

Power Performance Test Report for the SWIFT Wind Turbine

I. Mendoza and J. Hur National Renewable Energy Laboratory

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Technical Report NREL/TP-5000-56499 December 2012

Contract No. DE-AC36-08GO28308

Power Performance Test Report for the SWIFT Wind Turbine

I. Mendoza and J. Hur National Renewable Energy Laboratory

	Prepared under Task No. WE11.0205
	Prepared under Task No. WE11.0205
National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 • www.nrel.gov	NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Technical Report NREL/TP-5000-56499 December 2012 Contract No. DE-AC36-08GO28308

NOTICE

This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof.

Available electronically at http://www.osti.gov/bridge

Available for a processing fee to U.S. Department of Energy and its contractors, in paper, from:

U.S. Department of Energy Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831-0062 phone: 865.576.8401 fax: 865.576.5728 email: <u>mailto:reports@adonis.osti.gov</u>

Available for sale to the public, in paper, from:

U.S. Department of Commerce National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 phone: 800.553.6847 fax: 703.605.6900 email: <u>orders@ntis.fedworld.gov</u> online ordering: http://www.ntis.gov/help/ordermethods.aspx

Cover Photos: (left to right) PIX 16416, PIX 17423, PIX 16560, PIX 17613, PIX 17436, PIX 17721 Printed on paper containing at least 50% wastepaper, including 10% post consumer waste.

Power Performance Test Report for the SWIFT Wind Turbine

in

Boulder, Colorado

Conducted by National Wind Technology Center National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401

For

Wind Energy Program

DOE/NREL

Ismael Mendoza and Jerry Hur

7 September 2012

Notice

This report was prepared by the National Renewable Energy Laboratory (NREL), operated for the United States Department of Energy (DOE) by the Alliance for Sustainable Energy, LLC (Alliance), as an account of work sponsored by the United States government. The test results documented in this report define the characteristics of the test article as configured and under the conditions tested.

THIS REPORT IS PROVIDED "AS IS" AND NEITHER THE GOVERNMENT, ALLIANCE, NREL NOR ANY OF THEIR EMPLOYEES, MAKES ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING THE WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, OR ASSUMES ANY LEGAL LIABILITY OR RESPONSIBILITY FOR THE ACCURACY, COMPLETENESS, OR USEFULNESS OF ANY SUCH INFORMATION DISCLOSED IN THE REPORT, OR OF ANY APPARATUS, PRODUCT, OR PROCESS DISCLOSED, OR REPRESENTS THAT ITS USE WOULD NOT INFRINGE PRIVATELY OWNED RIGHTS.

Neither Alliance nor the U. S. Government shall be liable for special, consequential or incidental damages. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of the authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof or Alliance.

NREL is a DOE Laboratory, and as an adjunct of the United States government, cannot certify wind turbines. The information in this report is limited to NREL's knowledge and understanding as of this date.

NREL is accredited by the American Association for Laboratory Accreditation (A2LA) and the results shown in this test report have been determined in accordance with the NREL's terms of accreditation unless stated otherwise in the report.

This report shall not be reproduced, except in full, without the written approval of Alliance or successor operator of NREL.

Approval By: _	Arlinda A. Huskey, NREL Test engineer	06 Nov 2012 Date
Review By:	Jeroen van Dam, NREL Test engineer	5 November 2012 Date

~

Table of Contents

TABLE OF TABLES	3
TABLE OF FIGURES	4
1. BACKGROUND	5
2. TEST SUMMARY	5
3. TEST TURBINE CONFIGURATION	8
4. TEST SITE DESCRIPTION	9
5. DESCRIPTION OF TEST EQUIPMENT	11
6. DESCRIPTION OF TEST PROCEDURE	13
7. TEST RESULTS	14
7.1 Tabular Results of Power Performance Test	14
7.2 Graphical Results Power Performance Test	18
8. DEVIATIONS AND EXCEPTIONS	25
8.1 Deviations from the Standard	25
8.2 Exceptions to NREL Quality Assurance System	25
9. REFERENCE	
APPENDIX A: PHOTOGRAPHS OF THE TEST SITE FROM THE TURBINE BASE	
APPENDIX B: EQUIPMENT CALIBRATION SHEETS	31

Table of Tables

Table 1. Test Turbine Configuration and Operational Data	8
Table 2. Structures Close to Test Turbine	10
Table 3. Site Assessment Results	10
Table 4. Equipment Used in the Power Performance Test	11
Table 5. Uncertainty Values Used in the Analysis	14
Table 6. Performance at Sea-Level Air Density; 1.225 kg/m ³	15
Table 7. Performance at Site Average Density; 0.99 kg/m ³	16
Table 8. Annual Energy Production (AEP) at Sea-Level Density; 1.225 kg/m ³	17
Table 9. AEP at Site Average Density; 0.99 kg/m ³	17
Table 10. Binned Rotor Speed from 0.5 up to 30 m/s	24

Table of Figures

Figure 1. Power curve summary	6
Figure 2. SWIFT test turbine at the NWTC	7
Figure 3. Map of the test site	9
Figure 4. Meteorological tower and instruments (not to scale)	12
Figure 5. Power curve at sea-level density, 1.225 kg/m ³	18
Figure 6. Power curve at site average density, 0.99 kg/m ³	19
Figure 7. Scatter plot of mean and standard deviation power data as measured	20
Figure 8. Coefficient of performance at sea-level average density, 1.225 kg/m ³	
Figure 9. Wind speed and turbulence intensity as a function of wind direction	22
Figure 10. Wind turbulence at the test site	23
Figure 11. Rotor speed as a function of wind speed (1-minute average) and binned values	24

1. Background

This SWIFT power performance test was conducted as part of the U.S. Department of Energy's (DOE's) Independent Testing project. This project was established to help reduce the barriers of wind energy expansion by providing independent testing results for small turbines. Three turbines were tested at the National Renewable Energy Laboratory (NREL) National Wind Technology Center (NWTC) as a part of round two of the Small Wind Turbine Independent Testing project. Power performance testing was one of up to five tests that were performed on the turbines. Other tests include duration, safety and function, noise, and power quality. Cascade Engineering, of Grand Rapids, Michigan, distributor of the Renewable Devices' SWIFT turbine in North America, was the recipient of the DOE grant and provided the turbine for testing.

2. Test Summary

Figure 1 is a summary of the results of the power performance test that NREL conducted on the SWIFT small wind turbine (shown in Figure 2). In this test, the SWIFT turbine was installed at the NWTC near Boulder, Colorado. This test was conducted in accordance with the International Electrotechnical Commission (IEC) standard, Wind Turbine Generator Systems Part 12: Power Performance Measurements of Electricity Producing Wind Turbines, IEC 61400-12-1 Ed.1.0, 2005-12. Because the SWIFT is a small turbine according to the IEC definition, NREL also followed Annex H, which applies to small wind turbines. This test report refers to these procedures as the "Standard."

In these summary results, power was normalized to sea-level air density. This test began on 7 April 2011 and ended on 30 June 2011. During that period, NREL collected 812 hours of valid data. The highest bin filled was the 24 meters per second (m/s) bin. The amount of test data is sufficient to meet the requirements of the Standard.

			Bin Wind	Bin	Number	6
NATIONAL RENEWABLE ENERGY LA	BORATORY		Speed	Power	Data	Ср
			(m/s)	(kW)	Points	04.05
			0.54	-0.01	1,121	-21.65
			1.02	-0.01	1,923	-3.19 -0.96
Power Performance Te	et		1.52	-0.01	2,851	
i ower i enormanee re	, 3L		2.00	-0.01	3,823	-0.42
SWIFT			2.50	-0.01	3,866	-0.22
			3.00 3.50	-0.01 -0.01	3,807	-0.13 -0.08
			4.00	-0.01	3,471 3,203	-0.05
Sea-Level Density Powe	r Curve		4.00	-0.01	2,850	-0.03
Cea Level Density / One	- Ourre		4.49	0.00	2,050	-0.03
			5.50	0.00	2,422	0.07
			5.99	0.02	1,950	0.07
Turbine Specifications:			6.50	0.08	1,604	0.11
Turbine Specifications:			6.99	0.08	1,604	0.14
Serial Number:	N000780	N	7.50	0.13	1,450	0.20
Rated Power	1000700	1 kW	8.00	0.25	1,146	0.20
Cut-in Wind Speed:	3	40 m/s	8.51	0.33	1,095	0.22
Cut-out Wind Speed:	5.	- m/s	9.00	0.43	1,033	0.27
Rated Wind Speed:		11 m/s	9.50	0.53	932	0.28
Rotor Diameter:	2.1		10.00	0.65	930	0.30
Notor Diameter.	2.1	54 m	10.49	0.77	782	0.31
Control Type:	S	all	10.99	0.90	685	0.31
Pitch Setting:	Fix		11.50	1.02	644	0.31
, iter county			11.99	1.14	584	0.30
			12.50	1.25	507	0.29
Site Conditions:			12.99	1.33	425	0.28
			13.49	1.39	339	0.26
Location:	NWTC, Bou	Ilder, CO	14.00	1.43	265	0.24
Average Air Density:	0.986	kg/m ³	14.50	1.41	235	0.21
Measurement Sectors:	178-311	degrees true	14.98	1.34	230	0.18
		-	15.50	1.21	187	0.15
			16.00	1.09	150	0.12
Test Statistics:			16.48	0.97	122	0.10
			16.99	0.76	131	0.07
Start Date:	7-Apr-2011		17.49	0.65	99	0.06
End Date:	30-Jun-201		17.97	0.54	70	0.04
Amount of Data Collected:	812.05	hours	18.48	0.47	77	0.03
Highest Bin Filled:	24.00	m/s	18.97	0.40	48	0.03
Test Completed?	Yes		19.49	0.40	38	0.02
			19.99	0.35	38	0.02
1 1 1			20.50	0.37	35	0.02
			20.95	0.32	19	0.02
			21.44	0.37	14 22	0.02
at mallerla.	A	a 08 2012	21.99 22.48	0.36	14	0.02
Ismael Mendoza - NREL Test Eng	gineer C	Date	22.48	0.38	14	0.02
			23.02	0.37	17	0.01
			23.99	0.40	12	0.01
			20.00	0.40	14	0.01
	See Levie		malizad Davis	Curve		
	Sea-Leve	Air Density Nor	malized Powe	er Curve		

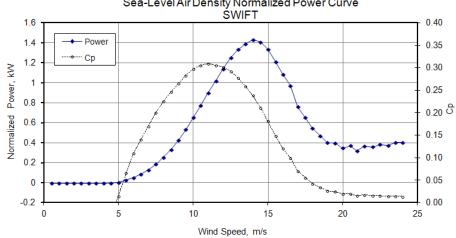


Figure 1. Power curve summary

Figure 2. SWIFT test turbine at the NWTC Source: NREL PIX 22083

3. Test Turbine Configuration

Table 1 lists the configuration of the SWIFT turbine that was tested at the NWTC.

