
Power-Method

September 7, 2017

In [1]: using Interact, PyPlot

1 The power method

We know that multiplying by a matrix A repeatedly will exponentially amplify the largest-|λ| eigenvalue.
This is the basis for many algorithms to compute eigenvectors and eigenvalues, the most basic of which is
known as the power method.

The simplest version of this is to just start with a random vector x and multiply it by A repeatedly. (This
is the procedure by which a Markov process approaches its steady state!) This works, but has the practical
problem that the vector quickly becomes very large or very small, and eventually becomes too big/small for
the computer to represent (this is known as “overflow/underflow”). The fix is easy: normalize the vector
after each multiplication by A. That is:

• Starting with a random x, repeatedly compute $x ← Ax/‖Ax‖$.
For example, let’s try it on a random matrix with eigenvalues 1 to 5:

In [2]: A = randn(5,5)

A = A * diagm(1:5) / A

Out[2]: 5×5 Array{Float64,2}:
2.50462 -0.701339 1.20281 -0.147097 -0.932265

0.723968 6.48373 1.16327 -5.53139 0.969304

-0.954635 -3.66669 1.72789 6.01789 -1.47526

-0.0997186 0.636945 0.671405 1.58586 0.0650827

-1.77605 -2.47092 -1.86019 5.20735 2.69791

In [3]: λ, X = eig(A)

i = sortperm(λ, by=abs, rev=true) # sort the eigenvalues in descending order by magnitude

λ = λ[i]; X = X[:,i] # and re-order λ and X

λ

Out[3]: 5-element Array{Float64,1}:
5.0

4.0

3.0

2.0

1.0

Let’s look at the result of n steps of the power method side-by-side with the eigenvector x1 (which is
normalized to unit length by Julia) for λ = 5:

In [4]: x = randn(5)

@manipulate for n = 1:100

y = x

1

https://en.wikipedia.org/wiki/Power_iteration

for i = 1:n

y = A*y

y = y / norm(y)

end

[y X[:,1]]

end

Interact.Options{:SelectionSlider,Int64}(Signal{Int64}(50, nactions=1),"n",50,"50",Interact.OptionDict(DataStructures.OrderedDict("1"=>1,"2"=>2,"3"=>3,"4"=>4,"5"=>5,"6"=>6,"7"=>7,"8"=>8,"9"=>9,"10"=>10...),Dict(68=>"68",2=>"2",89=>"89",11=>"11",39=>"39",46=>"46",85=>"85",25=>"25",55=>"55",42=>"42"...)),Any[],Any[],true,"horizontal")

Out[4]: 5×2 Array{Float64,2}:
0.543745 -0.543745

-0.526871 0.526869

0.563085 -0.563084

-0.00975261 0.00975247

-0.331043 0.331045

Note that the sign of the resulting vector is random, depending on the initial x.
We could also plot the difference ‖ ± y − x1‖ versus the number n of steps:

In [5]: d = Float64[]

y = x

for i = 1:100

y = A*y

y = y / norm(y)

push!(d, min(norm(y - X[:,1]), norm(-y - X[:,1]))) # pick the better of the two signs

end

semilogy(1:length(d), d, "b.-")

xlabel("number of power steps")

ylabel("error in eigenvector")

title(L"convergence of power method for $\lambda=1,2,3,4,5$")

2

Out[5]: PyObject <matplotlib.text.Text object at 0x32b413650>

2 Convergence rate

How fast does the power method converge?
Suppose that A is diagonalizable with eigenvalues sorted in order of decreasing magnitude

|λ1| > |λ2| > · · ·

. And suppose that we expand our initial x in the basis of the eigenvectors:

x = c1x1 + c2x2 + · · ·

Then, after n steps, the power method produces:

scalar multiple of Anx = multiple of (λn1 c1x1 + λn2 c2x2 + λn3 c3x3 + · · ·) = multiple of λn1 [c1x1 + (λ2/λ1)nc2x2 + (λ3/λ1)nc3x3 + · · ·]

The overall exponentially growing (or decaying) term λn1 gets removed by the normalization. The key
thing is that the x2, x3 and other “error” terms not proportional to x1 decay like the ratios of their
eigenvalues/λ1to the n-th power.

For large n the error is dominated by the x2 term (the next-biggest |λ|), since that term decays most
slowly, and the magnitude of this term decays proportional to |λ2/λ1|n: the ratio of the magnitudes.

For example, in our case above, we’d expect the error to decay proportional to (4/5)n:

3

In [6]: semilogy(1:length(d), d, "b.-")

semilogy(1:length(d), (4/5).^(1:length(d)), "k--")

xlabel("number of power steps")

ylabel("error in eigenvector")

title(L"convergence of power method for $\lambda=1,2,3,4,5$")

legend(["error", L"(4/5)^n"])

Out[6]: PyObject <matplotlib.legend.Legend object at 0x32b6ccb50>

3 Pros/cons of the power method

• Our analysis shows that the power method can converge very slowly if |λ2/λ1| is close to 1. And if two
eigenvalues have equal magnitude, the method may not converge at all.

