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Abstract—In this paper, we propose two cross-layer algo-
rithms, namely, Power-optimal Scheduling Algorithm (PSA) and
Throughput-optimal Scheduling Algorithm (TSA), to minimize
energy consumption and to maximize throughput, respectively,
in multi-hop wireless networks. Our algorithms guarantee a
flow-based minimum data rate and jointly integrate congestion
control, power allocation, routing and link rate scheduling. Dif-
ferent from traditional algorithms which assume infinite buffers,
the proposed algorithms deterministically upper-bound the flow-
based packet queue length and thus can be employed in multi-hop
networks with finite buffers. In addition, the algorithms achieve
a power expenditure/throughput “ǫ-close” to the optimal value,
with a tradeoff of order O( 1

ǫ
) in the buffer size. The average

end-to-end delay upper-bound can also be derived from the finite
buffer property. Finally, numerical results are presented to show
the performance of the two algorithms with different system
parameters.

Index Terms—Flow control, power allocation, network schedul-
ing, multi-hop wireless networks, finite buffer

I. INTRODUCTION

With expanding wireless applications and increasing de-

mand for wireless data rates, it is significant to develop power

control algorithms that take maximum advantage of available

capacity while satisfying certain Quality of Service (QoS)

requirements such as minimum data rate and end-to-end delay

constraints.

Recently, back-pressure algorithm [1] and its extensions

have been widely employed in developing optimal scheduling

in wireless networks. Throughput/utility-optimal routing and

scheduling algorithms have been developed in [4]- [6], with

suboptimal algorithms and distributed algorithms proposed in

[7]- [12]. Optimal power allocation algorithm is further ana-

lyzed in [2], with additional congestion controllers considered

in [3]. The above referenced works do not deal with delay-

related issues in depth. Delay analysis of back-pressure-based

algorithms and delay-related works can be found in [19]- [23].

However, these works do not provide explicit queue backlog

(or buffer size) guarantees. The throughput-optimal algorithm

in [18] guarantees finite buffer size but the link capacity is

assumed to be fixed and power allocation is not considered.

Finite buffer property is an important factor for QoS sen-

sitive wireless network applications. Not only are buffer sizes
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closely related to end-to-end delay on a per-flow basis, limiting

buffer sizes is also essential to mitigate playout buffer overflow

problems in multimedia applications. In addition, algorithms

with finite buffer property can also find their application in

resource-limited wireless networks such as wireless sensor

networks.

In this paper, we develop two cross-layer scheduling al-

gorithms that aim to optimize power allocation in multi-hop

wireless networks with finite buffers. Specifically, we propose

a Power-optimal Scheduling Algorithm (PSA) to minimize

energy expenditure, and a Throughput-optimal Scheduling Al-

gorithm (TSA) to maximize throughput, respectively. Since the

objectives of energy consumption minimization and through-

put optimization may cause unfairness to individual flows

in the network, we place additional per-flow minimum data

rate constraints. In addition, we impose maximum link energy

consumption constraints in the PSA algorithm to limit energy

expenditure. We introduce virtual queues to guarantee the data

rate constraints and the energy consumption constraints. Both

PSA and TSA are composed of a regulator, a congestion

controller, a power allocator, and a link rate scheduler. The

regulator regulates the virtual queue dynamics, the congestion

controller is employed to admit packets from transport layer,

while the power allocator determines the power allocation for

links in the network, and the link rate scheduler schedules

transmission rates for individual flows. Furthermore, we con-

sider adaptive routing scenario, i.e., the routes of each flow

are not determined a priori, which is more general than fixed-

routing scenario. Note that the proposed PSA and TSA are

centralized algorithms which are developed to serve as the

benchmarks for real deployments. Specifically, we assume a

centralized setting, such that power is allocated over all the

links in the network simultaneously via a centralized compo-

nent, e.g., access point or base station. The interference models

employed in this work, such as the node-exclusive interference

model, are generally used to handle cases involving hidden

terminals in centralized algorithms. Thus, problems such as

hidden terminals, which exist in a random access setting, do

not exist in the context considered in this work.

To the best of our knowledge, our power allocation al-

gorithms are the first of their kind to achieve an energy

consumption/throughput performance at least ǫ-close to the

optimal, with a tradeoff of in the buffer size for individual

flows at nodes. The buffer size upper-bound is deterministic,

which leads to bounded average end-to-end delay by Little’s

Law. In comparison, the buffer size is assumed infinitely large

in the power allocation algorithm proposed in [3]. In [16]

[17], which aim to achieve optimal throughput-utility, the
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ingress buffer size (the buffer size at source nodes) is assumed

infinitely large although the internal buffer sizes are finite.

With the assumption of infinite buffer sizes, the algorithms

proposed in the above related works may have to experience

additional packet loss in finite-buffer networks such as sensor

networks where resources are limited and packet queue lengths

are constrained to finite (constant or varying) buffer sizes.

On the contrary, during our algorithm design, we take the

buffer size as a specific requirement which ensures feasible

implementations of the algorithms in finite-buffer multi-hop

wireless networks.

The rest of the paper is organized as follows. Section II

provides the network model for multi-hop wireless networks.

In Section III and IV, we propose the optimal power allocation

and scheduling algorithms PSA and TSA, respectively, and

analyze their performances. The numerical results of the

proposed algorithm are provided in Section V. Finally, we

conclude our work in Section VI.

II. NETWORK MODEL

A. Network Elements

We consider a multi-hop wireless network consisting of N

nodes and K flows. In the network topology, we denote by

F the set of flows, N the set of nodes, L the set of directed

links in the network, and (m, n) ∈ L a link from node m to

node n. In the network, flows follow routes that are determined

adaptively. Additionally, we denote the source node and the

destination node of a flow c ∈ F as b(c) and d(c), respectively.

A generic cross-layer power control algorithm consists of a

congestion controller, a power allocator and link rate scheduler

across transport layer and network layer. Packets are generated

by specific applications at the transport layer, admitted to the

network layer at the source node (by a congestion controller)1

and transferred from source node to destination node in the

network layer (by a power allocator and link rate scheduler).

We consider a centralized schedule-based channel, where the

channel access is characterized by a power allocation vector

and determined by the power allocator.

We consider a time-slotted system with integer-valued

time t ∈ {0, 1, 2, ...}.2 The centralized power scheduling

over the channel is characterized by P(t), where P(t) =
(Pmn(t))(m,n)∈L represents the power allocation vector for

time slot t according to a generic power allocator. We constrain

P(t) to be in Π, i.e., P(t) ∈ Π, where Π is the compact and

convex set of feasible power vectors. We also assume that

Pmn(t) ≤ PM , ∀(m, n) ∈ L, ∀P(t) ∈ Π, where PM is the

power upper-bound. In addition, we denote µmn(P(t)) as the

link rate function for link (m, n) corresponding to the power

assignment P(t), and denote µ(P(t)) = (µmn(P(t)))(m,n)∈L.

