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Series

First . . . a review of what we have done so far:

1 We examined series of constants and learned that we can say
everything there is to say about geometric and telescoping
series.

2 We developed tests for convergence of series of constants.

3 We considered power series, derived formulas and other tricks
for finding them, and know them for a few functions.
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1. Geometric and telescoping series

The geometric series is

∞∑
n=0

anr
n = a + ar + ar2 + ar3 + · · · =

a

1− r

provided |r | < 1 (when |r | ≥ 1 the series diverges).

We often use partial fractions to detect telescoping series, for
which we can calculate explicitly the partial sums Sn.
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2. Tests for convergence of series of constants

1 Fundamental divergence test (nth term must go to zero for
convergence to be possible)

2 Integral test

3 Comparison and limit comparison tests

4 Ratio test

5 Root test

6 Alternating series test
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3. Power series

f (x) = a0 + a1x + a2x
2 + a3x

3 + · · · where an =
f (n)(0)

n!

or

f (x) =
∞∑
n=0

f (n)(0)

n!
xn

and we know the series for ex , sin x and
1

1− x
.
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Convergence of power series

Before we get too excited about finding series, let’s make sure
that, at the very least, the series converge.

Later, we’ll deal with the question of whether they converge to the
function we expect. But for now, we’ll assume that if they
converge, they converge to the function they “came from”.

(Strictly speaking, this is not always true — but it is true for a
large class of functions, which includes nearly all the ones
encountered in basic science and mathematics. This fact was not
fully appreciated until the early part of the twentieth century.)

Fortunately, most of the question of whether power series converge
is answered fairly directly by the ratio test.
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Ratio test review

Recall that for a series of constants
∞∑
n=0

bn, we have that the series

converges (absolutely) if

lim
n→∞

∣∣∣∣bn+1

bn

∣∣∣∣
is less than one, diverges if the limit is greater than one, and the
test is indeterminate if the limit equals one.

To use the ratio test on power series, just leave the x there and
calculate the limit for each value of x . This will give an inequality
that x must satisfy in order for the series to converge.
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For the exponential function

The power series for ex is

ex = 1 + x +
x2

2!
+

x3

3!
+

x4

4!
+ · · · =

∞∑
n=0

xn

n!

Therefore

lim
n→∞

∣∣∣∣bn+1

bn

∣∣∣∣ = lim
n→∞

∣∣∣∣ xn+1

(n + 1)!

n!

xn

∣∣∣∣ = lim
n→∞

|x |
n + 1

= 0.

No matter what x is, the limit is 0, which is less than 1. So the
series for the exponential function converges for all values of x .

Your turn!

For which values of x does the series for f (x) = sin x converge?
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A more interesting example:

For the series f (x) =
∞∑
n=1

xn

n
, This time the ratio test gives

lim
n→∞

∣∣∣∣ xn+1

n + 1

n

xn

∣∣∣∣ = lim
n→∞

|x | n

n + 1
= |x |.

So the series converges if |x | < 1 and diverges if |x | > 1
(reminiscent of the geometric series).

It remains to check the endpoints x = 1 and x = −1

For x = 1 the series is
∞∑
n=1

1

n
, the (divergent) harmonic series.

For x = −1 the series is
∞∑
n=1

(−1)n

n
, the alternating harmonic

series, which we know to be (conditionally) convergent.

So
∞∑
n=1

xn

n
converges if −1 ≤ x < 1 and diverges otherwise.
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OK, your turn. . .

For which values of x does the series
∞∑
n=1

(2x)n

n2
converge?

A. −1 < x < 1 B. −2 < x < 2 C. −1

2
≤ x <

1

2

D. −2 ≤ x ≤ 2 E. −1

2
≤ x ≤ 1

2

For which values of x does the series
∞∑
n=1

nxn converge?

A. −1 < x < 1 B. −1 ≤ x < 1 C. −1 < x ≤ 1

D. −1 ≤ x ≤ 1 E. 0 ≤ x < 1
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From these examples. . .

. . . it should be apparent that power series converge for values of x
in an interval that is centered at zero, i.e., an interval of the form
[−a, a], (−a, a], [−a, a) or (−a, a) (where a might be either zero or
infinity).

