

InfineumInsight.com/Learn

Outline

Transmission and market trends

- Hardware overview
- Market overview and market drivers
- Driveline types by region

Automatic transmissions – stepped planetary (AT)

- Hardware components and their impact on ATF
- Testing for ATF
- Service fill specifications
- ATF formulations

Automatic transmissions – dual clutch (DCT)

- Hardware components and their impact on DCTF
- DCTF formulations

Automatic transmissions – continuously variable (CVT)

- Hardware components and their impact on CVTF
- CVTF formulations

Summary

What does a transmission do?

- A transmission adapts the output of the internal combustion engine to the drive wheels
 - Important element in the "feel" of driving for consumers
- Power transmission fluids (PTF) relates to fluids necessary for proper operation of automatic transmissions including: stepped automatic transmissions, dual clutch transmission, continuously variable transmission, etc.
- Automatic transmission fluids (ATF) generally relates specifically to fluids for stepped automatic transmissions

Types of transmissions

Stepped Automatic Transmission (AT)

 Most common automatic transmission that uses a planetary gear set and a torque converter

Continuously Variable Transmission (CVT)

 Automatic transmissions that use variator pulleys with an unlimited number gear ratios

Dual Clutch Transmission (DCT)

Automatic transmissions that use manual gearbox architecture with dual clutches

Automated Manual Transmission (AMT)

 Manual transmissions that use servos to engage clutch and change gears automatically

Electrical Variable Transmission (EVT)

 Combines stepped automatic transmission with electric motor (e.g. Toyota's Hybrid Synergy Drive)

Reduction Transmission (Electric)

 Transmissions used by purely electric vehicles to reduce torque output from electric motors (Nissan Leaf)

Manual Transmission (MT)

Automatic Transmissions Hardware

DCT Pros

STEPPED

Stepped Automatic

+ Torque Capacity

STEPPED AT PROS

+ Fuel Efficiency in 6-speed + applications

+ Launch Feel

- Fuel Efficiency in applications with less than 5-speeds

- Packaging Size

Outer planet gears turn ring gear Large sun gear 'freewheels' Planet carrier Inner planet gears locked in place mesh with and turn outer planet gears Small sun gear turns Input from torque converter inner planet gears

Dual Clutch

+ Torque Capacity

+ Fuel **Efficiency**

+ Shift Feel

+ Can use existing MT manufacturing sites

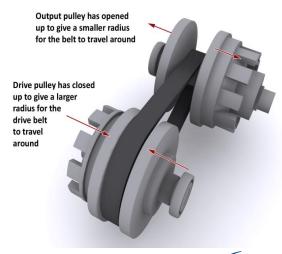
being driven

- Launch feel not as smooth as stepped AT

DCT Cons

Clutch housing connected Dog gear engaged to engine flywheel with first helical gear Inner friction plates engaged **Output shaft** Dog gear engaged with second helical gear but not yet

Continuously Variable


Pros

+ Comfort due to no shifting

+ Acceleration

+ Fuel **Efficiency** - Torque Capacity

- Cannot utilize existing stepped AT manufacturing sites

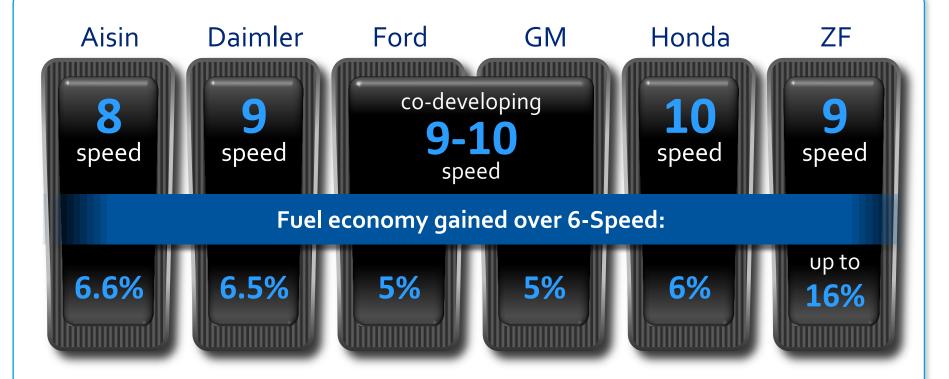
Drivers for Transmission Development

Fuel Economy And Emissions

- Development of CVT, DCT and higher gear ratio spread
- Improvement of friction clutch, pump, seal efficiencies
- Hybrid / Electrification
- Low viscosity fluids

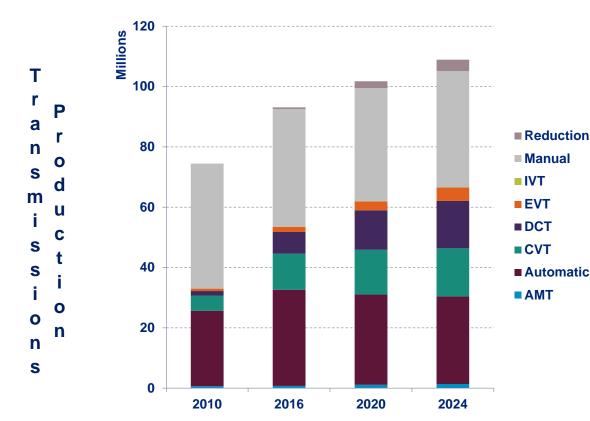
Driving Performance

- Shift Quality/Noise Vibration Harshness (NVH)/Comfort
- Safety/Fun-to-Drive, sporting, dynamic driving style, Adapts to suit your individual driving style


Compact Size And Reduced Weight

- Increased Torque Density
- Smaller Transmissions less fluid

Automatic Transmission Trends **Stepped Automatic Hardware Trends**


- Expanded gear ratios
- Quicker shifts
- More frequent shifts
- Higher temperatures
- Smaller ATF capacity
- Lower oil pressure

- Lighter materials
- New friction plate materials
- Lower friction bearings

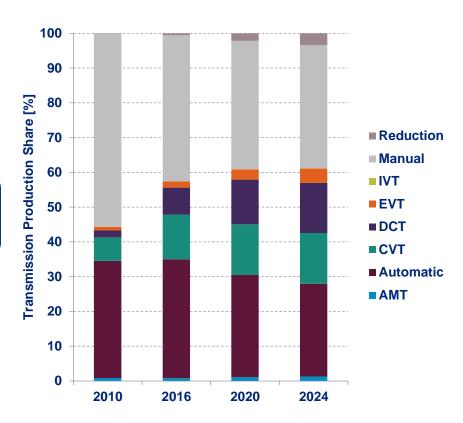
By 2020, 65% of the Stepped Automatic will be 7 speed or higher