Turbine manufacturer and address	Renewable Devices Ltd. AeroMarine House, Turnhouse Aerodrome Turnhouse Road, Edinburgh EH12 9DN Scotland, UK
Turbine distributor and address	Cascade Engineering 4855 Thirty-Seven St. SE Grand Rapids, MI 49512
Model	SWIFT
Serial number	N000780-N
Rotor diameter (m)	2.1 with outer ring*
Hub height (m)	14.2*
Tower type	13.7 m (45 feet) freestanding monopole
Rated electrical power (kW)	1
Rated wind speed (m/s)	11
Rotor speed range (rpm)	0-450
Fixed or variable pitch	Fixed
Number of blades	5
Blade pitch angle (deg)	6° at the tip
Blade make, type, serial number	Injection molded nano-fiber reinforced polymer, F000648
Description of control system (device and software version)	Kaco Blueplanet 1502x, Software V2.05

Table 1. Test Turbine Configuration and Operational Data

*Measurements verified the rotor diameter and hub height.

4. Test Site Description

The SWIFT wind turbine was located at test site 3.1 of the NWTC, approximately 8 kilometers (km) south of Boulder, Colorado. The site consisted of mostly flat terrain with short vegetation (see Appendix A for photos) and had prevailing winds bearing 292 degrees relative to true north. Figure 3 shows the turbine and meteorological (met) tower locations. This figure also shows nearby obstructions. NREL limited assessments of power and energy production to data obtained when winds were within a 178° to 311° measurement sector. In this measurement sector, the influence of terrain and obstructions on the anemometer was small and met the requirements in the Standard without conducting a site calibration test.

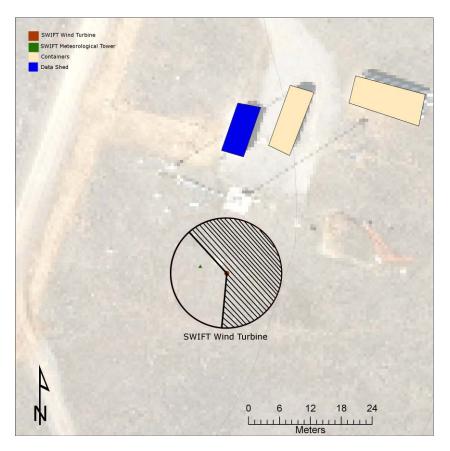


Figure 3. Map of the test site Source: NREL 2011

Table 2 shows obstructions that affected the wind at the location of the SWIFT wind turbine or its met tower according to the Standard's obstacles assessment criteria in Annex A. The azimuth and distance data were relative to the SWIFT wind turbine. Several of these obstructions do not appear on the map in Figure 3.

Designation	Azimuth [deg true]	Distance [m]	Height [m]	Diam/width [m]
Main building	45	385	15	50
Shipping containers (x2) @ 3-1	49	46	3	15
GE/DOE	77	531	80	77
CART-3	129	365	37	43
CART-2	147	431	37	40
Siemens	153	624	80	101
IUF	330	279	15	50
Quonset hut	335	198	7	20
DTF	352	246	15	20
Data shed	360	26	3.5	7

Table 2. Structures Close to Test Turbine

NREL completed a site assessment to determine if the site fails the requirements of Annex A and B of the Standard and would therefore require a site calibration. Table 3 shows the results from the site assessment, which confirms that a site calibration was not required.

Description	Distance	Sector	Test Site	Pass/Fail
Description		(deg)	Condition	1 ass/1 all
Maximum slope of best fit plane < 3%	<2L	360	1.70%	Pass
Maximum variation from best fit plane $< 0.04 (H + D)$	<2L	360	0	Pass
Maximum slope of best fit plane < 5%	2 to 4L	In	1.80%	Pass
Maximum variation from best fit plane $< 0.08 (H + D)$	2 to 4L	In	0	Pass
Steepest slope maximum < 10%	2 to 4L	Out	2.10%	Pass
Maximum slope of best fit plane < 10%	4 to 8L	In	1.70%	Pass
Maximum variation from best fit plane < 0.13 (H + D)	4 to 8L	In	0.1	Pass
No neighboring and operating turbines	<2Dn	360	0	Pass
No obstacles	<2De	360	0	Pass

Table 3. Site Assessment Results

In = Inside preliminary measurement sector

Out = Outside preliminary measurement sector

The SWIFT turbine was connected to the electrical grid at a nominal voltage of 240 volts alternating current (VAC) at a frequency of 60 hertz (Hz). The grid tolerances were 5% for voltage amplitude and 1% for frequency.

5. Description of Test Equipment

All test equipment was calibrated; Appendix B contains the calibration sheets. Table 4 shows the equipment used and calibration due dates. Figure 4 depicts the placement of the meteorological instruments on the tower. Note that the primary anemometer was within the allowable 2.5% of hub height. The primary anemometer was sent out for recalibration after the test period. The difference between the pre-test and post-test calibrations was less than 0.05 m/s for the range of 6 to 12 m/s and within the tolerances allowed by the Standard (0.1 m/s). The post-test calibration sheets are also included in Appendix B.

Instrument	Make, Model	Serial Number	Calibration Due Date
Power transducer	Secondwind Phaser 5FM-4A20	04607	21 October 2011
Primary anemometer	Thies, First Class	0609006	7 April 2012
Reference anemometer	Met One, 010	W2390	In situ
Wind vane	Met One, 020C with aluminum vane	U1478	13 October 2011
Pressure sensor	Vaisala, PTB101B	C1020014	10 August 2011
Temperature sensor	Met One, T-200	0673553	13 October 2011
Precipitation sensor	Campbell Scientific, 237	None	In situ
Data acquisition system	Compact DAQ w/LabView-based data acquisition cDAQ-9172 NI 9229 NI 9217 NI 9205	13AB4F9 14A34EE 1494F69 1496266	22 March 2012 22 March 2012 22 March 2012

Table 4. Equipment Used in the Power Performance Test

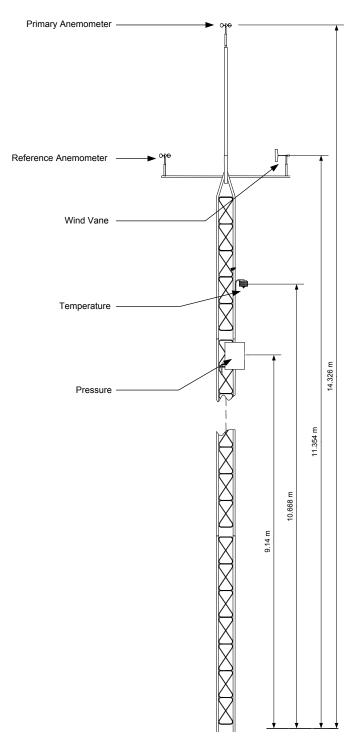


Figure 4. Meteorological tower and instruments (not to scale) Source: NREL 2011

To ensure that only data obtained during normal operation of the turbine were used in the analysis, and to ensure that data were not corrupted, NREL excluded data sets from the database under the following circumstances:

- External conditions other than wind speed were out of the normal range for turbine operation
- The turbine could not operate because of a turbine fault condition
- The turbine was manually shut down or in a test or maintenance operating mode
- Failure or maintenance of the institute's data acquisition system.

Two methods were used to track when any of these conditions occurred during the test. In the first method, the logbook was checked for such events. For the second, the turbine controller provided a status signal that indicated when the turbine was available or braked. In the second method, the status signal was checked in the data file during analysis. No maintenance was performed during the test period.

6. Description of Test Procedure

NREL conducted the test according to the procedures in the Standard. The sampling rate was 10 kHz, decimated to 40 Hz. The averaging time was 1 minute for the mean values. NREL also collected standard deviation, minimum, and maximum values for each averaging period.

The turbine status signal for the SWIFT was obtained by checking the release of the up-tower brake relay by monitoring its voltage supply. The status signal indicated if the turbine was available or braked.

Only database A is reported because the SWIFT turbine does not have a cut-out wind speed.

Table 5 gives the uncertainty sources and values used in the analysis.

