PowerFlex 4 Adjustable Frequency AC Drive

FRN 4.xx

This Quick Start guide summarizes the basic steps needed to install, start-up and program the PowerFlex 4 Adjustable Frequency AC Drive. The information provided Does Not replace the User Manual and is intended for qualified drive service personnel only.
For detailed PowerFlex 4 information including EMC instructions, application considerations and related precautions refer to the PowerFlex 4 User Manual, Publication 22A-UM001... on the CD supplied with the drive or at www.rockwellautomation.com/literature.

General Precautions

!
ATTENTION: The drive contains high voltage capacitors which take time to discharge after removal of mains supply. Before working on drive, ensure isolation of mains supply from line inputs $[\mathrm{R}, \mathrm{S}, \mathrm{T}(\mathrm{L} 1$, L2, L3)]. Wait three minutes for capacitors to discharge to safe voltage levels. Failure to do so may result in personal injury or death.

Darkened display LEDs is not an indication that capacitors have discharged to safe voltage levels.

ATTENTION: Equipment damage and/or personal injury may result if parameter A092 [Auto Rstrt Tries] or A094 [Start At PowerUp] is used in an inappropriate application. Do not use this function without considering applicable local, national and international codes, standards, regulations or industry guidelines.

ATTENTION: Only qualified personnel familiar with adjustable frequency AC drives and associated machinery should plan or implement the installation, start-up and subsequent maintenance of the system. Failure to comply may result in personal injury and/or equipment damage.

ATTENTION: This drive contains ESD (Electrostatic Discharge) sensitive parts and assemblies. Static control precautions are required when installing, testing, servicing or repairing this assembly. Component damage may result if ESD control procedures are not followed. If you are not familiar with static control procedures, reference A-B publication 8000-4.5.2, "Guarding Against Electrostatic Damage" or any other applicable ESD protection handbook.

ATTENTION: An incorrectly applied or installed drive can result in component damage or a reduction in product life. Wiring or application errors, such as, undersizing the motor, incorrect or inadequate AC supply, or excessive ambient temperatures may result in malfunction of the system.

Mounting Considerations

- Mount the drive upright on a flat, vertical and level surface.

Min. Panel Thickness	Screw Size	Screw Torque	DIN Rail
$1.9 \mathrm{~mm}(0.0747 \mathrm{in})$.	M4 (\#8-32)	$1.56-1.96 \mathrm{~N}-\mathrm{m}(14-17 \mathrm{lb} . \mathrm{in})$.	35 mm

- Protect the cooling fan by avoiding dust or metallic particles.
- Do not expose to a corrosive atmosphere.
- Protect from moisture and direct sunlight.

Minimum Mounting Clearances

See page 12 for mounting dimensions.

Ambient Operating Temperatures

Ambient Temperature		Enclosure Rating	Minimum Mounting Clearances
Minimum		Maximum	
$-10^{\circ} \mathrm{C}\left(14^{\circ} \mathrm{F}\right)$	$40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$	IP 20/Open Type	Use Mounting Option A
		IP 30/NEMA 1/UL Type $1^{(1)}$	Use Mounting Option B
	$50^{\circ} \mathrm{C}\left(122^{\circ} \mathrm{F}\right)$	IP 20/Open Type	Use Mounting Option B

${ }^{(1)}$ Rating requires installation of the PowerFlex 4 IP 30/NEMA 1/UL Type 1 option kit.

General Grounding Requirements

CE Conformity

Refer to the PowerFlex 4 User Manual on the CD supplied with the drive for details on how to comply with the Low Voltage (LV) and Electromagnetic Compatibility (EMC) Directives.

Specifications, Fuses and Circuit Breakers

Drive Ratings									
Catalog Number	Output Ratings		Input Ratings			Branch Circuit Protection			Power Dissipation
	kW (HP)	Amps	Voltage Range	KVA	Amps	Fuses	140M Motor Protectors ${ }^{(2)}$	Contactors	$\begin{aligned} & \text { IP20 Open } \\ & \text { Watts } \\ & \hline \end{aligned}$

100-120V AC ($\pm 10 \%$) - 1-Phase Input, $0-230 \mathrm{~V}$ 3-Phase Output

22A-V1P5N104	$0.2(0.25)$	1.5	$90-126$	0.75	6.0	10	$140 \mathrm{M}-\mathrm{C} 2 \mathrm{E}-\mathrm{C} 10$	$100-\mathrm{C} 09$	32
$22 \mathrm{~A}-\mathrm{V} 2 \mathrm{P} 3 N 104$	$0.4(0.5)$	2.3	$90-126$	1.15	9.0	15	$140 \mathrm{M}-\mathrm{C} 2 \mathrm{E}-\mathrm{C} 16$	$100-\mathrm{C} 12$	40
$22 \mathrm{~A}-\mathrm{V} 4 \mathrm{P} 5 N 104$	$0.75(1.0)$	4.5	$90-126$	2.25	18.0	30	$140 \mathrm{M}-\mathrm{D} 8 \mathrm{E}-\mathrm{C} 20$	$100-\mathrm{C} 23$	55
$22 \mathrm{~A}-\mathrm{V} 6 \mathrm{P} 0 \mathrm{~N} 104$	$1.1(1.5)$	6.0	$90-126$	3.0	24.0	40	$140 \mathrm{M}-\mathrm{D} 8 \mathrm{E}-\mathrm{C} 25$	$100-\mathrm{C} 37$	80