The interval is called the interval of convergence and the number a
is called the radius of convergence.
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Let’s go back to finding series for functions

There are two ways:

The standard way:

Use the formula an =
f (n)(0)

n!
to find the coefficients. We’ve found

series for ex and sin x this way:

ex = 1 + x +
x2

2!
+

x3

3!
+

x4

4!
+ · · · =

∞∑
n=0

xn

n!

and

sin x = x − x3

3!
+

x5

5!
− x7

7!
+ · · · =

∞∑
n=0

(−1)nx2n+1

(2n + 1)!

We could calculate other series this way (and sometimes we do
have to resort to this), but the other way is more fun:
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The other way

Magic tricks: Start from known series and use algebraic and/or
analytic manipulation to get others:

Substitute x2 for x everywhere in the series for ex to get:

ex
2

= 1 + [x2] +
[x2]2

2!
+

[x2]3

3!
+

[x2]4

4!
+ · · ·

= 1 + x2 +
x4

2!
+

x6

3!
+

x8

4!
+ · · ·

=
∞∑
n=0

x2n

n!
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Another example

Take the derivative of the series for sin x to get:

cos x =
d

dx
sin x =

d

dx

(
x − x3

3!
+

x5

5!
− x7

7!
+ · · ·

)
= 1− 3x2

3!
+

5x4

5!
− 7x6

7!
+ · · ·

= 1− x2

2!
+

x4

4!
− x6

6!
+ · · ·

=
∞∑
n=0

(−1)nx2n

(2n)!
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Yet another example

Integrate both sides of the geometric series from 0 to x to get:

ˆ x

0

1

1− t
dt =

ˆ x

0
(1 + t + t2 + t3 + · · · ) dt

− ln(1− x) = x +
x2

2
+

x3

3
+

x4

4
+ · · ·

Negate both sides and replace x by −x everywhere to get:

ln(1 + x) = x − x2

2
+

x3

3
− x4

4
+ · · · =

∞∑
n=1

(−1)n+1xn

n

Put x = 1 to learn that the fourth series from before sums to ln 2.
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Start from the geometric series again:

and substitute −x2 for x everywhere it appears to get:

1

1 + x2
= 1− x2 + x4 − x6 + x8 − x10 + · · · =

∞∑
n=0

(−1)n

x

2n

Now integrate both sides from 0 to x to get:

arctan x = x − x3

3
+

x5

5
− x7

7
+

x9

9
− x11

11
+ · · · =

∞∑
n=0

(−1)nx2n+1

2n + 1
.

Put x = 1 to show that the first series from before sums to π/4.

We still have the challenge of showing that
∞∑
n=1

1

n2
=
π2

6
.
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Applications of series I: Limits at x = 0.

We know for other reasons that lim
x→0

sin x

x
= 1.

But we could prove this using series:

lim
x→0

sin x

x
= lim

x→0

1

x

∞∑
n=0

(−1)nx2n+1

(2n + 1)!
= lim

x→0

∞∑
n=0

(−1)nx2n

(2n + 1)!

= lim
x→0

(
1− x2

3!
+

x4

5!
− x6

7!
+ · · ·

)
= 1 + 0 + 0 + · · · = 1

You can do this for complicated limits at 0 — substitute the series
for the functions and do algebra.

Calculate the limit: lim
x→0

x − sin x

1− e−x3

A. 0 B.
1

6
C. 1 D.

1

12
E. does not exist
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Applications of series II: Approximate evaluation of
integrals

Many integrals that cannot be evaluated in closed form (i.e., for
which no elementary anti-derivative exists) can be approximated
using series (and we can even estimate how far off the
approximations are).

Calculate

ˆ 1

0
e−x

2
dx to the nearest 0.001.

We begin by substituting −x2 for x in the known series for ex , and
then integrating it. This will give us a numerical series that
converges to the answer:

ˆ 1

0
e−x

2
dx =

ˆ 1

0
1−x2+

x4

2!
−x6

3!
+· · · dx = 1−1

3
+

1

5 · 2!
− 1

7 · 3!
+· · ·
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Error estimates

So far we have

ˆ 1

0
e−x

2
dx = 1− 1

3
+

1

5 · 2!
− 1

7 · 3!
+ · · ·

The series on the right is alternating, so if we want the error to be
less than 0.001 = 1

1000 , we need to take all the terms before the
first one that is less than that. In other words, which is the first
term with denominator greater than 1000?

