
Power PMAC IDE

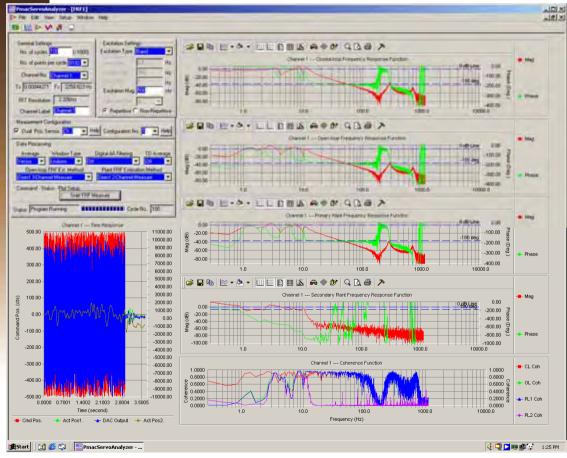
Typical Screen for Integrated Development Environment (IDE)

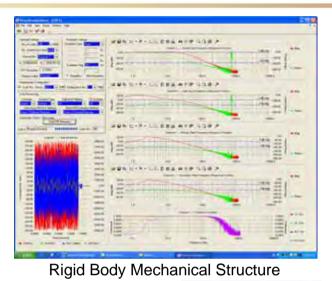
Power PMAC IDE Hardware Setup

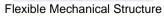
Intuitive and Simple Step-by-Step procedures

PowerPMAC (IPAddress 10.34.9.232) Hardware				Motor Sp	ecification			
- ACC-24E2A - Board 1 - ACC-24E2A - Board 2	Select Motor				-		-	-
- ACC-24E2A - Board 2	Manufacturer	Shinano	.*	Part Numb	Her 1234		-	Dele
Ampillier (Step 1) Motor (Step 2)	Motorinfo			P	ower			
Feddback (Step 3)	Manufacturer	2van			(atoV) seat	24		
Hardware Interface (Step 4) Safety (Step 5)	'Fat Number	TEM.		0	net. Current (Amp)		Plan Curren Fisis Curren Fisis Curren	1
Tune (Step 6)				Pr	sak Current (Amp)	5		Upd
Home (Step 7) Test and set the mator (Step 8)				n	ne Allowed (Sec)	2		1
Contraction of the second s	Motor Details			8	uit in Encoder Type			
	E liner	Drushless	•		Absours	Ex annual a		-
	Notinal RPM	3000	_		esolution (Counts)	None Resolver	EW THU	Aco
	Max RP18	5000				Pulse & Direction	ie ar	
				4	HalPeser	Snusoidal		
	Motor Windings De	tala				BINARY Analog		
	inductance (mh)	1.18				SPI SSI		
	Resistance (phwa)	22				EnDet Hoerphase		
	Pole Par Number	2				Sigma-li Sigma-li		
	C Deta Windeg					Tamagawa Panasonic		
						Mitutoyo kawasaki		
							-	
						1		
	1							
	cc Previoue						\	33.
and a second second second							\	
Dutput PMAC Error Setup Messages								
5/7/2009 .9:27 AM - 10:34 9:232, Module - Set	ap Motor ; eterrors							
-g0/7 -c0-0+00018 -m0-0##00000							\	

Only allows possible configurations to be displayed


Database structure for previously used hardware or resource library




Dynamic Servo Analyzer for Turbo & Power PMAC

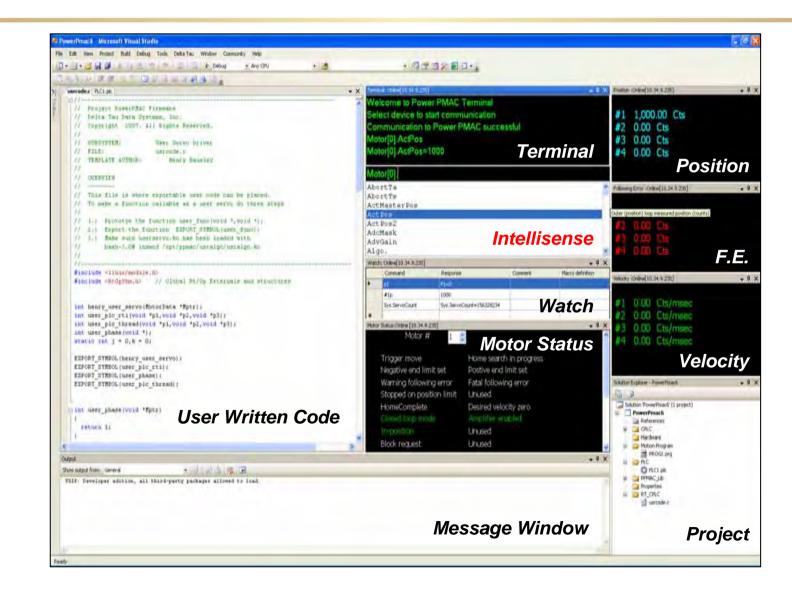
Bode Plot generated for system identification by PMAC Dynamic Servo Analyzer for a **Flexible** or **Rigid** body mechanical structure.

