PowerFlex 520-Series Adjustable Frequency AC Drive

PowerFlex 523 Catalog Number 25A, Series B
PowerFlex 525 Catalog Number 25B

Original Instructions

Important User Information

Solid-state equipment has operational characteristics differing from those of electromechanical equipment. Safety Guidelines for the Application, Installation and Maintenance of Solid State Controls (publication SGI-1.1 available from your local Rockwell Automation sales office or online at http://www.rockwellautomation.com/literature/) describes some important differences between solid-state equipment and hard-wired electromechanical devices. Because of this difference, and also because of the wide variety of uses for solid-state equipment, all persons responsible for applying this equipment must satisfy themselves that each intended application of this equipment is acceptable.

In no event will Rockwell Automation, Inc. be responsible or liable for indirect or consequential damages resulting from the use or application of this equipment.

The examples and diagrams in this manual are included solely for illustrative purposes. Because of the many variables and requirements associated with any particular installation, Rockwell Automation, Inc. cannot assume responsibility or liability for actual use based on the examples and diagrams.

No patent liability is assumed by Rockwell Automation, Inc. with respect to use of information, circuits, equipment, or software described in this manual.

Reproduction of the contents of this manual, in whole or in part, without written permission of Rockwell Automation, Inc., is prohibited.

Throughout this manual, when necessary, we use notes to make you aware of safety considerations.

WARNING: Identifies information about practices or circumstances that can cause an explosion in a hazardous environment, which may lead to personal injury or death, property damage, or economic loss.

ATTENTION: Identifies information about practices or circumstances that can lead to personal injury or death, property damage, or economic loss. Attentions help you identify a hazard, avoid a hazard, and recognize the consequence.

SHOCK HAZARD: Labels may be on or inside the equipment, for example, a drive or motor, to alert people that dangerous voltage may be present.

BURN HAZARD: Labels may be on or inside the equipment, for example, a drive or motor, to alert people that surfaces may reach dangerous temperatures.

ARC FLASH HAZARD: Labels may be on or inside the equipment, for example, a motor control center, to alert people to potential Arc Flash. Arc Flash will cause severe injury or death. Wear proper Personal Protective Equipment (PPE). Follow ALL Regulatory requirements for safe work practices and for Personal Protective Equipment (PPE).

IMPORTANT Identifies information that is critical for successful application and understanding of the product.

[^0]Important User Information 2
Summary of Changes New and Updated Information. 7
Preface
Overview Who Should Use this Manual 9
Recommended Documentation 9
Manual Conventions 10
Drive Frame Sizes 11
General Precautions 12
Catalog Number Explanation 13
Chapter 1
Mounting Considerations. 15
Installation/Wiring 19AC Supply Source Considerations
General Grounding Requirements 20
Fuses and Circuit Breakers 23
Power and Control Module 28
Control Module Cover 31
Power Module Terminal Guard 31
Power Wiring. 32
Power Terminal Block 35
Common Bus/Precharge Notes 36
I/O Wiring 36
Control I/O Terminal Block 37
Start and Speed Reference Control 49
CE Conformity 52
Chapter 2
Start Up Prepare for Drive Start-Up 59
Display and Control Keys 62
Viewing and Editing Parameters 63
Drive Programming Tools 64
Language Support 64
Smart Start-Up with Basic Program Group Parameters 65
LCD Display with QuickView Technology 67
Using the USB Port 67
Chapter 3
Programming and Parameters
About Parameters 71
Parameter Groups 73
Basic Display Group 78
Basic Program Group 83
Terminal Block Group 89
Communications Group 101
Logic Group 107
Advanced Display Group 110
Advanced Program Group 115
Network Parameter Group 141
Modified Parameter Group 142
Fault and Diagnostic Group 142
AppView Parameter Groups 150
CustomView Parameter Group 151
Parameter Cross Reference by Name 152
Chapter 4
Drive Status 157
Faults 157
Fault Descriptions 159
Common Symptoms and Corrective Actions 162
Appendix A
Supplemental Drive Information Certifications 167
Environmental Specifications 168
Technical Specifications 169
Power Specifications 172
Appendix B
Product Selection 175
Product Dimensions 185
Optional Accessories and Kits 198
Appendix C
RS485 (DSI) Protocol
Network Wiring 201
Parameter Configuration 202
Supported Modbus Function Codes 203
Writing (06) Logic Command Data 203
Writing (06) Comm Frequency Command. 205
Reading (03) Logic Status Data 205
Reading (03) Drive Error Codes 207
Reading (03) Drive Operational Values 208
Reading (03) and Writing (06) Drive Parameters 208
Additional Information. 208
Appendix D
Velocity StepLogic, Basic Logic andVelocity StepLogic Using Timed Steps210
Timer/Counter Functions
Timer/Counter Functions Velocity StepLogic Using Basic Logic Functions 210
Timer Function 211
Counter Function 212
Velocity StepLogic Parameters 213
Appendix E
Encoder and Pulse Train Usage 215
Encoder/Pulse Train Usage and
Wiring Notes 216
Position StepLogic Application
Position StepLogic Application
Determine Encoder Pulse Per Revolution (PPR) Specification Based on Speed Resolution 217
Positioning Overview 218
Common Guidelines for All Applications 218
Positioning Operation 220
Homing Routine 223
Encoder and Position Feedback 224
Use Over Communications 225
Setup Notes. 226
Appendix F
PID Set Up PID Loop. 227
PID Reference and Feedback 229
Analog PID Reference Signals 230
Appendix G
PowerFlex 525 Safe-Torque-Off Overview 235
EC Type Examination Certification 236
EMC Instructions. 236
Using PowerFlex 525 Safe-Torque-Off. 236
Safety Concept. 237
Enabling PowerFlex 525 Safe-Torque-Off 239
Wiring 239
PowerFlex 525 Safe-Torque-Off Operation 239
Verify Operation 240
Connection Examples 241
PowerFlex 525 Certification for Safe-Torque-Off 245
Appendix H
EtherNet/IP Establishing A Connection With EtherNet/IP 247
Ground Connections for EtherNet/IP Networks 248
Appendix
Control Diagrams
Induction Motor Tuning Diagrams 249
Adjusting Speed Control Parameters 250
Appendix J
PowerFlex 525 PM Motor

Configuration
Download Files 252
Automatic Configuration Using Drive Startup Wizard 254
Manual Configuration Using Drive Keypad 261
Additional PM Motor Configuration 262
Optional Parameter Adjustments for Optimum Performance 266

This manual contains new and updated information.

New and Updated Information

This table contains the changes made to this revision.

Topic	Page
Added footnote to indicate that circuit breaker selection is not available for certain drive ratings.	$\underline{24 . . .27}$
Added PowerFlex 523 series B to Control I/0 Wiring Block Diagram.	$\underline{38}$
Added PowerFlex 523 series B to Control I/0 Terminal Designations.	$\underline{40}$
Added PowerFlex 523 series B I/0 wiring examples for analog input and analog output.	$\underline{45}$
Added note to PowerFlex 525 I/0 wiring example for pulse train input.	$\underline{46}$
Added footnote to enum "4" for P053 [Reset to Defalts] under Smart Start-Up with Basic Program Group Parameters.	$\underline{67}$
Added new sub topic for 32-bit parameters.	$\underline{72}$
Added footnotes to parameters that are available in PowerFlex 523 FRN 3.xxx and later.	Chapter 3
Updated descriptions for parameters that are available in PowerFlex 523 FRN 3.xxx and later.	
Added formula for calculating scaled process value to parameter b010 [Process Display].	$\underline{79}$
Added recommendation to perform rotate tune when using VVC mode to parameter P040 [Autotune].	$\underline{85}$
Added footnote to indicate which settings are PowerFlex 525 only for parameter d394 [Dig Out Status].	$\underline{114}$
Updated descriptions for parameters A465 [PID 1 Deadband] and A477 [PID 2 Deadband].	$\underline{123}$
Added corrective action to fault F114 (uC Failure).	$\underline{162}$
Added analog output to PowerFlex 523 drives.	$\underline{171}$
Added new topic "Determine Encoder Pulse Per Revolution (PPR) Specification Based on Speed Resolution" to Appendix E.	$\underline{217}$
Updated information to verify operation of the safety inputs in Appendix G.	
General maintenance updates.	Throughout manual

Notes:

Overview

The purpose of this manual is to provide you with the basic information needed to install, start-up and troubleshoot the PowerFlex ${ }^{\circ}$ 520-Series Adjustable Frequency AC Drive.

For information on...	See page...
Who Should Use this Manual	$\underline{9}$
Recommended Documentation	$\underline{9}$
Manual Conventions	$\underline{10}$
Drive Frame Sizes	$\underline{11}$
General Precautions	$\underline{12}$
Catalog Number Explanation	$\underline{13}$

Who Should Use this Manual

This manual is intended for qualified personnel. You must be able to program and operate Adjustable Frequency AC Drive devices. In addition, you must have an understanding of the parameter settings and functions.

All the recommended documentation listed in this section is available online at http://www.rockwellautomation.com/literature/.

The following publications provide general drive information:

Title	Publication
Wiring and Grounding Guidelines for Pulse Width Modulated (PWM) AC Drives	$\underline{\text { DRIVES-IN001 }}$
Preventive Maintenance of Industrial Control and Drive System Equipment	$\underline{\text { DRIVES-TD001 }}$
Safety Guidelines for the Application, Installation and Maintenance of Solid State Control	$\underline{\text { SGI-1.1 }}$
A Global Reference Guide for Reading Schematic Diagrams	$\underline{100-2.10}$
Guarding Against Electrostatic Damage	$\underline{8000-4.5 .2}$

The following publications provide specific PowerFlex 520-Series information on drive installation, features, specifications, and service:

Title	Publication
PowerFlex 520-Series AC Drive Specifications	520-TD001
PowerFlex Dynamic Braking Resistor Calculator	PFLEX-AT001
PowerFlex AC Drives in Common Bus Configurations	DRIVES-AT002

The following publications provide specific Network Communications information:

Title	Publication
PowerFlex 525 Embedded EtherNet//P Adapter	520COM-UM001
PowerFlex 25-COMM-D DeviceNet Adapter	52000M-UM002
PowerFlex 25-COMM-E2P Dual-Port EtherNet/P Adapter	520COM-UM003
PowerFlex 25-COMM-P PROFIBUS DPV1 Adapter	520COM-UM004

Manual Conventions

- In this manual we refer to PowerFlex 520-Series Adjustable Frequency AC Drive as; drive, PowerFlex 520-series, PowerFlex 520-series drive or PowerFlex 520 -series AC drive.
- Specific drives within the PowerFlex 520 -series may be referred to as:
- PowerFlex 523, PowerFlex 523 drive or PowerFlex 523 AC drive.
- PowerFlex 525, PowerFlex 525 drive or PowerFlex 525 AC drive.
- Parameter numbers and names are shown in this format:

- The following words are used throughout the manual to describe an action:

Words	Meaning
Can	Possible, able to do something
Cannot	Not possible, not able to do something
May	Permitted, allowed
Must	Unavoidable, you must do this
Shall	Required and necessary
Should	Recommended
Should Not	Not Recommended

- The Studio 5000° Engineering and Design Environment combines engineering and design elements into a common environment. The first element in the Studio 5000 environment is the Logix Designer application. The Studio 5000 Logix Designer ${ }^{\text {ma }}$ application is the rebranding of RSLogix ${ }^{\text {m" }} 5000$ software and will continue to be the product to program Logix 5000 controllers for discrete, process, batch, motion, safety, and drive-based solutions. The Studio 5000 environment is the foundation for the future of Rockwell Automation engineering design tools and capabilities. It is the one place for design engineers to develop all the elements of their control system.