200-240V AC ($\pm 10 \%$) - 1-Phase ${ }^{(1)}$ Input, 0 - 230V 3-Phase Output, NO BRAKE

22A-A1P4N103	0.2 (0.25)	1.4	180-265	0.7	3.2	6	140M-C2E-B40	100-C09	32
22A-A2P1N103	0.4 (0.5)	2.1	180-265	1.05	5.3	10	140M-C2E-B63	100-C09	40
22A-A3P6N103	0.75 (1.0)	3.6	180-265	1.8	9.2	15	140M-C2E-C16	100-C12	55
22A-A6P8N103	1.5 (2.0)	6.8	180-265	3.4	14.2	25	140M-C2E-C16	100-C16	85
22A-A9P6N103	2.2 (3.0)	9.6	180-265	4.8	19.6	30	140M-D8E-C25	100-C23	125
200-240V AC ($\pm 10 \%$ - 1-Phase ${ }^{(1)}$ Input, 0 - 230V 3-Phase Output									
22A-A1P5N104	0.2 (0.25)	1.5	180-265	0.75	5.0	10	140M-C2E-B63	100-C09	32
22A-A2P3N104	0.4 (0.5)	2.3	180-265	1.15	6.0	10	140M-C2E-B63	100-C09	40
22A-A4P5N104	0.75 (1.0)	4.5	180-265	2.25	10.0	15	140M-C2E-C16	100-C12	55
22A-A8P0N104	1.5 (2.0)	8.0	180-265	4.0	18.0	30	140M-D8E-C20	100-C23	85
200-240V AC ($\pm 10 \%$) - 3-Phase Input, 0-230V 3-Phase Output									
22A-B1P5N104	0.2 (0.25)	1.5	180-265	0.75	1.8	3	140M-C2E-B25	100-C09	32
22A-B2P3N104	0.4 (0.5)	2.3	180-265	1.15	2.5	6	140M-C2E-B40	100-C09	40
22A-B4P5N104	0.75 (1.0)	4.5	180-265	2.25	5.2	10	140M-C2E-C10	100-C09	55
22A-B8P0N104	1.5 (2.0)	8.0	180-265	4.0	9.5	15	140M-C2E-C16	100-C12	85
22A-B012N104	2.2 (3.0)	12.0	180-265	5.5	15.5	25	140M-C2E-C16	100-C16	125
22A-B017N104	3.7 (5.0)	17.5	180-265	8.6	21.0	30	140M-F8E-C25	100-C23	180

380-480V AC ($\pm 10 \%$) - 3-Phase Input, 0 - 460V 3-Phase Output

22A-D1P4N104	0.4 (0.5)	1.4	340-528	1.4	1.8	3	140M-C2E-B25	100-C09	35
22A-D2P3N104	0.75 (1.0)	2.3	340-528	2.3	3.2	6	140M-C2E-B40	100-C09	50
22A-D4PON104	1.5 (2.0)	4.0	340-528	4.0	5.7	10	140M-C2E-B63	100-C09	70
22A-D6PON104	2.2 (3.0)	6.0	340-528	5.9	7.5	15	140M-C2E-C10	100-C09	100
22A-D8P7N104	3.7 (5.0)	8.7	340-528	8.6	9.0	15	140M-C2E-C16	100-C16	150
Input/Output Ratings					Approvals				
Output Frequency: $0-240 \mathrm{~Hz}$ (Programmable) Efficiency: 97.5\% (Typical)									
Digital Control Inputs (Input Current $=6 \mathrm{~mA}$)					Analog Control Inputs				

SRC

$18-24 \mathrm{~V}=\mathrm{ON}$	$0-6 \mathrm{~V}=\mathrm{ON}$
$0-6 \mathrm{~V}=\mathrm{OFF}$	$18-24 \mathrm{~V}=\mathrm{OFF}$

4-20mA Analog: 250 ohm input impedance
0-10V DC Analog: 100k ohm input impedance
External Pot: $1-10 \mathrm{k}$ ohms, 2 Watt minimum

Control Output (Programmable Output, form C relay)
Resistive Rating: 3.0 A at 30 V DC, 125 V AC and 240 V AC
Inductive Rating: 0.5 A at 30 V DC, 125 V AC , and 240 V AC
Recommended Fuses and Circuit Breakers
Fuse: UL Class J, CC, T or Type BS88; 600V (550V) or equivalent. Circuit Breakers: HMCP or Bulletin 140 U or equivalent. Protective Features
Motor Protection: 1^{2} t overload protection - 150\% for 60 Secs, 200\% for 3 Secs (Provides Class 10 protection)
Overcurrent: 200\% hardware limit, 300\% instantaneous fault
Over Voltage: $\quad 100-120 \mathrm{~V}$ AC Input - Trip occurs at 405 V DC bus voltage (equivalent to 150 V AC incoming line) 200-240V AC Input - Trip occurs at 405V DC bus voltage (equivalent to 290V AC incoming line) $380-460 \mathrm{~V}$ AC Input - Trip occurs at 810 V DC bus voltage (equivalent to 575 V AC incoming line)
Under Voltage: $\quad 100-120 \mathrm{~V}$ AC Input - Trip occurs at 210 V DC bus voltage (equivalent to 75 V AC incoming line) 200-240V AC Input - Trip occurs at 210V DC bus voltage (equivalent to 150 V AC incoming line) $380-480 \mathrm{~V}$ AC Input - Trip occurs at 390 V DC bus voltage (equivalent to 275 V AC incoming line)
Control Ride Through: Minimum ride through is 0.5 Secs - typical value 2 Secs
Faultless Power Ride Through: 100 milliseconds