Well, 9 · 4! = 216 and 11 · 5! = 1320, so the term
1

11 · 5!
should be

the first omitted term. So we write

ˆ 1

0
e−x

2
dx ≈ 1− 1

3
+

1

5 · 2!
− 1

7 · 3!
+

1

9 · 4!
=

5651

7560
≈ 0.747

(according to Maple, the answer to 5 decimal places is 0.74669).
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Try this:

Which of the following is closest to

ˆ 1

0
cos
√
x dx ?

A. 0.7635 B. 0.5637 C. 0.3567 D. 0.6357 E. 0.6735
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How good are our approximations?

We’ve been associating series with functions and using them to
evaluate limits, integrals and such.

In the integrals we’ve estimated, we’ve been fortunate that the
resulting numerical series were alternating series so the error is easy
to estimate. What happens when the series are not alternating?

We’ll continue to concentrate on questions like:

1 If I use only the first three terms of the series, how big is the
error?

2 How many terms do I need to get the error smaller than
0.0001?
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To get error estimates:

Use a generalization of the Mean Value Theorem for derivatives.

The Mean Value Theorem approach:

Recall the mean-value theorem:

f ′(somewhere between a and b) =
f (b)− f (a)

b − a

Set a = 0 and b = x and get that

f ′(somewhere between 0 and x) =
f (x)− f (0)

x

Rearrange this to get

f (x) = f (0) + f ′(somewhere)x .
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Turn this into an error estimate

Start from
f (x) = f (0) + f ′(somewhere)x .

Conclude that if you know that the absolute value of the derivative
of f is always less than M, then you know that

|f (x)− f (0)| < M|x |.

The derivative form of the error estimate for series is a
generalization of this.
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Lagrange’s form of the remainder

Suppose you write the approximation obtained using the terms up
to xn of the series for f (x) and let the “remainder” (the difference
between the actual value of f (x) and the part of the series you are
using) be Rn(x):

f (x) = f (0)+f ′(0)x+
f ′′(0)

2!
x2+

f ′′′(0)

3!
x3+· · ·+ f (n)(0)

n!
xn+Rn(x)

Lagrange’s form of the remainder looks a lot like what would be
the next term of the series, except the n + 1st derivative is
evaluated at an unknown point between 0 and x , rather than at 0:

Rn(x) =
f (n+1)(somewhere between 0 and x)

(n + 1)!
xn+1

So if we know bounds on the n + 1st derivative of f , we can bound
the error in the approximation.
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Example: The series for sin x

sin x = x − x3

3!
+

x5

5!
− x7

7!
+ · · ·

If we use the first two (nonzero) terms, we have

sin x = x − x3

3!
+ R4(x)

because the x4 term of the series is zero anyhow.
For f (x) = sin x , the fifth derivative is f ′′′′′(x) = cos x . And we
know that | cos t| < 1 for all t between 0 and x . We can conclude
from this that:

|R4(x)| < |x |
5

5!
.

So for instance, we can conclude that the approximation

sin(1) = 1− 1

6
=

5

6

is accurate to within 1/5! = 1/120 — i.e., to two decimal places.
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Your turn

How accurate is the approximation

√
e = e0.5 ≈ 1 + 0.5 +

0.52

2!
+

0.53

3!
= 1.645833 . . . ?

Now turn the question around —

How many terms of the series do we need to add together to get√
e to 5 decimal places?
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Convergence of series to their functions

Another application of Lagrange’s form of the remainder is to prove
that the series of a function actually converges to the function.

For example

For the series for sin x , we have (since all the derivatives of sin x
are less than or equal to 1 in absolute value for all x):

Rn(x) <

∣∣∣∣ xn+1

(n + 1)!

∣∣∣∣
and for any fixed value of x , this quantity will approach zero as
n→∞. Thus, the remainder becomes arbitrarily small – and zero
in the limit.

So we are now justified in writing sin x =
∞∑
n=0

(−1)nx2n+1

(2n + 1)!
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Shifting the origin — Taylor vs Maclaurin

So far, we’ve been writing all of our series as infinite polynomials
and using values of the function f (x) and its derivatives evaluated
at x = 0. It is possible to change one’s point of view and use
values of the function and derivatives at another point.