- 1. The Bode Plot is generated by using a selectable white noise or other excitation.
- 2. Bode plot data is used to derive the mechanical transfer function by non-linear curve fitting.
- 3. Final step derives an automatically generated PMAC servo algorithm for the mechanical structure.

- Ability to mix all variable and data types freely
- Over 24 mathematical functions (e.g. sin, sqrt, cbrt, exp, abs)
- 12 math/logic operators (+, ,* ,/ ,%, &, |, ^, >>, <<, ++, --)
- 12 assignment operators (including delayed synchronous)
- Array access to any numbered variable type
- Vector and 2D matrix operations (e.g. inv, solve) (new!)
- 8 conditional comparators (==, !=, >, <=, <, >=, ~, !~)
- Logical structures: while, do..while, if, else, switch
- Subroutines in motion and PLC programs: gosub, callsub, call
 - Callsub (in same program) and call (to separate program) permit local variables in subroutines (true argument pass and return)
 - Argument passing thru "G-code" letter/number format supported

Power PMAC Built-In Data Structures

- Main technique for user access to Power PMAC registers
 - Will largely replace I and M-variable use
 - For hardware and software registers, control and status elements
 - Key setup elements saved to flash memory (like I-variables)
 - Accessible from Script & C programs, on-line commands
- Major structures pre-defined:
 - Sys, Motor[]., Coord[]., Gaten[].Chan[]., CompTable[]. etc.
 - Indexable for easy program access
 - e.g.: Motor[Num].JogSpeed=133.3333
 - Note that index numbers start at 0 (C convention)!
- User can substitute own name for structure element
 - e.g.: #define M2Vj Motor[2].JogSpeed
- User can define M-variable to any structure element


Running C/C++ Code on Power PMAC

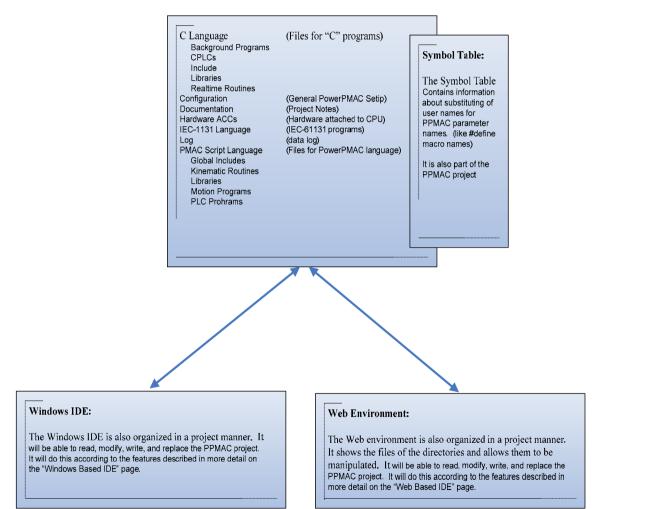
- GNU public-domain cross-compiler built into Power PMAC IDE
- Advanced editing/debugging features in IDE
- Code can be for both real-time (e.g. servo) and non-real-time (e.g. PLC) tasks
- Can use automatically generated C code: e.g.:
 - IEC-1131 graphical programming for PLCs
 - MATLAB/Simulink Real Time Workshop[™] for servos (*planned*)
- Supplied header files give access to Power PMAC data structures through shared-memory interface
 - Structure names in C are case-sensitive (unlike in Script)
- Supplied API gives access to Power PMAC function calls