[^0]English-4

Power Wiring

Power Wire Rating		Recommended Copper Wire
Unshielded $600 \mathrm{~V}, 75^{\circ} \mathrm{C}\left(167^{\circ} \mathrm{F}\right) \mathrm{THHN} /$ THWN		15 Mils insulated, dry location
Shielded $600 \mathrm{~V}, 75^{\circ} \mathrm{C}$ or $90^{\circ} \mathrm{C}\left(167^{\circ} \mathrm{F}\right.$ or $194^{\circ} \mathrm{F}$) RHH/RHW-2		Belden 29501-29507 or equivalent
Shielded Tray rated $600 \mathrm{~V}, 75^{\circ} \mathrm{C}$ or $90^{\circ} \mathrm{C}\left(167^{\circ} \mathrm{F}\right.$ or $194^{\circ} \mathrm{F}$) RHH/RHW-2		Shawflex 2ACD/3ACD or equivalent
Power Terminal Block (A Frame Shown)		R/L1 S/L2 T/L3 U/T1 V/T2 W/T3
Terminal	Description	
R/L1, S/L2	1-Phase Input	(3) (3)
R/L1, S/L2, T/L3	3-Phase Input	$B R_{+} B R_{-}()^{(1)}$
U/T1	To Motor U/T1	
V/T2	$\text { To Motor V/T2 }=$	Switch any two motor leads to change forward direction.
W/T3	To Motor W/T3	
BR+, BR-	Dynamic Brake Resistor Connection [0.75 kW	$(1 \mathrm{HP})$ ratings and higher]
(1)	Safety Ground - PE	

Power Terminal Block Specifications

Frame	Maximum Wire Size ${ }^{(1)}$	Minimum Wire Size ${ }^{(1)}$	Torque
A	$3.3 \mathrm{~mm}^{2}(12 \mathrm{AWG})$	$0.8 \mathrm{~mm}^{2}(18 \mathrm{AWG})$	$1.7-2.2 \mathrm{~N}-\mathrm{m}(16-19 \mathrm{lb} . \mathrm{in})$
B	$5.3 \mathrm{~mm}^{2}(10 \mathrm{AWG})$	$1.3 \mathrm{~mm}^{2}(16 \mathrm{AWG})$	
(1)			

Input Power Conditions

Input Power Condition	Corrective Action
Low Line Impedance (less than 1\% line reactance)	- Install Line Reactor ${ }^{(2)}$ - or Isolation Transformer
Greater than 120 kVA supply transformer	
Line has power factor correction capacitors	
Line has frequent power interruptions	
Line has intermittent noise spikes in excess of 6000V (lightning)	
Phase to ground voltage exceeds 125\% of normal line to line voltage	- Remove MOV jumper to ground. - or Install Isolation Transformer with grounded secondary if necessary.
Ungrounded Distribution System	

(2) Refer to Appendix B of the PowerFlex 4 User Manual on CD for accessory ordering information.

I/O Wiring Recommendations ${ }^{(3)}$

Wire Type(s)	Description	Minimum Insulation Rating
Belden $8760 / 9460$ (or equiv.)	$0.8 \mathrm{~mm}^{2}$ (18AWG), twisted pair, 100\% shield with drain.	300 V 60 degrees C
Belden 8770 (or equiv.)	$0.8 \mathrm{~mm}^{2}$ (18AWG), 3 conductor, shielded for remote pot only.	(140 degrees F)

(3) If the wires are short and contained within a cabinet which has no sensitive circuits, the use of shielded wire may not be necessary, but is always recommended.

I/O Terminal Block Specifications

Maximum Wire Size ${ }^{(4)}$	Minimum Wire Size ${ }^{(4)}$	Torque
$1.3 \mathrm{~mm}^{2}(16 \mathrm{AWG})$	$0.13 \mathrm{~mm}^{2}(26 \mathrm{AWG})$	$0.5-0.8 \mathrm{~N}-\mathrm{m}(4.4-7 \mathrm{lb} .-\mathrm{in})$.
(4) Maximum / minimum that the terminal block will accept - these are not recommendations.		

Refer to the PowerFlex 4 User Manual on CD for maximum power and control cable length recommendations

Control Terminal Block

${ }^{(1)}$ Important: I/O Terminal 01 is always a coast to stop input except	$\begin{gathered} \text { PO36 } \\ \text { [Start Source] } \end{gathered}$	Stop	$\begin{gathered} \hline 1 / 0 \text { Terminal } 01 \\ \text { Stop } \end{gathered}$
when P036 [Start Source] is set to	Keypad	Per P037	Coast
"3-Wire" control. In three wire	3 -Wire	Per P037	Per P037
control, I/O Terminal 01 is controlled	2-Wire	Per P037	Coast
37 [Stop Mode]. All other	RS485 Port	Per P037	Coast