1We note that the backlogged source of a flow can be considered an
application waiting for packet generation and admission (e.g., a variable rate
multimedia encoder). The term “congestion controller” is different than in
various TCP versions and corresponds to the packet admission rate to the
network as in [3].

2Note also that a number of time synchronization methods have been
proposed in the literature, e.g., [27] [28] [29], which can be utilized to ensure
synchronized operation in the time-slotted system we use in our work.

A wide range of underlying interference models can be char-

acterized by the link rate functions, where the interference

caused by simultaneous relaying or transmission in shared

wireless channel environment is addressed. In the following,

we take the node-exclusive interference model and SNIR

model for instance.

The node-exclusive interference model [13], which models

wireless networks such as Bluetooth networks [14] and FH-

CDMA networks [15], can be characterized by µ(P(t)) sat-

isfying, ∀(m1, n1) 6= (m2, n2) ∈ L such that {m1, n1} ∩
{m2, n2} 6= ∅,

µm1n1(P(t))µm2n2(P(t)) = 0, ∀P(t). (1)

In the node-exclusive interference model [13], a link trans-

mission is only interfered by other simultaneous transmission

within a one-hop distance, and equation (1) constrains that

a node can involve in at most one communication in one

time slot, i.e., simultaneous transmission or relaying within

any one-hop distance is avoided.

The Signal to Noise and Interference Ratio (SNIR) model,

where the link transmission rates are dependent on the in-

terference heard from surrounding simultaneous transmission,

can be characterized by µ(P(t)) satisfying:

µmn(P(t)) = fmn

(

Gmn(t)Pmn(t)

Bn +
∑

(i,j) 6=(m,n) Gin(t)Pij(t)

)

,

(2)

where Bn is the base noise at node n ∈ N , Gmn(t) the

propagation gain from the transmitter to the receiver of link

(m, n) ∈ L in time slot t, and fmn(·) the function of SNIR

characterizing the link rates associated with the underlying

interference model. We assume the propagation gain process

(Gmn(t)) is ergodic and takes values over a finite state space.

For convenience of analysis, we assume that the link rate

functions are upper semi-continuous, and define:

ln , max
P∈Π

∑

j:(j,n)∈L

µjn(P),

fM , max
n∈N

ln,

lM , max
n∈N

max
P∈Π

∑

i:(n,i)∈L

µni(P),

(3)

i.e., lM and fM are the maximum departure rate from a

node and the maximum endogenous arrival rate into a node,

respectively.

For a feasible link rate scheduler in time slot t, we let

the scheduling parameter µc
mn(t) be the link rate assignment

for flow c for link (m, n). Thus, given P(t), we must have
∑

c∈F µc
mn(t) ≤ µmn(P(t)), ∀(m, n) ∈ L.

We assume that the source node for flow c is always

backlogged at the transport layer. For a congestion controller,

let µc
s(c)b(c)(t) be the admitted rate of flow c from the transport

layer of flow to the source node, where we can regard s(c) as

the source at the transport layer of flow c. It is clear that in

any time slot t, µc
s(c)n(t) = 0 ∀n 6= b(c). We also assume that

µc
s(c)b(c)(t) is upper-bounded by a constant µM > 0:

µc
s(c)b(c)(t) ≤ µM , ∀c ∈ F , ∀t, (4)
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i.e., at most µM packets can be admitted into a source node

in any time slot. To simplify the analysis, we prevent looping

back to the source, i.e., we impose the following constraints
∑

m∈N

(µc
mb(c)(t)) = 0 ∀c ∈ F , ∀t. (5)

In addition, we assume that the network requires each flow

c should transmit at a minimum data rate of ac packets per

time slot.

B. Network Constraints and Approaches

Network stability and optimality are two necessary goals for

the algorithm designs. We first introduce the notion of network

stability in this subsection and note that power optimality

and throughput optimality will be defined in Section III and

Section IV where we propose PSA and TSA, respectively. A

given power control algorithm is said to stabilize the network

if it stabilizes all actual packet queues. Hence, to represent

network stability, we begin with a definition of queue stability

with respect to a generic queue backlog A(t). The queue is

stable if

lim sup
t→∞

1

t

t−1
∑

τ=0

E{A(τ)} < ∞.

In addition, we present the following lemma on the stability

of queues:

Lemma 1: If a queue A(t) is stable with some generic

service process µ(t) and some generic arrival process R(t)
such that the queue dynamics is of the form A(t + 1) =
[A(t) − µ(t)]+ + R(t), where we define the operator [x]+

as [x]+ = max{x, 0}, then:

lim sup
t→∞

1

t

t−1
∑

τ=0

E{µ(τ)} ≥ lim sup
t→∞

1

t

t−1
∑

τ=0

E{R(τ)} (6)

lim inf
t→∞

1

t

t−1
∑

τ=0

E{µ(τ)} ≥ lim inf
t→∞

1

t

t−1
∑

τ=0

E{R(τ)} (7)

Proof: From the queue dynamics, we have:

A(t) ≥ A(0) −
t−1
∑

τ=0

µ(τ) +

t−1
∑

τ=0

R(τ),

which yields:

E{A(t)}

t
+

1

t

t−1
∑

τ=0

E{µ(τ)} ≥
E{A(0)}

t
+

1

t

t−1
∑

τ=0

E{R(τ)},

(8)

E{A(t)}

t
−

1

t

t−1
∑

τ=0

E{R(τ)} ≥
E{A(0)}

t
−

1

t

t−1
∑

τ=0

E{µ(τ)}.

(9)

By taking the limsup of t on both sides of (8) and the fact that

lim supt→∞
E{A(t)}

t = 0 [3], we can prove (6). Similarly, we

can prove (7) by taking liminf of t on both sides of (9).

Now, let U c
n(t) be the actual queue backlog of flow c packets

at node n. Then, the network is stable if queues U c
n(t) are

stable, ∀n ∈ N , ∀c ∈ F .

For convenience of analysis, we define Lc , L ∪
{(s(c), b(c))}, where the pair (s(c), b(c)) can be considered as

a virtual link from transport layer to the source node. We now

model queue dynamics and network constraints in the multi-

hop network. For flow c, if n = d(c), i.e., n is the destination

node of flow c, then we have U c
n(t) = 0 ∀t; Otherwise, the

queue dynamics are:

U c
n(t + 1) ≤[U c

n(t) −
∑

i:(n,i)∈L

µc
ni(t)]

+

+
∑

j:(j,n)∈Lc

µc
jn(t), if n ∈ N\d(c).