Global Transmission Production

 Global Transmission Production is forecasted to grow to 100+ million units in 2020

Global Transmission Production by Type

Stepped Automatic Transmission (AT) production share will slowly decrease to 30% in 2020 from 34% in 2010


Continuously Variable Transmission (CVT) production share will increase to 13% in 2020 from 7% in 2010

Dual Clutch transmission (DCT) production share will increase to 11% in 2020 from 2% in 2010

Electrically Variable Transmission (EVT) production share will remain low, at 3% by 2020

Electric Vehicle Transmission (Reduction) production share will remain very low, at 1% by 2020

Manual transmission (MT) production share will decline by 15% from 2010 to 2020

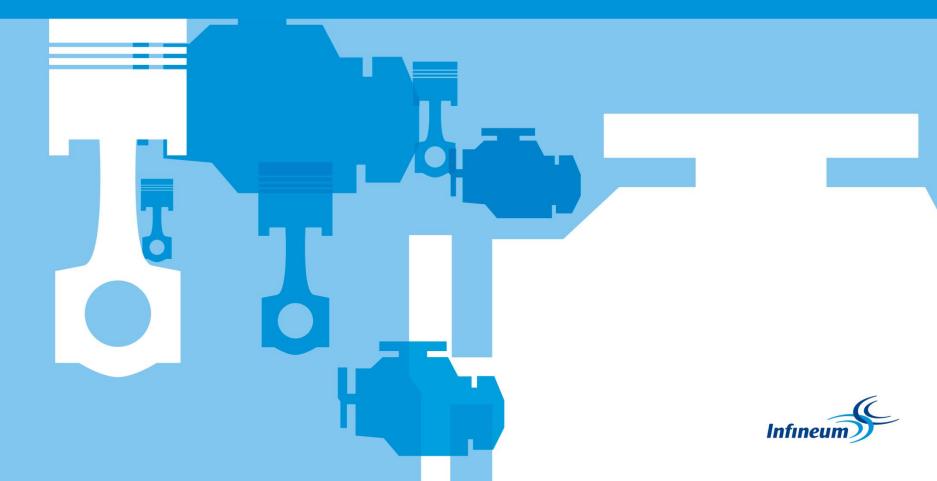
Source: IHS 2017 Transmission Production Forecast

Automatic Transmission Trends Summary

- Automatic transmission products will grow steadily towards 2020
- FE continues to drive hardware changes
- More speeds added, 8-10 speed stepped automatics and DCTs
- Different regional and OEM strategies
- Increase in the number of speeds, including 10 & 11 speeds
- Favoured mainly by NA **OFMs**

- Over 10 million units in 2020 with ~60% Wet clutch DCT
- Favoured by European **OFMs**
- Strong Growth over 13 million units in 2020
- Favoured mainly by Japanese OEMs

DCTs


CVTs

Stepped

Automatic

ATF hardware and performance requirements

Stepped Planetary Automatic

Hardware

- Planetary Gearset gear ratio control
- Torque Converter fluid-coupling to transfer power from engine to transmission
- Clutch Packs
- Valve-Body

Market

Most common automatic transmission globally

Manufacture

 GM Hydra-Matic was the first mass-produced fully automatic planetary AT STEPPED AT PROS

+ Torque Capacity

+ Fuel Efficiency in 6+ speed applications

+ Launch Feel - Fuel Efficiency in applications with less than 5-speeds

- Packaging Size

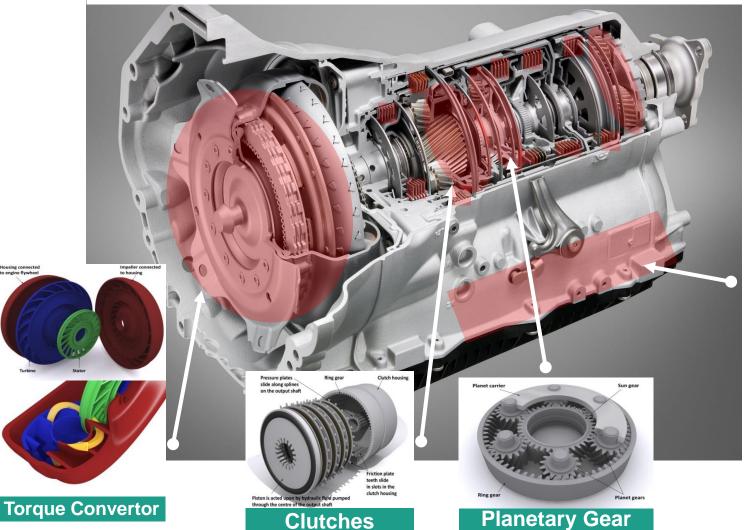
Outer planet gears turn ring gear

Large sun gear 'freewheels'

Planet carrier locked in place

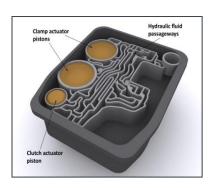
Inner planet gears mesh with and turn outer planet gears

Small sun gear turns inner planet gears


Stepped Automatic Transmission

Automatic Transmission Hardware

Photo source: BMWBLOG.COM


Valve Body

Automatic Transmission Hydraulics

Hydraulic System

- Components
 - Valve body
 - Pump
 - Filter
 - Cooler

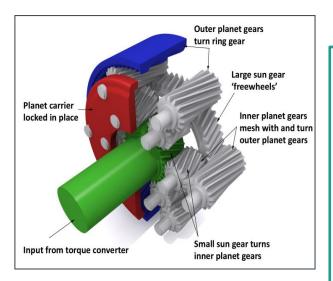
- Used to pressurize piston plate for clutches
- Used to move band-activation pistons up and down

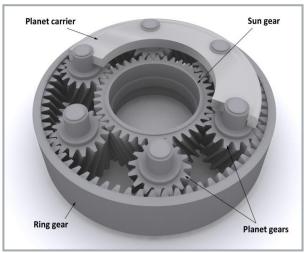
ATF requirements

Act as a Hydraulic Fluid

Antifoam properties

Large operating range (-40°C to 175°C)