IDE stands for Integrated Development Environment

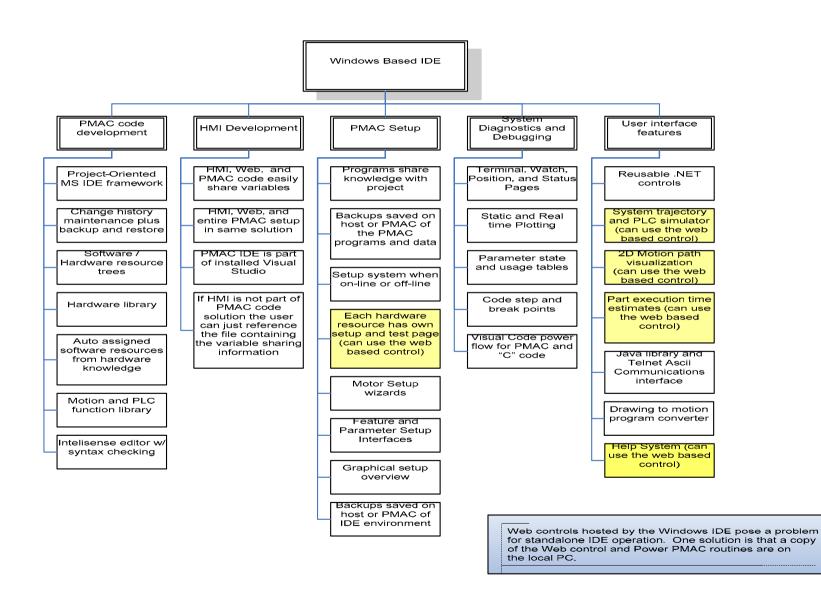
Power PMAC PLC Program Enhancements

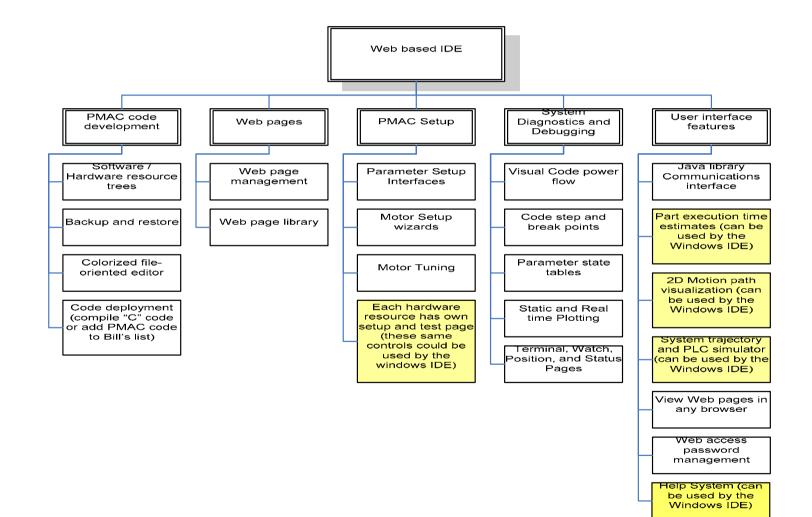
- Expanded math and logic capabilities of Power PMAC Script
- Subroutine and subprogram calls added
 - Local variables permit true argument passing
- Ability to command axis motion directly
 - RAPID-mode point-to-point or triggered moves
 - Can break into ongoing move at any point
 - Program execution does not pause until move over (unlike motion programs)
- Improved debugging features
 - Automatic cycle counters can be put on instructions
 - Breakpoint capability (on specified cycle count)
 - Single-step capability

• Powered by VS 2008


- Full featured Windows-based system
- Limited featured web-based system
- Familiar environment for those who already program
- Easy to use for non-programmers
- Modular re-usable importable PMAC functions

IDE components available as customer


Power PMAC Project

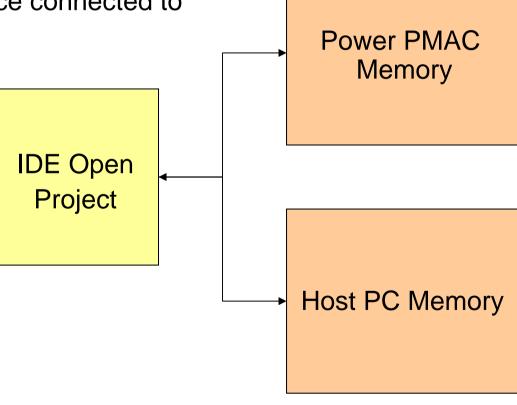


Windows IDE Overview

Web IDE Overview

Power PMAC Project Integration

The Power PMAC project shows in the MS IDE as just another programming language.


New Project					? ×
Project types:		Templates:			000 5-5-
De Power PM	AC	Delta Tau installed ter	nplates		
		Power PMAC Project My Templates Search Online Templates			
		wing direct manipulation of the dat	abase objects and data		
Name:	Project1				
Location:	C:\Documents	and Settings\brad\My Documents\	Visual Studio 2005\Projects	•	Browse
Solution Name:	Project1		Create directory I	for solution	
				ОК	Cancel

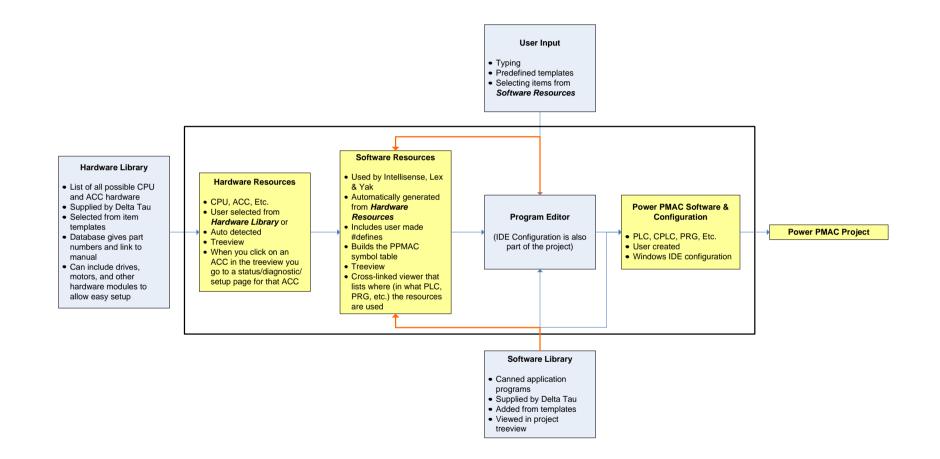
Project Location

 Project data can be on the PC, in the Power PMAC, or in a memory device connected to either.