Drive Frame Sizes

Similar PowerFlex 520-series drive sizes are grouped into frame sizes to simplify spare parts ordering, dimensioning, etc. A cross reference of drive catalog numbers and their respective frame sizes is provided in Appendix B.

General Precautions

ATTENTION: The drive contains high voltage capacitors which take time to discharge after removal of mains supply. After power has been removed from the drive, wait three minutes to make sure $D C$ bus capacitors are discharged. After three minutes, verify AC voltage L1, L2, L3 (Line to Line and Line to Ground) to ensure mains power has been disconnected. Measure DC voltage across $D C$ - and $D C+$ bus terminals to verify $D C$ Bus has discharged to zero volts. Measure DC voltage from L1, L2, L3, T1, T2, T3 DC - and DC terminals to ground and keep the meter on the terminals until the voltage discharges to zero volts. The discharge process may take several minutes to reach zero volts. Darkened display LEDs is not an indication that capacitors have discharged to safe voltage levels.

ATTENTION: Only qualified personnel familiar with adjustable frequency AC drives and associated machinery should plan or implement the installation, start-up and subsequent maintenance of the system. Failure to comply may result in personal injury and/or equipment damage.

ATTENTION: This drive contains ESD (Electrostatic Discharge) sensitive parts and assemblies. Static control precautions are required when installing, testing, servicing or repairing this assembly. Component damage may result if ESD control procedures are not followed. If you are not familiar with static control procedures, reference A-B publication 8000-4.5.2, "Guarding Against Electrostatic Damage" or any other applicable ESD protection handbook.

ATTENTION: An incorrectly applied or installed drive can result in component damage or a reduction in product life. Wiring or application errors, such as undersizing the motor, incorrect or inadequate AC supply, or excessive ambient temperatures may result in malfunction of the system.

ATTENTION: The bus regulator function is extremely useful for preventing nuisance overvoltage faults resulting from aggressive decelerations, overhauling loads, and eccentric loads. However, it can also cause either of the following two conditions to occur.

1. Fast positive changes in input voltage or imbalanced input voltages can cause uncommanded positive speed changes;
2. Actual deceleration times can be longer than commanded deceleration times However, a "Stall Fault" is generated if the drive remains in this state for 1 minute. If this condition is unacceptable, the bus regulator must be disabled (see parameter A550 [Bus Reg Enable]). In addition, installing a properly sized dynamic brake resistor will provide proper stopping requirements based on braking resistor sizing.

ATTENTION: Risk of injury or equipment damage exists. Drive does not contain user-serviceable components. Do not disassemble drive chassis.

Catalog Number Explanation

Output Current @ 1 Phase, 100...120V Input

Code	Amps	Frame	ND		HD	
			HP	kW	HP	kW
$1 P 6^{(1)}$	1.6	A	0.25	0.2	0.25	0.2
2P5	2.5	A	0.5	0.4	0.5	0.4
4P8	4.8	B	1.0	0.75	1.0	0.75
6P0	6.0	B	1.5	1.1	1.5	1.1

Output Current @ 1 Phase, 200...240V Input						
Code	Amps	Frame	ND		HD	
			HP	kW	HP	kW
1P6 ${ }^{(1)}$	1.6	A	0.25	0.2	0.25	0.2
$2 \mathrm{P5}$	2.5	A	0.5	0.4	0.5	0.4
$4 \mathrm{P8}$	4.8	A	1.0	0.75	1.0	0.75
8 PO	8.0	B	2.0	1.5	2.0	1.5
011	11.0	B	3.0	2.2	3.0	2.2

Output Current @ 3Phase, 200...240V Input						
Code	Amps	Frame	ND		HD	
			HP	kW	HP	kW
$1 \mathrm{P} 6^{(1)}$	1.6	A	0.25	0.2	0.25	0.2
$2 \mathrm{P5}$	2.5	A	0.5	0.4	0.5	0.4
5P0	5.0	A	1.0	0.75	1.0	0.75
8P0	8.0	A	2.0	1.5	2.0	1.5
011	11.0	A	3.0	2.2	3.0	2.2
017	17.5	B	5.0	4.0	5.0	4.0
024	24.0	C	7.5	5.5	7.5	5.5
032	32.2	D	10.0	7.5	10.0	7.5
$048^{(2)}$	48.3	E	15.0	11.0	10.0	7.5
$062^{(2)}$	62.1	E	20.0	15.0	15.0	11.0

(1) This rating is only available for PowerFlex 523 drives.
(2) Normal and Heavy Duty ratings are available for this drive.

Output Current @ 3 Phase, 380...480V Input						
Code	Amps	Frame	ND		HD	
			HP	kW	HP	kW
1 P 4	1.4	A	0.5	0.4	0.5	0.4
2P3	2.3	A	1.0	0.75	1.0	0.75
4P0	4.0	A	2.0	1.5	2.0	1.5
6P0	6.0	A	3.0	2.2	3.0	2.2
010	10.5	B	5.0	4.0	5.0	4.0
013	13.0	C	7.5	5.5	7.5	5.5
017	17.0	C	10.0	7.5	10.0	7.5
024	24.0	D	15.0	11.0	15.0	11.0
030 ${ }^{(2)}$	30.0	D	20.0	15.0	15.0	11.0
$037^{(2)}$	37.0	E	25.0	18.5	20.0	15.0
043 ${ }^{(2)}$	43.0	E	30.0	22.0	25.0	18.5

Output Current @ 3 Phase, 525...600V Input						
Code	Amps	Frame	ND		HD	
			HP	kW	HP	kW
OP9	0.9	A	0.5	0.4	0.5	0.4
1P7	1.7	A	1.0	0.75	1.0	0.75
3P0	3.0	A	2.0	1.5	2.0	1.5
4P2	4.2	A	3.0	2.2	3.0	2.2
6P6	6.6	B	5.0	4.0	5.0	4.0
9P9	9.9	C	7.5	5.5	7.5	5.5
012	12.0	C	10.0	7.5	10.0	7.5
019	19.0	D	15.0	11.0	15.0	11.0
$022^{(2)}$	22.0	D	20.0	15.0	15.0	11.0
$027^{(2)}$	27.0	E	25.0	18.5	20.0	15.0
$032^{(2)}$	32.0	E	30.0	22.0	25.0	18.5

Notes:

Installation/Wiring

This chapter provides information on mounting and wiring the PowerFlex 520series drives.

For information on...	See page...
Mounting Considerations	$\underline{15}$
AC Supply Source Considerations	$\underline{19}$
General Grounding Requirements	$\underline{20}$
Fuses and Circuit Breakers	$\underline{23}$
Power and Control Module	$\underline{28}$
Control Module Cover	$\underline{31}$
Power Module Terminal Guard	$\underline{31}$
Power Wiring	$\underline{32}$
Power Terminal Block	$\underline{35}$
Common Bus/Precharge Notes	$\underline{36}$
I/O Wiring	$\underline{36}$
Control I/O Terminal Block	$\underline{37}$
Start and Speed Reference Control	$\underline{49}$
CEConformity	$\underline{52}$

Most start-up difficulties are the result of incorrect wiring. Every precaution must be taken to assure that the wiring is done as instructed. All items must be read and understood before the actual installation begins.

ATTENTION: The following information is merely a guide for proper installation. Rockwell Automation cannot assume responsibility for the compliance or the noncompliance to any code, national, local or otherwise for the proper installation of this drive or associated equipment. A hazard of personal injury and/or equipment damage exists if codes are ignored during installation.

Mounting Considerations

- Mount the drive upright on a flat, vertical and level surface.

Frame	Screw Size	Screw Torque
A	M5 (\#10...24)	1.56...1.96 Nm (14...17 lb-in.)
B	M5 (\#10...24)	1.56...1.96 Nm (14... 17 lb -in.)
C	M5 (\#10...24)	1.56...1.96 Nm (14... 17 lb -in.)
D	M5 (\#10...24)	2.45...2.94 Nm (22... 26 lb -in.)
E	M8 (5/16 in.)	6.0...7.4 Nm ($53 . . .65 \mathrm{lb}-\mathrm{in}$.)

- Protect the cooling fan by avoiding dust or metallic particles.
- Do not expose to a corrosive atmosphere.
- Protect from moisture and direct sunlight.

Minimum Mounting Clearances

See Appendix B for mounting dimensions.

Ambient Operating Temperatures

See Appendix B for option kits.

Mounting	Enclosure Rating ${ }^{(1)}$	Ambient Temperature			
		Minimum	Maximum (No Derate)	Maximum (Derate) ${ }^{(2)}$	Maximum with Control Module Fan Kit (Derate) ${ }^{(3)(5)}$
Vertical	IP 20/Open Type	$-20^{\circ}\left(1-4{ }^{\circ} \mathrm{F}\right)$	$50^{\circ} \mathrm{C}\left(122^{\circ} \mathrm{F}\right)$	$60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right)$	70° ($158^{\circ} \mathrm{F}$)
	IP 30/NEMA 1/UL Type 1		$45^{\circ} \mathrm{C}\left(113^{\circ} \mathrm{F}\right)$	$55^{\circ} \mathrm{C}\left(131^{\circ} \mathrm{F}\right)$	-
Vertical, Zero Stacking	IP 20/Open Type		$45^{\circ} \mathrm{C}\left(113^{\circ} \mathrm{F}\right)$	$55^{\circ} \mathrm{C}\left(131^{\circ} \mathrm{F}\right)$	$65^{\circ} \mathrm{C}\left(149{ }^{\circ} \mathrm{F}\right)$
	IP 30/NEMA 1/UL Type 1		$40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$	$50^{\circ} \mathrm{C}\left(122^{\circ} \mathrm{F}\right)$	-
$\begin{aligned} & \text { Horizontal with } \\ & \text { Control Module Fan Kit }{ }^{(4)(5)} \end{aligned}$	IP 20/Open Type		$50^{\circ} \mathrm{C}\left(122^{\circ} \mathrm{F}\right)$	-	$70^{\circ} \mathrm{C}\left(158^{\circ} \mathrm{F}\right)$
Horizontal, Zero Stacking with Control Module Fan Kit ${ }^{(4)(5)}$	IP 20/Open Type		$45^{\circ} \mathrm{C}\left(113^{\circ} \mathrm{F}\right)$	-	$65^{\circ} \mathrm{C}\left(149{ }^{\circ} \mathrm{F}\right)$

(1) IP 30/NEMA $1 /$ UL Type 1 rating requires installation of the PowerFlex 520-Series IP 30/NEMA 1/UL Type 1 option kit, catalog number 25-JBAx.
(2) For catalogs $25 x$-D1P4N104 and $25 x$-EOP9N104, the temperature listed under the Maximum (Derate) column is reduced by $5^{\circ} \mathrm{C}\left(9^{\circ} \mathrm{F}\right)$ for all mounting methods.
(3) For catalogs $25 x$-D1P4N104 and 25x-EOP9N104, the temperature listed under the Maximum with Control Module Fan Kit (Derate) column is reduced by $10^{\circ} \mathrm{C}\left(18^{\circ} \mathrm{F}\right)$ for vertical and vertical with zero stacking mounting methods only.
(4) Catalogs 25 x -D1P4N104 and 25x-EOP9N104 cannot be mounted using either of the horizontal mounting methods.
(5) Requires installation of the PowerFlex 520-Series Control Module Fan Kit, catalog number 25-FANx-70C.