Component	Uncertainty	Source
Power (Inverter)		
Power transducer	0.00231 kW	IEC
Data acquisition	.01803 kW +0.075%	Specs
Resistor	0.006%	Specs
Wind Speed		
Calibration	0.0179 m/s	Calibration sheet
Operational characteristics	0.052m/s +0.52%	IEC eq. (I.2)
Mounting effects	1%	Assumptions
Terrain effects	2.00%	IEC
Data acquisition	0.002 m/s	Calculations based on sampling frequency
Temperature		
Temperature sensor	0.015°C	Calibration sheet
Radiation shielding	0.2°C	Assumptions
Mounting effects	0.069°C	IEC method
Data acquisition	0.2°C	Specs
Air Pressure		
Pressure sensor	0.1 kPa	Calibration sheet
Mounting effects	0.005 kPa	IEC method
Data acquisition	0.032 kPa	Specs

Table 5. Uncertainty Values Used in the Analysis

7. Test Results

7.1 Tabular Results of Power Performance Test

Table 6 through Table 9 provide the power performance test results in tabular format.

Measured Power Curve (Database A)							
Referenc	Reference air density: 1.225 kg/m ³						
Bin number	Normalized wind speed (m/s)	Power output (kW)	Ср	Number of 1-minute data sets	Category A standard uncertainty (kW)	Category B standard uncertainty (kW)	Combined standard uncertainty (kW)
1	0.54	-0.01	-21.65	1121	0.00	0.02	0.02
2	1.02	-0.01	-3.19	1923	0.00	0.02	0.02
3	1.52	-0.01	-0.96	2851	0.00	0.02	0.02
4	2.00	-0.01	-0.42	3823	0.00	0.02	0.02
5	2.50	-0.01	-0.22	3866	0.00	0.02	0.02
6	3.00	-0.01	-0.13	3807	0.00	0.02	0.02
7	3.50	-0.01	-0.08	3471	0.00	0.02	0.02
8	4.00	-0.01	-0.05	3203	0.00	0.02	0.02
9	4.49	-0.01	-0.03	2850	0.00	0.02	0.02
10	4.99	0.00	0.01	2422	0.00	0.02	0.02
11	5.50	0.02	0.07	2182	0.00	0.02	0.02
12	5.99	0.05	0.11	1950	0.00	0.02	0.02
13	6.50	0.08	0.14	1604	0.00	0.02	0.02
14	6.99	0.13	0.17	1430	0.00	0.02	0.02
15	7.50	0.18	0.20	1269	0.00	0.03	0.03
16	8.00	0.25	0.22	1146	0.00	0.03	0.03
17	8.51	0.33	0.25	1095	0.00	0.04	0.04
18	9.00	0.43	0.27	1042	0.00	0.04	0.04
19	9.50	0.53	0.28	932	0.00	0.05	0.05
20	10.00	0.65	0.30	930	0.00	0.06	0.06
21	10.49	0.77	0.31	782	0.00	0.06	0.06
22	10.99	0.90	0.31	685	0.00	0.07	0.07
23	11.50	1.02	0.31	644	0.00	0.07	0.07
24	11.99	1.14	0.30	584	0.00	0.07	0.07
25	12.50	1.25	0.29	507	0.00	0.07	0.07
26	12.99	1.33	0.28	425	0.01	0.05	0.05
27	13.49	1.39	0.26	339	0.01	0.04	0.04
28	14.00	1.43	0.24	265	0.01	0.03	0.04
29	14.50	1.41	0.21	235	0.02	0.02	0.03
30	14.98	1.34	0.18	230	0.02	0.05	0.06
31	15.50	1.21	0.15	187	0.02	0.09	0.09
32	16.00	1.09	0.12	150	0.02	0.10	0.10
33	16.48	0.97	0.10	122	0.02	0.09	0.09
34	16.99	0.76	0.07	131	0.02	0.17	0.17
35	17.49	0.65	0.06	99	0.02	0.09	0.09
36	17.97	0.54	0.04	70	0.02	0.09	0.10
37	18.48	0.47	0.03	77	0.02	0.07	0.07
38	18.97	0.40	0.03	48	0.02	0.06	0.06
39	19.49	0.40	0.02	38	0.02	0.02	0.03
40	19.99	0.35	0.02	38	0.01	0.05	0.05
41	20.50	0.37	0.02	35	0.02	0.03	0.04
42	20.95	0.32	0.02	19	0.01	0.06	0.06
43	21.44	0.37	0.02	14	0.02	0.05	0.06
44	21.99	0.36	0.02	22	0.01	0.02	0.02
45	22.48	0.38	0.02	14	0.01	0.03	0.03
46	23.02	0.37	0.01	17	0.01	0.02	0.02
47	23.51	0.40	0.01	17	0.01	0.04	0.04
48	23.99	0.40	0.01	12	0.01	0.02	0.02

Table 6. Performance at Sea-Level Air Density; 1.225 kg/m³

				Curve (Database	e A)		
Referen Bin number	ce air density: Normalized wind speed (m/s)	0.99 Power output (kW)	kg/m ³	Number of 1-minute data sets	Category A standard uncertainty (kW)	Category B standard uncertainty (kW)	Combined standard uncertainty (kW)
1	0.54	-0.01	-21.65	1121	0.00	0.02	0.02
2	1.02	-0.01	-3.19	1923	0.00	0.02	0.02
3	1.52	-0.01	-0.96	2851	0.00	0.02	0.02
4	2.00	-0.01	-0.42	3823	0.00	0.02	0.02
5	2.50	-0.01	-0.22	3866	0.00	0.02	0.02
6	3.00	-0.01	-0.13	3807	0.00	0.02	0.02
7	3.50	-0.01	-0.08	3471	0.00	0.02	0.02
8	4.00	-0.01	-0.05	3203	0.00	0.02	0.02
9	4.49	0.00	-0.03	2850	0.00	0.02	0.02
10	4.99	0.00	0.01	2422	0.00	0.02	0.02
11	5.50	0.02	0.07	2182	0.00	0.02	0.02
12	5.99	0.04	0.11	1950	0.00	0.02	0.02
13	6.50	0.07	0.14	1604	0.00	0.02	0.02
14	6.99	0.10	0.17	1430	0.00	0.02	0.02
15	7.50	0.15	0.20	1269	0.00	0.02	0.02
16	8.00	0.21	0.22	1146	0.00	0.03	0.03
17	8.51	0.27	0.25	1095	0.00	0.03	0.03
18	9.00	0.35	0.27	1042	0.00	0.04	0.04
19	9.50	0.43	0.28	932	0.00	0.04	0.04
20	10.00	0.53	0.30	930	0.00	0.05	0.05
21	10.49	0.63	0.31	782	0.00	0.05	0.05
22	10.99	0.73	0.31	685	0.00	0.06	0.06
23	11.50	0.83	0.31	644	0.00	0.05	0.05
24	11.99	0.93	0.30	584	0.00	0.06	0.06
25	12.50	1.02	0.29	507	0.00	0.06	0.06
26	12.99	1.09	0.28	425	0.01	0.04	0.05
27	13.49	1.13	0.26	339	0.01	0.03	0.04
28	14.00	1.17	0.24	265	0.01	0.03	0.03
29	14.50	1.15	0.21	235	0.01	0.02	0.03
30	14.98	1.09	0.18	230	0.01	0.04	0.05
31	15.50	0.99	0.15	187	0.01	0.07	0.07
32	16.00	0.89	0.12	150	0.02	0.08	0.08
33	16.48	0.79	0.10	122	0.02	0.08	0.08
34	16.99	0.62	0.07	131	0.01	0.14	0.14
35	17.49	0.53	0.06	99	0.02	0.07	0.08
36	17.97	0.44	0.04	70	0.02	0.08	0.08
37	18.48	0.38	0.03	77	0.01	0.06	0.06
38	18.97	0.33	0.03	48	0.01	0.05	0.05
39	19.49	0.32	0.02	38	0.01	0.02	0.02
40	19.99	0.28	0.02	38	0.01	0.04	0.04
41	20.50	0.30	0.02	35	0.02	0.03	0.03
42	20.95	0.26	0.02	19	0.01	0.05	0.05
43	21.44	0.30	0.02	14	0.02	0.05	0.05
44	21.99	0.29	0.02	22	0.01	0.02	0.02
45	22.48	0.31	0.02	14	0.01	0.03	0.03
46	23.02	0.31	0.01	17	0.01	0.02	0.02
47	23.51	0.33	0.01	17	0.01	0.03	0.03
48	23.99	0.33	0.01	12	0.01	0.02	0.02

Table 7. Performance at Site Average Density; 0.99 kg/m³

	Estimated Annual Energ	y Produc	tion, Data	base A (All Valid Data))
	Reference air density:	1.225	kg/m ³		
	Cut-out wind speed:	-	m/s		
Hub height annual		Star	ndard		Complete if AEP
average wind speed	AEP-measured	uncert	ainty in	AEP-extrapolated	measured is at least 95%
(Rayleigh)		AEP-n	neasured		of AEP extrapolated
m/s	kWh	kWh	%	kWh	
4	301	178	62%	301	Complete
5	900	210	24%	900	Complete
6	1,745	251	15%	1,745	Complete
7	2,665	292	11%	2,666	Complete
8	3,495	331	10%	3,496	Complete
9	4,144	362	9%	4,149	Complete
10	4,592	385	8%	4,604	Complete
11	4,857	398	8%	4,880	Complete
	AEP measured assumes z	ero powe	r between	highest bin and cut-ou	t.
1	AEP extrapolated assumes	oower in	last bin be	tween last bin and cut-	out.