File Templates

Add files from different software templates, which add structures to the active data base.

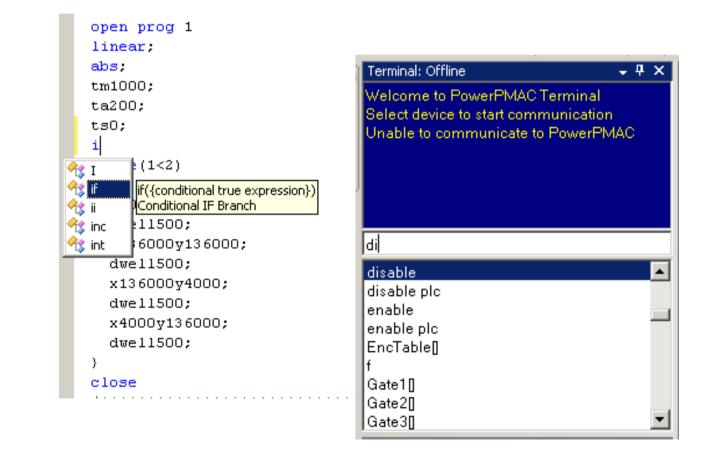
Add New Item	- Thrust Tube Dei	ma(192.158.0.200)	-	? ×
Categories;		Templates:		00 0-0- 0-0- 0-0-
Backgrour Hardware Motion Pro- Script PLC	ogram	Visual Studio installed templates Image: PLC My Templates Image: Search Online Templates		
Power PMAC F	PLC Template			
<u>N</u> ame:	plc2.plc		_	
			Add	Cancel


Hardware Templates

Add hardware from different hardware templates, which add structures to the active data base.

New Project			? ×
Project types:		Templates:	20 EE
Applic Starte Hardware Axis I I I I/O Ir Fieldt	am Templates ation Examples er Kits Module Interface nterface bus Interface	Power PMAC installed templates PPMAC CPU ACC24E2A ACC24E25 ACC24E ACC51E ACC65E	2 ACC11E
Name:	pty solution containin Solution1	The biology	
Location	C:\Documents	and Settings\brad\My Documents\Visual Studio 2005\Projects	· Browse
Eupton)	Cheate daw 36 Sciller (Mage	ution 🔄 🗹 Create predery for sour	27
			OK Cancel

Power PMAC IDE Database



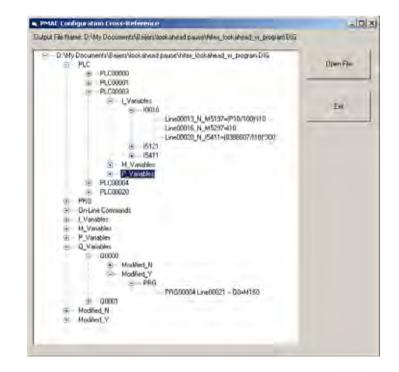
Why have a database?

A Database gives the ability of intellisense and Lex and Yac syntax parsing.

Why have a database?

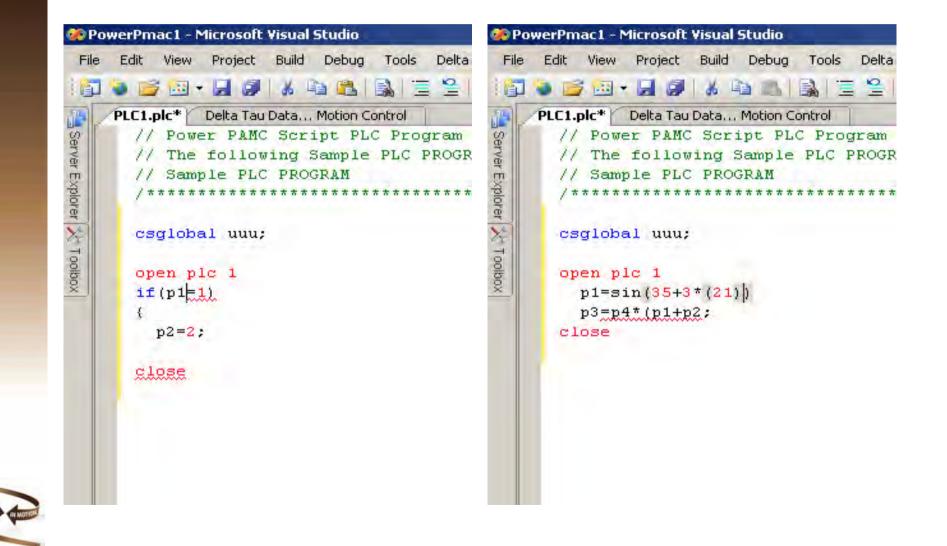
A Database gives the ability of integrated help.