Resist oxidation


Remove Heat Efficiently

Ensure seal performance

Automatic transmission – gear reduction

Planetary Gearsets

- Three Main Components
 - Sun Gear
 - Planet gears (and carrier)
 - Ring Gear
- Any one of these components can be locked in place; more importantly, any one can be an input or output drive
 - Different gear ratios possible from one planetary gear set

ATF requirements

- Provide anti-wear performance
- Shear stability
- Corrosion protection

Planetary Gear

Automatic transmissions – clutches

Shifting

- Plate Clutches
- Band Clutches

Fuel Economy

• Torque Converter Clutches

Automatic transmission – plate and band clutches

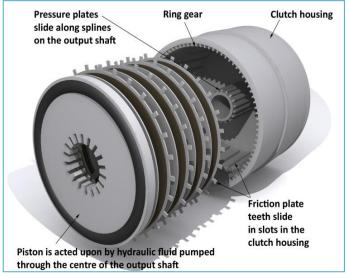
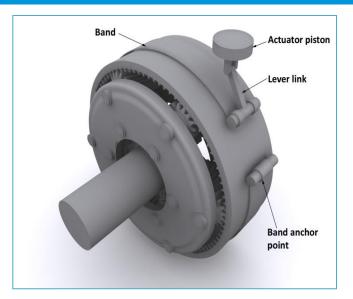
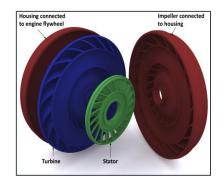
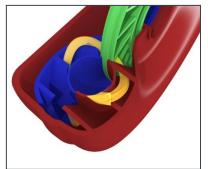



Plate Clutch

Band Clutch

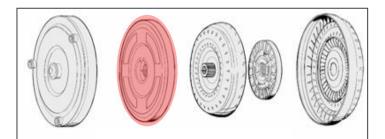
ATF requirements


Remove heat efficiently


Resist oxidation

Deliver specialized friction requirements

Automatic transmission – torque converter

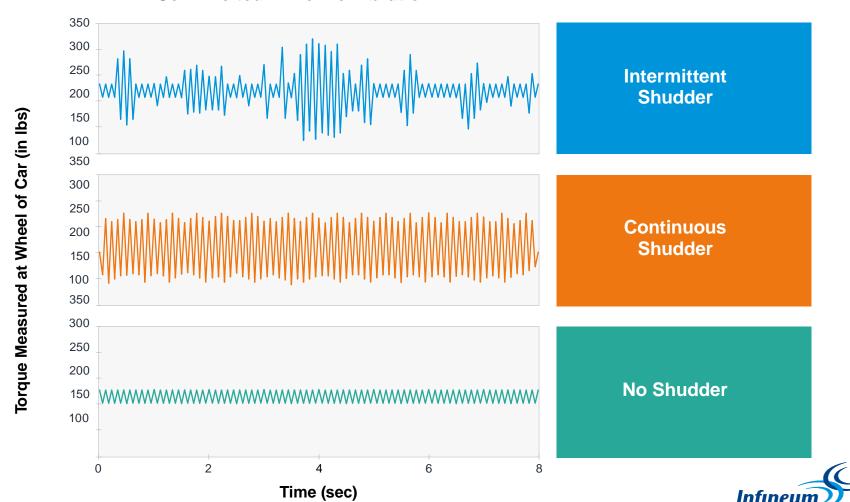


Torque Converter Clutch

- Large energy loss without clutch
- Clutches added in 1970s to improve fuel economy
 - Full lock-up at highway speeds
- Lock-up clutch evolved for improved comfort and additional fuel economy benefits
 - Slipping clutch at low speeds

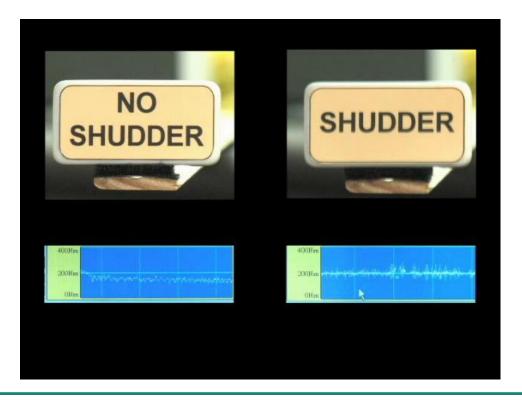
ATF requirements

- · Act as a Hydraulic fluid
- Large operating range (-40°C to 175°C)
- Deliver specialized friction requirements



Torque Converter Lock-Up Clutch

Torque converter clutch Friction deterioration → shudder


Self-Excited Driveline Vibration

Sh-h-h-udder occurs!

Self-Excited Driveline Vibration

ATF must deliver specialised friction requirements

Stepped Automatic Transmission Hardware Summary

The automatic transmission has 4 major components:

- Torque Converter transfer power from engine to transmission
- 2. Planetary Gear Set changes output speed
- 3. Valve Body the "brain" of the transmission
- 4. Clutches (plate or band) changes gear ratios

Stepped Automatic Transmission Fluid Summary

The fluid needs to do the following:

Act as a Hydraulic Fluid

Provide Anti-wear performance

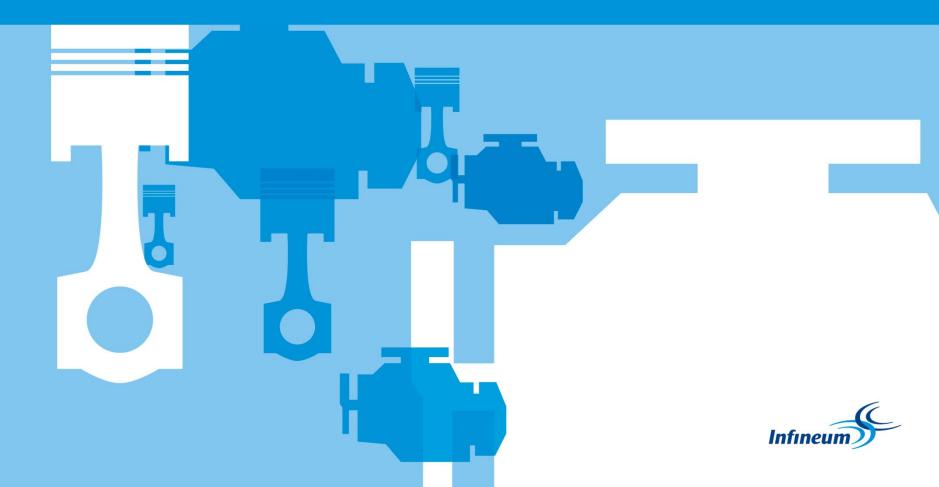
Remove heat efficiently

Ensure transmission seal performance

Shear Stability

Corrosion protection

Antifoam properties


Large operating range (-40°C to 175°C)

