circuit, the switch must be OFF so that 
KVL is not violated.  
•In the bottom circuit, unfortunately, the transistor 
will probably fail before the fuse does anything.

IN

INV

OUTVV

OUTV
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Reality of Circuit Laws

– The implication is that unequal current 
sources cannot be interconnected.

– It is possible to build a circuit that tries to 
“violate” KCL.

Example:  Inductor 
carrying current. 
Disconnect it abruptly!

KCL:  Σ inode = 0

www.lifeaftercoffee.com
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Reality of Circuit Laws

The switch must be ON, so that 
KCL is not violated.

IOUTIIN
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Reality of Circuit Laws

IOUTIIN Fine!

10 A
After opening the
switch, the electrons
must go somewhere.
An arc will appear.
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One-Port Model

v = L di/dt.  If current drops in 1 μs, we have:

10 A

10 mH
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One-Port Model

vL=  L di/dt

10 A

10 mH

-10 A
= (0.01 H)


1μs

-100,000 V
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Reality of Circuit Laws
KCL: Must provide a current path for any 

current source.

5 V

1 mH

*

* Switching must be coordinated correctly, 
so as not to remove the path for IL.
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Reality of Circuit Laws
• Attempts to violate KCL can generate 
extreme voltages, as current tries to 
maintain its flow.

• It is hard to protect against this – fuses
do not help.

• KVL “violations” are reasonable easy to
avoid.

• KCL is more problematic in practice.
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Implications for Storage

• If a fixed voltage is applied to an inductor,
current rises without limit.

• This is like a short circuit, although it is
OK for a short time.

• If a fixed current is applied to a capacitor,
charge rises without limit.
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Implications for Storage

Must be time-limited, if we apply dc voltage to an 
inductor. In the ideal arrangement, there is no 
limitation on the current. An inductor will not 
sustain dc voltage.

LVIN dt
diLvL 
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IIN C

Must be time-limited.
Cannot apply dc current to a capacitor.
Capacitor will not sustain dc  current.

dt
dvCiC 



Engineering at IllinoisEngineering at Illinois

151

Implications for Storage

• An inductor cannot sustain dc voltage 
over extended times.

• A capacitor cannot sustain dc current 
over extended times.
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Implications for Storage
Since vL must have no dc and iC must 
have no dc, it must be true that:

<vL> = 0,    <iC> = 0.
These are key to circuit analysis:  an 
inductor carries no average voltage; 
a capacitor carries no average current.

<vL> = 0
<iC> = 0

 KVL and KCL
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• We want ideal sources (source 
conversion concept).

• We cannot use a switch matrix for 
direct connection of voltage sources or 
of current sources.
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Implications for Switching

If C is large and iC is bounded, then dv/dt
can be as small as desired want.

C

Cdt
dv iCC 

Over short times:

iC  dt
dv

C
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Implications for Switching
The previous statement means that a 
large capacitor acts as a voltage source 
over short times.


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Implications for Switching

If L is large and vL is bounded, then di/dt
can be made as small as desired.

Ldt
di vLL 

L

LdtvL
di
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Implications for Switching
The previous statement means that a 
large inductor acts as a current source 
over short times.

 Source
conversion
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Implications for Switching

• Any useful converter must mix voltage and 
current sources.

• “Voltage converts to current,”
• “Current converts to voltage.”
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Implications for Switching
The user wants ideal sources but we can’t 
just use either V or I. Must mix these.

No problemProblems
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Implications for Switching

No problem

Problems

Problems

Example: Connecting two
batteries in parallel, one ok,
one discharged.
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Implications for Switching
Source conversion

Voltage  Current
Current  Voltage
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Implications for Switching

Because of KVL and KCL, neither of 
these can deliver useful energy.
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Implications for Switching

These are valid combinations.
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Implications for Switching

Looks like a
current source (b)

Possible useful configuration (a)

We can achieve 
(a) with something 
like (b).
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Diode Bridge Example

Of all possible connections, only one 
remains after KVL, KCL, and 
conversion requirements are met.
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Diode Bridge Example

KVL problem

KVL problem
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Diode Bridge Example

Diode Bridge.
The only combination
That does not violate
KCL or KVL

KCL problem
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Diode Bridge Example
Can do the same with a resistor, rather than a 
current source. No KCL issues.

Diode Bridge.
KVL and KCL are
useful for us.
.