Current Derating Curves

Vertical Mounting

Horizontal/Floor Mounting

Single Drive

Zero Stacking

Derating Guidelines for High Altitude

The drive can be used without derating at a maximum altitude of $1000 \mathrm{~m}(3300 \mathrm{ft})$. If the drive is used above $1000 \mathrm{~m}(3300 \mathrm{ft})$:

- Derate the maximum ambient temperature by $5{ }^{\circ} \mathrm{C}\left(9^{\circ} \mathrm{F}\right)$ for every additional $1000 \mathrm{~m}(3300 \mathrm{ft})$, subject to limits listed in the Altitude Limit (Based on Voltage) table below.
Or
- Derate the output current by 10% for every additional $1000 \mathrm{~m}(3300 \mathrm{ft})$, up to $3000 \mathrm{~m}(9900 \mathrm{ft})$, subject to limits listed in the Altitude Limit (Based on Voltage) table below.
Altitude Limit (Based on Voltage)

Drive Rating	Center Ground (Wye Neutral)	Corner Ground, Impedance Ground, or Ungrounded
$100 \ldots . .120 \mathrm{~V}$ 1-Phase	6000 m	6000 m
$200 \ldots . .240 \mathrm{~V}$ 1-Phase	2000 m	2000 m
$200 \ldots .240 \mathrm{~V} 3-$ Phase	6000 m	2000 m
$380 . .480 \mathrm{~V}$ 3-Phase	4000 m	2000 m
$525 . .600 \mathrm{~V} 3-$ Phase	2000 m	2000 m

High Altitude

Debris Protection

Take precautions to prevent debris from falling through the vents of the drive housing during installation.

Storage

- Store within an ambient temperature range of $-40 \ldots . .85^{\circ} \mathrm{C}^{(1)}$.
- Store within a relative humidity range of $0 . . .95 \%$, noncondensing.
- Do not expose to a corrosive atmosphere.
(1) The maximum ambient temperature for storing a Frame E drive is $70^{\circ} \mathrm{C}$.

AC Supply Source Considerations

Ungrounded Distribution Systems

\triangle
ATTENTION: Powerflex 520 -series drives contain protective MOVs that are referenced to ground. These devices must be disconnected if the drive is installed on an ungrounded or resistive grounded distribution system.
ATTENTION: Removing MOVs in drives with an embedded filter will also disconnect the filter capacitor from earth ground.

Disconnecting MOVs

To prevent drive damage, the MOVs connected to ground shall be disconnected if the drive is installed on an ungrounded distribution system (IT mains) where the line-to-ground voltages on any phase could exceed 125% of the nominal line-to-line voltage. To disconnect these devices, remove the jumper shown in the diagrams below.

1. Turn the screw counterclockwise to loosen.
2. Pull the jumper completely out of the drive chassis.
3. Tighten the screw to keep it in place.

Jumper Location (Typical)

IMPORTANT Tighten screw after jumper removal.

Phase to Ground MOV Removal

Input Power Conditioning

The drive is suitable for direct connection to input power within the rated voltage of the drive (see page 169). Listed in the Input Power Conditions table below are certain input power conditions which may cause component damage or reduction in product life. If any of these conditions exist, install one of the devices listed under the heading Corrective Action on the line side of the drive.

IMPORTANT	Only one device per branch circuit is required. It should be mounted closest to the branch and sized to handle the total current of the branch circuit.

Input Power Conditions

Input Power Condition	Corrective Action
Low Line Impedance (less than 1\% line reactance)	- Install Line Reactor ${ }^{(2)}$ - or Isolation Transformer
Greater than 120 kVA supply transformer	
Line has power factor correction capacitors	- Install Line Reactor ${ }^{(2)}$ - or Isolation Transformer
Line has frequent power interruptions	
Line has intermittent noise spikes in excess of 6000 V (lightning)	
Phase to ground voltage exceeds 125\% of normal line to line voltage	- Remove MOV jumper to ground. - or Install Isolation Transformer with grounded secondary if necessary.
Ungrounded distribution system	
B-phase grounded distribution system	
240V open delta configuration (stinger leg) ${ }^{(1)}$	- Install Line Reactor ${ }^{(2)}$

(1) For drives applied on an open delta with a middle phase grounded neutral system, the phase opposite the phase that is tapped in the middle to the neutral or earth is referred to as the "stinger leg," "high leg," "red leg," etc. This leg should be identified throughout the system with red or orange tape on the wire at each connection point. The stinger leg should be connected to the center Phase B on the reactor. See Bulletin 1321-3R Series Line Reactors on page 183 for specific line reactor part numbers.
(2) See Appendix B for accessory ordering information.

General Grounding Requirements

The drive Safety Ground - $-($ PE) must be connected to system ground. Ground impedance must conform to the requirements of national and local industrial safety regulations and/or electrical codes. The integrity of all ground connections should be periodically checked.

Typical Grounding

Ground Fault Monitoring

If a system ground fault monitor (RCD) is to be used, only Type B (adjustable) devices should be used to avoid nuisance tripping.

Safety Ground - \oplus (PE)

This is the safety ground for the drive that is required by code. One of these points must be connected to adjacent building steel (girder, joist), a floor ground rod or bus bar. Grounding points must comply with national and local industrial safety regulations and/or electrical codes.

Network Ground

Connect terminal C1 to a clean earth ground when using a network with a star topology (EtherNet/IP) or daisy-chain (RS485). It is acceptable to ground both C 1 and C 2 terminals.

Connect terminal CS1 or CS2 to a clean ground when using a network with a ring topology (EtherNet/IP).

For more information on EtherNet/IP networks, see Ground Connections for EtherNet/IP Networks on page 248.

For more information on RS485 networks, see Network Wiring on page 201.

Motor Ground

The motor ground must be connected to one of the ground terminals on the drive.

Shield Termination - SHLD

Either of the safety ground terminals located on the power terminal block provides a grounding point for the motor cable shield. The motor cable shield connected to one of these terminals (drive end) should also be connected to the motor frame (motor end). Use a shield terminating or EMI clamp to connect the shield to the safety ground terminal. The earthing plate or conduit box option may be used with a cable clamp for a grounding point for the cable shield.

When shielded cable is used for control and signal wiring, the shield should be grounded at the source end only, not at the drive end.

RFI Filter Grounding

Using a drive with filter may result in relatively high ground leakage currents. Therefore, the filter must only be used in installations with grounded AC supply systems and be permanently installed and solidly grounded (bonded) to the building power distribution ground. Ensure that the incoming supply neutral is solidly connected (bonded) to the same building power distribution ground. Grounding must not rely on flexible cables and should not include any form of plug or socket that would permit inadvertent disconnection. Some local codes may require redundant ground connections. The integrity of all connections should be periodically checked.

Fuses and Circuit Breakers

The PowerFlex 520 -series drive does not provide branch short circuit protection. This product should be installed with either input fuses or an input circuit breaker. National and local industrial safety regulations and/or electrical codes may determine additional requirements for these installations.

The tables found on pages $\underline{24} \ldots . .27$ provide recommended AC line input fuse and circuit breaker information. See Fusing and Circuit Breakers below for UL and IEC requirements. Sizes listed are the recommended sizes based on $40^{\circ} \mathrm{C}$ $\left(104{ }^{\circ} \mathrm{F}\right)$ and the U.S. N.E.C. Other country, state or local codes may require different ratings.

Fusing

The recommended fuse types are listed in the tables found on pages $\underline{24} \ldots . .27$. If available current ratings do not match those listed in the tables provided, choose the next higher fuse rating.

- IEC - BS88 (British Standard) Parts 1 \& $2^{(1)}$, EN60269-1, Parts 1 \& 2, type GG or equivalent should be used.
- UL - UL Class CC, T, RK1, or J should be used.

Circuit Breakers

The "non-fuse" listings in the tables found on pages $\underline{24 . . .27 \text { include inverse time }}$ circuit breakers, instantaneous trip circuit breakers (motor circuit protectors) and 140 M self-protected combination motor controllers. If one of these is chosen as the desired protection method, the following requirements apply:

- IEC - Both types of circuit breakers and 140 M self-protected combination motor controllers are acceptable for IEC installations.
- UL - Only inverse time circuit breakers and the specified 140 M selfprotected combination motor controllers are acceptable for UL installations.

Bulletin 140M (Self-Protected Combination Controller)/UL489 Circuit Breakers

When using Bulletin 140M or UL489 rated circuit breakers, the guidelines listed below must be followed in order to meet the NEC requirements for branch circuit protection.

- Bulletin 140 M can be used in single motor applications.
- Bulletin 140 M can be used up stream from the drive without the need for fuses.
Fuses and Circuit Breakers for PowerFlex 520-Series Drives
100...120V 1-Phase Input Protection Devices - Frames A...B

Catalog No .		Output Ratings					Input Ratings				IEC Applications (Non-UL)				UL Applications			
PF 523	PF 525	ND		HD		$\begin{aligned} & \text { n } \\ & \frac{2}{6} \\ & \hline \end{aligned}$	$\frac{\sqrt{3}}{3}$	$\begin{aligned} & \operatorname{Max} \\ & \text { Amps }^{(1)} \end{aligned}$			Fuses (Rating)		Circuit Breakers		Fuses (Max. Rating) Class / Catalog No.	Circuit Breakers		Min. Enclosure Vol. (in. ${ }^{3}$)
		HP	kW	HP	kW						Min.	Max.	140U/140G	140M		140U/140G	$140 \mathrm{M}^{(2)(3)(4)}$	
25A-V1P6N104	-	0.25	0.2	0.25	0.2	1.6	0.8	6.4	A	100-C09	10	16	140U-D6D2-B80	140M-C2E-B63	CLASS RK5, CC, J, or T / DLS-R-15	140U-D6D2-B80	140M-C2E-363	-
25A-V2P5N104	25B-V2P5N104	0.5	0.4	0.5	0.4	2.5	1.3	9.6	A	100-C12	16	20	140U-D6D2-C12	140M-C2E-C10	CLASS RK5, CC, J, or T / DLS-R-20	140U-D6C2-C12	140M-C2E-C10	-
25A-V4P8N104	25B-V4P8N104	1.0	0.75	1.0	0.75	4.8	2.5	19.2	B	100-C23	25	40	140U-D6D2-C25	140M-D8E-C20	CLASS RK5, CC, J, or T / DLS-R-40	140U-D6D2-C25	140M-D8E-C20	-
25A-V6PON104	25B-V6PON104	1.5	1.1	1.5	1.1	6.0	3.2	24.0	B	100-C23	32	50	140U-D6D2-C30	140M-F8E-C25	CLASS RK5, CC, J, or T / DLS-R-50	140U-D6D2-C30	140M-F8E-C25	-