Resist oxidation

Deliver specialized friction requirements

Trends and Testing of Automatic Transmission Fluids

Key performance tests for ATF

Viscometrics

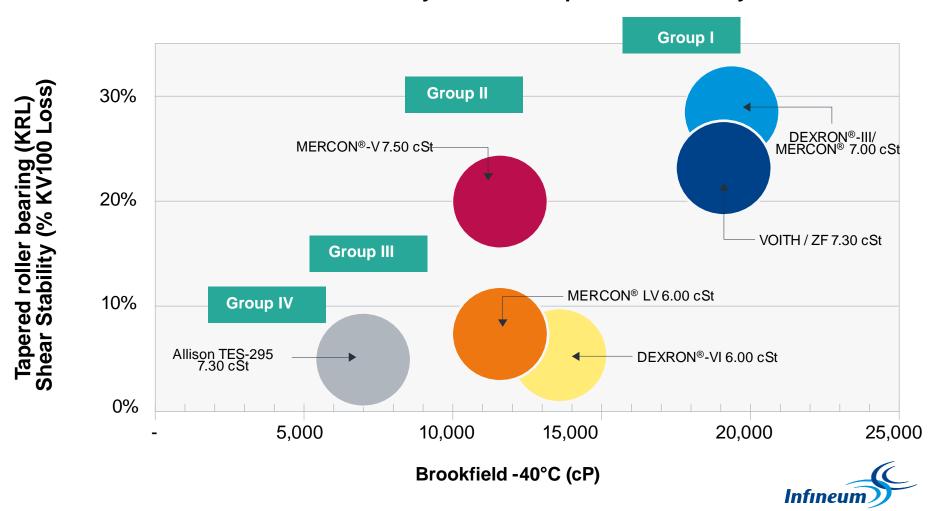
Kinematic viscosity @ 100°C (KV100)

Brookfield viscosity @ -40°C (BF-40)

Shear stability 20hrs KRL (KV100 and apparent viscosity), Sonic Shear

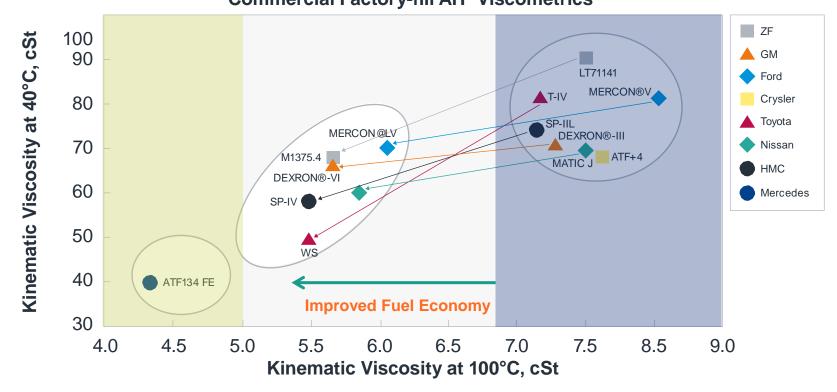
Performance

Lubrication of transmission parts at high temperature


Transmission operability at cold temperatures – cold morning start

Ensures aged ATF adequately lubricates transmission parts

Viscometric trends


ATF Shear Stability vs. Low Temperature Viscosity

New Generation ATFs Lower viscosity for fuel economy

Latest 6+ speed transmissions use lower viscosity ATFs

- Reduce fluid resistance and friction losses
- Provide improved shear stability to control thinning
 Commercial Factory-fill ATF Viscometrics

Some OEMs are replacing high-vis ATF with low-vis ATF

Others maintain two specs – notably Ford, Hyundai and Toyota

Key performance tests for ATF

Oxidation

Aluminum Beaker Oxidation Test (ABOT) - Ford

Turbo Hydra-Matic Oxidation Test* (THOT) - GM

Indiana Stirring Oxidation Test (ISOT) - Asia Pacific OEMs

CEC L-48-A-00 (A), DKA Oxidation Test – European OEMs

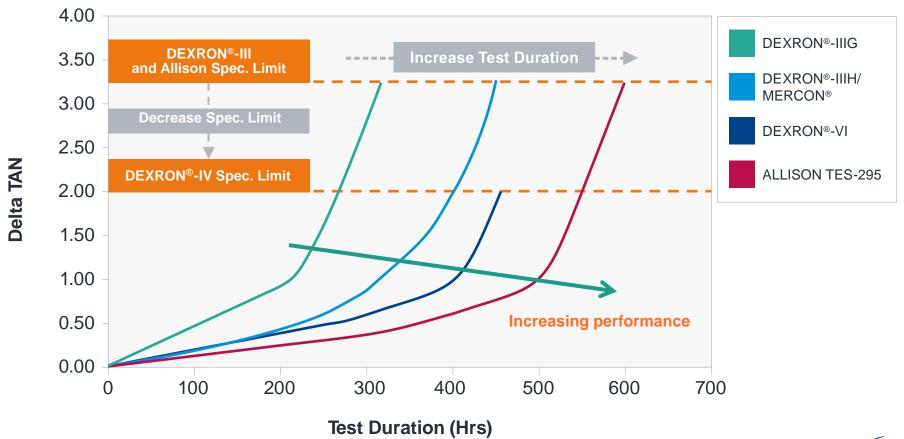
Performance

Chain scission → Loss of lubrication

Viscosity increase → Sluggish operation

Sludge formation → Clogged valve body

Acid formation → Corrosion


Friction Modifier attack → Poor shifting

*GM THOT has been made obsolete

Trends in oxidation performance

ABOT Test Delta TAN

Key performance tests for ATF

Clutch Friction

Shifting Clutch

- SAE#2 Friction and Anti-Shudder Durability (ASD) rig – US and Asia Pacific OEMs
- Band Friction test GM
- Plate Friction test GM and Ford
- Cycling test GM

Torque Converter Clutch

 Low Velocity Friction Apparatus (LVFA) for ASD – Asia Pacific OEMs

Performance

Shifting Clutch

- Abrupt, harsh shift
- Elongated shift and potential slippage
- Gives clutches good holding power, high transmission capacity

Torque Converter Clutch

Anti-Shudder durability

What affects friction?