A first example — Start with the geometric series:

f (x) =
1

1− x
= 1 + x + x2 + x3 + x4 + · · ·

If we define a new function g(x) = f (x + 1) =
1

1− (x + 1)
= −1

x
then we could write

g(x) = −1

x
= 1 + (x + 1) + (x + 1)2 + (x + 1)3 + (x + 1)4 + · · ·

This expansion is valid for −1 < x + 1 < 1, in other words for
−2 < x < 0.
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Taylor series for g(x) = −1/x expanded at x = −1

By taking derivatives of the function g(x) = −1/x and evaluating
them at x = −1, we will discover that the expansion of g(x) we
have found is the Taylor series for g(x) expanded around −1:

g(x) = g(−1)+
g ′(−1)

1!
(x+1)+

g ′′(−1)

2!
(x+1)2+

g ′′′(−1)

3!
(x+1)3+· · ·

In general, we have the Taylor expansion of f (x) around x = a:

f (x) = f (a) +
f ′(a)

1!
(x − a) +

f ′′(a)

2!
(x − a)2 +

f ′′′(a)

3!
(x − a)3 + · · ·

Note that this specializes to our old friend (which we will now call
the Maclaurin series) when a = 0.
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Reducing Taylor to Maclaurin

Series expansions around points other than zero are useful when
trying to approximate function values for x far from zero, but close
to a different point where much is known about the function.

But note that by defining a new function g(x) = f (x + a), you can
use Maclaurin expansions for g instead of general Taylor
expansions for f .
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Binomial series

An important series that arises in many applications is a
generalization of the binomial theorem:

The binomial theorem

If p is a positive integer, then

(1 + x)p =

p∑
k=0

(p
k

)
xk

where (p
k

)
=

p!

k!(p − k)!

are the binomial coefficients (the numbers in Pascal’s triangle).
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If p is not a positive integer

The same expansion works except it doesn’t stop (i.e., it gives a
series instead of a polynomial) and we need a new definition for(p
k

)
.

(1 + x)p = 1 + px +
p(p − 1)

2!
x2 +

p(p − 1)(p − 2)

3!
x3 + · · ·

For instance, if p = −1,

this gives the alternating harmonic series:

1

1 + x
= 1− x + x2 − x3 + · · ·
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A more involved example: the Maclaurin series for arcsin x

How could we find the series for arcsin x without resorting to the
general formula?

Well,

d

dx
arcsin x =

1√
1− x2

and arcsin(0) = 0

so we have

arcsin x =

ˆ x

0

1√
1− t2

dt

and
1√

1− t2
= (1 + u)−1/2, where u = −t2.
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So we start with the binomial series with p = −1
2 :

1√
1 + u

= 1− u

2
+

(−1
2)(−3

2)

2!
u2 +

(−1
2)(−3

2)(−5
2)

3!
u3 + · · ·

= 1− 1

2
u +

1 · 3
22 · 2!

u2 − 1 · 3 · 5
23 · 3!

u3 +
1 · 3 · 5 · 7

24 · 4!
u4 + · · ·

= 1− 1

2
u +

1 · 3
2 · 4

u2 − 1 · 3 · 5
2 · 4 · 6

u3 +
1 · 3 · 5 · 7
2 · 4 · 6 · 8

u4 + · · ·

= 1 +
∞∑
n=1

(−1)n
1 · 3 · 5 · · · (2n − 1)

2 · 4 · 6 · · · (2n)
un

If we put u = −t2, all the minus signs will cancel and we get:

1√
1− t2

= 1 +
∞∑
n=1

1 · 3 · 5 · · · (2n − 1)

2 · 4 · 6 · · · (2n)
t2n.
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So we can get the series for arcsin x by integrating:

arcsin x =

ˆ x

0

1√
1− t2

dt

=

ˆ x

0

(
1 +

∞∑
n=1

1 · 3 · 5 · · · (2n − 1)

2 · 4 · 6 · · · (2n)
t2n

)
dt

= x +
∞∑
n=1

1 · 3 · 5 · · · (2n − 1)

2 · 4 · 6 · · · (2n)

x2n+1

(2n + 1)

Use that 0!=1 and that 2 · 4 · 6 · · · (2n) = 2n(n!) to rewrite this as

arcsin x =
∞∑
n=0

(2n)!