(10)

Note that in (10), we ensure that the number of packets

transmitted for flow c from node n does not exceed its corre-

sponding queue backlog, since a feasible scheduling algorithm

may be independent of the information on queue backlogs.

The terms
∑

i:(n,i)∈L µc
ni(t) and

∑

j:(j,n)∈Lc µc
jn(t) represent,

respectively, the scheduled departure rate from node n and

the scheduled arrival rate into node n for flow c. Note that

(10) is an inequality since the arrival rates from corresponding

neighbor nodes may be less than
∑

j µc
jn(t) if some neighbor

node does not have enough packets to transmit. From (4)(5),

we also have
∑

j:(j,b(c))∈Lc

µc
jb(c)(t) ≤ µM , (11)

if it is guaranteed that no packets will be looped back to the

source.

We utilize several types of virtual queues in our two

proposed algorithms introduced in Section III and Section

IV. For each flow c, we construct a virtual queue U c
s(c)(t)

at transport layer. We denote by Rc(t) the virtual input rate

to the queue at the end of time slot t, and denote by rc the

time-average of Rc(t). We place an upper-bound µM on Rc(t)
and update the virtual queue as follows:

U c
s(c)(t + 1) = [U c

s(c)(t) − µc
s(c)b(c)(t)]

+ + Rc(t), (12)

where we set U c
s(c)(0) = 0. Considering the admitted rate

µc
s(c)b(c)(t) as the service rate, if the virtual queue U c

s(c)(t) is

stable, then by Lemma 1 the time-average admitted rate µc of

flow c satisfies:

µc , lim inf
t→∞

1

t

t−1
∑

τ=0

E{µc
s(c)b(c)(τ)}

≥rc , lim inf
t→∞

1

t

t−1
∑

τ=0

E{Rc(τ)}.

(13)

To satisfy the minimum data rate constraints, we construct

a virtual queue Zc(t) for flow c with queue dynamics:

Zc(t + 1) = [Zc(t) − Rc(t)]
+ + ac, (14)

where we set Zc(0) = 0. If queue Zc(t) is stable, we have

rc ≥ ac. Additionally, if U c
s(c)(t) is stable, then according to

(13), we have µc ≥ ac, i.e., the minimum data rate for flow c

is achieved: lim inft→∞
1
t

∑t−1
τ=0 E{µc

s(c)b(c)(τ)} ≥ ac.

The queue evolutions and relationships are illustrated in

Figure 1. In the figure, for simplicity we do not represent

the actual packet queue evolutions for nodes other than

source nodes, since the dynamics for actual queues (10)
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are dependent on specific network topologies. The decision

variable Rc(t), to be determined by the Rc(t) regulator in

the proposed algorithms, is both the input rate to the virtual

queue U c
s(c)(t) and the service rate of the virtual queue Zc(t).

The decision variable µc
s(c)b(c)(t), to be determined by the

congestion controller in the proposed algorithms, is both the

service rate of the virtual queue Zc(t) and the input rate to

the actual queue at the source U c
b(c)(t). Thus, the decision

of Rc(t), together with that of µc
s(c)b(c)(t), regulates the

queue evolutions and stability of the virtual queues (Zc(t) and

U c
s(c)(t)). In the proposed algorithms, after determining the

power assignment P(t) (by a power allocator), we determine

(through a link rate scheduler) the decision variables (µc
mn(t)),

which, together with the decision of µc
s(c)b(c)(t), regulate the

queue evolution and stability of the actual packet queues.

We also note that physical packets are only involved in the

actual packet queues and the corresponding queue evolutions.

Thus, in the following sections, the finite buffer properties

refer only to the actual packet queues. By imposing a finite

buffer size to actual queues, we can monitor the average

flow-based end-to-end delay upper-bounds for the multi-hop

network simply by employing Little’s Law. In the proposed

algorithms, the virtual queues Zc(t) will be used to satisfy the

minimum data rate requirements; the virtual queues U c
s(c)(t)

are employed as a weight for the differential backlogs across

each link, in an attempt to guarantee the finite buffer property

and the optimality; the virtual queues Xmn(t) will be defined

in Section IV and are specially employed for TSA algorithms

to meet average link energy consumption constraints.

ac

Rc(t)

const
Rc(t) Regulator

Link Rate Scheduler

Congestion Controller

Zc(t)

Power Allocator...

Congestion Controller

( )P t

( ( ))
c

mn
t

Pmn(t)

Power Allocator

Xmn(t)

const

mn

Virtual Queue Evolutions

Actual Packet Queue Evolutions (for source node)

Additional Virtual Queue Evolutions for TSA

( ) ( )
( )

c

s c b c
t

( ) ( )
( )

c

s c b c
t

( )
( )

c

s c
U t

( )
( )

c

b c
U t

Fig. 1. Queue relationship diagram with decision variables Rc(t),
µc

s(c)b(c)
(t), (µc

mn(t)) and P(t), where virtual queues Xmn(t) are specially

employed for TSA.

In Section III and Section IV, we introduce PSA and TSA,

respectively. We note that the objectives of PSA (minimizing

energy expenditure) and TSA (maximizing throughput) cannot

be achieved by a single solution, since energy expenditure and

throughput tradeoff between each other cannot be optimized

at the same time. While the two algorithms have different

objectives and solutions, they share some common features:

• Both algorithms employ virtual queues Zc(t) to guarantee

the minimum data rate constraints and U c
s(c)(t) as weight

for the differential backlogs when schedule link rates.

• Finite buffer property is satisfied in both algorithms with

an ǫ-versus- 1
ǫ tradeoff. Specifically, PSA/TSA achieves an

energy expenditure/throughput “ǫ-close” to the optimality

with a tradeoff in the uniform finite buffer size of order

O(1
ǫ ).

To assist the development of the following sections, we can

define the capacity region Λ of the multi-hop network, similar

as in [2] [3], as the closure of all stabilizable rate vectors

considering all power control algorithms choosing P(t) ∈ Π.

Without loss of generality, we assume that the minimum data

rate vector (ac)c∈F is within Λ.

III. POWER-OPTIMAL SCHEDULING ALGORITHM (PSA)

FOR MULTI-HOP WIRELESS NETWORKS

In this section, we propose a power-optimal scheduling

algorithm PSA for the introduced multi-hop wireless network

so that PSA stabilizes the network and satisfies the minimum

data rate constraint.