Impacts on Friction

Hardware Demands

Fluid Technology

Temperature

Sliding Surface Composition

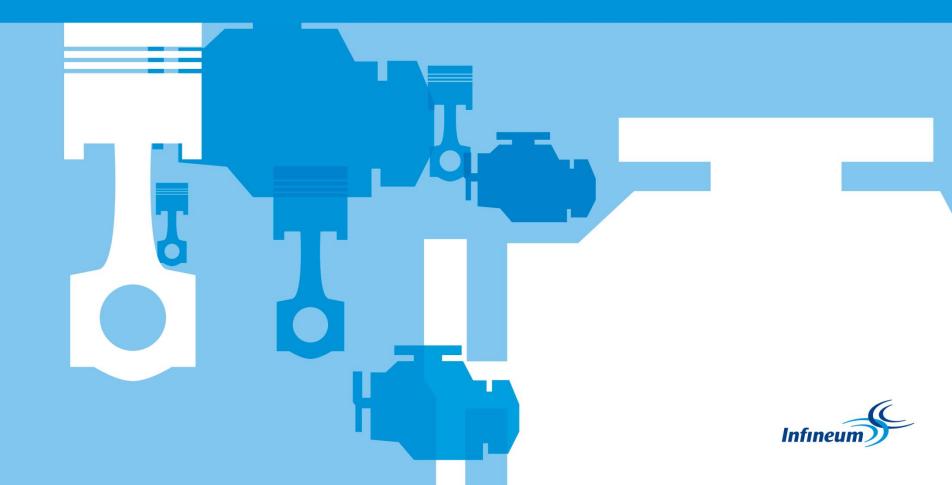
Load

Sliding Speed

Friction Modifier Type Friction Modifier Concentration

Increased interest in friction durability

ATF performance summary


ATF must meet exact requirements for a variety of parameters

Key performance attributes

- Viscometrics
 - Shift towards lower viscosity fluids for fuel economy benefits
- Oxidation resistance
 - Increasing requirements for durability and performance as hardware changes
- Friction stability and durability
 - Specific to each application and OEM

ATF service-fill specifications

Passenger car ATF specifications

OEM		High Viscosity	Low Viscosity	Ultra Low Viscosity
North American OEMs	Ford	MERCON® MERCON ® V	MERCON® LV	-
	Chrysler	ATF +3® ATF +4®	948TE	-
	GM	DEXRON® II DEXRON® III	DEXRON® VI	-
European OEMs	Mercedes- Benz	MB 236.10	MB 236.12	MB 236.14
	BMW	Lifeguard 5	Lifeguard 8	-
Asia Pacific OEMs	Toyota	Toyota T-IV	Toyota WS	-
	Nissan	Matic J/K	Matic S	-
	Honda	Honda Z-1	Honda DW-1	-
	Hyundai	Hyundai SP-III	Hyundai SP-IV	-

Key JAMA requirements

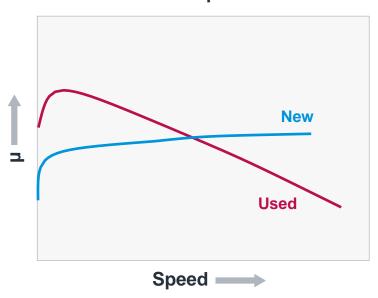
As many ATF specifications are not available for public licensing, many OEMs recognize JASO 1A testing requirements for ATFs.

JASO Specifications

- JASO 1-A ₁₃- Standard JASO ATF specification
- JASO 1-A ₁₃-LV Low Viscosity (6.5 cSt max)
- JASO 2-A ₁₃- JASO 1-A ₁₃without ASD Performance

Shear Stability

- Method: JASO M347
- Requirements: KV100 after shear 5.2 min

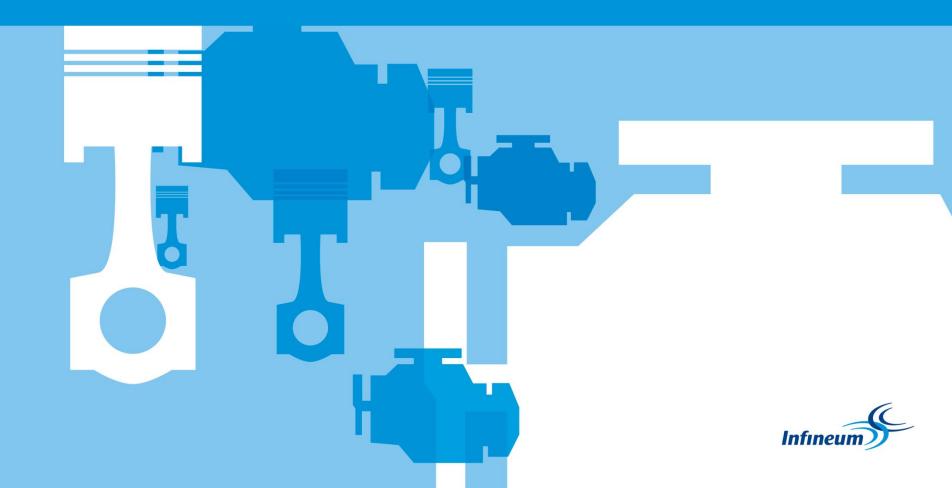

Friction Characteristics (Shifting Clutch)

- Method: JASO M348 SAE#2 (NW-461E)
- Requirements: Torque capacity, Dynamic friction stability, and shift performance

Anti-Shudder Performance (Torque Convertor Clutch)

- Method: JASO M349 LVFA (D-0600-02)
- Requirements: Durability of positive m-V slope

Slipping Clutch Anti-shudder performance


Reasonable μ level with positive slope required

Heavy duty ATF specifications

OEM	Region / Type	Standard ODI	Intermediate ODI	Long ODI	Extra-Long ODI
Allison Transmissions	1000/2000, 3000, and 4000 Series	Allison TES-389™	-	Allison TES-295® Allison TES-468™	
	H 40 EP™ H 50 EP™	-	-	Allison TES-468™	
	5000, 6000, 8000, and 9000 Series	Allison TES-439™	-	Allison TES-353™	
VOITH	North America	Service Bulletin 13 & 118 Standard Drain (36K mi)	-	Service Bulletin 13&118 Long Drain (72K mi)	
	Europe	G607 – H55.6335xx Standard – 60K km	-	G1363 – H55.6336xx Long – 120K km	Voith 150.014524.xx Extra Long – 180K km
ZF	EcoMat	ZF TE-ML 14A 30K km	ZF TE-ML 14B 60K km	ZF TE-ML 14C 120K km	
	EcoLife	-	ZF TE-ML 20B 60K km	ZF TE-ML 20C 120K km	
MAN	All	339 Type V1/Z1	339 Type Z2/Z11	339 Type V2/Z3/Z12	
Volvo	All	STD 1273,40 – Trucks STD 1273,41 – VCE	-	STD 1273,42 – VCE	
Mercedes-Benz	All	MB 236.7 MB 236.9	-	-	