22n(n!)2
x2n+1

(2n + 1)

Exercise: Determine the interval of convergence of this series.
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A digression: The Fibonacci numbers

Everyone is probably familiar with the famous sequence of
Fibonacci numbers. The idea is that you start with 1 (pair of)
rabbit(s) the zeroth month. The first month you still have 1 pair.
But then in the second month you have 1 + 1 = 2 pairs, the third
you have 1 + 2 = 3 pairs, the fourth, 2 + 3 = 5 pairs, etc. . . . The
pattern is that if you have fn pairs in the nth month, and fn+1

pairs in the n + 1st month, then you will have fn+2 = fn + fn+1

pairs in the n + 2nd month.
The first several terms of the sequence are
thus:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . .

Problem: Is there a general formula for fn ?
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Generating functions

Seeking a formula for the terms of a recursively-defined sequence is
a common problem in many parts of mathematics and science.
And a powerful method for solving such problems involves series —
which in this case are called generating functions for their
sequences.

For the Fibonacci numbers {f0, f1, . . .}, we will simply define a
function F (x) via the series:

F (x) = f0 + f1x + f2x
2 + f3x

3 + · · · = 1 + x + 2x2 + 3x3 + 5x4 + · · ·

Now we have to get the recurrence relation fn+2 = fn+1 + fn into
the mix.
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Using the recurrence relation

To do this, we’ll use the fact that multiplication by x “shifts” the
series for F (x) as follows:

F (x) = f0 + f1x + f2x
2 + f3x

3 + f4x
4 + · · ·

xF (x) = f0x + f1x
2 + f2x

3 + f3x
4 + f4x

5 + · · ·
x2F (x) = f0x

2 + f1x
3 + f2x

4 + f3x
5 + f4x

5 + · · ·

Now, subtract the second two from the first – almost everything
will cancel because of the recurrence relation!
The result is (1− x − x2)F (x) = f0 + (f1 − f0)x . But f0 = f1 = 1,
so we have deduced that

F (x) =
1

1− x − x2
!

What good does this do?
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Find the series. . .

Since F (x) =
1

1− x − x2
is the generating function for the

Fibonacci numbers, if we can find a formula for the coefficients of
the series of F (x), we’ll have a formula for the Fibonacci numbers.

Partial fractions to the rescue!

Factor the denominator of F (x) as 1− x − x2 = (α− x)(β + x),

where α =

√
5− 1

2
and β =

√
5 + 1

2
(We write α and β to avoid

having complicated expressions the whole way along).
Now use partial fractions to write:

F (x) =
1

(α− x)(β + x)
=

1
α+β

α− x
+

1
α+β

β + x

So if we can get the series for
1

α− x
and

1

β + x
we’ll be (almost)

done!

D. DeTurck Math 104 002 2018A: Series 39 / 42



Two geometric series

First,

1

α− x
=

1

α
(

1− x

α

) =
1

α

(
1 +

x

α
+

x2

α2
+

x3

α3
+ · · ·

)
.

And

1

β + x
=

1

β

(
1 +

x

β

) =
1

β

(
1− x

β
+

x2

β2
− x3

β3
+ · · ·

)
.

Now recall that α =

√
5− 1

2
and β =

√
5 + 1

2
Two important

facts about α and β are:

α + β =
√

5 and α =
1

β
.

D. DeTurck Math 104 002 2018A: Series 40 / 42



Therefore,

F (x) =

1
α+β

α− x
+

1
α+β

β + x

=
1√
5

[
1

α

(
1 +

x

α
+

x2

α2
+ · · ·

)
+

1

β

(
1− x

β
+

x2

β2
+ · · ·

)]
=

1√
5

[
(β + β2x + β3x2 + · · · ) + (α− α2x + α3x2 + · · · )

]
=

1√
5

[
(β + α) + (β2 − α2)x + (β3 + α3)x2 + (β4 − β4)x3 + · · ·

]
Therefore we have f0 = 1√

5
(β + α), f1 = 1√

5
(β2 − α2),

f2 = 1√
5

(β3 + α3), f3 = 1√
5

(β4 − α4) and so forth.
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General formula for the Fibonacci numbers

And in general

fn =
1√
5

(
βn+1 + (−1)nαn+1

)
=

1√
5

(√5 + 1

2

)n+1

+ (−1)n

(√
5− 1

2

)n+1
,

which is the general solution for the Fibonacci numbers.

Since

√
5− 1

2
< 1, we have that

fn = O

((√
5 + 1

2

)n)
.
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