No.	Signal	Default	Description	Param.
R1	Relay N.O.	Fault	Normally open contact for output relay.	A055
R2	Relay Common	-	Common for output relay.	
R3	Relay N.C.	Fault	Normally closed contact for output relay.	A055
Sink/Source DIP Switch		Source (SRC)	Inputs can be wired as Sink (SNK) or Source (SRC) via DIP Switch setting.	
01	Stop ${ }^{(1)}$	Coast	The factory installed jumper or a normally closed input must be present for the drive to start.	P036 ${ }^{(1)}$
02	Start/Run FWD	Not Active	Command comes from the integral keypad by default. To disable reverse operation, see A095 [Reverse Disable].	P036, P037
03	Direction/Run REV	Not Active		$\begin{aligned} & \text { P036, P037, } \\ & \text { A095 } \end{aligned}$
04	Digital Common	-	For digital inputs. Electronically isolated with digital inputs from analog I / O.	
05	Digital Input 1	Preset Freq	Program with A051 [Digital In1 Sel].	A051
06	Digital Input 2	Preset Freq	Program with A052 [Digital In2 Sel].	A052
11	+24V DC	-	Drive supplied power for digital inputs. Maximum output current is 100 mA .	
12	+10V DC	-	Drive supplied power for 0-10V external potentiometer. Maximum output current is 15 mA .	P038
13	$0-10 \mathrm{~V} \mathrm{In}^{(3)}$	Not Active	For external 0-10V input supply (input impedance $=100 \mathrm{k} \mathrm{ohm}$) or potentiometer wiper.	P038
14	Analog Common	-	For 0-10V In or $4-20 \mathrm{~mA}$ In. Electronically isolated with analog inputs from digital I / O.	
15	4-20mA $\mathrm{In}^{(3)}$	Not Active	For external 4-20mA input supply (input impedance $=250 \mathrm{ohm}$).	P038
16	RS485 (DSI) Shield	-	Terminal should be connected to safety ground - PE when using the RS485 (DSI) communications port.	

(3) Only one analog frequency source may be connected at a time. If more than one reference is connected at the same time, an undetermined frequency reference will result.

Prepare For Drive Start-Up

ATTENTION: Power must be applied to the drive to perform the following start-up procedures. Some of the voltages present are at incoming line potential. To avoid electric shock hazard or damage to equipment, only qualified service personnel should perform the following procedure. Thoroughly read and understand the procedure before beginning. If an event does not occur while performing this procedure, Do Not Proceed. Remove All Power including user supplied control voltages. User supplied voltages may exist even when main AC power is not applied to the drive. Correct the malfunction before continuing.

Before Applying Power to the Drive

1. Confirm that all inputs are connected to the correct terminals and are secure.
2. Verify that AC line power at the disconnect device is within the rated value of the drive.
3. Verify that any digital control power is 24 volts.

4. Verify that the Sink (SNK)/Source (SRC) Setup DIP Switch is set to match your control wiring scheme. See page 5 for location.

Important: The default control scheme is Source (SRC). The Stop terminal is jumpered (I/O Terminals 01 and 11) to allow starting from the keypad. If the control scheme is changed to Sink (SNK), the jumper must be removed from I/O Terminals 01 and 11 and installed between I/O Terminals 01 and 04.
\square 5. Verify that the Stop input is present or the drive will not start.
Important: If I/O Terminal 01 is used as a stop input, the jumper between I/O Terminals 01 and 11 must be removed.

Applying Power to the Drive

6. Apply AC power and control voltages to the drive.
7. Familiarize yourself with the integral keypad features (see next page) before setting any Program Group parameters.

Start, Stop, Direction and Speed Control

Factory default parameter values allow the drive to be controlled from the integral keypad. No programming is required to start, stop, change direction and control speed directly from the integral keypad.

Important: To disable reverse operation, see A095 [Reverse Disable].
If a fault appears on power up, refer to page 11 for an explanation of the fault code. For complete troubleshooting information, refer to the PowerFlex 4 User Manual on the CD supplied with the drive.

Integral Keypad

No.	LED	LED State	Description
$\mathbf{1}$	Run/Direction Status	Steady Red	Indicates drive is running and commanded motor direction.
	Flashing Red	Drive has been commanded to change direction. Indicates actual motor direction while decelerating to zero.	
$\mathbf{2}$	Alphanumeric Display	Steady Red	Indicates parameter number, parameter value, or fault code.
	Flashing Red	Single digit flashing indicates that digit can be edited. All digits flashing indicates a fault condition.	
$\mathbf{4 3}$	Displayed Units	Steady Red	Indicates the units of the parameter value being displayed.
$\mathbf{4}$	Program Status	Steady Red	Indicates parameter value can be changed.
$\mathbf{5}$	Fault Status	Flashing Red	Indicates drive is faulted.
$\mathbf{6}$	Pot Status	Steady Green	Indicates potentiometer on Integral Keypad is active.
$\mathbf{7}$	Start Key Status	Steady Green	Indicates Start key on Integral Keypad is active. The Reverse key is also active unless disabled by A095 [Reverse Disable].

No.	Key	Name	Description
8	Esc	Escape	Back one step in programming menu. Cancel a change to a parameter value and exit Program Mode.
	(Sel	Select	Advance one step in programming menu. Select a digit when viewing parameter value.
	$\triangle \nabla$	Up Arrow Down Arrow	Scroll through groups and parameters. Increase/decrease the value of a flashing digit.
	\square	Enter	Advance one step in programming menu. Save a change to a parameter value.
9	多	Potentiometer	Used to control speed of drive. Default is active. Controlled by parameter P038.
	\square	Start	Used to start the drive. Default is active. Controlled by parameter P036.
	(1)	Reverse	Used to reverse direction of the drive. Default is active. Controlled by parameters P036 and A095.
	0	Stop	Used to stop the drive or clear a fault. This key is always active. Controlled by parameter P037.