ATF formulations

Typical ATF additives

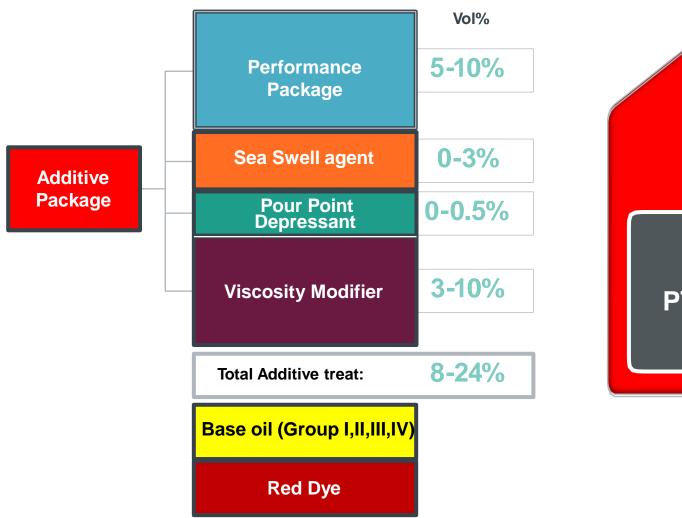
Dispersants Sludge and varnish control Packag **Antioxidants** Oxidation control **Anti-wear Agents** Performance Planetary gear, bushing, thrust washer, sprag and pump wear control **Friction Modifiers** Control clutch plate and band friction Shift feel Control torque converter and clutch friction Prevent shudder **Corrosion Inhibitors** Prevent corrosion of bushing and thrust washers

Typical ATF additives

Seal Swell Additives

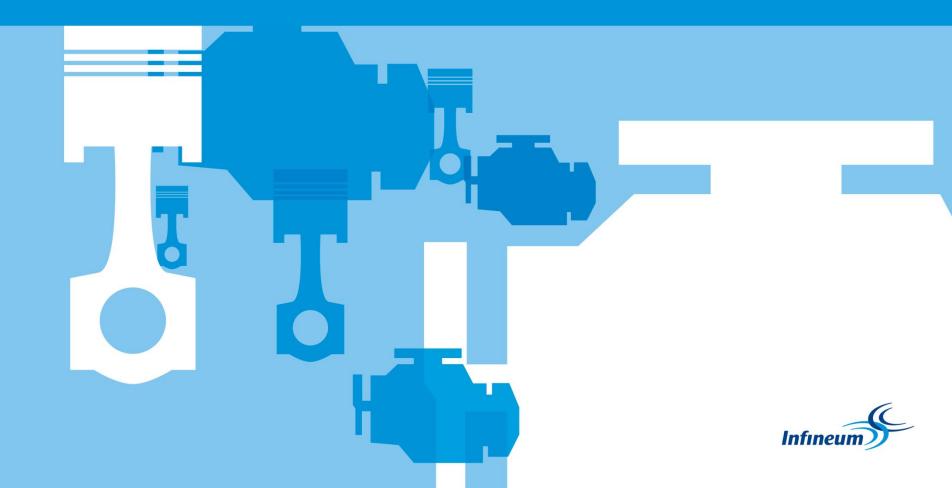
 Control swelling, hardness, and tensile strength of elastomers

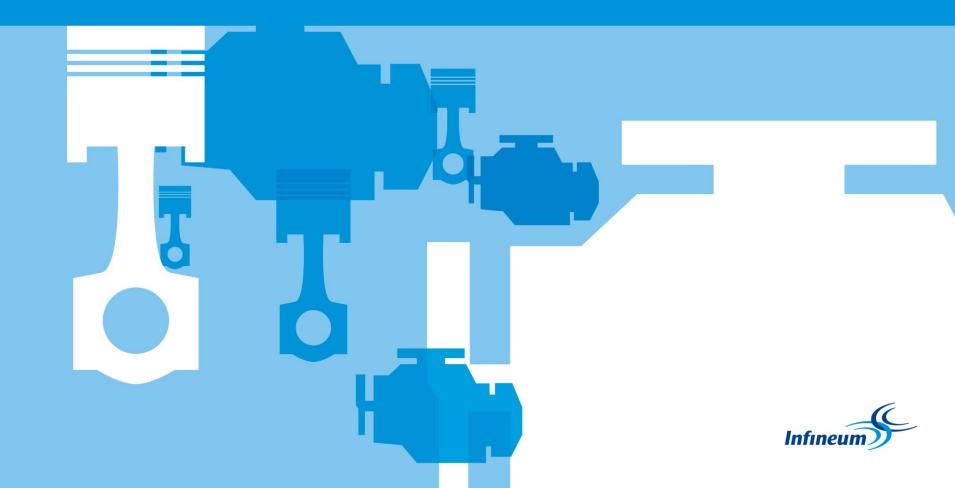
Pour Point Depressant


Reduces temperature at which fluid starts to gel

Viscosity Modifiers

 Reduce rate of change of viscosity with temperature; dispersant type also provides sludge and varnish control


Typical ATF additive treat levels

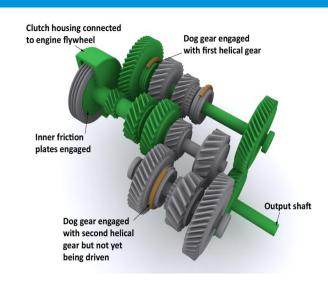


Other automatic transmissions

Dual Clutch Transmissions (DCT)