No KCL problem,
but I RESISTOR = 0
and therefore
Power = 0
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Summary of Analysis Rules

1. Conservation of energy.
2. Source conversion.
3. KVL:  avoid voltage source interconnection.
4. KCL:  provide current paths.
5. <vL> = 0
6. <iC> = 0
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Switching Functions

n output lines

m
input
lines

m x n
switches
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Switching Functions
• The element at row i and column j represents 

switch ij and function qij(t).
• The matrix Q has elements that correspond to 

each individual switch.

any timeat 0or 1q

 


















qqqqq

qqqqq

qqqqq

tQ
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Switching Functions

• We have a physical switch matrix 
with m rows and n columns.

• Each switch is either on or off.
• Define a switching function, q(t) as

1 when a device is on, 0 when off.
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Switching Functions

• Now, each physical switch is associated with a 
simple discrete function.

• Do not forget about time.
• We can define a switch state matrix, Q(t).
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Switching Functions

• We can define our software problem in 
terms of choices of switching functions.

• We can find out the expected waveforms 
in many types of converters.
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Summary So Far

• KVL and KCL represent restrictions on 
what we can do.

• Switching functions make our actions 
easier to quantify and analyze.
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Switching Functions

• The functions support shorthand notation 
for KVL and KCL analysis.

• More important, they give mathematical 
expressions that represent converter 
action.
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Example

“Generic” DC-DC 
converter.

q11= 0 or 1

2,2

1,21,1

2,1











2221

1211

qq
qq

Q
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Example

KVL says we cannot have 1,1 and 2,1 
ON or 1,2 and 2,2 ON, simultaneously.

KVL: Not 1,1 + 2,1 ON together.
Not 1,2 + 2,2 ON together.

KCL: Not 1,1 + 2,1 OFF together.
Not 1,2 + 2,2 OFF together.
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Example
Compact description of the restrictions:

• KVL:

• KCL:

• Both:

12111  qq
12212  qq

12111  qq
12212  qq

12111  qq
12212  qq
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Example
The last two expressions can be written 
together as:

1
1




N

i
ijq

“One and only one switch on at a time, 
for each column.”
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Example 2

Three AC voltage sources 
connected through a switch 
matrix to a load. The sources 
share a reference point.

KVL :

KCL : No restriction.

11
4

1
2

4

1
1  

 i
i

i
i qq

2,2

1,21,1

2,1

3,23,1

4,24,1

vb

vc

va

 VOUT
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Switching Functions
• We can define our software problem in 

terms of choices of switching functions.
• We can find out the expected 

waveforms in many types of 
converters.
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Example 3

1
0
0
0
0

42

41

32

22

12







q
q
q
q
q

vb

vc

va

 VOUT
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Example 3

041312111 qvqvqvqv cbaout


042322212 qvqvqvq cba 





4

1
2

4

1
1

i
ii

i
iiout vqvqv
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Example 3
The result is a “piecewise sinusoid.”
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So far
1) KVL + KCL:

Shorthand notation to understand 
the restrictions.
2) Outputs: (Voltage to current)

Given by products of switching 
functions and waveforms.

outin

inout

QII
QVV



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Switching Devices

• Characteristics of an ideal switch:
 Any polarity of v or i, and no limits.
 Can turn on or off at any time.
 On, v = 0.   Off, i = 0.
 Acts instantly.
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Switching Devices
• Real devices do not do any of this, 

of course.
• But even the best possible parts still 

have polarity limitations.
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Switching Devices

• Some typical devices and capabilities are 
given below.

• For silicon PN devices, the typical forward 
drop is 1 V (not 0.7 V).
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Diodes
• Current ratings exist from 1 A to 

nearly 10,000 A.
• Voltage ratings are from 10 V to 

20kV.
• Not both at once (highest is about 

5,000 A, 5,000 V).
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Diodes

• Power junction devices with speeds of 
20 ns to about 100 μs are used.  As a 
general rule, large devices are slower.

• However, certain device grades are 
very slow.
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Diodes
• Example:  1N4004 rectifier diode, 

1 A, 400 V, speed is about 2 μs.
• MUR140 ultrafast rectifier diode, 

1A, 400 V, speed is about 20 ns.
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Diodes

• Schottky diodes are also widely used in 
power electronics.
+ Lower forward drop
+ Very fast
- Lower voltage ratings
- Higher leakage

• Emerging:  SiC Schottkys, rated to 600 V 
or more (e.g. 600 V, 10 A, extremely fast)
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Bipolar Transistors

• Rarely used as power switches now.
• IGBTs have replaced them in nearly all 

applications.
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BJT

• Speed depends on absolute and 
relative rating.