Viewing and Editing Parameters

The last user-selected Display Group parameter is saved when power is removed and is displayed by default when power is reapplied.
The following is an example of basic integral keypad and display functions. This example provides basic navigation instructions and illustrates how to program the first Program Group parameter.
Step

1. When power is applied, the last user-selected
Display Group parameter number is briefly
displayed with flashing characters. The display
then defaults to that parameter's current value.
(Example shows the value of d001 [Output
Freq] with the drive stopped.)
2. Press Esc once to display the Display Group
parameter number shown on power-up. The
parameter number will flash.
3. Press Esc again to enter the group menu. The
group menu letter will flash.
4. Press the Uup Arrow or Down Arrow to scroll
through the group menu (d, P and A).
5. Press Enter or Sel to enter a group. The right
digit of the last viewed parameter in that group
will flash.
6. Press the Up Arrow or Down Arrow to scroll
through the parameters that are in the group.
7. Press Enter or Sel to view the value of a
parameter. If you do not want to edit the value,
press Esc to return to the parameter number.
8. Press Enter or Sel to enter program mode to
edit the parameter value. The right digit will
flash and the Program LED will illuminate if the
parameter can be edited.
9. Press the Up Arrow or Down Arrow to change
the parameter value. If desired, press Sel to
move from digit to digit or bit to bit. The digit or
bit that you can change will flash.
10. Press Esc to cancel a change. The digit will
stop flashing, the previous value is restored and
the Program LED will turn off.
Or

Display Group Parameters

No.	Parameter	Min/Max	Display/Options			
d001	[Output Freq]	0.0/[Maximum Freq]	0.1 Hz			
d002	[Commanded Freq]	0.0/[Maximum Freq]	0.1 Hz			
d003	[Output Current]	0.00/(Drive Amps $\times 2$)	0.01 Amps			
d004	[Output Voltage]	0/Drive Rated Volts	1 VAC			
d005	[DC Bus Voltage]	Based on Drive Rating	1 VDC			
d006	[Drive Status]	0/1 (1 = Condition True)	Bit 3 Decelerating	Bit 2 Accelerating	Bit 1 Forward	$\frac{\text { Bit } 0}{\text { Running }}$
$\begin{aligned} & \text { d007- } \\ & \text { d009 } \end{aligned}$	[Fault x Code]	F2/F122	F1			
d010	[Process Display]	0.00/9999	0.01-1			
d012	[Control Source]	0/9	Digit 1 = Speed Command (See P038; 9 = "Jog Freq")		Digit 0 = Start Command (See P036; 9 = "Jog")	
d013	[Contrl In Status]	0/1 (1 = Input Present)	$\frac{\text { Bit } 3}{\text { Reserved }}$	$\frac{B i t 2}{} \text { Stop Input }$	Bit 1 Dir/Run REV	Bit 0 Start/Run FWD
d014	[Dig In Status]	0/1 (1 = Input Present)	$\frac{B i t 3}{}$	Bit 2 Reserved	Bit 1 Digital In2 Sel	$\frac{\text { Bit 0 }}{\text { Digital In1 Sel }}$
d015	[Comm Status]	0/1 (1 = Condition True)	$\frac{\text { Bit } 3}{\text { Fault Occurred }}$	$\begin{aligned} & \frac{\text { Bit 2 }}{\text { RS485 Option }} \\ & \hline \end{aligned}$	$\frac{\text { Bit } 1}{\text { Transmitting }}$	$\frac{\text { Bit 0 }}{\text { Receiving }}$
d016	[Control SW Ver]	1.00/99.99	0.01			
d017	[Drive Type]	1001/9999	1			
d018	[Elapsed Run Time]	0/9999 Hrs	$1=10 \mathrm{Hrs}$			
d019	[Testpoint Data]	0/FFFF	1 Hex			
d020	[Analog $\ln 0-10 \mathrm{~V}$]	0.0/100.0\%	0.1\%			
d021	[Analog $\ln 4-20 \mathrm{~mA}]$	0.0/100.0\%	0.1\%			
d024	[Drive Temp]	0/120 degC	1 degC			

Smart Start-Up with Basic Program Group Parameters

(O) = Stop drive before changing this parameter.

No.	Parameter	Min/Max	Display/Options		Default
P031 O	Set to the motor nameplate rated volts.				Based on Drive Rating
P032	[Motor NP Hertz] Set to the motor na	Set to the motor nameplate rated frequency.			60 Hz
P033	[Motor OL Current] $\quad 0.0 /($ Drive Rated Amps $\times 2) \mid 0.1 \mathrm{Amps}$ Set to the maximum allowable motor current.				Based on Drive Rating
P034	[Minimum Freq] $0.0 / 240.0 \mathrm{~Hz}$ 0.1 Hz Sets the lowest frequency the drive will output continuously.				0.0 Hz
P035 O	$[$ [Maximum Freq] $0 / 240 \mathrm{~Hz}$ 1 Sets the highest frequency the drive will output. Sets the highest frequency the drive will output.				60 Hz
P036	 ${ }^{(1)}$ When active, the Reverse key is also active unless disabled by A095 [Reverse Disable].				0
P037					0 set for "3-Wire" control.
P038	$[$ Speed Reference $]$ $0 / 5$ $0=$ "Drive Pot" Sets the source of the speed reference to the drive. $1=$ "nternalFreq" $3=" 4-20 \mathrm{~mA}$ Input" $2=" 0-10 \mathrm{~V}$ Input" $5=$ "Preset Freq" $5=$ "Comm Port"				0 gital input is active, A051 of the PowerFlex 4 User
P039	Sets the rate of accel for all speed increases.				10.0 Secs
P040	Sets the rate of decel for all speed decreases.				10.0 Secs
P041 O	[Reset To Defalts] Resets all paramet	\|0/1 values to factory defaults.	$\begin{aligned} & 0=\text { "ddle State" } \\ & 1=\text { "Reset Defaults" } \end{aligned}$		0
P043	Enables/disables the Motor Overload Retention function.				0