200...240V 1-Phase Input Protection Devices - Frames A...B

Catalog No .		Output Ratings					Input Ratings		$\begin{aligned} & \text { N } \\ & \stackrel{N}{\hat{N}} \\ & \text { 首 } \\ & \hline \end{aligned}$		IEC Applications (Non-UL)				UL Applications			
PF 523	PF 525	ND		HD		$\begin{aligned} & \text { n } \\ & \stackrel{\rightharpoonup}{\mathbf{E}} \\ & \hline \end{aligned}$	$\underset{\mathbf{x}}{\frac{\pi}{3}}$	$\begin{aligned} & \operatorname{Max} \\ & \text { Amps }^{(1)} \end{aligned}$			Fuses (Rating)		Circuit Breakers		Fuses (Max. Rating) Class / Catalog No.	Circuit Breakers		Min. Enclosure Vol. (in. ${ }^{3}$)
		HP	kW	HP	kW						Min.	Max.	140U/140G	140M		140U/140G	$140 \mathrm{M}^{(2)(3)(4)}$	
25A-A1P6N104	-	0.25	0.2	0.25	0.2	1.6	1.4	5.3	A	100-C09	6	10	140U-D6D2-C10	140M-C2E-B63	CLASS RK5, CC, J, or T/ DLS-R-15	140U-D6D2-C10	140M-C2E-B63	-
25A-A1P6N114	-	0.25	0.2	0.25	0.2	1.6	1.4	5.3	A	100-C09	6	10	140U-D6D2-C10	140M-C2E-B63	CLASS RK5, CC, J, or T/ DLS-R-15	140U-D6D2-C10	140M-C2E-B63	-
25A-A2P5N104	25B-A2P5N104	0.5	0.4	0.5	0.4	2.5	1.7	6.5	A	100-C09	10	16	140U-D6D2-C10	140M-C2E-C10	CLASS RK5, CC, J, or T/ DLS-R-15	140U-D6D2-C10	140M-C2E-C10	-
25A-A2P5N114	25B-A2P5N114	0.5	0.4	0.5	0.4	2.5	1.7	6.5	A	100-C09	10	16	140U-D6D2-C10	140M-C2E-C10	CLASS RK5, CC, J, or T/ DLS-R-15	140U-D6D2-C10	140M-C2E-C10	-
25A-A4P8N104	25B-A4P8N104	1.0	0.75	1.0	0.75	4.8	2.8	10.7	A	100-C12	16	25	140U-D6D2-C15	140M-C2E-C16	CLASS RK5, CC, J, or T/ DLS-R-25	140U-D6D2-C15	140M-C2E-C16	-
25A-A4P8N114	25B-A4P8N114	1.0	0.75	1.0	0.75	4.8	2.8	10.7	A	100-C12	16	25	140U-D6D2-C15	140M-C2E-C16	CLASS RK5, CC, J, or T/ DLS-R-25	140U-D6D2-C15	140M-C2E-C16	-
25A-A8PON104	25B-A8PON104	2.0	1.5	2.0	1.5	8.0	4.8	18.0	B	100-C23	25	40	140U-D6D2-C25	140M-F8E-C25	CLASS CC, J, or T/ 40	140U-D6D2-C25	140M-F8E-C25	-
25A-A8PON114	25B-A8PON114	2.0	1.5	2.0	1.5	8.0	4.8	18.0	B	100-C23	25	40	140U-D6D2-C25	140M-F8E-C25	CLASS CC, J, or T/ 40	140U-D6D2-C25	140M-F8E-C25	-
25A-A011N104	25B-A011N104	3.0	2.2	3.0	2.2	11.0	6.0	22.9	B	100-C37	32	50	140G-66C3-C35	140M-F8E-C25	CLASS CC, J, or T/50	$-^{(5)}$	140M-F8E-C25	-
25A-A011N114	25B-A011N114	3.0	2.2	3.0	2.2	11.0	6.0	22.9	B	100-C37	32	50	140G-66C3-C35	140M-F8E-C25	CLASS CC, J, or T/50	-(5)	140M-F8E-C25	-

[^1](2) The AIC ratings of the Bulletin 140M Motor Protector Circuit Breakers may vary. See Bulletin 140M Motor Protection Circuit Breakers Application Ratings.
(3) Bulletin 140 M with adjustable current range should have the current trip set to the minimum range that the device will not trip.
(4) Manual Self-Protected (Type E) Combination Motor Controller, UL listed for $480 \mathrm{Y} / 277$ and $600 \mathrm{Y} / 347 \mathrm{AC}$ input. Not UL listed for use on 480V or 600V Delta/Delta, corner ground, or high-resistance ground systems.
(5) Circuit breaker selection is not available for this drive rating.
Fuses and Circuit Breakers for PowerFlex 520-Series Drives (continued)
200...240V 3-Phase Input Protection Devices - Frames A...E

Catalog No. ${ }^{(1)}$		Output Ratings					Input Ratings				IEC Applications (Non-UL)				UL Applications			
PF 523	PF525	ND		HD		$\begin{aligned} & \text { 彦 } \\ & \hline \end{aligned}$	$\underset{y}{x}$	$\begin{array}{\|c\|} \operatorname{Max}_{\text {Amps }^{(2)}} \\ \hline \end{array}$			Fuses (Rating)		Circuit Breakers		$\begin{array}{\|l} \hline \text { Fuses (Max. Rating) } \\ \hline \text { Class / Catalog No. } \\ \hline \end{array}$	Circuit Breakers		Min. Enclosure Vol. (in. ${ }^{3}$)
		HP	kW	HP	kW						Min.	Max.	140U/140G	140M		140U/140G	$140 \mathrm{M}^{(3)(4)(5)}$	
25A-B1P6N104	-	0.25	0.2	0.25	0.2	1.6	0.9	1.9	A	100-009	3	6	140U-D6D3-B30	140M-C2E-B25	CLASS RK5, CC, J, or T/ DLS-R-15	140U-D6D3-B30	140M-C2E-B25	-
25A-B2P5N104	25B-B2P5N104	0.5	0.4	0.5	0.4	2.5	1.2	2.7	A	100-C09	6	6	140U-D6D3-B40	140M-C2E-B40	CLASS RK5, CC, J, or T/ DLS-R-6	140U-D6D3-B40	140M-C2E-B40	-
25A-B5PON104	25B-B5PON104	1.0	0.75	1.0	0.75	5.0	2.7	5.8	A	100-C09	10	16	140U-D6D3-B80	140M-C2E-B63	CLASS RK5, CC, J, or T/ DLS-R-15	140U-D6D3-B80	140M-C2E-B63	-
25A-B8PON104	25B-B8P0N104	2.0	1.5	2.0	1.5	8.0	4.3	9.5	A	100-C12	16	20	140U-D6D3-C10	140M-C2E-C10	CLASS RK5, C, J, or T/ DLS-R-20	140U-D6D3-C10	140M-C2E-C10	-
25A-B011N104	25B-B011N104	3.0	2.2	3.0	2.2	11.0	6.3	13.8	A	100-C23	20	32	140U-D6D3-C15	140M-C2E-C16	CLASS RK5, CC, J, or T/ DLS-R-30	140U-D6D3-C15	140M-C2E-C16	-
25A-B017N104	25B-B017N104	5.0	4.0	5.0	4.0	17.5	9.6	21.1	B	100-C23	32	45	140U-D6D3-C25	140M-F8E-C25	CLASS CC, J, or T/45	140U-D6D3-C25	140M-F8E-C25	-
25A-B024N104	25B-B024N104	7.5	5.5	7.5	5.5	24.0	12.2	26.6	C	100-C37	35	63	140G-G6C3-C35	140M-F8E-C32	CLASS CC, J, or T/ 60	$-^{(7)}$	140M-F8E-C32	-
25A-B032N104	25B-B032N104	10.0	7.5	10.0	7.5	32.2	15.9	34.8	D	100-43	45	70	140G-G6C3-C60	140M-F8E-C45	CLASS RK5, CC, J, or T/ DLS-R-70	-(7)	140M-F8E-C45	-
25A-B048N104	25B-B048N104	15.0	11.0	10.0	7.5	48.3	20.1	44.0	E	100-C60	63	90	140G-66C3-C70	140M-F8E-C45	CLASS CC, J, or T/90	$-^{(7)}$	140M-F8E-C45	$1416.0^{(6)}$
25A-B062N104	25B-B062N104	20.0	15.0	15.0	11.0	62.1	25.6	56.0	E	100-C72	70	125	140G-G6C3-C90	-(7)	CLASS CC, J, or T/ 125	-(7)	-(7)	-

[^2]Fuses and Circuit Breakers for PowerFlex 520-Series Drives (continued)
380...480V 3-Phase Input Protection Devices - Frames A...E

Catalog No . ${ }^{(1)}$		Output Ratings					Input Ratings				IEC Applications (Non-UL)				UL Applications			
PF 523	PF 525	ND		HD		若	$\underset{\underset{y}{x}}{\underline{x}}$	$\operatorname{Maxps}_{\text {Amp }^{(2)}}$			Fuses (Rating)		Circuit Breakers		Fuses (Max. Rating) Class / Catalog No.	Circuit Breakers		Min. Enclosure Vol. (in. ${ }^{3}$)
		HP	kW	HP	kW						Min.	Max.	140U/140G	140M		140U/140G	$140 \mathrm{M}^{(3)(4)(5)}$	
25A-D1P4N104	25B-D1P4N104	0.5	0.4	0.5	0.4	1.4	1.7	1.9	A	100-C09	3	6	140U-D6D3-B30	140M-C2E-B25	CLASS RK5, CC, J, or T/ DLS-R-6	- ${ }^{(7)}$	140M-C2E-B25	
25A-D1P4N114	25B-D1P4N114	0.5	0.4	0.5	0.4	1.4	1.7	1.9	A	100-C09	3	6	140U-D6D3-B30	140M-C2E-B25	CLASS RK5, CC, J, or T/ DLS-R-6	-	140M-C2E-B25	-
25A-D2P3N104	25B-D2P3N104	1.0	0.75	1.0	0.75	2.3	2.9	3.2	A	100-C09	6	10	140U-D6D3-B60	140M-C2E-B40	CLASS RK5, CC, J, or T/ DLS-R-10	-(7)	140M-C2E-B40	-
25A-D2P3N114	25B-D2P3N114	1.0	0.75	1.0	0.75	2.3	2.9	3.2	A	100-C09	6	10	140U-D6D3-B60	140M-C2E-B40	CLASS RK5, CC, J, or T/ DLS-R-10	-(7)	140M-C2E-B40	-
25A-D4PON104	25B-D4PON104	2.0	1.5	2.0	1.5	4.0	5.2	5.7	A	100-C09	10	16	140U-D6D3-B60	140M-C2E-B63	CLASS RK5, CC, J, or T/ DLS-R-15	-(140M-C2E-B63	-
25A-D4PON114	25B-D4PON114	2.0	1.5	2.0	1.5	4.0	5.2	5.7	A	100-c09	10	16	140U-D6D3-B60	140M-C2E-B63	CLASS RK5, CC, J, or T/ DLS-R-15	-(7)	140M-C2E-B63	-
25A-D6PON104	25B-D6PON104	3.0	2.2	3.0	2.2	6.0	6.9	7.5	A	100-c09	10	16	140U-D6D3-C10	140M-C2E-C10	CLASS RK5, CC, J, or T/ DLS-R-15	-(7)	140M-C2E-C10	-
25A-D6PON114	25B-D6PON114	3.0	2.2	3.0	2.2	6.0	6.9	7.5	A	100-C09	10	16	140U-D6D3-C10	140M-C2E-C10	CLASS RK5, CC, J, or T/ DLS-R-15	$\square^{(7)}$	140M-C2E-C10	-
25A-D010N104	25B-D010N104	5.0	4.0	5.0	4.0	10.5	12.6	13.8	B	100-C23	20	32	140U-D6D3-C15	140M-C2E-C16	CLASS RK5, CC, J, or T/ DLS-R-30	$\square^{(7)}$	140M-C2E-C16	-
25A-D010N114	25B-D010N114	5.0	4.0	5.0	4.0	10.5	12.6	13.8	B	100-C23	20	32	140U-D6D3-C15	140M-C2E-C16	CLASS RK5, CC, J, or T/ DLS-R-30	- ${ }^{(7)}$	140M-C2E-C16	-
25A-D013N104	25B-D013N104	7.5	5.5	7.5	5.5	13.0	14.1	15.4	C	100-C23	20	35	140U-D6D3-C25	140M-D8E-C20	CLASS CC, J, or T/35	-(7)	140M-D8E-C20	-
25A-D013N114	25B-D013N114	7.5	5.5	7.5	5.5	13.0	14.1	15.4	C	100-C23	20	35	140U-D6D3-C25	140M-D8E-C20	CLASS CC, J, or T/35	$-^{(7)}$	140M-D8E-C20	-
25A-D017N104	25B-D017N104	10.0	7.5	10.0	7.5	17.0	16.8	18.4	C	100-C23	25	40	140U-D6D3-C25	140M-D8E-C20	CLASS CC, J, or T/40	- ${ }^{(7)}$	140M-D8E-C20	-
25A-D017N114	25B-D017N114	10.0	7.5	10.0	7.5	17.0	16.8	18.4	C	100-C23	25	40	140U-D6D3-C25	140M-D8E-C20	CLASS CC, J, or T/40	$-^{(7)}$	140M-D8E-C20	-
25A-D024N104	25B-D024N104	15.0	11.0	15.0	11.0	24.0	24.1	26.4	D	100-C37	35	63	140G-66C3-C40	140M-F8E-C32	CLASS CC, J, or T/60	-(7)	140M-F8E-C32	$656.7^{(6)}$
25A-D024N114	25B-D024N114	15.0	11.0	15.0	11.0	24.0	24.1	26.4	D	100-C37	35	63	140G-66C3-C40	140M-F8E-C32	CLASS CC, J, or T/60	$\square^{(7)}$	140M-F8E-C32	$656.7^{(6)}$
25A-D030N104	25B-D030N104	20.0	15.0	15.0	11.0	30.0	30.2	33.0	D	100-C43	45	70	140G-G6C3-C50	140M-F8E-C45	CLASS CC, J, or T/70	-(7)	140M-F8E-C45	$656.7^{(6)}$
25A-D030N114	25B-D030N114	20.0	15.0	15.0	11.0	30.0	30.2	33.0	D	100-C43	45	70	140G-G6C3-C50	140M-F8E-C45	CLASS CC, J, or T/70	-(7)	140M-F8E-C45	$656.7^{(6)}$
25A-D037N114	25B-D037N114	25.0	18.5	20.0	15.0	37.0	30.8	33.7	E	100-C43	45	70	140G-G6C3-C50	140M-F8E-C45	CLASS CC, J, or T/70	- 7	140M-F8E-C45	-
25A-D043N114	25B-D043N114	30.0	22.0	25.0	18.5	43.0	35.6	38.9	E	100-C60	50	80	140G-G6C3-C60	140M-F8E-C45	CLASS CC, J, or T/80	-	140M-F8E-C45	-