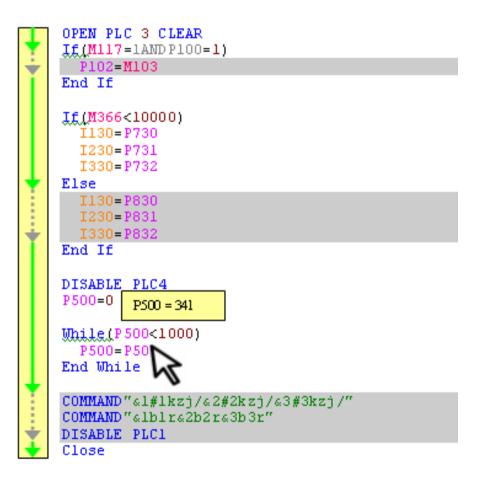
ind [Next
s - Setup Elements	4	Name		Value	Undo
otor		Motor[2].Jo	gTa	-10.	*
Motor[0]		Motor[2].Jo	gTs	-50	*
Motor[1] Motor[2]		Motor[2].Jo	gSpeed	200	*
Setup Elements		Motor[2].Pr	ogJogPos	0	*
Functionality		Motor[2].Jo	gOffset	O	*
- Addressing - Scale Factor		Motor[2].Ho	omeVel	10	*
- Safety Limit		Motor[2].Ho	omeOffset	0	*
Basic Motion General Commutation Trajectory Servo Loop Motor[3] Motor[4]		Description Range	Floating point		
Motor[5]		Units) or msec^2 / motor unit (if <	(U)
Motor[6]	-	Default	-10(=0.1 mot	or unit / mesc^2)	



Why have a database?

A Database gives the ability of resource tracking and mapping.


Pre	gram	Variable	Location	Modified	Program Line
PLC	0	CMD	59	N	CMD*#4J/
FLC:	0	CMD.	79	11	CMD°#4J **
PLC:	0	GMD.	106	N	CMD*#4.1**
PLC	U	UCTU)	19	N	6311=100*8389608/10
PLC	0	0010	125	N	M5397=((P173*110)/40)*P80
PLC:	7	10010	tñ	N	M5097=H11
PLC	3	10010	- 20	- 11	15411=(8389607/110)*300
PLC:	20	P0021	7	8	P21=1
PLC-	20	P1013	30	N	IF(P1013=0)
PRG	1	M0001	15	- V	M1=-4
PRG	1	M0001	12		M1==5
PRG	1	MOCOG	7419	N	N1205G1X(M24878:58) V(M3+1060.73)
PRG	1	M0003	2421	- N	N1206G17(M2+852,55)Y(M3+1057-59
PRG	1	MOOD3	2423	N	N1207G1X(M2+823 5)7(M3+1052-91)
PRG	1	M0003	2425	n	N1208G13(M2+793,84)Y(M3+1050.75)
PRG	1000	10215	16	7	1715-1717
PRG	1000	10215		- V	1215=1217
PRG	1000	.10217	15	Y .	/217=(0.2/P1062)*P201
PBG	1000	6217	15	- N	1215=1217
PRG	1001	P1641	35	N	WHILE(P1D41#4)WAIT
PRG	1001	P1076	4	- 8	P1076=ABS(P53-P5)
PRG	1001	P10/6	5	N	IF(R10/6=160)
	1001	P1076	5	N	P1076=360-P1076
PRIS	1001	P1076	ñ	1	P1076=360-P1076
PRG	1001	P1076	ō	15	(F(P)076<2)


Editor Error and Bracket Matching

Power-flow debugging

PMAC script language allows sophisticated breakpoints for debugging program logic and Power-flow visualization for debugging machine problems.

Setup & Diagnostics

Combined function of setup and diagnostic screens to allow immediate testing of the software configuration.