• Typical devices (several amps and above) 
switch in 500 ns to a few 
tens of microseconds.
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FET

• Most power devices are enhancement 
types that require a few volts between 
gate and source to turn on.

• Faster than BJTs, but lower ratings.
• Easy to use in parallel for high current.
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FET
• Individual devices to about 100 A 

and 1000 V.
• Maximum power (single device) 

is about 10 kW.
• Modular packages with multiple 

devices can reach 500 A.
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FET

• Power FETs are constructed as 
millions of small devices in parallel.

• The process inherently adds a 
“reverse parallel” diode internally.
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SCRs
• The generic term is thyristor.
• These are PNPN multi-junction 

devices.
• “Latching” behavior:  either off, 

or on, with a gate pulse.
• The SCR acts like a diode when on.
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SCRs
• Ratings similar to diodes.  Devices 

that can handle 6000 A and 6000 V 
simultaneously are available.

• Constructed as single-wafer devices.
• Relatively slow, 1 μs at best.
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Other Thyristors
• GTO:  an SCR that can be forced off 

with a negative gate pulse
• Light-fired SCR:  an SCR that can be 

triggered with photons (from a laser)
• TRIAC:  two SCRs in reverse parallel
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Other Thyristors

TRIAC
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Combined Devices
• Combination devices are becoming 

popular.
• The oldest is the Darlington pair of BJTs.
• The IGBT is similar to a Darlington 

FET/BJT combination.
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C

E

G

C

E

BG

C

E

Combined Devices
• IGBT (Insulated-Gate Bipolar Transistor).
• Darlington combination of an FET and a BJT.
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Combined Devices

• The IGBT combines gate behavior 
of FET with low voltage drop of BJT.

• Very popular for inverters.
• Devices are rated up to 1200 V 

and 1200 A.
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Combined Devices

• IGBT is somewhat faster than BJT.
• High-power combinations are also 

available.
• Example:  IGCT.

www.abb.com
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Restricted Switches
• Semiconductors (even the best 

ones) have polarity limitations.
• The restricted switch concept 

represents polarity effects in an ideal 
way.

• Classic example:  Ideal diode 
conducts forward, blocks reverse.
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Restricted Switch

• Idealized device with polarity

Ideal diode

• Vforward =0 Ileak =0
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Restricted Switch Types

• Ideal diode
– No forward voltage drop
– No leakage current
– Action is determined by terminal 
conditions

– Symbol:  triangle and bar
– Forward conducting, reverse blocking
switch (FCRB)
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Restricted Switch Types

Triangle shows
carrying direction
Bar shows
blocking action
Conducts in both directions. 
Does not block. Piece of wire
Prevents flow in both directions.
Open circuit

Example: Rectifier diode
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FCFB

• Forward-conducting forward blocking 
(FCFB) switch
• Conducts or blocks in forward direction
• Needs a gate to establish operation
• Action is not allowed in reverse
• Describes a BJT or IGBT
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FCFB

Gate

C E

Gate

Example of
implementation

Symbol. Action
not defined in
reverse.
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FCBB
• Forward conducting, bidirectional 

blocking (FCBB)
• Always blocks in reverse, can carry 

or block forward.
• This describes a GTO, or a reverse-

blocking IGBT.
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FCBB

Unipolar switching
devices

FCBB – Ex: GTO
Similar to SCR, but 
without gate restrictions

Possible implementation 
of FCBB
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BCFB
• Bidirectional conducting, forward 

blocking (BCFB)
• Always allows reverse flow, but can 

carry or block forward
• Describes an ideal power FET
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BCFB

Symbol

Possible implementation:
Power MOSFET

Gate

D S

Possible implementation

G
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BCBB

• Bidirectional conducting, bidirectional 
blocking (BCBB)

• Describes an ideal, or bilateral switch
Sometimes called a bilat
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BCBB

BCBB

Ideal switch.
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Restricted Switch Types
FCRB
(RCFB is flipped version)

Five restricted switches
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Restricted Switch Types

Making
bilateral
switches

=

=

=
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Switch Requirements
• The specific switch requirements can 

be identified through a direct process:
– Check the current direction when the device is on.
– Check the blocking polarity when the device is off.
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Restricted Switch Action

• Restricted switch types can be selected 
based on converter function.