(1) Normal Duty (ND) and Heavy Duty (HD) ratings are available for this drive.

When the drive is controlling motors with lower amp ratings, refer to the drive nameplate for drive input current rating.
The Al Cratings of the Bulletin 140 M Motor Protector Circuit Breakers may vary. See Bulletin 140 M Motor Protection Circu
The AlC ratings of the Bulletin 140M Motor Protector Circuit Breakers may vary. See Bulletin 140 M Motor Protection Circuit Breakers Application Ratings.
Bulletin 140 M with adjustable current range should have tre current trip set to the minimum range that the device will not trip.
Manual Self-Protected (Type E) Combination Motor Controller, UL listed for $480 \mathrm{~F} / 277$ and $600 \mathrm{Y} / 347 \mathrm{AC}$ input. Not UL listed for use on 480 V or 600 V Delta
Manual Self-Protected (Type E) Combination Motor Controller, UL Listed for $480 \mathrm{Y} / 277$ and $600 Y / 347$ AC input. Not UL listed for use on 480 V or 600 V Delta/Delta, corner ground, or high-resistance ground systems.
When using a Manual Self-Protected (Type E) Combination Motor Controller with this drive power rating, the drive must be installed in a ventilated or non-ventilated enclosure with the minimum volume specified iin
When using a Manual Self-Protected (Type E) Combination Motor Controller with this drive power rating, the drive must be installed in a ventilated or non-ventilated enclosure with the minimum volume specified in this column. Application specific thermal Circuit breaker selection is not available for this
Fuses and Circuit Breakers for PowerFlex 520-Series Drives (continued)

525...600V 3-Phase Input Protection Devices - Frames A...E

Catalog No. ${ }^{(1)}$		Output Ratings					Input Ratings				IEC Applications (Non-UL)				UL Applications			
PF523	PF 525	ND		HD		$\begin{aligned} & \text { n } \\ & \underline{E} \\ & \hline \end{aligned}$	$\underset{\lambda}{x}$	$\begin{aligned} & \operatorname{Max} \\ & \text { Amps }^{(2)} \end{aligned}$			Fuses (Rating)		Circuit Breakers		$\begin{array}{\|l} \hline \text { Fuses (Max. Rating) } \\ \hline \text { Class / Catalog No. } \\ \hline \end{array}$	Circuit Breakers		Min. Enclosure Vol. (in. ${ }^{3}$)
		HP	kW	HP	kW						Min.	Max.	140U/140G	140M		140U/140G	$140 \mathrm{M}^{(3)(4)(5)}$	
25A-EOP9N104	25B-EOP9N104	0.5	0.4	0.5	0.4	0.9	1.4	1.2	A	100-C09	3	6	140U-D6D3-B20	140M-C2E-B25	CLASS RK5, CC, J, or T/ DLS-R-6	$-^{(8)}$	140M-C2E-B25	
25A-E1P7N104	25B-E1P7N104	1.0	0.75	1.0	0.75	1.7	2.6	2.3	A	100-009	3	6	140U-D6D3-B30	140M-C2E-B25	CLASS RK5, CC, J, or T/ DLS-R-6	$-^{(8)}$	140M-C2E-B25	
25A-E3PON104	25B-E3PON104	2.0	1.5	2.0	1.5	3.0	4.3	3.8	A	100-C09	6	10	140U-D6D3-850	140M-C2E-B40	CLASS RK5, CC, J, or T / DLS-R-10	-(8)	140M-C2E-B40	-
25A-E4P2N104	25B-E4P2N104	3.0	2.2	3.0	2.2	4.2	6.1	5.3	A	100-C09	10	16	140U-D6D3-B80	140M-C2E-B63	CLASS RK5, CC, J, or T/ DLS-R-15	- ${ }^{8}$	140M-D8E-B63	-
25A-E6P6N104	25B-E6P6N104	5.0	4.0	5.0	4.0	6.6	9.1	8.0	B	100-009	10	20	140U-D6D3-C10	140M-C2E-C10	CLASS RK5, CC, J, or T/ DLS-R-20	$-^{(8)}$	140M-D8E-C10	
25A-E9P9N104	25B-E9P9N104	7.5	5.5	7.5	5.5	9.9	12.8	11.2	C	100-C16	16	25	140U-D6D3-C15	140M-C2E-C16	CLASS RK5, CC, J, or T / DLS-R-25	$-^{(8)}$	140M-D8E-C16 ${ }^{(6)}$	
25A-E012N104	25B-E012N104	10.0	7.5	10.0	7.5	12.0	15.4	13.5	C	100-C23	20	32	140U-D6D3-C20	140M-C2E-C16	CLASS RK5, CC, J, or T/ DLS-R-30	- ${ }^{81}$	140M-D8E-C16	-
25A-E019N104	25B-E019N104	15.0	11.0	15.0	11.0	19.0	27.4	24.0	D	100-C30	32	50	140G-G6C3-C30	140M-F8E-C25	CLASS CC, J, or T/50	$-^{(8)}$	140M-F8E-C25	$656.7^{(7)}$
25A-E022N104	25B-E022N104	20.0	15.0	15.0	11.0	22.0	31.2	27.3	D	100-C30	35	63	140G-66C3-C35	140M-F8E-C32	CLASS CC, J, or T/60	$-^{(8)}$	140M-F8E-C32	$656.7^{(7)}$
25A-E027N104	25B-E027N104	25.0	18.5	20.0	15.0	27.0	28.2	24.7	E	100-C30	35	50	140G-G6C3-C35	140M-F8E-C32	CLASS CC, J, or T/50	$-^{(8)}$	140M-F8E-C32	$1416.0{ }^{(7)}$
25A-E032N104	25B-E032N104	30.0	22.0	25.0	18.5	32.0	33.4	29.2	E	100-C37	40	63	140G-G6C3-C50	140M-F8E-C32	CLASS CC, J, or T/60	$\square^{(8)}$	140M-F8E-C32	$1416.0{ }^{(7)}$

(1) Normal Duty (ND) and Heary Duty (HD) ratings are available for this drive. The AIC ratings of the Bulletin 140M Motor Protector Circuit Breakers may vary. See Bulletin 140M Motor Protection Circuit Breakers Application Ratings.
Bulletin 140 M with adjustable current range should have the current trip set to the minimum range that the device will not trip.
Manual Self-Protected (Type E) Combination Motor Controller, UL listed for $480 \mathrm{Y} / 277$ and $600 \mathrm{Y} / 347 \mathrm{AC}$ input. Not UL listed for use on 480 V or 600 V Delta/Delta, corner ground, or high-resistance ground systems. When used with the 140 M circuit breaker, the 25 A -E9P9104 must be installed in a ventilated or non-ventilated enclosure with the minimum size of $457.2 \times 457.2 \times 269.8 \mathrm{~mm}$ ($18 \times 18 \times 10.62 \mathrm{in}$.).
 considerations may require a larger enclosure.
8) Circuit breaker selection is not available for this drive rating.

Separating the Power and Control Module

1. Press and hold down the catch on both sides of the frame cover, then pull out and swing upwards to remove (Frames B...E only).

2. Press down and slide out the top cover of the Control Module to unlock it from the Power Module.

3. Hold the sides and top of the Control Module firmly, then pull out to separate it from the Power Module.

Connecting the Power and Control Module

1. Align the connectors on the Power Module and Control Module, then push the Control Module firmly onto the Power Module.

2. Push the top cover of the Control Module towards the Power Module to lock it.

3. Insert the catch at the top of the frame cover into the Power Module, then swing the frame cover to snap the side catches onto the Power Module (Frames B...E only).

Control Module Cover

To access the control terminals, DSI port, and Ethernet port, the front cover must be removed. To remove:

1. Press and hold down the arrow on the front of the cover.
2. Slide the front cover down to remove from the Control Module.

Re -attach the front cover when wiring is complete. Guard

To access the power terminals, the terminal guard must be removed. To remove:

1. Press and hold down the catch on both sides of the frame cover, then pull out and swing upwards to remove (Frames B...E only).

2. Press and hold down the locking tab on the terminal guard.
3. Slide the terminal guard down to remove from the Power Module.

Re -attach the terminal guard when wiring is complete.
To access the power terminals for Frame A, you need to separate the Power and Control Modules. See Separating the Power and Control Module on page 28 for instructions.

Power Wiring

ATTENTION: National Codes and standards (NEC, VDE, BSI, etc.) and local codes outline provisions for safely installing electrical equipment. Installation must comply with specifications regarding wire types, conductor sizes, branch circuit protection and disconnect devices. Failure to do so may result in personal injury and/or equipment damage.
ATTENTION: To avoid a possible shock hazard caused by induced voltages, unused wires in the conduit must be grounded at both ends. For the same reason, if a drive sharing a conduit is being serviced or installed, all drives using this conduit should be disabled. This will help minimize the possible shock hazard from "cross coupled" power leads.

Motor Cable Types Acceptable for 100... 600 Volt Installations

A variety of cable types are acceptable for drive installations. For many installations, unshielded cable is adequate, provided it can be separated from sensitive circuits. As an approximate guide, allow a spacing of $0.3 \mathrm{~m}(1 \mathrm{ft})$ for every $10 \mathrm{~m}(32.8 \mathrm{ft})$ of length. In all cases, long parallel runs must be avoided. Do not use cable with an insulation thickness less than 15 mils ($0.4 \mathrm{~mm} / 0.015 \mathrm{in}$.). Do not route more than three sets of motor leads in a single conduit to minimize "cross talk". If more than three drive/motor connections per conduit are required, shielded cable must be used.

UL installations above $50^{\circ} \mathrm{C}$ ambient must use $600 \mathrm{~V}, 90^{\circ} \mathrm{C}$ wire. UL installations in $50^{\circ} \mathrm{C}$ ambient must use $600 \mathrm{~V}, 75^{\circ} \mathrm{C}$ or $90^{\circ} \mathrm{C}$ wire. UL installations in $40^{\circ} \mathrm{C}$ ambient should use $600 \mathrm{~V}, 75^{\circ} \mathrm{C}$ or $90^{\circ} \mathrm{C}$ wire. Use copper wire only. Wire gauge requirements and recommendations are based on $75^{\circ} \mathrm{C}$. Do not reduce wire gauge when using higher temperature wire.