Form1				
Number	Туре	pEnc	cEnc1	MaxDelt
1	1	Gate1(4).Chan(0).PhaseCapt.a	Sys.pushm	0
2	1	Gate1[4].Chan[1].PhaseCapt.a	Sys.pushm	0
3	1	Gate1[4].Chan[2].PhaseCapt.a	Sys.pushm	0
4	1	Gate1[4].Chan[3].PhaseCapt.a	Sys.pushm	0
	m: ACC518		ne ADCA vs. ADCB lissajo	u
Raw data ho A to D offse A to D bias	m: ADC516 b 0.0 0.0 mm: Gate3 Counts: (bits)	Ch 1 14700.00 12700.00 10700.00	lissajo	

Hardware Testing

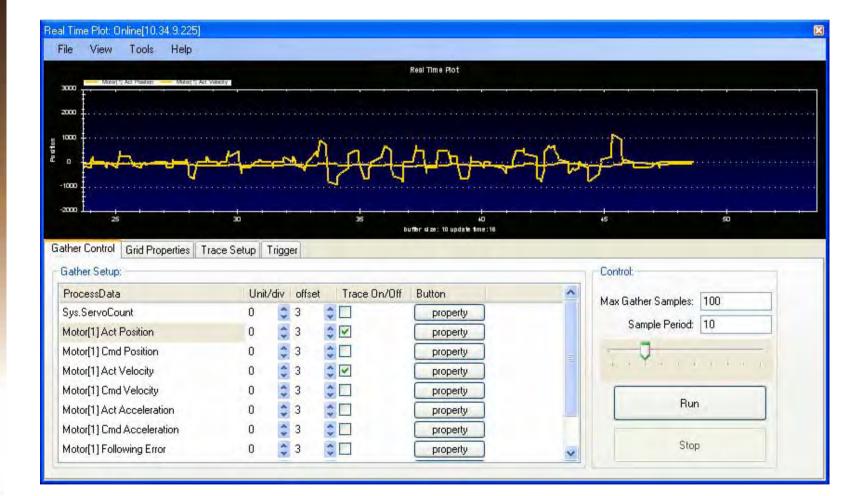
Each hardware interface has a test page which does not rely on software in Power PMAC to function.

	Find Command DAC	Next		
	Name	Command	Value	1
Monitor	PwmCtrl	Gate1[4].PwmCtrl	\$197f0f	
	🖃 chan[0]			
-	EncCtrl	Gate1[4].chan[0].EncCtrl	x4 quadrature decode CCW	•
Setup	Equ1Ena	Gate1[4].chan[0].Equ1Ena	x4 quadrature decode CCW //	~
	CaptCtrl	Gate1[4].chan[0].CaptCtrl	Not used	
	CaptFlagSel	Gate1(4).chan(0).CaptFlagSel	Not used x6 hall-format decode CW*	
	GatedIndexSel	Gate1[4].chan[0].GatedIndexSel	MLDT pulse timer control	

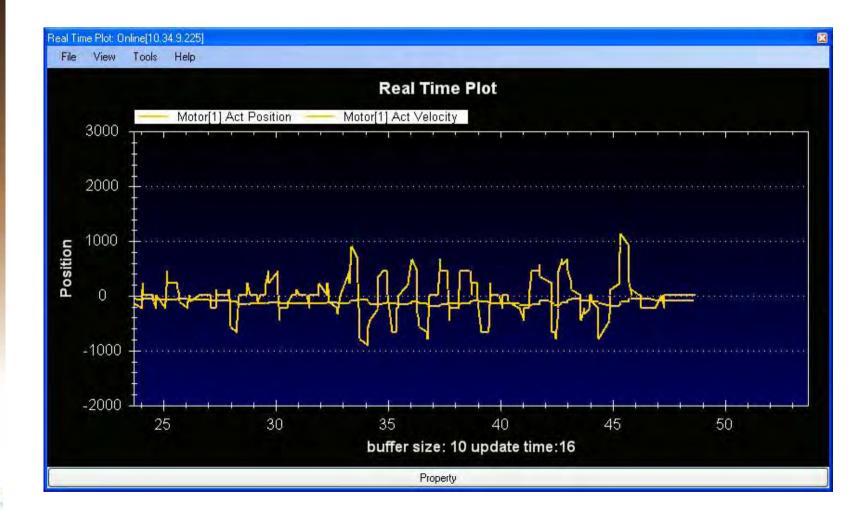
Acc24E2A

	Channel 1- Chan[0]	Channel 1- Chan[0]			
	Output (Volt)	Compare	Encoder	Flag	
Monitor	A 0	A 52000	Count 16777211 R	Fault	介
	DAC	B 20000	Capture 16776611	Plus Limit	Ŷ
				Neg Limit	Ŷ
Setup	B 0	INC 10000	EncErr 🕒	Home	Ŷ
	AENA 🔳	EQU 1 1	Halls ပ႐ို v႐ို w႐ို T႐ို	User	î
	AENA 👃	EQU 1	Halls ပ႐ို V႐ို W႐ို T႐ို	User	