DCT: technology update

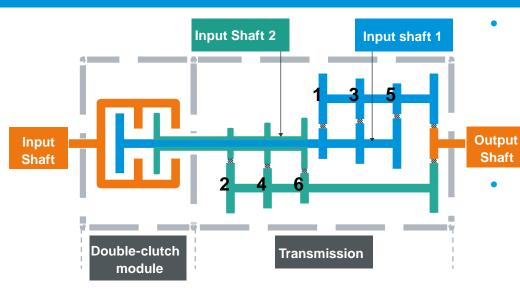
Hardware

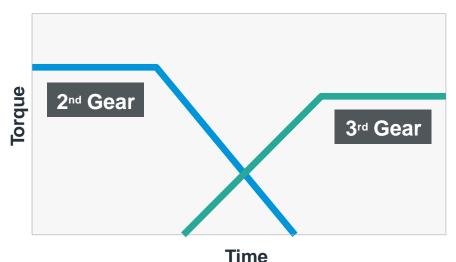

 Combines elements of both manual and automatic transmissions

Market

- DCT currently attracting great interest
 - Especially in Europe where market share projections approach 20% by 2020

Manufacture


- First commercial transmission introduced by VW
 - Driven by fuel efficiency and driver comfort



DCT Pros

- + Fuel Efficiency
- + Shift Feel
- + MT manufacturing (EU)
- Launch feel not as smooth as stepped AT

DCT: how it works

- 2 input shafts are connected to two different clutches
 - 1,3,5 gears are connected to one
 - 2,4,6 gears are connected to the other
- Consecutive gears can be "synchronized," but only one gear is connected to engine via active clutch
 - e.g.: while 2nd gear is synchronized and engaged, 3rd is "synchronized" and disengaged.
- To change from 2nd gear to 3rd gear, the secondary clutch opens (disengages) while the primary clutch closes (engages)
 - Result: shorter shift time

Wet DCT CONs

DCT: technology trends – wet or dry clutch?

Dry-DCT Applications

- Used in medium segment car market
 - Torque limitation of 250Nm

Wet-DCT Applications

- Used in high torque demanding vehicles to improve heat dissipation and friction performance.
- Also finds application with very small engines, where heat dissipation is critical

PRO Dry DCT

Simplicity Use only gear oil Higher efficiency

Heat & Friction losses

Drivability

Torque Limitation (250Nm)

Wet DCT

Dry DCT CONs

Higher Torque Capacity

Improved friction, controllability and heat dissipation

Faster shifts

Requires special DCT Fluid

Shorter oil drain interval (i.e. ~40K mi for VW)

Cost

DCT fluid requirements

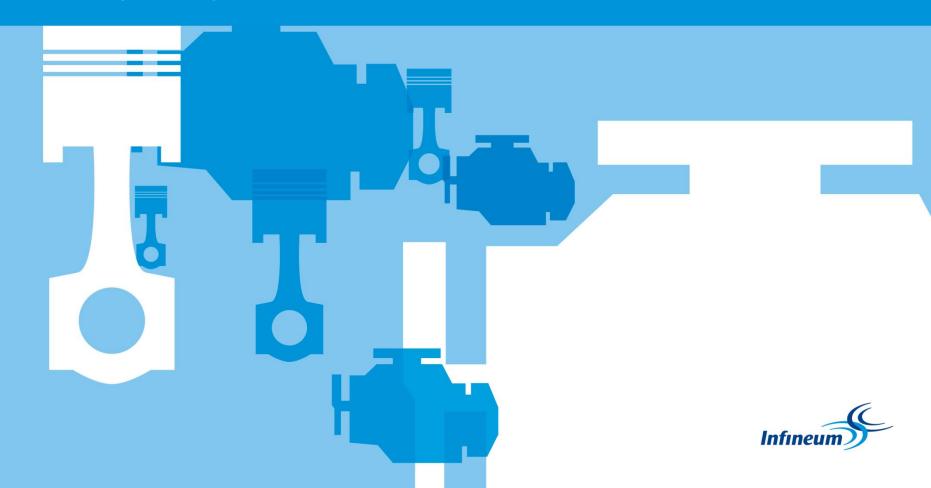
Dry-DCT Fluid Requirements

- Gear Pitting protection
- Friction and wear control for synchronizers
- Corrosion resistance
- Material compatibility
- Oxidation control
- Manual Transmission Fluids can typically meet dry clutch DCT needs

Wet-DCT Fluid Requirements

- Same as for Dry DCT, with additional requirements:
 - Adding / balancing Clutch Friction Control
 - Anti-Shudder Durability

DCT Summary

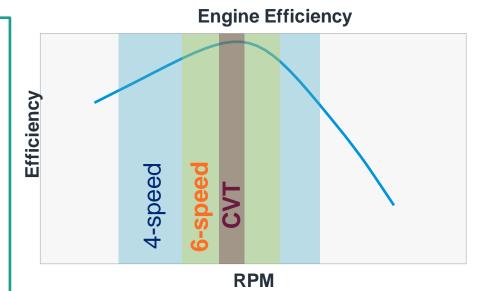

Dual Clutch Transmissions are essentially manual transmissions that can shift automatically

DCT Fluids need to have the following properties

- 1. Gear Pitting protection
- 2. Friction and wear control for synchronizers
- 3. Corrosion resistance
- 4. Material compatibility
- Oxidation control
- 6. Adding / balancing Clutch Friction Control
- 7. Anti-Shudder Durability

Continuously Variable Transmissions (CVT)

SAE CVT Video


CVT - hardware

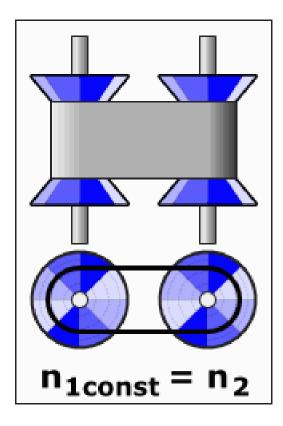
Variator

- Key component allowing continuous step-less change in gear ratio
 - Engine run at optimum efficiency
 - Fuel economy and performance
- Smooth power delivery, no "shift shock"
- Driving performance minimum power loss during ratio changes