Advanced Group Parameters

No.	Parameter	Min/Max	Display/Options		Default
A051 A052 (O)	[Digital $\ln 1$ Sel] I/O Terminal 05 [Digital $\ln 2 \mathrm{Sel}$] I/O Terminal 06	0/26	$\begin{aligned} & 0=\text { "Not Used" } \\ & 1=\text { "Acc } 2 \text { \& Dec 2" } \\ & 2=\text { "Jog" } \\ & 3=\text { "Aux Fault" } \\ & 4=\text { "Preset Freq" } \\ & 5=\text { "Local" } \\ & 6=\text { "Comm Port" } \\ & 7=\text { "Clear Fault" } \end{aligned}$		4
A055	[Relay Out Sel]	0/21	$\begin{aligned} & 0=\text { "Ready/Fault" } \\ & 1=\text { "At Frequency" } \\ & 2=\text { "MotorRunning" } \\ & 3=\text { "Reverse" } \\ & 4=\text { "Motor Overld" } \\ & 5=\text { "Ramp Reg" } \end{aligned}$	6 = "Above Freq" 7 = "Above Cur" 8 = "Above DCVolt" 9 = "Retries Exst" $10=$ "Above Anlg V" $20=$ "ParamControl" $21=$ "NonRec Fault"	0
A056	[Relay Out Level]	0.0/9999	0.1		0.0
A067	[Accel Time 2]	0.0/600.0 Secs	0.1 Secs		20.0 Secs
A068	[Decel Time 2]	0.1/600.0 Secs	0.1 Secs		20.0 Secs
A069	[Internal Freq]	$0.0 / 240.0 \mathrm{~Hz}$	0.1 Hz		60.0 Hz
$\begin{aligned} & \hline \text { A070 } \\ & \text { A071 } \\ & \text { A072 } \\ & \text { A073 } \end{aligned}$	$\left[\begin{array}{l}{\left[\begin{array}{l}\text { Preset Freq 01 } \\ \text { (1) } \\ \text { Preset Freq 1] } \\ \text { Preset Freq 2] } \\ {[\text { Preset Freq 3] }}\end{array}\right]}\end{array}\right.$	$0.0 / 240.0 \mathrm{~Hz}$	0.1 Hz		$\begin{aligned} & 0.0 \mathrm{~Hz} \\ & 5.0 \mathrm{~Hz} \\ & 10.0 \mathrm{~Hz} \\ & 20.0 \mathrm{~Hz} \end{aligned}$
	${ }^{(1)}$ To activate [Preset	Freq 0] set P038 [Speed	Reference] to option		
	$\underset{(\text { (//O Terminal 05) }}{\text { Input State of Dital } 1}$	$\underset{(/ / / 0 \text { Terminal } 06)}{\text { Input State of Digital } \operatorname{In} 2}$	Frequency Source	Accel / Decel Parameter Used ${ }^{(2)}$	
	0	0	[Preset Freq 0]	[Accel Time 1] [[Decel Time 1]	
	1	0	[Preset Freq 1]	[Accel Time 1] /[Decel Time 1]	
	0	1	[Preset Freq 2]	[Accel Time 2] [[Decel Time 2]	
	,	-	[Preset Freq 3]	[Accel Time 2] [[Decel Time 2]	
	${ }^{(2)}$ When a Digital Input is	set to "Accel 2 \& Decel 2 ", and ti	the input is active, that input	ut overrides the settings in this table.	
A078	[Jog Frequency]	0.0/[Maximum Freq]	0.1 Hz		10.0 Hz
A079	[Jog Accel/Decel]	0.1/600.0 Secs	0.1 Secs		10.0 Secs
A080	[DC Brake Time]	0.0/90.0 Secs	0.1 Secs		0.0 Secs
A081	[DC Brake Level]	0.0/(Drive Amps $\times 1.8$)	0.1 Amps		Amps $\times 0.05$
$\begin{gathered} \hline \text { A082 } \\ 0 \\ \hline \end{gathered}$	[DB Resistor Sel]	0/99	$\begin{aligned} & 0=\text { Disabled } \\ & 1=\text { Normal RA Res } \end{aligned}$	$\begin{aligned} & 2=\text { NoProtection } \\ & 3-99=\% \text { of Duty Cycle } \end{aligned}$	0
A083	[S Curve \%]	0/100\%	1\%		0\% (Disabled)
A084	[Start Boost]	1/14	Settings in \% of bas Variable Torque $\begin{aligned} & 1=" 30.0, \mathrm{VT} " \\ & 2=" 35.0, \mathrm{VT} " \\ & 3=" 40.0, \mathrm{VT} " \\ & 4=45.0, \mathrm{VT} " \end{aligned}$	se voltage. Constant Torque $5=" 0.0$, no IR" $10=" 10.0, \mathrm{CT} "$ $6=" 0.0$ " $11=" 12.5$, CT" $7=" 2.5$, CT" $12=" 15.0$, CT" $8=" 5.0$, CT" $13=" 17.5$, CT" $9=" 7.5$, CT" $14=" 20.0$, CT"	$7 \text { (5 HP Drives) }$
A088	[Maximum Voltage]	20/Rated Volts	1 VAC		Rated Volts
A089	[Current Limit]	0.1/(Drive Amps $\times 1.8$)	0.1 Amps		Amps $\times 1.5$
A090	[Motor OL Select]	0/2	0 = "No Derate"	$\begin{aligned} & 1=\text { "Min Derate"" } \\ & 2=\text { "Max Derate" } \end{aligned}$	0
A091	[PWM Frequency]	2.0/16.0 kHz	0.1 kHz		4.0 kHz
A092	[Auto Rstrt Tries]	0/9	1		0
A093	[Auto Rstrt Delay]	0.0/300.0 Secs	0.1 Secs		1.0 Secs
$\overline{\mathrm{A} 094}$ 0	[Start At PowerUp]	0/1	0 = "Disabled"	1 = "Enabled"	0
$\begin{gathered} \hline \text { A095 } \\ 0 \end{gathered}$	[Reverse Disable]	0/1	$0=$ "Rev Enabled"	1 = "Rev Disabled"	0
A096	[Flying Start En]	0/1	0 = "Disabled"	1 = "Enabled"	0
A097	[Compensation]	0/3	$\begin{aligned} & 0=\text { "Disabled" } \\ & 1=\text { "Electrical" } \end{aligned}$	$\begin{aligned} & 2=\text { "Mechanical" } \\ & 3=\text { "Both" } \end{aligned}$	1
A098	[SW Current Trip]	0.0/(Drive Amps $\times 2$)	0.1 Amps		0.0 (Disabled)
A099	[Process Factor]	0.1/999.9	0.1		30.0
$\begin{gathered} \hline \text { A100 } \\ 0 \end{gathered}$	[Fault Clear]	0/2	$0=$ "Ready//dle"	$\begin{aligned} & 1=\text { "Reset Fault" } \\ & 2=\text { "Clear Buffer" } \end{aligned}$	0
A101	[Program Lock]	0/1	$0=$ "Unlocked"	1 = "Locked"	0
A102	[Testpoint Sel]	0/FFFF	1 Hex		400