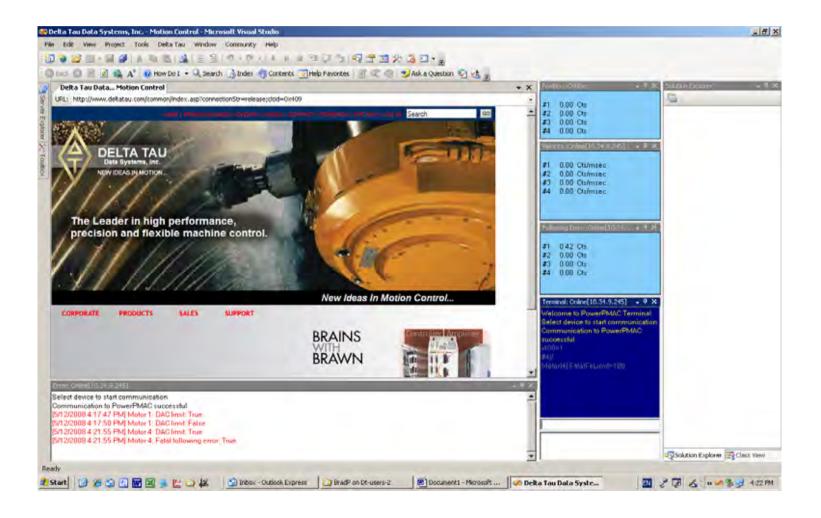
Static Plotting


Step 1 Possible Data Sources: Common Detail	Step2 Data To Sys.Ser Motor[1	Sample: Pr	ep3 ocess Data: 1otor[1] Act Pos	Motor[1]A	Plot:Left Axis ct Position	•	
Motor1 Motor2 Motor3 Motor4	Motor[1 Motor[1	Plot: Online[10.34.9.225] File View Tools Help Step 1 Possible Data Sources: Common Detail P Sys Mater		Step2 Data To Sample: Sys.ServoCount Motor[1].ActPos Motor[1].igcmd	**	Step3 Process Data: Motor[1] Act Position Motor[1] Cmd Position Motor[1] Cmd Velocity Motor[1] Cmd Velocity Motor[1] Cmd Velocity Motor[1] Cmd Aceleration Motor[1] Following Error Motor[1] Following Error Motor[1] Servo Cmd Dut	Step4 Items To Plot.Left Axis Motor[1] Act Position Items To Plot.Bight Ax Items To Plot.Bight Ax Motor[1] Act Velocity >>
WINTER		Control:		Max Gather Samples: 100 Sample Period: 10 Gather Data		Scale Factor = 1 Offset = 0 Ferrolish = (0/dl) Motor (1) ArctFice a	Items To Plot Horizon / >>> Sys.ServoEount <





Power PMAC Task Manager


Phase Interrupt	Frequency 8.895 Khz	Calculation Time 1.200 usec	PeakLoad 16.744 usec	
Servo Interrupt Real Time Interrupt		25.052 usec 50,558 usec	48.021 usec 82.063 usec	
Buffer Overview —				
Buffer	Memory Used			
Details				

	PMAC Tasks PMAC PLCs	())	
CPU Information Power PMAC Type	PWR PMAC UMAC	CPU Frequency	533.020 MHz
Firmware Version	0.900000	Firmware Date	Nov 20 2008
Total Memory	250 MB	Free Memory	150 MB
PMAC Memory Overv	iew		
Buffer	Total Memory	Used Mem	iory
Program Buffer Table Buffer User Buffer	O MB O MB O MB	0 Bytes 0 MB 0 MB	
PMAC Processes Ove			Y
Title	No Of Processes		
PMAC Services PMAC Processes OS Resources	2 5 34		

Error Window

Error Window Zoom

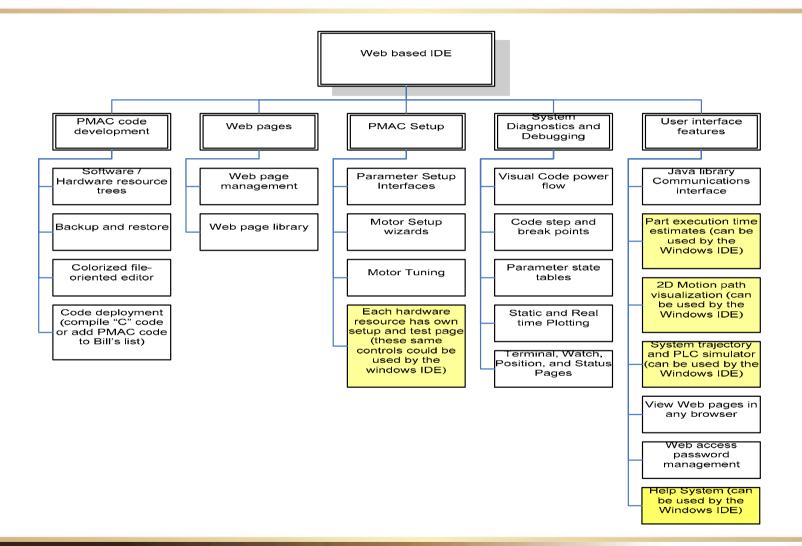
NIN

🔄 🛐 Inbox - Outlook Express

Error: Online[10,34,9.245]