Types

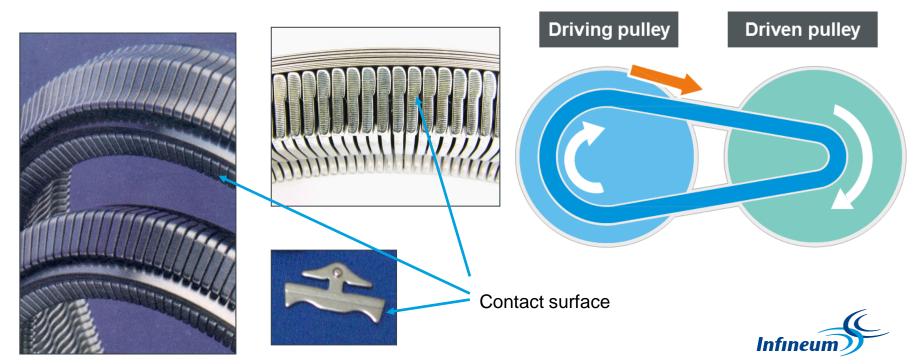
- Steel belt push or pull belt types
- Toroidal traction drive
- Hydromechanical combination of hydraulic and mechanical

OEMS Using CVTs Today


- Nissan
- Subaru
- Honda
- Toyota
- Audi
- Ford
- GM

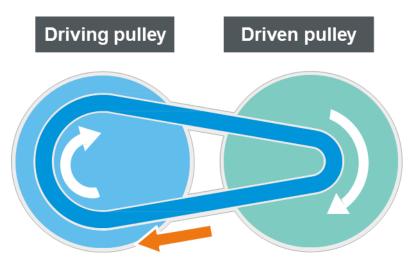
CVT variator

Metal "V-belt" and conical pulley system


- Gear reduction ratio = Ro / Ri
 - Defined by radius of belt travel on pulley
- High clamping forces prevent belt from slipping
- Radius of belt travel controlled by width of pulley

VDT – push belt

- Developed by Van Doorne Transmissie (VDT)
- Push belt consists of ~300 steel blocks connected by flexible steel rings
- Force transmitted from pulley to pulley via compressional forces between belt elements



CVT LuK chain – pull belt

- Chain links joined by rocker pins
 - Pulley clamping force acts on rocker pin ends
- Force transmitted by tension on chain links

CVT fluid requirements

Steel-on-steel friction

- Wear control
- Fatigue and sliding wear control

Shear stability

High pressure pumps shear fluids aggressively

Oxidation stability

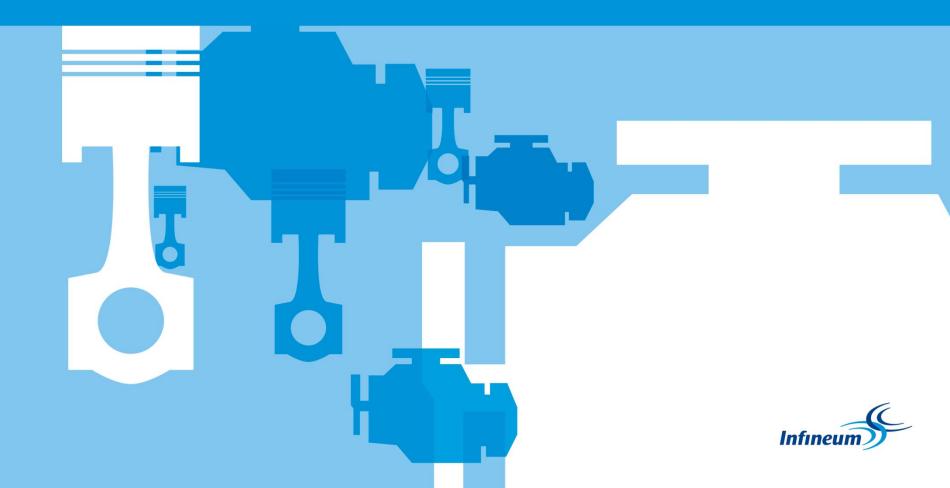
- CVTs run hot
- Fill for life application

Paper-on-steel friction

• Starting clutch, torque converter clutch, forward-reverse clutch

All other conventional ATF properties

Hydraulic performance, antifoaming, transmission coolant, seal compatibility, non-corrosive



CVT summary

- A CVT has few parts compared to other automatic transmission types
 - Uses two variator pulleys and a belt or chain instead of a planetary gear set
 - Has a continuum of gear ratios rather than discrete steps of ratio
- CVTs allow for a smoother power delivery
 - Power can be optimized for acceleration or fuel economy
- CVTs cannot handle higher torque applications
- CVT Fluid needs to do everything a normal ATF does, but with steel-on-steel friction performance as well

Summary

Automatic transmission summary

Transmission Trends

- Stepped planetary transmissions remain predominant
 - Increase in gear ratios to improve fuel economy
 - Reduced size and weight
 - Aggressive slipping clutch
- Nonconventional transmissions gain market share
 - DCT growth predominantly in Europe
 - CVT growth predominantly in North America
 - Asia gives a mixed picture, with China favouring DCT and Japanese OEM preferring CVT

Automatic transmission fluids summary

Fluid Trends

- OEMs specify ATF with:
 - Exact friction requirements (e.g. friction and anti-shudder durability)
 - Specific viscosity and shear stability requirements
 - Better oxidation performance for longer drain intervals
- Low Viscosity ATF becoming more predominant
 - Improved fuel economy
 - Longer oil drain intervals
- Service-Fill market preference towards Multi-Vehicle ATF
- CVTs and DCTs require genuine OEM fluids

Permission is given for storage of one copy in electronic means for reference purposes. Further reproduction of any material is prohibited without prior written consent of Infineum International Limited.

The information contained in this document is based upon data believed to be reliable at the time of going to press and relates only to the matters specifically mentioned in this document. Although Infineum has used reasonable skill and care in the preparation of this information, in the absence of any overriding obligations arising under a specific contract, no representation, warranty (express or implied), or guarantee is made as to the suitability, accuracy, reliability or completeness of the information; nothing in this document shall reduce the user's responsibility to satisfy itself as to the suitability, accuracy, reliability, and completeness of such information for its particular use; there is no warranty against intellectual property infringement; and Infineum shall not be liable for any loss, damage or injury that may occur from the use of this information other than death or personal injury caused by its negligence. No statement shall be construed as an endorsement of any product or process. For greater certainty, before use of information contained in this document, particularly if the product is used for a purpose or under conditions which are abnormal or not reasonably foreseeable, this information must be reviewed with the supplier of such information.

Links to third party website from this document are provided solely for your convenience. Infineum does not control and is not responsible for the content of those third party websites. If you decide to access any of those third party websites, you do so entirely at your own risk. Please also refer to our Privacy Policy.

INFINEUM, 润英联 and the interlocking ripple device are Trade Marks of Infineum International Limited.

© Infineum International Limited 2017. All rights reserved. 2017XXX