• Example:  Rectifier (for voltage to current 
conversion) should block ac voltage and 
carry dc current.
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Restricted Switch Action

AC V: Need switches to
block in both directions

AC (V) to DC (I) converter

DC I: Need switches to 
conduct in 1 direction.
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Restricted Switch Action
• Types of converters (voltage current)

– Dc-dc:  Unilateral devices (FCFB, FCRB)
– Ac-dc:  FCBB
– Dc-ac:  BCFB
– Ac-ac:  BCBB
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Restricted Switch Action
DC - DC
Unipolar

AC (V) - DC (I)

AC (I) - DC (V)

DC (V) - AC (I)

AC - AC

SCRs, GTOs

FET, BJT+Diodes,
IGBT+Diodes

IGBT, FET

Bilateral
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Restricted Switches
• The specific switch requirements can 

be identified through a direct process:
– Check the current direction when the 

device is on.
– Check the blocking polarity when the 

device is off.
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Restricted Switches

• Choose a function (FCRB, FCFB, etc.) 
to match the need.

• Identify the function with a device 
(diode, FET, etc.).

• This is a basic approach for initial solution 
of the hardware problem.
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Restricted Switches

• Restricted switches are ideal except for 
polarity.  No drop, no leakage, 
instant action, etc.
– FCRB = ideal diode
– FCFB = “ideal BJT”
– BCFB = “ideal FET”
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Analysis of Diode Circuits

• The action of a diode (FCRB switch) is 
determined solely by the terminal 
conditions, not by an external gate.

• Once we know how to analyze diode 
circuits, the others follow.
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Analysis of Diode Circuits

Depends on
terminal
relations

We can build any
circuit with these
two devices.
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Analysis of Diode Circuits

• The reality is that we do not know how to 
perform a direct circuit analysis when ideal 
diodes are present.

• But, diodes can only be on or off.
• Need to perform a “piecewise” analysis.
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Analysis of Diode Circuits

ON/OFF (which?)

 

Stays ON until i=0

Stays OFF until v=0
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Analysis of Diode Circuits

• Diodes react only to terminal conditions:
– If the device is on, it remains on while the 

current is positive.
– If the device is off, it must turn on when the 

voltage is positive.
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The Trial Method
• Any diode in a circuit must be either 

on or off.
• The diode state (on or off) determines 

the circuit configuration.
• Once the configuration is known, the 

circuit can be drawn and analyzed.
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The Trial Method

Configuration

Suppose we know which 
are on and which are off.
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The Trial Method

• Although the diode states are not arbitrary, 
we are free to assign states and then 
check the result.

• This is a trial and error method.  But with a 
little practice, there are few errors.



Engineering at IllinoisEngineering at Illinois

237

The Trial Method

• Diodes satisfy KVL and KCL.
• Diodes always carry forward current, and 

block reverse voltage.
• In the trial method, we assign diode states, 

then check for consistency.
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The Trial Method

• To check:
– KVL and KCL must be satisfied.
– On diodes must carry i > 0.
– Off diodes must block v < 0.

• If the checks are OK, the assigned states 
are valid.  If not, try another.
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Keys

• Draw the configurations.
• Check polarities.
• If inconsistent, use polarities as 

a way to reassign states.
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Basic Example
A simple rectifier connection

There are 16 configurations. Only one satisfies
KVL, KCL, and power flow objectives.
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Basic Example
• Try a few configurations with the trial method.
They cannot be

on at the
same time.

KVL and KCL
not consistent

They cannot be
off at the
same time.
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Basic Example

• KVL, KCL: Ok
• ON-State: Ok  OFF-State: Inconsistent.




VIN





VIN

VIN
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Basic Example

• KVL, KCL: Ok
• ON-State: Ok  OFF-Voltage: Consistent if Vin>0




VIN

VIN
VIN




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Basic Example

Diode is always on. Voltage is not relevant. 
Current requires ON state.
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The Trial Method

• The method works for complex circuits.
• Diodes are passive switches, since their 

action is governed by terminal conditions.
• Switches with gates are active.
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The Trial Method

• Devices such as the FET can be analyzed 
as combinations:
– If the gate is high, the device is on.
– If the gate is low, the reverse parallel 

diode must be checked.
• The FCBB switch is similar (dual).
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Summary

• Restricted switches, combined with the 
trial method, allow us to analyze idealized 
power converters.

• New power semiconductors try to 
approach ideal behavior.