!
WARNING: The distance between the drive and motor must not exceed the maximum cable length stated in the Motor Cable Length Restrictions Tables in "Wiring and Grounding Guide, (PWM) AC Drives," publication DRIVES-IN001.

Unshielded

THHN, THWN or similar wire is acceptable for drive installation in dry environments provided adequate free air space and/or conduit fill rates limits are provided. Any wire chosen must have a minimum insulation thickness of 15 mils and should not have large variations in insulation concentricity.

ATTENTION: Do not use THHN or similarly coated wire in wet areas.

Shielded/Armored Cable

Shielded cable contains all of the general benefits of multi-conductor cable with the added benefit of a copper braided shield that can contain much of the noise generated by a typical AC Drive. Strong consideration for shielded cable should be given in installations with sensitive equipment such as weigh scales, capacitive proximity switches and other devices that may be affected by electrical noise in the distribution system. Applications with large numbers of drives in a similar location, imposed EMC regulations or a high degree of communications / networking are also good candidates for shielded cable.

Shielded cable may also help reduce shaft voltage and induced bearing currents for some applications. In addition, the increased impedance of shielded cable may help extend the distance that the motor can be located from the drive without the addition of motor protective devices such as terminator networks. Refer to Reflected Wave in "Wiring and Grounding Guide, (PWM) AC Drives," publication DRIVES-IN001.

Consideration should be given to all of the general specifications dictated by the environment of the installation, including temperature, flexibility, moisture characteristics and chemical resistance. In addition, a braided shield should be included and be specified by the cable manufacturer as having coverage of at least 75%. An additional foil shield can greatly improve noise containment.

A good example of recommended cable is Belden ${ }^{\circ} 295 \mathrm{xx}$ (xx determines gauge). This cable has four (4) XLPE insulated conductors with a 100% coverage foil and an 85% coverage copper braided shield (with drain wire) surrounded by a PVC jacket.

Other types of shielded cable are available, but the selection of these types may limit the allowable cable length. Particularly, some of the newer cables twist 4 conductors of THHN wire and wrap them tightly with a foil shield. This construction can greatly increase the cable charging current required and reduce the overall drive performance. Unless specified in the individual distance tables as tested with the drive, these cables are not recommended and their performance against the lead length limits supplied is not known.
Recommended Shielded Wire

Location	Rating/Type	Description
Standard (Option 1)	$600 \mathrm{~V}, 90^{\circ} \mathrm{C}\left(194{ }^{\circ} \mathrm{F}\right)$ XHHW2/RHW-2 Anixter B209500-B209507, Belden 29501-29507, or equivalent	- Four tinned copper conductors with XLPE insulation. - Copper braid/aluminum foil combination shield and tinned copper drain wire. - PVC jacket.
Standard (Option 2)	Tray rated $600 \mathrm{~V}, 90^{\circ} \mathrm{C}\left(194{ }^{\circ} \mathrm{F}\right)$ RHH/RHW-2 Anixter OLF-7xxxxx or equivalent	- Three tinned copper conductors with XLPE insulation. - 5 mil single helical copper tape (25% overlap min.) with three bare copper grounds in contact with shield. - PVC jacket.
Class I \& II; Division I \& II	Tray rated $600 \mathrm{~V}, 90^{\circ} \mathrm{C}\left(194^{\circ} \mathrm{F}\right)$ RHH/RHW-2 Anixter 7V-7xxxx-3G or equivalent	- Three bare copper conductors with XLPE insulation and impervious corrugated continuously welded aluminum armor. - Black sunlight resistant PVC jacket overall. - Three copper grounds on \#10 AWG and smaller.

Reflected Wave Protection

The drive should be installed as close to the motor as possible. Installations with long motor cables may require the addition of external devices to limit voltage reflections at the motor (reflected wave phenomena). Refer to Reflected Wave in "Wiring and Grounding Guide, (PWM) AC Drives," publication DRIVESIN001.

The reflected wave data applies to all carrier frequencies $2 . . .16 \mathrm{kHz}$.
For 240 V ratings and lower, reflected wave effects do not need to be considered.

Output Disconnect

The drive is intended to be commanded by control input signals that will start and stop the motor. A device that routinely disconnects then reapplies output power to the motor for the purpose of starting and stopping the motor should not be used. If it is necessary to disconnect power to the motor with the drive outputting power, an auxiliary contact should be used to simultaneously disable drive (Aux Fault or Coast to Stop).

Power Terminal Block

Terminal	Description
$\mathrm{R} / L 1, \mathrm{~S} / \mathrm{L} 2$	1-Phase Input Line Voltage Connection
$\mathrm{R} / L 1, \mathrm{~S} / \mathrm{L}, \mathrm{T} / \mathrm{L} 3$	3-Phase Input Line Voltage Connection
$\mathrm{U} / \mathrm{T} 1, \mathrm{~V} / \mathrm{T} 2, \mathrm{~W} / \mathrm{T} 3$	Motor Phase Connection $=$
$\mathrm{DC+}, \mathrm{DC}-$	DC Bus Connection (except for 110V 1-Phase)
BR+, BR-	Dynamic Brake Resistor Connection
\oplus	Safety Ground - PE

IMPORTANT Terminal screws may become loose during shipment. Ensure that all terminal screws are tightened to the recommended torque before applying power to the drive.

Power Terminal Block Wire Specifications

Frame	Maximum Wire Size ${ }^{(1)}$	Minimum Wire Size ${ }^{(1)}$	Torque
A	$5.3 \mathrm{~mm}^{2}(10 \mathrm{AWG})$	$0.8 \mathrm{~mm}^{2}(18 \mathrm{AWG})$	$1.76 \ldots 2.16 \mathrm{Nm}(15.6 \ldots . .19 .1 \mathrm{lb}-\mathrm{in})$.
B	$8.4 \mathrm{~mm}^{2}(8 \mathrm{AWG})$	$2.1 \mathrm{~mm}^{2}(14 \mathrm{AWG})$	$1.76 \ldots 2.16 \mathrm{Nm}(15.6 \ldots . .19 .1 \mathrm{lb}-\mathrm{in})$.
C	$8.4 \mathrm{~mm}^{2}(8 \mathrm{AWG})$	$2.1 \mathrm{~mm}^{2}(14 \mathrm{AWG})$	$1.76 \ldots 2 . .16 \mathrm{Nm}(15.6 \ldots . .19 .1 \mathrm{lb}-\mathrm{in})$.
D	$13.3 \mathrm{~mm}^{2}(6 \mathrm{AWG})$	$5.3 \mathrm{~mm}^{2}(10 \mathrm{AWG})$	$1.76 \ldots 2.16 \mathrm{Nm}(15.6 \ldots . .19 .1 \mathrm{lb}$-in. $)$
E	$26.7 \mathrm{~mm}^{2}(3 \mathrm{AWG})$	$8.4 \mathrm{~mm}^{2}(8 \mathrm{AWG})$	$3.09 \ldots . . .77 \mathrm{Nm}(27.3 . .33 .4 \mathrm{lb}-\mathrm{in})$.

(1) Maximum/minimum sizes that the terminal block will accept - these are not recommendations.

Common Bus/Precharge Notes

If drives are used with a disconnect switch to the common DC bus, then an auxiliary contact on the disconnect must be connected to a digital input of the drive. The corresponding input (parameter $\underline{\mathrm{t} 062, \mathrm{t} 063, \underline{\mathrm{t} 065} \ldots \mathrm{t} 068 \text { [DigIn }}$ TermBlk xx]) must be set to 30, "Precharge En" This provides the proper precharge interlock, guarding against possible damage to the drive when connected to a common DC bus. For more information, see Drives in Common Bus Configurations, publication DRIVES-AT002.

Motor Start/Stop Precautions

\triangle
ATTENTION: A contactor or other device that routinely disconnects and reapplies the AC line to the drive to start and stop the motor can cause drive hardware damage. The drive is designed to use control input signals that will start and stop the motor. If used, the input device must not exceed one operation per minute or drive damage can occur.
ATTENTION: The drive start/stop control circuitry includes solid-state components. If hazards due to accidental contact with moving machinery or unintentional flow of liquid, gas or solids exist, an additional hardwired stop circuit may be required to remove the $A C$ line to the drive. When the $A C$ line is removed, there will be a loss of any inherent regenerative braking effect that might be present - the motor will coast to a stop. An auxiliary braking method may be required. Alternatively, use the drive's safety input function.

Important points to remember about I / O wiring:

- Always use copper wire.
- Wire with an insulation rating of 600 V or greater is recommended.
- Control and signal wires should be separated from power wires by at least $0.3 \mathrm{~m}(1 \mathrm{ft})$.

IMPORTANT I/O terminals labeled "Common" are not referenced to the safety ground (PE) terminal and are designed to greatly reduce common mode interference.

ATTENTION: Driving the 4-20 mA analog input from a voltage source could cause component damage. Verify proper configuration prior to applying input signals.

Signal and Control Wire Types

Recommendations are for $50^{\circ} \mathrm{C}$ ambient temperature.
$75^{\circ} \mathrm{C}$ wire must be used for $60^{\circ} \mathrm{C}$ ambient temperature. $90^{\circ} \mathrm{C}$ wire must be used for $70^{\circ} \mathrm{C}$ ambient temperature.

Recommended Signal Wire

Signal Type/ Where Used	Belden Wire Type(s) $)^{(1)}$ (or equivalent)	Description	Min. Insulation Rating
Analog I/O \& PTC	$8760 / 9460$	$0.750 \mathrm{~mm}^{2}(18 \mathrm{AWG})$, twisted pair, 100% shield with drain $\left.^{2}\right)$	300 V, 60°
Remote Pot	$\left.8770^{\circ} \mathrm{F}\right)$		
Encoder/Pulse $/ / 0$	$9728 / 9730$	$0.750 \mathrm{~mm}^{2}(18 \mathrm{AWG}), 3$ conductor, shielded	

(1) Stranded or solid wire.
(2) If the wires are short and contained within a cabinet which has no sensitive circuits, the use of shielded wire may not be necessary, but is always recommended.

Recommended Control Wire for Digital I/0

Type	Wire Type(s)	Description	Min. Insulation Rating
Unshielded	Per US NEC or applicable national or local code	-	300 V, $60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right)$
Shielded	Multi-conductor shielded cable such as Belden 8770 (or equivalent)	$0.750 \mathrm{~mm}^{2}(18 \mathrm{AWG}), 3$ conductor, shielded.	

Maximum Control Wire Recommendations

Do not exceed control wiring length of $30 \mathrm{~m}(100 \mathrm{ft})$. Control signal cable length is highly dependent on electrical environment and installation practices. To improve noise immunity, the I/O terminal block Common may be connected to ground terminal/protective earth.

Control I/O Terminal Block

Control I/O Terminal Block Wire Specifications

Frame	Maximum Wire Size ${ }^{(1)}$	Minimum Wire Size $^{(1)}$	Torque
A...E	$1.3 \mathrm{~mm}^{2}(16 \mathrm{AWG})$	$0.13 \mathrm{~mm}^{2}(26 \mathrm{AWG})$	$0.71 \ldots 0.86 \mathrm{Nm}(6.2 . . .7 .6 \mathrm{lb}-\mathrm{in})$.

(1) Maximum/minimum sizes that the terminal block will accept - these are not recommendations.

PowerFlex 523 Control I/O Terminal Block

PowerFlex 523 Control I/O Wiring Block Diagram

Series A

Series B

Control I/O Wiring Block Diagram Notes

(1) See Digital Input Selection for Start Source on page 50 for more information on configuring the digital inputs.