 Table 8. Annual Energy Production (AEP) at Sea-Level Density; 1.225 kg/m³

	Estimated Annual Energy P	roductio	n, Database	e A (All Valid Data)	
	Reference air density:	0.99	kg/m ³		
	Cut-out wind speed:	-	m/s		
Hub height annual average wind speed (Rayleigh)	AEP-measured	uncer	ndard tainty in neasured	AEP-extrapolated	Complete if AEP measured is at least 95% of AEP extrapolated
m/s	KWh	kWh	%	KWh	
4	246	173	73%	246	Complete
5	734	197	27%	734	Complete
6	1,425	228	16%	1,425	Complete
7	2,176	260	12%	2,176	Complete
8	2,853	289	10%	2,854	Complete
9	3,383	314	9%	3,387	Complete
10	3,749	331	9%	3,759	Complete
11	3,965	341	9%	3,984	Complete
	AEP measured assumes zero	power b	etween higl	hest bin and cut-out.	
	AEP extrapolated assumes pow	er in last	t bin betwee	en last bin and cut-out.	

7.2 Graphical Results Power Performance Test

Figure 5 through Figure 11 show the results of the power performance test. Figure 5 shows a plot of the binned power curve normalized to sea-level air density.

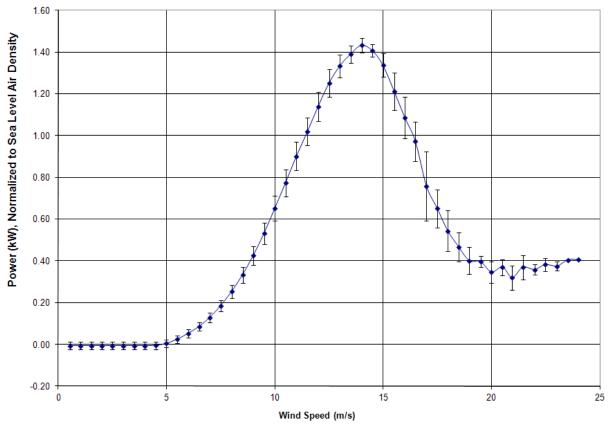


Figure 5. Power curve at sea-level density, 1.225 kg/m³

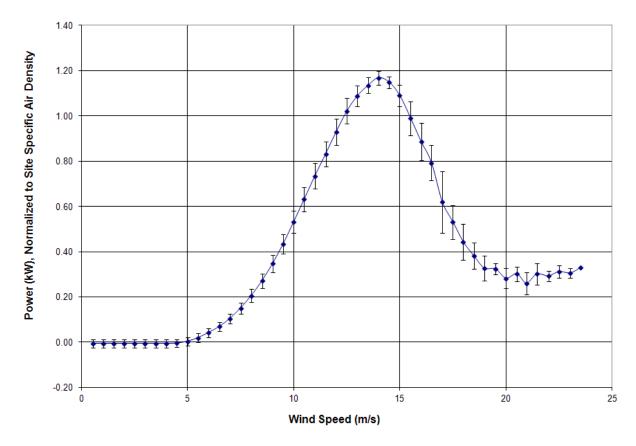


Figure 6 shows a plot of the binned power curve at the site average air density during the test period.

Figure 6. Power curve at site average density, 0.99 kg/m³

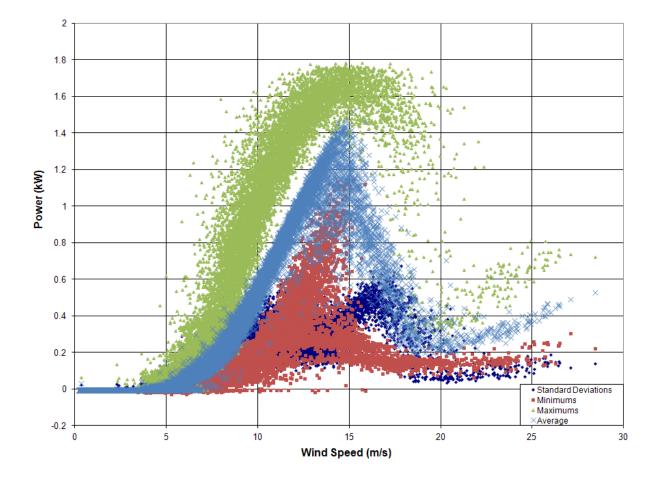


Figure 7 shows a scatter plot of statistics for power for the turbine.

Figure 7. Scatter plot of mean and standard deviation power data as measured

Figure 8 shows a plot of the binned coefficient of performance as a function of wind speed at sea-level normalized air density.

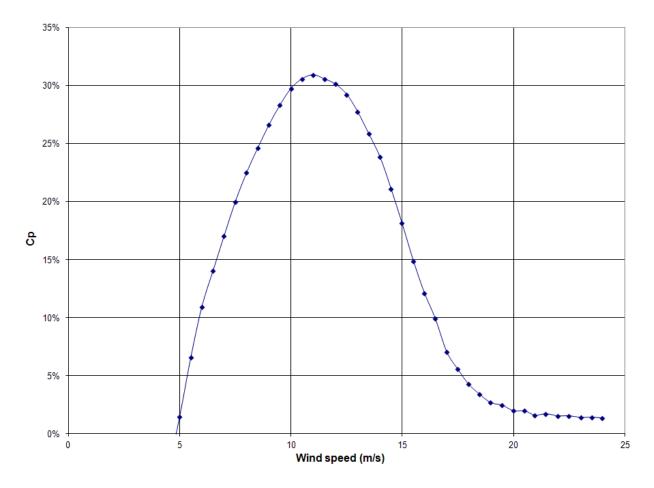


Figure 8. Coefficient of performance at sea-level average density, 1.225 kg/m³

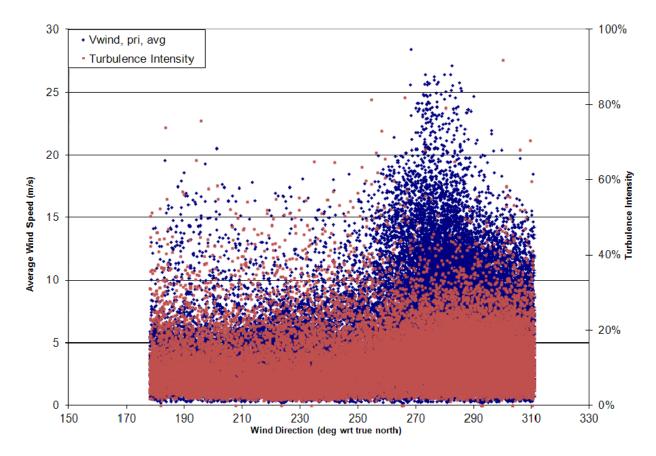


Figure 9 shows a scatter plot of wind speed and turbulence intensity as a function of wind direction.

Figure 9. Wind speed and turbulence intensity as a function of wind direction

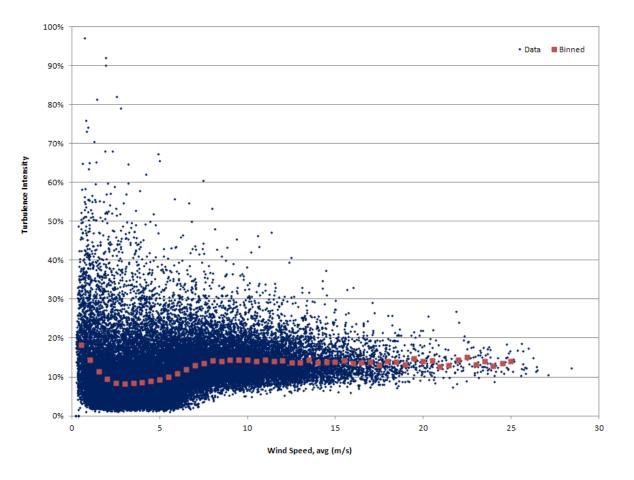


Figure 10. Wind turbulence at the test site

Figure 11 shows a scatter plot and binned values of rotor speed as a function of wind speed.

Wind Speed	(m/s)	0.5	1	1.5	2	2.5	3	3.5	4	4.5	5	5.5	6	6.5	7	7.5
Rotor Speed	(rpm)	0	1	4	5	15	17	43	75	130	152	170	194	215	231	257
Wind Speed	(m/s)	8	8.5	9	9.5	10	10.5	11	11.5	12	12.5	13	13.5	14	14.5	15
Rotor Speed	(rpm)	274	296	316	331	347	360	368	377	382	393	395	398	397	390	384
Wind Speed	(m/s)	15.5	16	16.5	17	17.5	18	18.5	19	19.5	20	20.5	21	21.5	22	22.5
Rotor Speed	(rpm)	367	350	335	316	300	285	280	268	261	261	258	257	261	263	254
Wind Speed	(m/s)	23	23.5	24	24.5	25	25.5	26	26.5	27	27.5	28	28.5	29	29.5	30
Rotor Speed	(rpm)	257	262	270	267	276	279	277	277	289	284	301	286	-	319	307

Table 10. Binned Rotor Speed from 0.5 up to 30 m/s

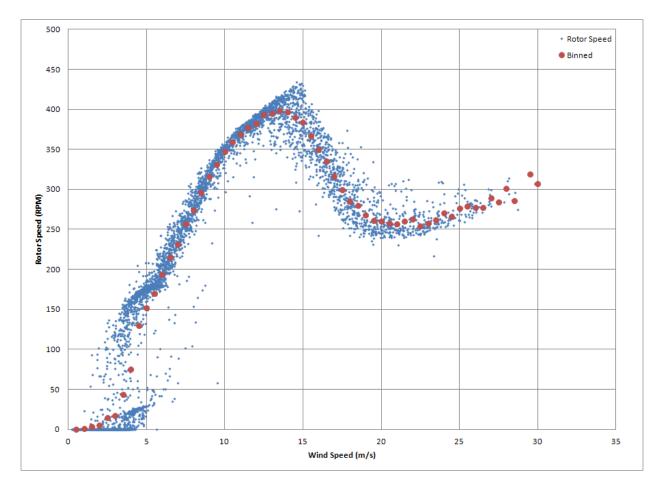


Figure 11. Rotor speed as a function of wind speed (1-minute average) and binned values

8. Deviations and Exceptions

8.1 Deviations from the Standard

The reference anemometer was mounted 2.97 m below the primary. This exceeded the Standard's allowable maximum of 2.5 m below the primary as shown in Annex G.5. This should have no effect on results or uncertainty because the primary anemometer was post-test calibrated and the reference anemometer was not used for an in situ calibration.