• Also, it only gives us x1. What if we want x2, or in general a few of the biggest-|λ| eigenvectors?

Still, the power method is the starting point for many more sophisticated methods, including the
Arnoldi method (which gives a few of the biggest eigenvectors) or the QR algorithm which gives all of the
eigenvectors.

And the power method by itself can still be a pretty good method if we know that one eigenvalue is
bigger than all of the others, e.g. for Markov matrices. And because it is so simple, the power method is
easy to apply in lots of different cases, especially since:

4

https://en.wikipedia.org/wiki/Arnoldi_iteration
https://en.wikipedia.org/wiki/QR_algorithm

• The power method only requires you to supply a “black box” that multiplies matrix × vector This
is a huge advantage for problems where the matrix is mostly zeros (or has some other special structure),
in which you can multiply matrix × vector much more quickly than for a generic matrix.

In homework, you will look at how Markov matrices relate to the Google PageRank. Google actually
runs this algorithm on a huge Markov matrix where rows/cols are web pages: the matrix is over a billion
by billion entries. But since most web pages only link to a few other pages, the matrix is mostly zeros, and
you can multiply it by a random vector in a few billion operation, rather than a billion2 operations. (They
don’t even store the whole matrix: you only store the nonzero entries of such a sparse matrix.)

4 Getting an eigenvalue from the eigenvector

In the textbook method of solving eigenproblems, we first find the eigenvalues from the roots of the charac-
teristic polynomial, and then we find the eigenvectors from N(A− λI) for each eigenvalue.

The power method, however, gives you an eigenvector first! How do you find the eigenvalue? And how
do you find an approximate eigenvalue given the approximate eigenvector that you get from a finite number
of iterations.

For example, suppose that we do 30 iterations on the example above:

In [7]: y = x

for i = 1:30

y = A*y

y = y / norm(y)

end

y

Out[7]: 5-element Array{Float64,1}:
0.543704

-0.52698

0.563124

-0.00976376

-0.330869

If y was the exact eigenvector, we could just multiply Ay and see how much each component increased:
they would all increase (or decrease) by the same factor λ.

But, for an approximate eigenvector, each component of Ay will increase by a slightly different amount:

In [8]: (A*y) ./ y # divide each element of Ay elementwise (./ in Julia) by the corresponding element of y

Out[8]: 5-element Array{Float64,1}:
5.00012

4.99984

4.99998

4.99891

5.00058

These are all pretty close to the true eigenvalue λ=5, but don’t quite agree. Clearly, we need some kind
of average?

A problem with dividing things elementwise is that some of the eigenvector elements might be zero (or
nearly zero), and then our estimate will go crazy. Instead, we need to take the average in some other way.

Instead, the most common approach is to use the Rayleigh quotient:

λ ≈ yTAy

yT y

where y is our estimated eigenvector. If we have an exact eigenvector, so that Ay = λy, then the Rayleigh
quotient will gives us exactly λ. Otherwise, it is a kind of weighted-average (weighted by the components
y2k), and is a reasonable approximation:

5

https://en.wikipedia.org/wiki/PageRank
https://www.mathworks.com/content/dam/mathworks/mathworks-dot-com/moler/exm/chapters/pagerank.pdf
https://www.mathworks.com/content/dam/mathworks/mathworks-dot-com/moler/exm/chapters/pagerank.pdf
https://en.wikipedia.org/wiki/Sparse_matrix
https://en.wikipedia.org/wiki/Rayleigh_quotient

In [9]: dot(y, A*y) / dot(y,y) # a Rayleigh quotient in Julia

Out[9]: 5.000046834247057

Clearly, this is a pretty good estimate for the true eigenvalue 5. Let’s see how it converges by plotting
the error as a function of the number of power iterations:

In [10]: ∆λ = Float64[]

y = x

for i = 1:100

y = A*y

y = y / norm(y)

λ~ = dot(y, A*y) / dot(y,y)

push!(∆λ, abs(λ~ - 5))

end

semilogy(1:length(∆λ), ∆λ, "b.-")

semilogy(1:length(∆λ), (4/5).^(1:length(∆λ)), "k--")

xlabel("number of power steps")

ylabel("error in eigenvalue")

title(L"convergence of power method λ for $\lambda=1,2,3,4,5$")

legend(["error", L"(4/5)^n"])

Out[10]: PyObject <matplotlib.legend.Legend object at 0x31fe4e650>

6

It is converging at the same rate.
(For symmetric matrices, it turns out that the eigenvalue converges even faster than the eigenvalue, but

that is not a topic for 18.06.)

7