No.	Parameter	Min/Max	Display/Options		Default
A103	[Comm Data Rate] ${ }^{(3)}$	0/5	$\begin{aligned} & 0=" 1200 " \\ & 1=" 2400 " \\ & 2=" 4800 " \end{aligned}$	$\begin{aligned} & 3=" 9600 " \\ & 4=" 19.2 \mathrm{~K} " \\ & 5=" 38.4 \mathrm{~K} " \end{aligned}$	3
A104	[Comm Node Addr] ${ }^{(3)}$	1/247	1		100
A105	[Comm Loss Action]	0/3	$\begin{aligned} & 0=\text { "Fault" } \\ & 1=\text { "Coast to Stop" } \end{aligned}$	$\begin{aligned} & 2=\text { "Stop" } \\ & 3=\text { "Continu Last" } \end{aligned}$	0
A106	[Comm Loss Time]	0.1/60.0	0.1		5.0
A107	[Comm Format] ${ }^{(3)}$	0/5	$\begin{aligned} & 0=\text { "RTU 8-N-1" } \\ & 1=\text { "RTU 8-E-1"" } \\ & 2=\text { "RTU 8-O-1" } \end{aligned}$	$\begin{aligned} & 3=" R T U ~ 8-N-2 " \text { " } \\ & 4=" R T U ~ 8-E-2 " " \\ & 5=\text { "RTU 8-O-2" } \end{aligned}$	0
A110	[Anlg \ln 0-10V Lo]	0.0/100.0\%	0.1\%		0.0\%
A111 (O)	[Anlg In 0-10V Hi]	0.0/100.0\%	0.1\%		100.0\%
A112 0	[Anlg In4-20mA Lo]	0.0/100.0\%	0.1\%		0.0\%
$\overline{\text { A113 }}$	[Anlg In4-20mA Hi]	0.0/100.0\%	0.1\%		100.0\%
A114	[Slip Hertz @ FLA]	$0.0 / 10.0 \mathrm{~Hz}$	0.1 Hz		2.0 Hz
A115	[Process Time Lo]	0.00/99.99	0.01		0.00
A116	[Process Time Hi]	0.00/99.99	0.01		0.00

${ }^{(3)}$ Power to drive must be cycled before any changes will affect drive operation.

Fault Codes

To clear a fault, press the Stop key, cycle power or set A100 [Fault Clear] to 1 or 2.