8.2 Exceptions to NREL Quality Assurance System

The reference anemometer was mounted 2.97 m below the primary. This exceeded the Standard's allowable maximum of 2.5 m below the primary as shown in Annex G.5.


9. Reference

Wind Turbines, Part 12-1: Power performance measurements of electricity producing wind turbines, IEC 61400-12-1, Edition 1, 2005-12, International Electrotechnical Commission, Geneva, Switzerland, 2005.

Appendix A: Photographs of the Test Site from the Turbine Base

Direction pictures are facing:

- A1. North
- A2. Northeast
- A3. East
- A4. Southeast
- A5. South
- A6. Southwest
- A7. West
- A8. Northwest

Figure A1. Facing north Source: NREL 2011

Figure A2. Facing northeast Source: NREL 2011

Figure A3. Facing east Source: NREL 2011

Figure A4. Facing southeast Source: NREL 2011

Figure A5. Facing south Source: NREL 2011

Figure A6. Facing southwest Source: NREL 2011

Figure A7. Facing west Source: NREL 2011

Figure A8. Facing northwest Source: NREL 2011

Appendix B: Equipment Calibration Sheets

Figure B1. Power transducer calibration sheet I

- Figure B2. Power transducer calibration sheet II
- Figure B3. Power transducer calibration sheet III
- Figure B4. Primary anemometer calibration sheet I
- Figure B5. Primary anemometer calibration sheet II
- Figure B6. Primary anemometer post-test calibration sheet I
- Figure B7. Primary anemometer post-test calibration sheet II
- Figure B8. Primary anemometer pre- and post-test calibration comparison; the difference is less than 0.1m/s for the range of 6 to 12m/s
- Figure B9. Wind vane calibration sheet
- Figure B10. Pressure transducer calibration sheet
- Figure B11. RTD-Probe calibration sheet
- Figure B12. NI 9229 data acquisition module calibration sheet I
- Figure B13. NI 9217 data acquisition module calibration sheet I
- Figure B14. NI 9205 data acquisition module calibration sheet I
- Figure B15. NI 9229 data acquisition module calibration sheet II
- Figure B16. NI 9217 data acquisition module calibration sheet II
- Figure B17. NI 9205 data acquisition module calibration sheet II

Power

Branch #: 5000

NREL METROLOGY LABORATORY

		Test Report		
Test Instrument: Ph	naser Power Transducer	DOE	#: 03503C	
Model # : Phas	er-5-485-4A 20	S/N :	04607	
Calibration Date: 10	0/20/2010	Due D	ate: 10/20/2012	
A.2. Current is applied	d to phases A&B = 120 V		250 Ω.	
Calibrate	or Output	Tra	nsducer Input/	Output
Current (AAC)	Power 2*V*I (W)	Input Current (AAC)	Input Power 2*n*V*I (W)	Analog Output- 1 (VDC)
-9	-2160	N/A	N/A	.997
-8	-1920	и	**	1.078
-6	-1440		**	1.557
-4	-960			2.037
-2	-480		54	2.516
-1	-240		ш	2.754
0	0		55	2.994
1	240	"	**	3.234
2	480	"	"	3.473
4	960	"	**	3.953
6	1440		46	4.432
8	1920	и	45	4.911
9	2160	и	65	4.991

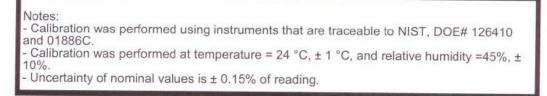
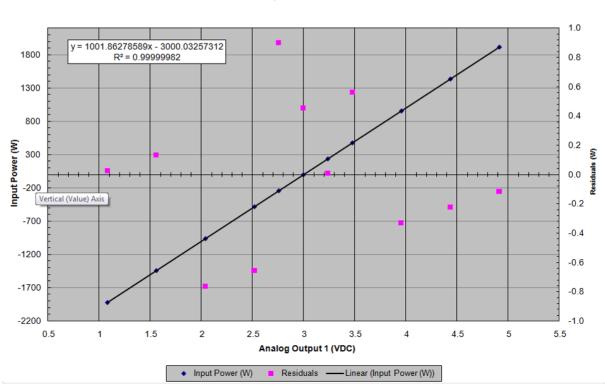

Page 1 of 3

Figure B1. Power transducer calibration sheet I, installed 20 October 2010 to 24 October 2011

Calibra	tor Output	
Current (AAC)	Power Factor	Analog Output-2 (VDC)
4	1	4.994
4	0.75	3.990
4	0.5	2.990
4	0.25	1.990
4	0.0	1.010
2. Analog Outp 3. Analog Outp	urrent are applied as A.1 put-3 is set for Current TI put-3 is measured across	HD s precision resistor = 250 Ω.
2. Analog Outp 3. Analog Outp	urrent are applied as A.1 put-3 is set for Current TI put-3 is measured across t THD (%)	& A.2. HD s precision resistor = 250 Ω. <u>Analog Output-3 (VDC)</u>
2. Analog Outp 3. Analog Outp	urrent are applied as A.1 put-3 is set for Current TI put-3 is measured across t THD (%) 0	& A.2. HD s precision resistor = 250 Ω. <u>Analog Output-3 (VDC)</u> .999
2. Analog Outp 3. Analog Outp	urrent are applied as A.1 put-3 is set for Current TI put-3 is measured across tt THD (%) 0 10	& A.2. HD s precision resistor = 250 Ω. <u>Analog Output-3 (VDC)</u> .999 1.395
2. Analog Outp 3. Analog Outp	urrent are applied as A.1 put-3 is set for Current TI put-3 is measured across t THD (%) 0	& A.2. HD s precision resistor = 250 Ω. <u>Analog Output-3 (VDC)</u> .999
2. Analog Outp 3. Analog Outp Curren Set-Up for A to B	urrent are applied as A.1 but-3 is set for Current TI but-3 is measured across tt THD (%) 0 10 20	& A.2. HD s precision resistor = 250 Ω. Analog Output-3 (VDC) .999 1.395 1.796 2.191
2. Analog Outp 3. Analog Outp Curren Curren Set-Up for A to B Voltage is applie Analog Output-4	urrent are applied as A.1 put-3 is set for Current TI put-3 is measured across t THD (%) 0 10 20 30 Voltage Measurement: ad as listed below @ 60Hz	& A.2. HD s precision resistor = 250 Ω. Analog Output-3 (VDC) .999 1.395 1.796 2.191
2. Analog Outp 3. Analog Outp Curren Curren Voltage is applie Analog Output-d Calibrat	urrent are applied as A.1 put-3 is set for Current TI put-3 is measured across t THD (%) 0 10 20 30 Voltage Measurement: ed as listed below @ 60Hz is measured across precisio	& A.2. HD s precision resistor = 250 Ω. <u>Analog Output-3 (VDC)</u> .999 1.395 1.796 2.191 on resistor = 250 Ω.
2. Analog Outp 3. Analog Outp Curren Set-Up for A to B Voltage is applie Analog Output-o Calibrat	urrent are applied as A.1 put-3 is set for Current TI put-3 is measured across t THD (%) 0 10 20 30 Voltage Measurement: ed as listed below @ 60Hz t is measured across precisio	& A.2. HD a precision resistor = 250 Ω. <u>Analog Output-3 (VDC)</u> .999 1.395 1.796 2.191 m resistor = 250 Ω. Analog Output-4 (VDC)
2. Analog Outp 3. Analog Outp Curren Set-Up for A to B 1. Voltage is applia 3. Analog Output-4 Calibrat	urrent are applied as A.1 put-3 is set for Current TI put-3 is measured across it THD (%) 0 10 20 30 Voltage Measurement: ad as listed below @ 60Hz is measured across precision cor Output 0V	& A.2. HD s precision resistor = 250 Ω. <u>Analog Output-3 (VDC)</u> .999 1.395 1.796 2.191 m resistor = 250 Ω. <u>Analog Output-4 (VDC)</u> 2.996

Page 2 of 3


Figure B2. Power transducer calibration sheet II installed 20 October 2010 to 24 October 2011

Calibrated By: P. Morse

Date: 10/20/2010

Approved By : Reda Date: 10/20/2010

NWTC Instrument Calibrations, Phaser-5-485-4A 20 Power Transducer s/n 04607, Output #1: Real Power 10 Oct 10 JTH

Figure B3. Power transducer calibration sheet III installed 20 October 2010 to 24 October 2011

Wind Speed

CERTIFICATE FOR CALIBRATION OF CUP ANEMOMETER

Certificate number: 09.02.3131	Date of issue: June 15, 2009
Type: Thies 4,3351.10.000	Serial number: 0609006
Manufacturer: ADOLF THIES GmbH &	Co.KG, Hauptstrasse 76, 37083 Göttingen, Germany
Client: Sky Power Int'l LLC, 250 Sawdust	Road, 29657-8521 Liberty SC, USA

Anemometer received: June 11, 2009	Anemometer calibrated: June 13, 2009 Calibration procedure: IEC 61400-12-1, MEASNET	
Calibrated by: jj		
Certificate prepared and approved by: Calibration	engineer, soh Que d Cle Nasco	