We let P ∗
ǫ denote the minimum sum power for stabilizing

rates (ac + ǫ), where ǫ is a positive number which can

be chosen arbitrarily small. According to [3] [5] we have

limǫ→0+ P ∗
ǫ = P ∗, where P ∗ is the minimum sum power

for stabilizing rates (ac). Note that P ∗
ǫ can be considered as

the ǫ-optimal sum power for the multi-hop wireless network.

Given ǫ > 0, PSA is designed to achieve a sum power

arbitrarily close to P ∗
ǫ , with a tradeoff with buffer size which

will be later given in Theorem 1 and further explained in

Remark 1.

Let qM ≥ max{fM , µM} be a control parameter standing

for buffer size. The optimal algorithm PSA operates on a time-

slot basis consisting of four parts: Rc(t) regulator, a congestion

controller, a power allocator, and a link rate scheduler.

1) Rc(t) Regulator:

min
0≤Rc(t)≤µM

Rc(t)(
qM − µM

qM
U c

s(c)(t) − Zc(t)). (15)

The Rc(t) regulator controls the virtual queue evolutions of

U c
s(c)(t) and Zc(t). Since Rc(t) is the arrival process for

virtual queue U c
s(c)(t) and the service process for virtual queue

Zc(t), we assign Rc(t) = 0 when U c
s(c)(t) is more congested

than Zc(t) and assign Rc(t) = µM otherwise. Specifically,

when qM−µM

qM

U c
s(c)(t) − Zc(t) > 0, Rc(t) is set to zero;

Otherwise, Rc(t) = µM .

2) Congestion Controller:

max
0≤µc

s(c)b(c)
(t)≤µM

µc
s(c)b(c)(t)(qM − µM − U c

b(c)(t)). (16)

The congestion controller aims to upper-bound by qM the

actual packet queue at source node. Specifically, when qM −
µM − U c

b(c)(t) ≤ 0, µc
s(c)b(c)(t) is set to zero; Otherwise,

µc
s(c)b(c)(t) = µM , where we recall that µc

s(c)b(c)(t) is the

admitted number of packets from transport layer into the

source node in time slot t.
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3) Power Allocator:

max
P(t)∈Π

∑

(m,n)∈L

(µmn(P(t))wmn(t) − V Pmn(t)), (17)

where V > 0 is a control parameter and wmn(t) is defined as

follows:

wmn(t) , [max
c∈F

U c
s(c)(t)

qM
(U c

m(t) − U c
n(t) − ln)]+. (18)

Note that when wmn(t) = 0, without loss of optimality we

allocate P(t) such that µmn(P(t)) = 0 to maximize (17).

Different from the traditional back-pressure algorithm, for

link (m, n) ∈ L and flow c ∈ F , we add a weight of ln
to the differential backlog (U c

m(t) − U c
n(t)) which is further

multiplied by
Uc

s(c)(t)

qM
. This new type of back-pressure ensures

the finite buffer property and the optimality, proven later in

Proposition 1 and Theorem 1, respectively. In (17), we can

consider µmn(P(t))wmn(t) as the reward and Pmn(t) as the

cost weighted by V , induced from link (m, n) by allocating

P(t).
Under the node-exclusive interference model (1), the power

allocator is equivalent to the well-known maximal weight

matching optimization problem [1], which can be solved in a

centralized way. Under the SNIR interference model (2), with

a high SNIR assumption where fmn(·) can be approximated

as log(·) in equation (2), the optimization can be converted to

a nonlinear convex optimization via a log transform [24].

4) Link Rate Scheduler:

µc
mn(t) =

{

µmn(P(t)), if c = c∗mn(t),

0, otherwise,
(19)

where P(t) is determined by the power allocator and c∗mn(t)
is defined as follows:

c∗mn(t) , arg max
c∈F

U c
s(c)(t)

qM
(U c

m(t) − U c
n(t) − ln).

For a link (m, n) ∈ L, the link rate scheduler greedily

schedules the available link resource µmn(P(t)) to the flow

c∗mn(t) with the largest back-pressure (18).

Note that in the power allocator and the link rate scheduler,

we constrain that there is no looping back to source.

To analyze the performance of the algorithm, we first

introduce the following proposition of finite buffer property.

Proposition 1: Employing PSA, if qM ≥ max{fM , µM},

then each queue backlog in the network has a deterministic

worst-case bound:

U c
n(t) ≤ qM , ∀t, ∀n ∈ N , ∀c ∈ F . (20)

Proof: We prove Proposition 1 by induction on time slot.

When t = 0, we have U c
n(0) = 0 ∀n, c. Now suppose in time

slot t we have U c
n(t) ≤ qM ∀n, c. In the induction step, for any

given node n and flow c, we consider two cases as follows:

(1) We first consider the case when n is the source node, i.e.,

when n = b(c). If U c
b(c)(t) ≤ qM − µM , then according to

the queue dynamics (10)(11), U c
b(c)(t + 1) ≤ qM ; Otherwise,

U c
b(c)(t) > qM−µM and according to the congestion controller

(16), we have µc
s(c)b(c)(t) = 0, so U c

b(c)(t + 1) ≤ U c
b(c)(t) ≤

qM by (5)(10).

(2) In the second case, n is not the source node of flow c.

If U c
n(t) ≤ qM − ln, then U c

n(t) ≤ qM by (10); Otherwise,

U c
n(t) > qM −ln, and according to the link rate scheduler (19)

we have µc
mn(t) = 0 ∀m ∈ N , so U c

n(t + 1) ≤ U c
n(t) ≤ qM

by the queue dynamics (10).

Since the above analysis holds for any given n and c,

the induction step holds, i.e., U c
n(t + 1) ≤ qM ∀n, c, which

completes the proof.

Now we present our main results of the PSA algorithm in

Theorem 1 which is further explained with Remark 1 and

Remark 2.

Theorem 1: Given ǫ > 0, if

qM >
Nl2M + (N − 1)f2

M + µ2
M + NlMfM

ǫ
+ µM , (21)

then PSA can achieve a time-average power

lim sup
t→∞

1

t

t−1
∑

τ=0

∑

(m,n)∈L

E{Pmn(τ)} ≤ P ∗
ǫ +

B1

V
, (22)

where B1 , 1
2µMqMNK + 3qM−2µM

2qM
Kµ2

M + 1
2

∑

c∈F a2
c .

In addition, PSA ensures that the virtual queues have a time-

averaged upper-bound:

lim sup
t→∞

1

t

t−1
∑

τ=0

∑

c∈F

E{U c
s(c)(τ) + Zc(τ)} ≤

B1 + V P ∗
ǫ

δ
, (23)

where δ is a positive constant satisfying δ ≤ ǫ(qM−µM )
2qM

−
Nl2

M
+(N−1)f2

M
+µ2

M
+NlM fM

2qM
.