Select device to start communication Communication to PowerPMAC successful [5/12/2008 4:17:47 PM] Motor 1: DAC limit: True [5/12/2008 4:17:50 PM] Motor 1: DAC limit: False [5/12/2008 4:21:55 PM] Motor 4: DAC limit: True [5/12/2008 4:21:55 PM] Motor 4: Fatal following error: True

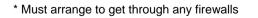
Ready

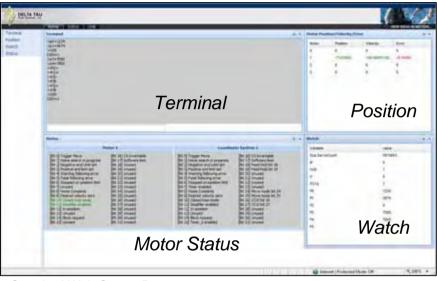

First Release IDE (May 2009)

- New Project (project templates)
- New File (Item templates)
- YAC and Lex Parser (Intelisense in editor)
- PPMAC Database (Intelisense for controls)
- Upload/Download Program
- User-Written Servo/Phase Setup
- Open/Close/Save/Save As Files/Project
- Recent Files/ Projects
- Activate Project
- Exclude File From Download
- Communication Setup and Status
- PPMAC Database Viewer

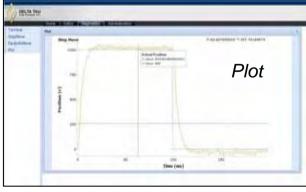
- Terminal & Watch with intellisense
- Motor, CS, Global status
- Hardware Library Explorer
- Basic Static and RT Plotting
- Basic Tuning
- Encoder Setup
- Backup¥Restore
- Program/PLC/CPLC Status and View
- CPLC compile, load, run
- CPU Resource Setup/Status
- I/O, Servo, Feedback ACC Board Setup/Status
- IDE Installation and Operation in MS Vista & XP

Web IDE Overview



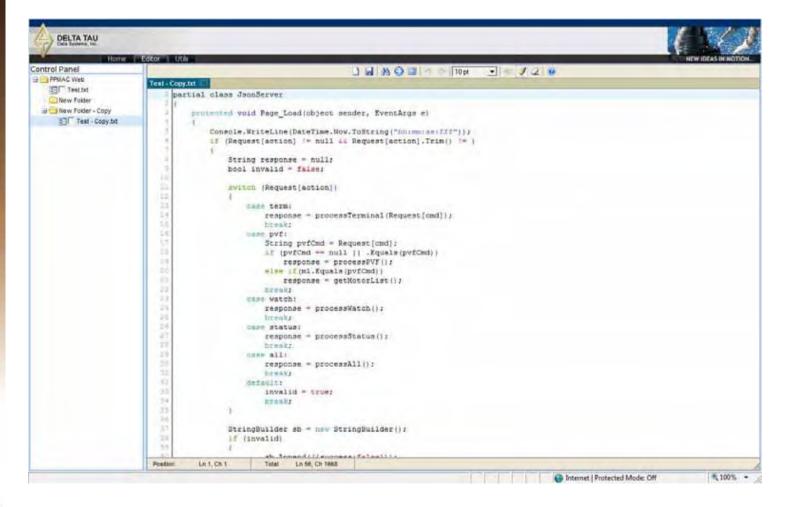


Power PMAC Embedded Web Server



- Web Server program is written in C#.asp.net and is platform independent
- Every Power PMAC has a dedicated IP Address
- Any computer with a **web browser** can communicate with Power PMAC
 - Laptop with direct connection
 - Over company network*
 - From anywhere in the world over the Internet*
- **HTTP** and FTP supported
- Many standard windows are built in:
 - Terminal, position, watch
 - Backup and restore
 - Tuning and plotting
 - Status reporting
- **Remote upload/download** of firmware, programs and parameters
- User can add his own web application for easy MMI/HMI implementation
- PMAC Library is accessible using webservice

Standard Web Server Page


Web Server Plot Screen

Webserver Program Editor


Webserver Step Interface

-	Home Editor Degnostics Administrat	ton	NEW IDEAS IN MOTIO
Ferninal StepMove NacibolicMove Not	Step Nove Setup	×	
	Select the settings for the Step Move		
	Motor: 1		
	Move Size: 1000		
	Move Time: 100		
	Kalt:		
	Single: R		
	Submit (Cancel		
	Lance Lance		

Webserver Step Response

Webserver Change IP

Change IP	Change IP Address X	NOW IDEAS IN INDIV
Change IP :	Change IF Address I IF Address I 192.168.0.205 Gateway: 192.168.0.205 Mask: 255.255.255.0 Apply I Immediately: Test: I Save Cancel	