Calibration equation obtained: $\nu~[m/s] = 0.04630 + f~[Hz] \pm 0.22992$

 Standard uncertainty, slope: 0.00126
 Standard uncertainty, offset: 0.05660

 Covariance: -0.0000007 (m/s)²/Hz
 Coefficient of correlation: $\rho = 0.999991$

Absolute maximum deviation: 0.032 m/s at 7.911 m/s

Barometric pressure: 1005.4 hPa			Rel	Relative humidity: 24.1%			
Succession	Velocity	Tempe	Temperature in		Frequency,	Deviation,	Uncertainty
	pressure, q.	a. wind tunnel	control room	velocity, v.	f.,	d.	u _c (k=2)
	[Pa]	[°C]	[°C]	[m/s]	[Hz]	[m/s]	[m/s]
2	9.03	32.3	23.3	3.978	81.5163	-0.027	0.029
4	14.04	32.1	23.2	4,958	102.1571	-0.002	0.033
6	20.23	32.0	23.2	5.950	123.2216	0.014	0.038
8	27.39	31.9	23.2	6.923	144.8197	-0.013	0.044
10	35.79	31.8	23.2	7.931	165.2051	0.032	0.050
12	45,41	31.8	23.2	8,910	187.3624	0,005	0.056
13-last	56.18	31.7	23.1	9.911	209.1977	-0.006	0.062
11	67.73	31.8	23.2	10.884	229.8895	0.009	0.068
9	80.53	31.9	23.2	11.869	251.1191	0.011	0.074
7	94.07	32.0	23.2	12.830	272.3620	-0.011	0.080
5	109.65	32.1	23.2	13.855	293.9411	0.014	0.086
3	125.49	32.2	23.3	14.825	315.6078	-0.019	0.092
1-first	143.09	32.4	23.3	15.838	337.2206	-0.007	0.099

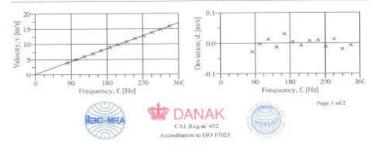


Figure B4. Primary anemometer calibration sheet I

EQUIPMENT USED

Serial number	Description
	Boundary layer wind tunnel.
1255	Control cup anemometer.
24	Mounting tube, D = 35 mm
13	PT100 temperature sensor, wind tunnel.
14	PT100 temperature sensor, control room.
950610	PPC500 Fumess pressure manometer
Z0420014	HMW71U Humidity transmitter
L/4220037	PTB100AVaisala analogue barometer.
P11	Pitot tube
001551	Computer Board, 16 bit A/D data acquisition board.
	PC dedicated to data acquisition.

Traceable calibrations of the equipment are carried out by external accredited institutions: Furness (PPC500) and Saab Metech. A real-time analysis module within the data acquisition software detects pulse frequency.

Photo of a cup anemometer in the wind tunnel. The shown anemometer is of the same type as the calibrated one.

UNCERTAINTIES

The documented uncertainty is the total combined uncertainty at 95% confidence level (k=2) in accordance with EA-4/02. The uncertainty at 10 m/s comply with the requirements in the MEASNET procedure that prescribes an absolute uncertainty less than 0.1 m/s at a mean wind velocity of 10 m/s, that is 1%. See Document 97.00.004 "MEASNET-Test report on the calibration campaign" for further details,

Certificate number: 09.02.3131

This continue must not be reproduced, except in full, without the approval of S. O. Harsen ApS Page 2 of 2

Figure B5. Primary anemometer calibration sheet II

DOE # 043900

SCT. JØRGENS ALLÉ 7 · DK-1615 KØBENHAVN V · DENMARK TEL: (+45) 33 25 38 38 · FAX: (+45) 33 25 38 39 · WWW.SOHANSEN.DK

CERTIFICATE FOR CALIBRATION OF CUP ANEMOMETER

Certificate number: 12.02.6727 Date of issue: August 24, 2012 Type: Thics 4.3351.10.000 Serial number: 0609006 Manufacturer: ADOLF THIES GmbH & Co.KG, Hauptstrasse 76, 37083 Göttingen, Germany Client: National Renewable Energy Lab, 1617 Cole Boulevard, Golden, Colorado 80401-3393, USA

Anomometer received: August 13, 2012 Anemometer calibrated: August 23, 2012 Calibration procedure: IEC 61400-12-1, MEASNET Calibrated by: asj Certificate prepared by: ca Approved by: Calibration engineer, ml March Lilling 1

Calibration equation obtained: $\nu [m/s] = 0.04654 \cdot f [Hz] + 0.15404$ Standard uncertainty, slope: 0.00114

Covariance: -0.0000006 (m/s)?/Hz

Standard uncertainty, offset: 0.07713

Coefficient of correlation: $\rho = 0.999993$ Absolute maximum deviation: -0.036 m/s at 13.844 m/s

arometric pressure: 1009.3 hPa			Rel				
Succession	Velocity	Temperature in		Wind	Frequency,	Deviation,	Uncertainty
	pressure, q.		centrol room	2	ſ.	d.	u _c (k-2)
	[Pa]	[°C]	[°C]	[m/s]	[Hz]	[m/s]	[m/s]
2	9.65	33.4	25.5	4.112	85.1908	-0.007	0.021
4	14.95	33.3	25.5	5.119	106.6331	0.002	0.025
6	21.07	33.1	25.4	6.075	127.4800	-0.012	0.029
8	28.26	33.1	25.4	7.035	147.5747	0.012	0.033
10	36.34	33.0	25.4	7.977	168.1495	-0.003	0.037
12	45.88	33.0	25.4	8.962	189,1365	0.005	0.042
13-last	56.70	32.9	25.4	9.963	210.5526	0.009	0.046
11	68.46	33.0	25.4	10.948	231.7626	0.007	0.051
9	80.56	33.1	25.4	11.878	251.6408	0.012	0.055
7	94.56	33.1	25.4	12.870	273.2038	0.000	0.059
5	109.38	33.2	25.4	13.844	294.9135	-0.036	0.064
3	125.53	33.4	25.5	14.833	315.5930	-0.009	0.068
1-first	141.94	33.6	25.5	15.780	335.3141	0.020	0.073

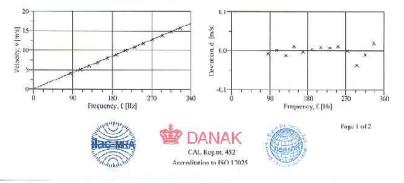


Figure B6. Primary anemometer post-test calibration sheet I

EQUIPMENT USED

Serial number	Description
	Boundary layer wind tunnel.
1256	Control cup anemometer.
ē	Mounting tube, $D = 35 \text{ mm}$
(1 (2	PT100 temperature sensor, wind tunnel.
(2	PT100 temperature sensor, control room.
9904031	PPC500 Fumess pressure manometer
X4650038	HMW71U Humidity transmitter
X4350042	PTB100AVaisala analogue baremeter.
P11	Pitot rube
HB2835279	Computer Board. 16 bit A/D data acquisition board.
-	PC dedicated to data acquisition.

Traceable calibrations of the equipment arc carried out by external accredited institutions: Furness (PPC500) and Saab Metech. A real-time analysis module within the data acquisition software detects pulse frequency.

Photo of the wind namel semp (ixb = 0.85x1.75 m). The shown anomometer is of the same type as the calibrated one.

UNCERTAINTIES

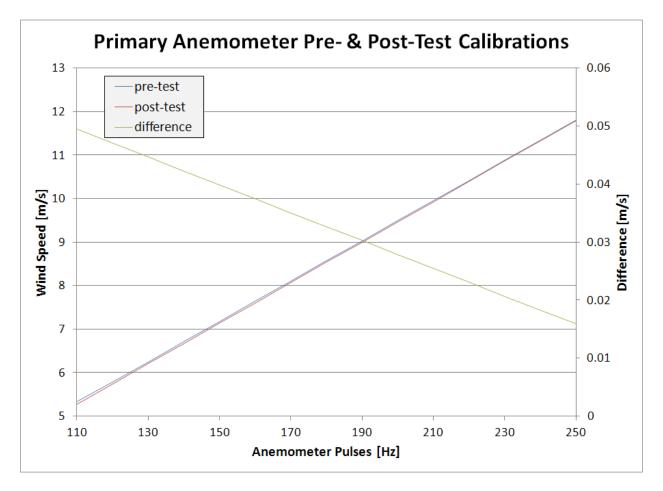
The documented uncertainty is the total combined uncertainty at 95% confidence level (k=2) in accordance with EA-4/02. The uncertainty at 10 m/s comply with the requirements in the MEASNET procedure that prescribes an absolute uncertainty less than 0.1 m/s at a mean wind velocity of 10 m/s, that is 1%. See Document 97.00.004 "MEASNET - Test report on the calibration campaign" for further details.