Proof: The proof for Theorem 1 is provided in Appendix

A.

Remark 1: The results (20) and (23) indicate that PSA

stabilizes the network and satisfies the minimum data rate

requirement. Specifically, qM in (20) can be employed as

the uniform buffer size at each node for a single flow. The

inequality (22) gives the upper-bound of the power PSA can

achieve. Since the constant B1 is independent of V , (22) also

ensures that PSA can achieve a power arbitrarily close to P ∗
ǫ .

When ǫ tends to 0, PSA can achieve a power arbitrarily close

to the optimal value P ∗ with the tradeoff in buffer size qM

which is of order O(1
ǫ ) as shown in (21). In comparison, in

[3], the tradeoff in the average buffer occupancy is of order

O(V
ǫ ), where a large value of V is required to achieve close

to the optimal value. In [17] which aims to achieve optimal

throughput-utility, the internal buffer size is of order O(1
ǫ ),

but the buffer size at source nodes is assumed infinitely large,

which will result in a large average end-to-end delay. Note

also that given buffer size qM , the average end-to-end delay

for flow c ∈ F can be upper-bounded by NqM

ac

by Little’s

Law.

Remark 2: Note that in PSA, the Rc(t) regulator, the con-

gestion controller and the link rate scheduler can operate lo-

cally at transport layer, source nodes and links, respectively. To

reduce the complexity of the optimization of power allocator

(17), distributed implementation can be developed in much the

same way as in [2]. In addition, delayed queue backlogs can

be employed similar to the analysis in [17], and our results
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can be extended to the case where flows have arbitrary arrival

rate at transport layer as in [4].

IV. THROUGHPUT-OPTIMAL ALGORITHM (TSA) FOR

MULTI-HOP WIRELESS NETWORKS

In this section, we propose a throughput-optimal scheduling

algorithm TSA for the introduced multi-hop wireless network

so that TSA maximizes the network throughput while sat-

isfying the minimum data rate constraint. In addition, each

link must meet the average link energy consumption constraint

(ηmn)(m,n)∈L, i.e.,

pmn , lim sup
t→∞

1

t

t−1
∑

τ=0

E{Pmn(τ)} ≤ ηmn, ∀(m, n) ∈ L.

(24)

Given ǫ > 0, we define the ǫ-optimal throughput µ∗
ǫ as

follows
µ∗

ǫ = max
(µc)∈Λ

∑

c∈F

µc,

s.t. pmn ≤ ηmn − ǫ,

µc ≥ ac + ǫ.

Accordingly, we define the optimal throughput µ∗ satisfying

both the minimum data rate constraints and the link energy

consumption constraints as

µ∗ = max
(µc)∈Λ

∑

c∈F

µc,

s.t. pmn ≤ ηmn,

µc ≥ ac.

Then we have limǫ→0+ µ∗
ǫ = µ∗, since

µ∗
ǫM

ǫ

ǫM
+ µ∗(1 −

ǫ

ǫM
) ≤ µ∗

ǫ ≤ µ∗,

where

ǫM = min{ min
(m,n)∈L

ηmn, arg max
ǫ>0

{(ac + ǫ) ∈ Λ}}

and the first inequality is derived from the fact that the ǫ-

optimal throughput µ∗
ǫ is greater than or equal to the through-

put achieved by the randomized algorithm that adopts a µ∗
ǫM

-

throughput achieving algorithm with probability ǫ
ǫM

and a µ∗-

throughput achieving algorithm with probability 1 − ǫ
ǫM

.

Similar to the virtual queue Zc(t) defined in Section II-B,

for each link (m, n) ∈ L, we define the virtual queue Xmn(t)
associated with each link energy consumption constraint (24),

with queue dynamics as follows:

Xmn(t + 1) = [Xmn(t) − ηmn]+ + Pmn(t).

Thus, if the virtual queue Xmn(t) is stable, by Lemma 1 the

energy consumption constraint associated with link (m, n) is

satisfied.

Given ǫ > 0, TSA is designed to achieve a throughput

arbitrarily close to µ∗
ǫ , with a tradeoff in buffer size which

will be later shown in Theorem 2 and further explained in

Remark 3.

With qM standing for the buffer size, the algorithm TSA also

operates on a time-slot basis consisting of four parts: Rc(t)

regulator, a congestion controller, a power allocator, and a link

rate scheduler.

1) Rc(t) Regulator:

min
0≤Rc(t)≤µM

Rc(t)(
qM − µM

qM
U c

s(c)(t) − Zc(t) − V ), (25)

where V is the same control parameter as that in PSA

algorithm. Specifically, when qM−µM

qM
U c

s(c)(t)−Zc(t)−V > 0,

Rc(t) is set to zero; Otherwise, Rc(t) = µM .

2) Congestion Controller: The congestion controller is the

same as (16) in the PSA algorithm in Section III.

3) Power Allocator:

max
P(t)∈Π

∑

(m,n)∈L

(µmn(P(t))wmn(t) − Xmn(t)Pmn(t)), (26)

where we recall that wmn(t) is defined in (18). In (26), we can

consider µmn(P(t))wmn(t) as the reward and Xmn(t)Pmn(t)
the cost induced from link (m, n) by allocating P(t). Com-

pared to the power allocator in PSA, now the “cost” is

weighted by a time-varying virtual queue Xmn(t) standing

for the link power constraint.

4) Link Rate Scheduler: The link rate scheduler is the

same as (19) in the PSA algorithm in Section III.

It is not difficult to check that Proposition 1 on finite buffer

property still holds under the TSA algorithm. Now we present

our main results of the TSA algorithm in Theorem 2.

Theorem 2: Given ǫ > 0, if the buffer size qM satisfies

(21), TSA can achieve a throughput

lim inf
t→∞

1

t

t−1
∑

τ=0

∑

c∈F

E{µc
s(c)b(c)(τ)} ≥ µ∗

ǫ/2 −
B2

V
, (27)

where B2 , B1 + 1
2

∑

(m,n)∈L η2
mn + 1

2 |L|P
2
M . In addition,

TSA ensures that the virtual queues are upper-bounded:

lim sup
t→∞

1

t

t−1
∑

τ=0

E{
∑

c∈F

(U c
s(c)(τ) + Zc(τ))

+
∑

(m,n)∈L

Xmn(t)}

≤
B2 + V (µ∗ − µ∗

ǫ/2)

δ
,

(28)

where we recall δ is a positive constant defined in Theorem

1.

Proof: The proof for Theorem 2 is provided in Appendix

B.