No.	Fault	Description
F2	Auxiliary Input ${ }^{(1)}$	Check remote wiring.
F3	Power Loss	Monitor the incoming AC line for low voltage or line power interruption.
F4	UnderVoltage ${ }^{(1)}$	Monitor the incoming AC line for low voltage or line power interruption.
F5	OverVoltage ${ }^{(1)}$	Monitor the AC line for high line voltage or transient conditions. Bus overvoltage can also be caused by motor regeneration. Extend the decel time or install dynamic brake option.
F6	Motor Stalled ${ }^{(1)}$	Increase [Accel Time x] or reduce load so drive output current does not exceed the current set by parameter A089 [Current Limit].
F7	Motor Overload ${ }^{(1)}$	An excessive motor load exists. Reduce load so drive output current does not exceed the current set by parameter P033 [Motor OL Current].
F8	Heatsink OvrTmp ${ }^{(1)}$	Check for blocked or dirty heat sink fins. Verify that ambient temperature has not exceeded $40^{\circ} \mathrm{C}$ ($104^{\circ} \mathrm{F}$) for IP 30 NEMA $1 / \mathrm{UL}$ Type 1 installations or $50^{\circ} \mathrm{C}\left(122^{\circ} \mathrm{F}\right.$) for Open type installations. Check fan.
F12	HW OverCurrent ${ }^{(1)}$	Check programming. Check for excess load, improper DC boost setting, DC brake volts set too high or other causes of excess current.
F13	Ground Fault	Check the motor and external wiring to the drive output terminals for a grounded condition.
F33	Auto Rstrt Tries	Correct the cause of the fault and manually clear.
F38	Phase U to Gnd	Check the wiring between the drive and motor. Check motor for grounded phase. Replace drive if fault cannot be cleared.
F39	Phase V to Gnd	
F40	Phase W to Gnd	
F41	Phase UV Short	Check the motor and drive output terminal wiring for a shorted condition. Replace drive if fault cannot be cleared.
F42	Phase UW Short	
F43	Phase VW Short	
F48	Params Defaulted	The drive was commanded to write default values to EEPROM. Clear the fault or cycle power to the drive. Program the drive parameters as needed.
F63	SW OverCurrent ${ }^{(1)}$	Check load requirements and A098 [SW Current Trip] setting.
F64	Drive Overload	Reduce load or extend Accel Time.
F70	Power Unit	Cycle power. Replace drive if fault cannot be cleared.
F71	Net Loss	The communication network has faulted.
F81	Comm Loss	If adapter was not intentionally disconnected, check wiring to the port. Replace wiring, port expander, adapters or complete drive as required. Check connection. An adapter was intentionally disconnected. Turn off using A105 [Comm Loss Action].
F100	Parameter Checksum	Restore factory defaults.
F122	I/O Board Fail	Cycle power. Replace drive if fault cannot be cleared.

[^1]
Drive Dimensions

PowerFlex 4 Panel Mount Drives - Ratings are in kW and (HP)

	120V AC - 1-Phase	240V AC - 1-Phase No Brake	240V AC - 1-Phase	240V AC - 3-Phase	480V AC - 3-Phase
A	$\begin{aligned} & 0.2(0.25) \\ & 0.37(0.5) \end{aligned}$	$\begin{aligned} & 0.2(0.25) \\ & 0.37(0.5) \\ & 0.75(1.0) \end{aligned}$	$\begin{aligned} & 0.2(0.25) \\ & 0.37(0.5) \\ & 0.75(1.0) \end{aligned}$	$0.2(0.25)$ $0.37(0.5)$ $0.75(1.0)$ $1.5(2.0)$	$\begin{aligned} & 0.37(0.5) \\ & 0.75(1.0) \\ & 1.5(2.0) \end{aligned}$
B	$\begin{aligned} & 0.75(1.0) \\ & 1.1(1.5) \\ & \hline \end{aligned}$	$\begin{aligned} & 1.5(2.0) \\ & 2.2(3.0) \end{aligned}$	1.5 (2.0)	$\begin{aligned} & 2.2(3.0) \\ & 3.7(5.0) \end{aligned}$	$\begin{aligned} & 2.2(3.0) \\ & 3.7(5.0) \end{aligned}$

PowerFlex 4 Panel Mount Drives ${ }^{(1)}$ - Dimensions are in millimeters and (inches).
Weights are in kilograms and (pounds).

Frame	A	$\mathbf{B}^{(2)}$	C	D	$\mathbf{E}^{(3)}$	F	G	Shipping Weight
A	$80(3.15)$	$185(7.28)$	$136(5.35)$	$67(2.64)$	$152(5.98)$	$59.3(2.33)$	$140(5.51)$	$1.4(3.1)$
B	$100(3.94)$	$213(8.39)$	$136(5.35)$	$87(3.43)$	$180(7.09)$	$87.4(3.44)$	$168(6.61)$	$2.2(4.9)$

(1) Flange Mount drives are also available. Refer to the PowerFlex 4 User Manual on CD for information.
(2) Overall height of drive with IP 30/NEMA 1/UL Type 1 option kit installed.
(3) Overall height of standard IP 20/Open Type drive.

IP 30/NEMA 1/UL Type 1 Option Kit - Dimensions are in millimeters and (inches)

[^0]: Dynamic Braking
 Internal brake IGBT included with all ratings except No Brake versions. Refer to Appendix B of the PowerFlex 4 User Manual on CD for ordering information.
 (1) $200-240 \mathrm{~V}$ AC - 1-Phase drives are also available with an integral EMC filter. Catalog suffix changes from N103 to N113 and N104 to N114.
 (2) Refer to the Bulletin 140M Motor Protectors Selection Guide, publication 140M-SG001... to determine the frame and breaking capacity required for your application.

[^1]: (1) Auto-Reset/Run type fault. Configure with parameters A092 and A093.