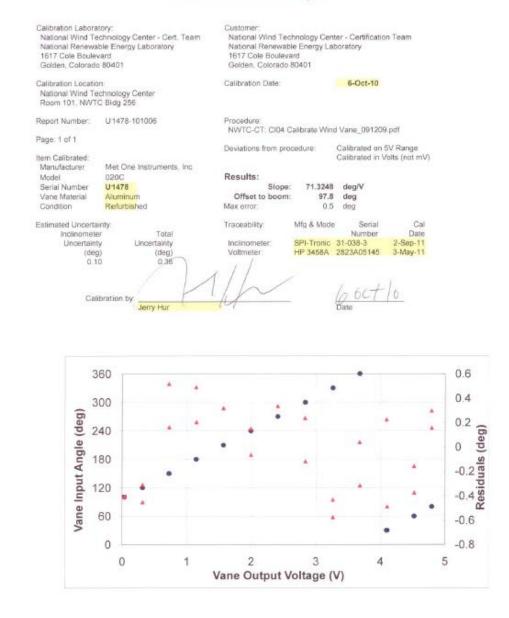
Certificate number:	2.02.6727
---------------------	-----------

This certificate must not be reproduced, except in full, without the approval of S. O. Hansen ApS

Page 2 of 2

Figure B7. Primary anemometer post-test calibration sheet II




Figure B8. Primary anemometer pre- and post-test calibration comparison; the difference is less than 0.1 m/s for the range of 6 to 12 m/s

Wind Direction

Contract to a state of the stat

NWTC Testing Group

Wind Vane Calibration Report

Vare Cal UI 478 101006 xite

If printed, this document may be out of data.

Pige 1 of 1

Figure B9. Wind vane calibration sheet

Pressure

Branch #: 5000

QA By: Bev Date: 08/10/2010

Calibration Date: 08/10/2010 Due Date: 08/10/2011 ()Mfr. Specs. Measured Output Voltage Nominal (VDC) OR Function No (X)Data only Value Tested As Found As Left (kPa) (mb) * Absolute Pressure 65 0.274 0.546 70 0.818 75 80 1.089 1.361 85 1.633 90 1.904 95 100 2.176 Notes: 1. Expanded Uncertainty of the nominal value is \pm 0.2 kPa, with k = 2. Skpanded Uncertainty of the hominal value is for kith, when k = 1.
 Calibration was performed at 23°C and 40% RH.
 Calibration was performed using standards that are traceable to NIST. DOE numbers: 108685, 128120, and 02301C.

NREL METROLOGY LABORATORY

Test Report

Calibrated By: P. Morse Date: 08/10/2010

Figure B10. Pressure transducer calibration sheet

sheet: 1 of: 1

: PTB101B Model #

Test Instrument: Pressure Transmitter

DOE #: 03509C

S/N : C1020014

Temperature

Branch #: 5000

NREL METROLOGY LABORATORY

Test Report

Test Instrument: RTD Probe

DOE #: 03506C

Model # : 78N01N00N04 S/N : 0673553

Due Date: 10/31/2009

Calibration Date: 10/31/2008

	Nominal Values		Measured Values			
No	Nominal Resistance	Equivalent Temperature	Measured Resistance	Equivalent Temperature	Temperature Error	
1	96.09 Q	-10 °C	96.080 Q	-10.03 °C	0.03 °C	
2	100.00 Q	0 °C	99.99 Q	-0.03 °C	0.03 °C	
3	103.90 Q	10 °C	103.89 Q	9.97 °C	0.03 °C	
4	107.79 Q	20 °C	107.78 Ω	19.97 °C	0.03 °C	
5	111.67 Q	30 °C	111.67 Q	30.00 °C	0.00 °C	
6	115.54 Ω	40 °C	115.53 Q	39.97 °C	0.03 °C	
			-			

Notes:

1. Total Uncertainty of Nominal Values = ± 0.02 °C 2. Calibration was performed at 23 °C and 38% RH

3. Resistance is measured using 4-wire technique

Calibrated by: Reda

: 10/31/2008 Date

QA by: Bev

Date : 10/31/2008

Figure B11. RTD-Probe calibration sheet

Data Acquisition System

Certificate of Calibration

Certificate Number:	1593423	Date:	01-JUN-2012
Serial Number: Description:	14A34EE MODULE ASSY,NI 9229,PRECISION +/- 60V ISOLATION AMPLIFIER WITH ANTI-ALIAS FILTER	Part Number:	198858A-01L
Calibration Date:	29-JAN-2010	Recommended Calibration Due*:	29-JAN-2011
Temperature:	24.12 °C	Humidity:	38% RH

Standards Used

Manufacturer	Model	Tracking Number	Calibration Date	Calibration Due
NATIONAL INSTRUMENTS	PXI 4461	1739	29-OCT-09	29-OCT-10
VAISALA	HMP35E	5014	25-FEB-09	25-FEB-10
NATIONAL INSTRUMENTS	PXI-6653	6228	30-OCT-09	30-OCT-10
NATIONAL INSTRUMENTS	PXI-4070	6625	26-JUN-08	26-JUN-10
NATIONAL INSTRUMENTS	PXI-6120	6815	20-MAR-09	20-MAR-10
NATIONAL INSTRUMENTS	PXI-4110	6995	18-JAN-10	18-JAN-11

The standards used in this calibration are traceable to NIST and/or other National Measurement Institutes (NMI's) that are signatories of the International Committee of Weights and Measures (CIPM) mutual recognition agreement (MRA).

National Instruments certifies that at the time of test, the above product was calibrated in accordance with applicable National Instrument procedures. These procedures are designed to assure that the product listed above meets or exceeds National Instruments specifications.

We further certify that the environment in which this product was calibrated is maintained within the operating specifications of the instrument and standards. The measurement standards and instruments used during the calibration of this product are traceable to NIST and/or other International Measurement Institutes (NMI's) that are signatories of the International Committee of Weights and Measure (CIPM) Mutual Recognition Agreement (MRA).

The information shown on this certificate applies only to the instrument identified above and this certificate may not be reproduced, except in full, without the prior written consent of National Instruments.

For questions or comments, please contact National Instruments Technical Support.

* Recommended calibration due date is based on a combination of calibration interval and, when applicable, calibration shelf life. This date may vary depending on your application requirements.

altor

Andrew Krupp Vice President, Quality and Continuous Improvement

National Instruments Corporation 11500 N. Mopac Expressway Austin, TX 78759-3504 USA Tel: (800) 531-5066

Figure B12. NI 9229 data acquisition module calibration sheet I

Certificate of Calibration

Certificate Number:	1570587	Date:	01-JUN-2012
Serial Number: Description:	1494F69 CCA,NI 9217,4-CHANNEL CRIO MODULE FOR RTD INPUTS	Part Number:	192547E-01L
Calibration Date:	29-DEC-2009	Recommended Calibration Due*:	29-DEC-2010
Temperature:	24.2 °C	Humidity:	39.61% RH

Standards Used

Manufacturer	Model	Tracking Number	Calibration Date	Calibration Due
VAISALA	HMP35E	5014	25-FEB-09	25-FEB-10
NATIONAL INSTRUMENTS	PXI-4110	6803	08-JUN-09	08-JUN-10
NATIONAL INSTRUMENTS	PXI-4461	6835	09-JUN-09	09-JUN-10
NATIONAL INSTRUMENTS	PXI-5122	7184	28-OCT-09	28-0CT-11
NATIONAL INSTRUMENTS	PXI-4070	7221	13-MAY-09	13-MAY-11

The standards used in this calibration are traceable to NIST and/or other National Measurement Institutes (NMI's) that are signatories of the International Committee of Weights and Measures (CIPM) mutual recognition agreement (MRA).

National Instruments certifies that at the time of test, the above product was calibrated in accordance with applicable National Instrument procedures. These procedures are designed to assure that the product listed above meets or exceeds National Instruments specifications.

We further certify that the environment in which this product was calibrated is maintained within the operating specifications of the instrument and standards. The measurement standards and instruments used during the calibration of this product are traceable to NIST and/or other International Measurement Institutes (NMI's) that are signatories of the International Committee of Weights and Measure (CIPM) Mutual Recognition Agreement (MRA).

The information shown on this certificate applies only to the instrument identified above and this certificate may not be reproduced, except in full, without the prior written consent of National Instruments.

For questions or comments, please contact National Instruments Technical Support.

* Recommended calibration due date is based on a combination of calibration interval and, when applicable, calibration shelf life. This date may vary depending on your application requirements.

altor

Andrew Krupp Vice President, Quality and Continuous Improvement

National Instruments Corporation 11500 N. Mopac Expressway Austin, TX 78759-3504 USA Tel: (800) 531-5066

Figure B13. NI 9217 data acquisition module calibration sheet I

Certificate of Calibration

Certificate Number:	1566735	Date:	01-JUN-2012
Serial Number:	1496266 CCA,9205,16 BIT 32 CH VOLTAGE	Part Number:	193299F-01
Description:	ANALOG INPUT MODULE (MIO CLASS)		
Calibration Date:	22-DEC-2009	Recommended Calibration Due*:	22-DEC-2011
Temperature:	24.7 °C	Humidity:	39.77% RH

Standards Used

Manufacturer	Model	Tracking Number	Calibration Date	Calibration Due
Manufacturei	Model	Tracking Number	Calibration Date	Calibration Due
VAISALA	HMP35E	5014	25-FEB-09	25-FEB-10
NATIONAL INSTRUMENTS	PXI-4070	6625	26-JUN-08	26-JUN-10
NATIONAL INSTRUMENTS	PXI-5122	6692	15-JAN-08	15-JAN-10
NATIONAL INSTRUMENTS	PXI-4110	6793	19-JAN-09	19-JAN-10
NATIONAL INSTRUMENTS	PXI-6120	6815	20-MAR-09	20-MAR-10
NATIONAL INSTRUMENTS	PXI-5422	6851	14-JAN-08	14-JAN-10

The standards used in this calibration are traceable to NIST and/or other National Measurement Institutes (NMI's) that are signatories of the International Committee of Weights and Measures (CIPM) mutual recognition agreement (MRA).

National Instruments certifies that at the time of test, the above product was calibrated in accordance with applicable National Instrument procedures. These procedures are designed to assure that the product listed above meets or exceeds National Instruments specifications.