Remark 3: The inequality (28) indicates that TSA satisfies

the minimum data rate requirements and the link consumption

constraints. Since the constant B2 is independent of V , (27)

ensures that TSA can achieve a throughput arbitrarily close to

µ∗ when ǫ is small enough and V is large enough, with the

tradeoff in buffer size qM of order O(1
ǫ ) as shown in (21). By

Little’s Law, the average end-to-end delay for flow c ∈ F is

upper-bounded by NqM

ac

.



Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

7

GC

FB

H

E

D

A

Fig. 2. Network topology for simulations

V. NUMERICAL RESULTS

In this section, a simulation-based performance evaluation

of our proposed algorithms is presented. Consider the network

topology in Figure 2 where each link is bidirectional. For

simplicity, we assume the noise for any one-hop transmission

is constant and normalized to 1. In addition, we set the

maximum number of admissible packets as µM = 4.

In our simulation setup in Figure 2, there are two flows with

source-destination pairs (A, H) and (D, E) and the required

minimum data rate ac for the two flows are identical for

simplicity. Simulations are run in Matlab 2009A over 105 time

slots. Virtual queue dynamics are illustrated in Section V-A

with performance for PSA and TSA introduced in Section V-B

and Section V-C, respectively.

In Section V-A, Section V-B and Section V-C, we employ

node-exclusive model (1) in our simulation. With the employ-

ment of quadrature amplitude modulation (QAM) schemes [2],

the link rate function µm1n1(P(t)), (m1, n1) ∈ L, is defined

(in unit of packet/ time slot) as follows:

µm1n1(P(t)) =











1, when 0.25 ≤ Pm1n1(t) < 0.5,

2, when 0.5 ≤ Pm1n1(t) < 1.25,

4, when Pm1n1(t) ≥ 1.25,

if Pm2n2(t) = 0, ∀(m2, n2) ∈ L s.t. {m1, n1} ∩ {m2, n2} 6=
∅. Otherwise, µm1n1(P(t)) = 0. In Section V-D, we present

simulation results for PSA under SNIR interference model (2)

with time-varying propagation gains.

A. Control Parameter V and Virtual Queue Evolutions

We first present the virtual queue evolutions with different

choices of parameter V for the two algorithms, where we recall

that V is the control parameter in the power allocator (17)

of PSA and the Rc(t) regulator (25) of TSA, which tradeoffs

between the optimality and the upper-bounds of virtual queues

as shown in Theorem 1 and Theorem 2, respectively. Figure

3 shows the virtual queue evolutions of per-flow Zc(t) and

U c
s(c)(t) for PSA and Figure 4 the virtual queue evolutions of

per-flow Zc(t), U c
s(c)(t) and per-link Xmn(t).

By increasing V , we can approach the optimality, which is

both illustrated in Theorem 1 and 2 and exemplified in the next

subsection with PSA. However, the convergence time becomes

large for all vitual queues with a large V as shown in both

Figure 3 and 4. For instance, when V = 500, it can take up

to 10000 time slots for Zc(t) to converge for TSA algorithm.

However, we will show in the next subsection that V does not

have to be large to approach the optimal value.
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Fig. 4. Virtual queue dynamics for TSA algorithm

B. Performance of PSA Algorithm under Node-Exclusive In-

terference Model

In Figure 5, with fixed buffer size qM = 100, we illustrate

the energy consumption by increasing minimum data rate

requirement ac for different values of V . By fixing the control

parameter V , the energy consumption increases for PSA as ac

increases; By fixing ac, the energy consumption decreases as

V increases (at the expense of convergence time as explained

in Section V-A). Figure 5 also shows that V = 100 is

sufficiently large such that almost no power gain is observed

by further increasing the value of V . We also note that through

simulation, V does not have a direct effect on delay/congestion

performance of the algorithm. We will show in the next

subsection that the value of qM has a large impact on the

congestion level of the network.

C. Performance of TSA Algorithm under Node-Exclusive

Interference Model

In Figure 6, with fixed minimum data rate constraint

ac = 0.6 and fixed control parameter V = 100, we plot the

throughput, congestion level (represented by the total number

of packets in the network) and energy consumption of TSA
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TABLE I
PERFORMANCE OF PSA WHEN MINIMUM DATA RATE IS SET AS ac = 0.2

PSA (qM = 20) PSA (qM = 50) PSA (qM = 100) PSA (qM = 200) EECA

Sum power 3.5336 3.2915 3.2696 3.2180 3.2145

No. packets in queues 102.59 283.78 584.50 1.1854 × 103 1.2665 × 103

0.2 0.4 0.6 0.8 1 1.2
0

1

2

3

4

5

6

minimum data rate a
c

s
u

m
 p

o
w

e
r 

(s
u

m
 f

o
r 

tw
o

 f
lo

w
s
)

 

 

V=5

V=20

V=100

V=500

Fig. 5. Performance for PSA with fixed buffer size qM = 100

against buffer size qM with different values of link energy

consumption constraint, where we uniformly set ηmn = η,

∀(m, n) ∈ L, for simplicity. By fixing buffer size qM and

increasing the maximum allowed link power η, TSA improves

the throughput at the expense of power expenditure where

we note the congestion level (represented by the total number

of packets in the network in Figure 6) is hardly affected.

By fixing η and increasing buffer size qM , TSA improves

the throughput at the expense of power expenditure and an

almost linear increase in the congestion level. Given η, Figure

6 also shows that throughput and energy consumption behave

similarly and converge when qM is large enough. Specifically,

Figure 6 illustrates that qM = 100 is sufficiently large such that

there is hardly any gain in throughput with a larger qM while

we note that the congestion level increases almost linearly with

qM .
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Fig. 6. Performance for TSA with fixed minimum data rate requirement
ac = 0.6 and control parameter V = 100

D. Performance of PSA Under SNIR Interference Model

In this section, with the same system setup and the same

topology in Figure 2, we employ PSA under the SNIR

interference model (2). We assume the distance between the

two communication nodes of each link is normalized to 1. We

setup the simulation parameters in (2) with reference to [2]

[24] [25] [26]. Specifically, we set fmn(·) = log(·) and the

i.i.d. time-varying propagation gains in (2), ∀t, as

Gmn(t) =











d−4
mn, w.p.

2

3
,

1

3
d−4

mn, w.p.
1

3
,

where dmn denotes the Euclidean distance between any two

nodes m and n. We set the power upper-bound PM = 10
with respect to the normalized base noise (i.e., Bn = 1),

and assume the transmission power of each communica-

tion link can be tuned to a number of levels in the set

{0, 1
4PM , 1

2PM , 3
4PM , PM}.