IMPORTANT I/0 Terminal 01 is always a stop input. The stopping mode is determined by the drive setting. See the tables below for more information.

Start Method	Stop Method	
P046, P048, P050 [Start Source x]	1/0 Terminal 01 Stop	Normal Stop
1 "Keypad"	Coast	Per P045 [Stop Mode]
2"Digln TrmBlk"	See t062, t063 [Digin TermBIk xx] below	
3 "Serial/DSI"	Coast	
4 "Network Opt"	Coast	
5 "Ethernet//P" (1)	Coast	

(1) Setting is specific to PowerFlex 525 drives only.

Start Method	Stop Method	
t062, 0663 [Digin TermBlk xx]	1/0 Terminal 01 Stop	Normal Stop
48 "2-Wire FWD"	t064 [2-Wire Mode] is set to: - 0,1, or $2=$ Coast - 3 = per PO45 [Stop Mode]	Per P045 [Stop Mode]
49 "3-Wire Start"	Per P045 [Stop Mode]	
50 "2-Wire REV"	t064 [2-Wire Mode] is set to: - 0,1, or $2=$ Coast - 3 = per P045 [Stop Mode]	
51 "3-Wire Dir"	Per P045 [Stop Mode]	

IMPORTANT The drive is shipped with a jumper installed between I/0 Terminals 01 and 11. Remove this jumper when using $1 / 0$ Terminal 01 as a stop or enable input.
(2) Two wire control shown. For three wire control use a momentary input $\frac{\perp}{\circ}$ on $\mathrm{I} / 0$ Terminal 02 to command a start. Use a maintained input o- for $1 / 0$ Terminal 03 to change direction.
(3) Analog output (terminal 15) is only available on PowerFlex 523 series B drive, and requires firmware 3.001 and later to configure the analog output parameters ($\mathrm{t} 088, \mathrm{t} 089$, and t 090).
(4) Potentiometer connection is only applicable when the 0-10V setting (default) is selected for jumper J4.
(5) Only one analog frequency source may be connected at a time. If more than one reference is connected at the same time, an undetermined frequency reference will result.

Control I/O Terminal Designations

No.	Signal	Default	Description	Parameter
R1	Relay N.O.	Fault	Normally open contact for output relay.	t076
R2	Relay Common	Fault	Common for output relay.	
R3	Relay N.C.	Motor Running	Normally closed contact for output relay.	t081
01	Stop	Coast	Three wire stop. However, it functions as a stop under all input modes and cannot be disabled.	P045 ${ }^{(2)}$
02	Digln TermBIk 02/ Start/Run FWD	Run FWD	Used to initiate motion and also can be used as a programmable digital input. It can be programmed with t062 [Digln TermBlk 02] as three wire (Start/Dir with Stop) or two wire (Run FWD/ Run REV) control. Current consumption is 6 mA .	$\begin{aligned} & \frac{\mathrm{P} 045}{\mathrm{P} 048}, \frac{\mathrm{P} 046}{\mathrm{P} 050}, \\ & \mathrm{~A} 544, \\ & \frac{\mathrm{t}}{} \mathrm{t} 062 \end{aligned}$
03	DigIn TermBIk 03/ Dir/Run REV	Run REV	Used to initiate motion and also can be used as a programmable digital input. It can be programmed with t063 [Digln TermBIk 03] as three wire (Start/Dir with Stop) or two wire (Run FWD/ Run REV) control. Current consumption is 6 mA .	$\underline{\mathrm{t} 063}$
04	Digital Common	-	Return for digital I/O. Electrically isolated (along with the digital $1 / 0$) from the rest of the drive.	-
05	DigIn TermBlk 05/ Pulse In	Preset Freq	Program with t065 [Digln TermBIk 05]. Also functions as a Pulse Train input for reference or speed feedback. Requires an NPN pulse input. The maximum frequency is 100 kHz . Current consumption is 6 mA .	$\underline{\mathrm{t} 065}$
06	Digln TermBlk 06	Preset Freq	Program with t066 [Digln TermBIk 06]. Current consumption is 6 mA .	$\underline{\text { t066 }}$
11	+24V DC	-	Referenced to Digital Common. Drive supplied power for digital inputs. Maximum output current is 100 mA .	-
12	+10V DC	-	Referenced to Analog Common. Drive supplied power for 0 ... 10 V external potentiometer. Maximum output current is 15 mA .	P047, P049

Control I/O Terminal Designations

No.	Signal	Default	Description	Parameter
13	$\begin{aligned} & \text { For Series A } \\ & 0-10 \mathrm{~V} \mathrm{In}^{(1)} \end{aligned}$	Not Active	For external 0-10V (unipolar) input supply or potentiometer wiper. Input impedance: Voltage source $=100 \mathrm{k} \Omega$ Allowable potentiometer resistance range $=1 . . .10 \mathrm{k} \Omega$	
	For Series B Analog Input	Not Active	External analog input supply, selectable by Analog Input jumper. Default is 0-10V (unipolar) input supply or potentiometer wiper. Input impedance: Voltage source $=100 \mathrm{k} \Omega$ Allowable potentiometer resistance range $=1 . . .10 \mathrm{k} \Omega$ Change Analog Input jumper to 4-20 mA for external $4-20 \mathrm{~mA}$ input supply. Input impedance $=250 \Omega$	$\begin{aligned} & \frac{\mathrm{P} 047,}{\mathrm{t} 049,} \\ & \mathrm{t} 062, \\ & \mathrm{t} 065, \\ & \mathrm{t} 063, \\ & \mathrm{t} 093, \\ & \mathrm{t} 471, \\ & \mathrm{~A} 455, \end{aligned}$
14	Analog Common	-	Return for the analog $/ / 0$. Electrically isolated (along with the analog $1 / 0)$ from the rest of the drive.	-
15	For Series A $4-20 \mathrm{~mA} \ln ^{(1)}$	Not Active	For external $4-20 \mathrm{~mA}$ input supply. Input impedance $=250 \Omega$	$\begin{aligned} & \mathrm{P} 047, \\ & \mathrm{Y} 0649, \\ & \mathrm{t} 062, \mathrm{t} 063, \\ & \mathrm{t} 065, \mathrm{t} 066, \\ & \mathrm{~A} 459, \end{aligned}$
	For Series B Analog Output	OutFreq 0-10	The default analog output is $0-10 \mathrm{~V}$. To convert a current value, change the Analog Output jumper to $0-20 \mathrm{~mA}$. Program with t088 [Analog Out Sel]. Maximum analog value can be scaled with t089 [Analog Out High]. Maximum Load: $\begin{aligned} & 4-20 \mathrm{~mA}=525 \Omega(10.5 \mathrm{~V}) \\ & 0-10 \mathrm{~V}=1 \mathrm{k} \Omega(10 \mathrm{~mA}) \end{aligned}$	+088, 0 089
C1	C1	-	This terminal is tied to the RJ-45 port shield. Tie this terminal to a clean ground in order to improve noise immunity when using external communication peripherals.	-
C2	C2	-	This is the signal common for the communication signals.	-

(1) Only one analog frequency source may be connected at a time. If more than one reference is connected at the same time, an undetermined frequency reference will result.
(2) See Footnote (1) on page 39.

PowerFlex 525 Control I/O Terminal Block

PowerFlex 525 Control I/O Wiring Block Diagram

Control I/O Wiring Block Diagram Notes

(1) See Digital Input Selection for Start Source on page 50 for more information on configuring the digital inputs.

IMPORTANT I/O Termina drive setting	I/0 Terminal 01 is always a stop input. The stopping mode is determined by the drive setting. See the tables below for more information.	
Start Method	Stop Method	
P046, P048, P050 [Start Source x]	1/0 Terminal 01 Stop	Normal Stop
1 "Keypad"	Coast	Per P045 [Stop Mode]
2"Digln TrmB1k"	See t062, t063 [Digin TermBIk xx] below	
3 "Serial/DSI"	Coast	
4 "Network Opt"	Coast	
5 "EtherNet/IP"	Coast	

Start Method	Stop Method	
t062, 0663 [Digin TermBIk xx]	I/O Terminal 01 Stop	Normal Stop
48 "2-Wire FWD"	t064 [2-Wire Mode] is set to: - 0,1, or 2 = Coast - $3=$ per P045 [Stop Mode]	Per P045 [Stop Mode]
49 "3-Wire Start"	Per P045 [Stop Mode]	
50 "2-Wire REV"	t064 [2-Wire Mode] is set to: - 0,1, or $2=$ Coast - 3 = per P045 [Stop Mode]	
51 "3-Wire Dir"	Per P045 [Stop Mode]	
$\begin{array}{ll}\text { IMPORTANT } & \text { The driv } \\ & \text { Remove }\end{array}$	The drive is shipped with a jumper installed between I/0 Terminals 01 and 11. Remove this jumper when using I/0 Terminal 01 as a stop or enable input.	

(2) Two wire control shown. For three wire control use a momentary input $\frac{\perp}{\circ}$ on $\mathrm{I} / 0$ Terminal 02 to command a start. Use a maintained input o- for $1 / 0$ Terminal 03 to change direction.
(3) When using an opto output with an inductive load such as a relay, install a recovery diode parallel to the relay as shown, to prevent damage to the output.

Control I/0 Terminal Designations

No.	Signal	Default	Description	Parameter
R1	Relay 1 N.O.	Fault	Normally open contact for output relay.	$\underline{1076}$
R2	Relay 1 Common	Fault	Common for output relay.	
R5	Relay 2 Common	Motor Running	Common for output relay.	+081
R6	Relay 2 N.C.	Motor Running	Normally closed contact for output relay.	
01	Stop	Coast	Three wire stop. However, it functions as a stop under all input modes and cannot be disabled.	P045 ${ }^{(1)}$
02	DigIn TermBIk 02/ Start/Run FWD	Run FWD	Used to initiate motion and also can be used as a programmable digital input. It can be programmed with t062 [DigIn TermBIK 02] as three wire (Start/Dir with Stop) or two wire (Run FWD/ Run REV) control. Current consumption is 6 mA .	
03	DigIn TermBIk 03/ Dir/Run REV	Run REV	Used to initiate motion and also can be used as a programmable digital input. It can be programmed with t063 [DigIn TermBlk 03] as three wire (Start/Dir with Stop) or two wire (Run FWD/ Run REV) control. Current consumption is 6 mA .	$\underline{063}$
04	Digital Common	-	Return for digital I/0. Electrically isolated (along with the digital $1 / 0)$ from the rest of the drive.	-
05	Digln TermBIk 05	Preset Freq	Program with t065 [Digin TermBlk 05]. Current consumption is 6 mA .	+065
06	Digln TermBIk 06	Preset Freq	Program with t066 [Digln TermBlk 06]. Current consumption is 6 mA .	+066
07	Digln TermBIk 07/ Pulse In	$\begin{aligned} & \text { Start Source } 2 \\ & \text { + Speed } \\ & \text { Reference2 } \end{aligned}$	Program with t067 [Digln TermBIk 07]. Also functions as a Pulse Train input for reference or speed feedback. Requires an NPN pulse input. Maximum frequency is 100 kHz . Current consumption is 6 mA .	+067
08	Digln TermB1k 08	Jog Forward	Program with 0688 [Digln TermBIk 08]. Current consumption is 6 mA .	+068
C1	C1	-	This terminal is tied to the RJ-45 port shield. Tie this terminal to a clean ground in order to improve noise immunity when using external communication peripherals.	-
C2	C2	-	This is the signal common for the communication signals.	-
S1	Safety 1	-	Safety input 1. Current consumption is 6 mA .	-
S2	Safety 2	-	Safety input 2. Current consumption is 6 mA .	-
S+	Safety +24 V	-	$+24 V$ supply for safety circuit. Internally tied to the $+24 V$ DC source (Pin 11).	-
11	+24V DC	-	Referenced to Digital Common. Drive supplied power for digital inputs. Maximum output current is 100 mA .	-