We further certify that the environment in which this product was calibrated is maintained within the operating specifications of the instrument and standards. The measurement standards and instruments used during the calibration of this product are traceable to NIST and/or other International Measurement Institutes (NMI's) that are signatories of the International Committee of Weights and Measure (CIPM) Mutual Recognition Agreement (MRA).

The information shown on this certificate applies only to the instrument identified above and this certificate may not be reproduced, except in full, without the prior written consent of National Instruments.

For questions or comments, please contact National Instruments Technical Support.

* Recommended calibration due date is based on a combination of calibration interval and, when applicable, calibration shelf life. This date may vary depending on your application requirements.

altor

Andrew Krupp Vice President, Quality and Continuous Improvement

National Instruments Corporation 11500 N. Mopac Expressway Austin, TX 78759-3504 USA Tel: (800) 531-5066

Figure B14. NI 9205 data acquisition module calibration sheet I

Tekt Service Solu	tions	CALIBRATION				
		Instrument Identification	Number: CC-BKAY			
Company ID: 600 NATIONAL REN		ERGY LABORATORY	Number: Co-Diver			
16253 DENVER GOLDEN, CO 8		WAY				
Instrument ID: 04169C Model Number: NI 9229 Manufacturer: NATIONAL INSTRUMENTS Serial Number: 14A34EE Description: 4-CHANNEL, ±60 V, 24-BIT SIMULTANEOUS ANALOG INPUT						
Accuracy: Mfr Sp						
		Certificate Informatio		WAYNE GET	CHELL	
ason For Service:	CALIBRATIC	N			GHELL	
Type of Cal:	ACCREDITE	D 17025		e 22Mar2011 e: 22Mar2012		
Found Condition:			Interva			
As Left Condition:			Temperature:			
Procedure:	NATIONAL I	NSTRUMENTS CAL EXECUTIVE 3.4	Humidity:			
Remarks:	Reference attac	hed Calibration Data.				
The instrument on ann	awat metrology (mrtma A taut uncert Tektro	sen caliberated agenesis mendeerds senerable to the National fusiti es, derived from ratio type measurements, or compared to initio white even (T.U.R.) at 4-1 (K-2, reports, 95% Couldence Lave uits Service Schelung is registerered in ISO 9061-2008, Lab Open ArSis(PCSI, 2540-1, 1984 (R2002), ISO 10012-2003, 10	willy as marinanistic recognical con 2 was mailumined unlexe afterwise son atoms meet the requirements of \$*F850 Apped, and 10CF821.	od.		
iFåen uncertainty All cendes com	meanservement calculat associ within this certif	S according calibration are per ACLASS cortificant # AC-118 one have been calculated per caratime request, reported constitu- ication refere only to density of Alfornial Any must affactors nuclearing a calibration toternal has exp nuclearing a calibration toternal has exp	um statements do not sole into account nay cause the calibration here to drift : Word	e wicersawey or means	wement. we the	
	This certificate i	hall not be reproduced except in Jull, wations written consent of	Tearrings Service Summons.			
		Approved By: WAYNE GETCHE Service Representative	ELL.			
		Calibration Standar	ds			
NIST Traceable#	Inst. ID#	Description	Model	Cal Date	Date Due	
4837275	15-0048	MULTIFUNCTION CALIBRATOR	5700A	03Feb2011	04May2011	

Figure B15. NI 9229 data acquisition module calibration sheet II

Certificate of Calibration 4976419

Certificate Page 1 of 1

Instrument Identification PO Number: CC-BKAY

Company ID: 600168 NATIONAL RENEWABLE ENERGY LABORATORY

16253 DENVER WEST PARKWAY GOLDEN , CO 80401

Instrument ID: 04171C Manufacturer: NATIONAL INSTRUMENTS Description: 4-CH 100 OHM 24-BIT RTD ANALOG INPUT Accuracy: Mfr. Specifications Model Number: NI 9217 Serial Number: 1494F69

Certificate Information Reason For Service: CALIBRATION Type of Cal: ACCREDITED 17025 As Found Condition: IN TOLERANCE As Left Condition: LEFT AS FOUND

Procedure: NATIONAL INSTRUMENTS CAL EXECUTIVE 3.4

Remarks: Reference attached Calibration Data.

Technician: WAYNE GETCHELL Cal Date 22Mar2011 Cal Due Date: 22Mar2012 Interval: 12 MONTHS Temperature: 23.0 C Humidity: 47.0 %

The intriment on this contribution less here collibrated agreent standards meetide in the National harmine of Standards and Technology (NIST) or other recognized sational metrology institute, derived from onto type measurements, or compared to institutable or internationally recognized connerves standards.

A test internation mather (T.U.R.) of 4.1 [K-2, approx. 105% Contribution Level] was maintained unders adversate started. Teletroine Service Johntons in regimered to ISO 9001.2000. Lab Operations must divergencessente of

ANSIMESL Z540-1-1994 (R2002), 15D 10012/2003, 10CFR30 AppaR, and 10CFR21.

ISO/IEC 17025-2003 accordined calibrations are per 3CLASS certificate & AC-1187 within the scope for which the tech with a recertified. Blow miceriality incommented calculations have been eabcohied per consumer request, reported condition axioments do not take two account miceriality in a second miceriality and a second miceriality interview and a second miceriality and a second micerial and second micerial and second micerial and second miceriality and a second miceriality and a second micerial and second micerial and second miceriality and a second miceriality and a second miceriality and a second micerial and second mic

This complete shall and be reproduced except in full, without written connent of Tektrowic Service Solutions

		Approved By: WAYNE GE Service Representative	TCHELL		
		Calibration Stan Description	idands Model	Cal Date	Date Due
NIST Traceable#	Inst. ID#		1433-F	26Oct2010	26Oct2011
4587476	15-0020	DECADE RESISTOR	3458A	24May2010	24May201
4176293	A144598	DMM	-2*40°0*1		

2324 Ridgepoint Drive, Suite D • Austin, TX 78754 • Phone: 800-365-0147 • Fax: 512-926-8450

Figure B16. NI 9217 data acquisition module calibration sheet II

Service Solu		CALIBRATION			4976401
				Certifica	ate Page 1 of 1
Company ID: 60	0168	Instrument Identification	umber: CC-BKAY		
	WABLE ENERGY LABO		under, co-broat		
16253 DENVER GOLDEN, CO	WEST PARKWAY 80401				
Instrument ID:	04170C	Mod	iel Number: NI 9205		
	NATIONAL INSTRUMENT 32-CH ±200 MV TO ±10 V	S Ser 16-BIT, 250 KS/S ANALOG I	ial Number: 1496266 INPUT MODULE		
Accuracy: Mfr Sp					
		Certificate Information			
ason For Service:	CALIBRATION	Certificare intormation	Technician:	WAYNE G	ETCHELL
	ACCREDITED 17025		Cal Date	22Mar2011	
Found Condition:			Cal Due Date:		
As Left Condition:	LEFT AS FOUND		Interval:		THS
Procedure:	NATIONAL INSTRUMENT	S CAL EXECUTIVE 3.4	Temperature: Humidity:		
Remarks:	Reference attached Calibration L	ata.	, narrana j		
The intersent on I with	wal motivilogy institutes, derived from ratio	sumineds traceable to the National Institute type measurements, or compared to wattoned 4:1 [K-2, appear, 95% Confidence Level] va	y or internationally recognized core	umatu standords.	ied.
		s registered to ISO 9001:2008. Lab Operation 340-1-1994 (R2002), ISO 10012:2003, 10CF1			
		Sen-1-1999 (Remotel, this instruction, inc. et		scontinut	
	ANSINCSL	vis ore ner ACLASS certificate 8 AC-1387 with			DEMONSTRATION (
When uncertainly i	ANSUNCSE. ISO/IEC 17025-2005 accredited calibrati waturement calculations have been calcula	nas are per ACLASS corrificate 8 AC-1382 nit ted per customar tequent, reported condition : tamis) calibrated. Are number of factors may instrument's calibration interval factors may	uniemeny do nor take into account cause die cultivation item to drift o		
When uncertainty i	ANSUNCSE. ISOUTEC 17025-2005 nevertheed calibrati neuroneneen calculations have been calcula und within data certification relate only of	ted per customer request, reported condition:	stationensi do not take into vección canno dia cultibration item to drift v l.		
When uncertainty i	ANSUNCSE. ISO/IEC 17025-2005 nevvedired calibration instrumenter coloniation have been calend and within this constitution where only or This constitution ideal has be reproduce	ted per customer request, reported condition : temisi calibrated, dec number of factors may instrument's calibration internal kan expired	stationensi do not take into vección canno dia cultibration item to drift v l.		
When uncertainty i	ANSUNCSE. ISO/IEC 17025-2005 nevvedired calibration instrumenter coloniation have been calend and within this constitution where only or This constitution ideal has be reproduce	nd per customer request, reported confirms tamp) atilband, day number of hears mu- naturenty is culturated unarraid has expired a cooper to tell, withour writeen consent of Tak Approved By: WAYNE GETCHELL	stationensi do not take into vección canno dia cultibration item to drift v l.		
Илен инсетиалу 1	ANSUNCSEA ISO/IEC 17025-2005 recordited calibrati waturenees enfortuniour have been calend and within this certification relate only in This certificate shall not be reproduce 1	Ind per customer request, reported condition tamps allibrated, day numbers functions and autometry collamates tamperal has reported a creeper to full, withour written consent of Tok Approved By: WAYNE GETCHELL Service Representative	stationensi do not take into vección canno dia cultibration item to drift v l.		

2324 Ridgepoint Drive, Suite D • Austin, TX 78754 • Phone: 800-365-0147 • Fax: 512-926-8450

Figure B17. NI 9205 data acquisition module calibration sheet II