In Table I, we present the performance of our proposed

finite-buffer algorithm PSA, and compare to the result of

EECA algorithm proposed in [3] which is proved to achieve

optimal power while stabilizing any rate vector inside the

capacity region. Since we also require minimum rates for

individual flows, an additional virtual queue is employed in

the congestion controller in EECA according to [4]. We set

the control parameter V = 10 in PSA, since a larger V

cannot further minimize energy consumption but may increase

buffer occupancy while a smaller V will lead to worse power

performance. Table I illustrates that, with the consumed energy

in PSA slightly larger than that of EECA, the queue backlog

in the network is far smaller than that of EECA, which results

in better end-to-end delay performance at a small energy cost.

As we increase qM , PSA approaches the optimal sum power

which is the simulation value by EECA. In addition, the

minimum data rate requirement and finite buffer property are

achieved under PSA in the simulation.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper, we proposed two cross-layer algorithms to

minimize energy consumption and maximize throughput, re-

spectively, for multi-hop wireless networks with finite buffers.

Our work aims at a better understanding of the fundamental

properties and performance limits of dynamic power allocation

and scheduling in multi-hop wireless networks. We showed

a tradeoff between O(1
ǫ ) in the finite buffer size and the ǫ-

characterized proximity to the optimal power/throughput. Our

future work will involve investigation on short-lived flows and

distributed implementations of back-pressure-based algorithms

with random access techniques.
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APPENDIX A

PROOF OF THEOREM 1

Before we proceed, we present the following lemma which

will assist us in proving Theorem 1.

Lemma 2: For any feasible rate vector (θc) ∈ Λ with

θc ≥ ac ∀c ∈ F , there exists a stationary randomized power

allocation and scheduling algorithm STAT that stabilizes the

network with input rate vector (µc,STAT
s(c)b(c) (t)), power alloca-

tions (PSTAT
mn (t)) and scheduling parameters (µc,STAT

mn (t)) in-

dependent of queue backlogs, such that the expected admitted

rates are:

E{µc,STAT
s(c)b(c) (t)} = θc, ∀t, ∀c ∈ F .

In addition, ∀t, ∀n ∈ N , ∀c ∈ F , the flow balance constraints

are satisfied:

E{
∑

i:(n,i)∈L

µ
c,STAT
ni (t) −

∑

j:(j,n)∈Lc

µ
c,STAT
jn (t)} = 0.

Further, if there exists ǫ > 0 such that θc = ac+ǫ ∀c ∈ F , then

STAT can be developed to satisfy
∑

(m,n)∈L E{PSTAT
mn (t)} =

P ∗
ǫ .

Note that it is not necessary for the randomized algorithm

STAT to satisfy the buffer size constraint (21). Similar formu-

lations of STAT and their proofs have been given in [2]- [4],

so we omit the proof of Lemma 2 for brevity.

Remark 4: Given STAT algorithm in Lemma 2, we assign

the input rates of the virtual queues U c
s(c)(t) at transport

layer as RSTAT
c (t) = µ

c,STAT
s(c)b(c) (t). Thus, we also have

E{RSTAT
c (t)} = θc. According to queue dynamics (12), it

is easy to show that the virtual queues under STAT are upper-

bounded by µM and the time-average of RSTAT
c (t) satisfies:

rSTAT
c = θc. Note that (θc) can take values as (ac + ǫ

2 ) or

(ac + ǫ), where ǫ > 0 such that (ac + ǫ) is strictly inside Λ.

To prove Theorem 1, we let Q1(t) =
((U c

n(t)), (U c
s(c)(t)), (Zc(t))) and define the Lyapunov

function L1(Q1(t)) as follows:

L1(Q1(t)) ,
1

2
{
qM − µM

qM

∑

c∈F

U c
s(c)(t)

2

+
∑

c∈F

Zc(t)
2 +

∑

c∈F

∑

n∈N

1

qM
U c

n(t)2U c
s(c)(t)},

with L1(Q1(0)) = 0. We denote the Lyapunov drift by

∆1(t) = E{L1(Q1(t + 1)) − L1(Q1(t))|Q1(t)}. (29)

Note that the last term of the Lyapunov function L1(Q1(t))
takes the same form as that in [16] [17]. From the queue
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dynamics (10)(12), we have:

∑

c∈F

∑

n∈N

1

qM
U c

n(t + 1)2U c
s(c)(t + 1)

≤
∑

c∈F

1

qM
(Rc(t) + U c

s(c)(t))
∑

n∈N

U c
n(t + 1)2

≤µMqMNK +
∑

c∈F

1

qM
U c

s(c)(t)
∑

n∈N

{U c
n(t)2

+ (
∑

i:(n,i)∈L

µc
ni(t))

2 + (
∑

j:(j,n)∈Lc

µc
jn(t))2

− 2U c
n(t)(

∑

i

µc
ni(t) −

∑

j

µc
jn(t))},

(30)

where we recall that Rc(t) ≤ µM and we square both sides

of (10) to deduce the second inequality.

From (30), we have

1

2
(
∑

c∈F

∑

n∈N

1

qM
(U c

n(t + 1)2U c
s(c)(t + 1) − U c

n(t)2U c
s(c)(t)))

≤
1

2

∑

c∈F

(Nl2M + (N − 1)f2
M + µ2

M )U c
s(c)(t)

qM

+
1

2
NKqMµM −

∑

c∈F

∑

n∈N

U c
n(t)U c

s(c)(t)

qM
×

(
∑

i:(n,i)∈L

µc
ni(t) −

∑

j:(j,n)∈Lc

µc
jn(t)),

(31)

where we employ (3)(11).

By squaring both sides of the queue dynamics (12)(14) and

employing (31), we obtain from the Lyapunov drift (29):

∆1(t) + V
∑

(m,n)∈L

E{Pmn(t)|Q1(t)}

≤B1 +
∑

c∈F

acZc(t)

+
∑

c∈F

E{Rc(t)(
qM − µM

qM
U c

s(c)(t) − Zc(t))|Q1(t)}

+
1

2

∑

c∈F

(Nl2M + (N − 1)f2
M + µ2

M )U c
s(c)(t)

qM

−E{
∑

c∈F

U c
s(c)(t)µ

c
s(c)b(c)(t)

qM − µM

qM

−
∑

c∈F

∑

(m,n)∈L

µc
mn(t)

U c
s(c)(t)

qM
ln − V

∑

(m,n)∈L

Pmn(t)

+
∑

c∈F

∑

n∈N

U c
n(t)U c

s(c)(t)

qM
×

(
∑

i:(n,i)∈L

µc
ni(t) −

∑

j:(j,n)∈Lc

µc
jn(t))|Q1(t)}.

(32)

We can rewrite the last term of RHS of (32) (the last four

lines of (32)) by simple algebra as

−
∑

c∈F

E{µc
s(c)b(c)(t)

U c
s(c)(t)

qM
(qM − µM − U c

b(c)(t))|Q1(t)}

− E{
∑

(m,n)∈L

[
∑

c∈F

µc
mn(t)

U c
s(c)(t)

qM

× (U c
m(t) − U c

n(t) − ln) − V Pmn(t)]|Q1(t)}.

Note that the third term of the RHS of (32) is minimized by

the Rc(t) regulator (15), and the last term of the RHS of (32)

is minimized by the combined policy of congestion controller

(16), power allocator (17) and link rate scheduler (19), over a

set of feasible algorithms including the stationary randomized

algorithm STAT introduced in Lemma 2 and Remark 4. We

can substitute into the third term of RHS of (32) a stationary

randomized algorithm with admitted rate vector (ac + ǫ
2 ) and

into the last term with a stationary randomized algorithm with

admitted rate vector (ac + ǫ). Thus, we have:

∆1(t) + V
∑

(m,n)∈L

E{Pmn(t)|Q1(t)}

≤B1 + V P ∗
ǫ −

ǫ

2

∑

c∈F

Zc(t) −
∑

c∈F

U c
s(c)(t)×

(
ǫ(qM − µM )

2qM
−

Nl2M + (N − 1)f2
M + µ2

M + NlMfM

2qM
),

where we employ the fact
∑

(m,n)∈L µc
mn(t)ln ≤ NlMfM ,

∀c ∈ F . When (21) holds, we can find δ > 0 such that δ ≤
ǫ(qM−µM )

2qM
−

Nl2
M

+(N−1)f2
M

+µ2
M

+NlM fM

2qM
. Thus, we have:

∆1(t) + V
∑

(m,n)∈L

E{Pmn(t)|Q1(t)}

≤B1 − δ
∑

c∈F

(U c
s(c)(t) + Zc(t)) + V P ∗

ǫ .
(33)

We take the expectation with respect to the distribution of

Q1 on both sides of (33) and take the time average on τ =
0, ..., t − 1, which leads to

1

t
E{L1(Q1(t))} +

V

t

t−1
∑

τ=0

∑

(m,n)∈L

E{Pmn(τ)}

≤B1 + V P ∗
ǫ −

δ

t

t−1
∑

τ=0

∑

c∈F

E{U c
s(c)(τ) + Zc(τ)}.

(34)

By taking limsup of t on both sides of (34), we can prove

(22) and (23), respectively.

APPENDIX B

PROOF OF THEOREM 2

Similar to the proof of Theorem 1 in Appendix A, we

first construct a set of stationary randomized algorithms in

the following lemma:

Lemma 3: Given some small enough ǫ > 0, there exists

a stationary randomized power allocations and scheduling

algorithm STAT ∗
ǫ that stabilizes the network with input
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rate vector (µ
c,STAT∗

ǫ

s(c)b(c) (t)), power allocation (P
STAT∗

ǫ

mn (t)) and

scheduling parameters (µ
c,STAT∗

ǫ

mn (t)) independent of queue

backlogs, such that the expected admitted rates are:
∑

c∈F

E{µ
c,STAT∗

ǫ

s(c)b(c) (t)} = µ∗
ǫ , ∀t.

In addition, ∀t, ∀n ∈ N , ∀c ∈ F , the flow balance constraints

are satisfied:

E{
∑

i:(n,i)∈L

µ
c,STAT∗

ǫ

ni (t) −
∑

j:(j,n)∈Lc

µ
c,STAT∗

ǫ

jn (t)} = 0.

Further, the minimum data rate constraints and the energy

consumption constraints are satisfied:

E{µ
c,STAT∗

ǫ

s(c)b(c) (t)} ≥ ac + ǫ, ∀t, ∀c ∈ F ,

E{P
STAT∗

ǫ

mn (t)} ≤ ηmn − ǫ, (m, n) ∈ L.

For brevity, we omit the proof of Lemma 3, and interested

readers are referred to [2]- [4] for more details. In STAT ∗
ǫ ,

we take the virtual input rate to U c
s(c)(t) as R

STAT∗

ǫ

c (t) =

µ
c,STAT∗

ǫ

s(c)b(c) .

We let Q2(t) = ((U c
n(t)), (U c

s(c)(t)), (Zc(t)), (Xmn(t)))
and define the Lyapunov function L2(Q2(t)) as follows:

L2(Q2(t)) , L1(Q1(t)) +
1

2

∑

(m,n)∈L

Xmn(t)2,

with L2(Q2(0)) = 0. We denote the Lyapunov drift by

∆2(t) = E{L2(Q2(t + 1)) − L2(Q2(t))|Q2(t)}.

Following the analysis in deriving (32), we obtain the

inequality on the Lyapunov drift as follows:

∆2(t) − V
∑

c∈F

E{Rc(t)|Q2(t)}

≤B2 +
∑

c∈F

acZc(t) −
∑

(m,n)∈L

ηmnXmn(t)

+
∑

c∈F

E{Rc(t)(
qM − µM

qM
U c

s(c)(t) − Zc(t) − V )|Q2(t)}

+
1

2

∑

c∈F

(Nl2M + (N − 1)f2
M + µ2

M )U c
s(c)(t)

qM

−
∑

c∈F

E{µc
s(c)b(c)(t)

U c
s(c)(t)

qM

× (qM − µM − U c
b(c)(t))|Q2(t)}

−E{
∑

(m,n)∈L

[
∑

c∈F

µc
mn(t)

U c
s(c)(t)

qM

× (U c
m(t) − U c

n(t) − ln) − Xmn(t)Pmn(t)]|Q2(t)}.

(35)

Note that the fourth term of the RHS of (35) is minimized

by the Rc(t) regulator (25), the sixth term minimized by

the congestion controller, and the last term minimized by

the combined policy of power allocator (26) and link rate

scheduler, over a set of feasible algorithms including the

stationary randomized algorithms introduced in Lemma 3. We

can substitute into the fourth term of RHS of (35) a stationary

randomized algorithm STAT ∗
ǫ/2 and into the last two terms a

stationary randomized algorithm STAT ∗
ǫ . Thus, we have:

∆2(t) − V
∑

c∈F

E{Rc(t)|Q2(t)}

≤B2 − V µ∗
ǫ/2 − δ[

∑

c∈F

(U c
s(c)(t) + Zc(t)) +

∑

(m,n)∈L

Xmn(t)].

By taking the expectation with respect to the distribution of

Q2 on both sides of the above inequality and taking the time

average on τ = 0, ..., t− 1, we can prove (28) with limsup of

t and (27) with liminf of t, respectively.
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