Control I/O Terminal Designations

No.	Signal	Default	Description	Parameter
12	+10V DC	-	Referenced to Analog Common. Drive supplied power for $0 . . .10 \mathrm{~V}$ external potentiometer. Maximum output current is 15 mA .	P047, P049
13	$\pm 10 \mathrm{~V}$ In	Not Active	For external 0-10V (unipolar) or $\pm 10 \mathrm{~V}$ (bipolar) input supply or potentiometer wiper. Input impedance: Voltage source $=100 \mathrm{k} \Omega$ Allowable potentiometer resistance range $=1 . . .10 \mathrm{k} \Omega$	$\begin{aligned} & \mathrm{P} 047, \mathrm{P} 049, \\ & \mathrm{t} 062, \mathrm{t} 063, \\ & \mathrm{t} 065, \mathrm{t066}, \\ & \mathrm{t} 093, \\ & \mathrm{~A} 4791 \end{aligned}$
14	Analog Common	-	Return for the analog $1 / 0$. Electrically isolated (along with the analog $1 / 0$) from the rest of the drive.	-
15	4-20mA In	Not Active	For external $4-20 \mathrm{~mA}$ input supply. Input impedance $=250 \Omega$	$\begin{aligned} & \text { P047, P049, } \\ & \begin{array}{l} \mathrm{t} 062 \\ \mathrm{t} 065 \\ \frac{\mathrm{t} 063}{} \mathrm{t} 066 \\ \text { A459, } \end{array}, \underline{\mathrm{A} 471} \end{aligned}$
16	Analog Output	OutFreq 0-10	The default analog output is $0-10 \mathrm{~V}$. To convert a current value, change the Analog Output jumper to $0-20 \mathrm{~mA}$. Program with t088 [Analog Out Sel]. Maximum analog value can be scaled with t089 [Analog Out High]. Maximum Load: $\begin{aligned} & 4-20 \mathrm{~mA}=525 \Omega(10.5 \mathrm{~V}) \\ & 0-10 \mathrm{~V}=1 \mathrm{k} \Omega(10 \mathrm{~mA}) \end{aligned}$	t088, 0089
17	Opto Output 1	Motor Running	Program with t069 [Opto Out1 Sel]. Each Opto-Output is rated 30V DC 50 mA (Non-inductive).	$\begin{aligned} & \mathrm{t069}, \mathrm{t} 070, \\ & \mathrm{t075} \end{aligned}$
18	Opto Output 2	At Frequency	Program with t072 [Opto Out1 Sel]. Each Opto-Output is rated 30V DC 50 mA (Non-inductive).	$\frac{\mathrm{t} 072,}{\mathrm{t} 075} \mathrm{t} 073,$
19	Opto Common	-	The emitters of the Optocoupler Outputs (1 and 2) are tied together at Optocoupler Common. Electrically isolated from the rest of the drive.	-

(1) See Footnote (1) on page 39.

I/O Wiring Examples

1/0	Connection Example
Potentiometer	P047 [Speed Reference1] = 5"0-10V Input"
1...10k Ω Pot. Recommended (2 W minimum)	
Analog Input $0-10 \mathrm{~V}, 100 \mathrm{k} \Omega$ impedance $4-20 \mathrm{~mA}, 250 \Omega$ impedance	
	$\begin{aligned} & \hline \begin{array}{l} \text { Unipolar (Current) } \\ \text { P047 [Speed Reference1] }=6 " 4-20 \mathrm{~mA} \text { Input" } \end{array} \\ & \hline \end{aligned}$
Analog Input, PTC For Drive Fault	Wire the PTC and External Resistor (typically matched to the PTC Hot Resistance) to I/0 Terminals 12, 13, 14. Wire R2/R3 Relay Output (SRC) to I/0 Terminals 5 \& 11. t065 [Digln TermBlk 05] = 12 "Aux Fault" t081 [Relay Out 2 Sel] = 10 "Above Anlg V" t082 [Relay Out 2 Level] = \% Voltage Trip

I/0	Connection Example	
Pulse Train Input PowerFlex 523 t065 [Digin TermBlk 05] $=52$ PowerFlex 525 t067 [Digln TermBlk 07] $=52$ Use P047, P049 and P051 [Speed Referencex] to select pulse input. Jumper for Digin TermBIk 05 or 07 Sel must be moved to Pulse In.	The device connected to terminal 5 (for PowerFlex 523) or terminal 7 (for PowerFlex 525) needs to be NPN or push-pull output driver.	
2 Wire SRC Control -Non-Reversing P046 [Start Source 1] = 2 and t062 [DigIn TermBlk $02]=48$ Input must be active for the drive to run. When input is opened, the drive will stop as specified by P045 [Stop Mode]. If desired, a User Supplied 24V DC power source can be used. Refer to the "External Supply (SRC)" example.		
2 Wire SNK Control -Non-Reversing	Internal Supply (SNK)	
2 Wire SRC Control Run FWD/Run REV P046 [Start Source 1] = 2, t062 [Digln TermBlk 02] $=48$ and t063 [Digln TermBlk 03] $=50$ Input must be active for the drive to run. When input is opened, the drive will stop as specified by P045 [Stop Mode]. If both Run Forward and Run Reverse inputs are closed at the same time, an undetermined state could occur.	Internal Supply (SRC)	Each digital input draws 6 mA .
2 Wire SNK Control Run FWD/Run REV	Internal Supply (SNK)	

I/0	Connection Example	
Analog Output ${ }^{(2)}$ t088 [Analog Out Sel] determines analog output	The Analog Output Select jumper must be set to match the analog output signal mode set in t088 [Analog Out Sel].	
$0-10 \mathrm{~V}$, $1 \mathrm{k} \Omega$ minimum $0-20 \mathrm{~mA} / 4-20 \mathrm{~mA}$, 525Ω maximum	PowerFlex 523 Series B	PowerFlex 525

(1) Feature is specific to PowerFlex 525 drives only
(2) Feature is not applicable to PowerFlex 523 series A drives.

Typical Multiple Drive Connection Examples

Input/Output	Connection Example
Multiple Digital Input Connections Customer Inputs can be wired per External Supply (SRC).	
	When connecting a single input such as Run, Stop, Reverse or Preset Speeds to multiple drives, it is important to connect I/O Terminal 04 common together for all drives. If they are to be tied into another common (such as earth ground or separate apparatus ground) only one point of the daisy chain of $\mathrm{I} / 0$ Terminal 04 should be connected.
	ATTENTION: I/O Common terminals should not be tied together when using SNK (Internal Supply) mode. In SNK mode, if power is removed from one drive, inadvertent operation of other drives that share the same I/O Common connection may occur.
Multiple Analog Connections	
	When connecting a single potentiometer to multiple drives it is important to connect I/0 Terminal 14 common together for all drives. I/O Terminal 14 common and I/0 Terminal 13 (potentiometer wiper) should be daisy-chained to each drive. All drives must be powered up for the analog signal to be read correctly.

Start and Speed Reference Control

Start Source and Speed Reference Selection

The start and drive speed command can be obtained from a number of different sources. By default, start source is determined by P046 [Start Source 1] and drive speed source is determined by P047 [Speed Reference1]. However, various inputs can override this selection, See below for the override priority.

Digital Input Selection for Start Source

If P046, P048 or P050 [Start Source x] has been set to 2, "DigIn TermBlk", then $\underline{\mathrm{t} 062}$ and t 063 [DigIn TermBlk xx] must be configured for 2-Wire or 3-Wire control for the drive to function properly.

Accel/Decel Selection

The Accel/Decel rate can be obtained by a variety of methods. The default rate is determined by P041 [Accel Time 1] and P042 [Decel Time 1]. Alternative Accel/Decel rates can be made through digital inputs, communications and/or parameters. See below for the override priority.

Compliance with the Low Voltage Directive and Electromagnetic Compatibility Directive has been demonstrated using harmonized European Norm (EN) standards published in the Official Journal of the European Communities. PowerFlex 520 -series drives comply with the EN standards listed below when installed according to the installation instructions in this manual.

CE Declarations of Conformity are available online at:
http://www.rockwellautomation.com/products/certification/.

Low Voltage Directive (2006/95/EC and 2014/35/EU)

- EN 61800-5-1 Adjustable speed electrical power drive systems - Part 5-1: Safety requirements - Electrical, thermal and energy.
Pollution Degree Ratings According to EN 61800-5-1

Pollution Degree	Description
1	No pollution or only dry, non-conductive pollution occurs. The pollution has no influence.
2	Normally, only non-conductive pollution occurs. Occasionally, however, a temporary conductivity caused by condensation is to be expected, when the drive is out of operation.

EMC Directive (2004/108/EC and 2014/30/EU)

- EN 61800-3 - Adjustable speed electrical power drive systems - Part 3: EMC requirements and specific test methods

Machinery Directive (2006/42/EC)

- EN ISO 13849-1 - Safety of machinery - Safety related parts of control systems -Part 1: General principles for design
- EN 62061 - Safety of machinery - Functional safety of safety-related electrical, electronic and programmable electronic control systems
- EN 60204-1 - Safety of machinery - Electrical equipment of machines Part 1: General requirements
- EN 61800-5-2 - Adjustable speed electrical power drive systems - Part 5-2: Safety requirement - Functional

Refer to Appendix G for installation consideration related to Machinery Directive.

ATEX Directive (94/9/EC and 2014/34/EU)

- EN 50495 - Safety devices required for the safe functioning of equipment with respect to explosion risks.

General Considerations

- For CE compliance, drives must satisfy installation requirements related to both EN 61800-5-1 and EN 61800-3 provided in this document.
- PowerFlex 520 -series drives must be installed in a pollution degree 1 or 2 environment to be compliant with the CE LV Directive. See Pollution Degree Ratings According to EN 61800-5-1 on page 52 for descriptions of each pollution degree rating.
- PowerFlex 520 -series drives comply with the EMC requirements of EN 61800-3 when installed according to good EMC practices and the instructions provided in this document. However, many factors can influence the EMC compliance of an entire machine or installation, and compliance of the drive itself does not ensure compliance of all applications.
- PowerFlex 520 -series drives are not intended to be used on public lowvoltage networks which supply domestic premises. Without additional mitigation, radio frequency interference is expected if used on such a network. The installer is responsible for taking measures such as a supplementary line filter and enclosure (see Connections and Grounding on page 55) to prevent interference, in addition to the installation requirements of this document.

ATTENTION: NEMA/UL Open Type drives must either be installed in a supplementary enclosure or equipped with a "NEMA Type 1 Kit" to be CE compliant with respect to protection against electrical shock.

- PowerFlex 520 -series drives generate harmonic current emissions on the AC supply system. When operated on a public low-voltage network it is the responsibility of the installer or user to ensure that applicable requirements of the distribution network operator have been met. Consultation with the network operator and Rockwell Automation may be necessary.
- If the optional NEMA 1 kit is not installed, the drive must be installed in an enclosure with side openings less than 12.5 mm (0.5 in .) and top openings less than 1.0 mm (0.04 in .) to maintain compliance with the LV Directive.
- The motor cable should be kept as short as possible in order to avoid electromagnetic emission as well as capacitive currents.
- Use of line filters in ungrounded systems is not recommended.
- In CE installations, input power must be a Balanced Wye with Center Ground configuration for EMC compliance.

Installation Requirements Related to EN 61800-5-1 and the Low Voltage Directive

- 600 V PowerFlex 520 -series drives can only be used on a "center grounded" supply system for altitudes up to and including 2000 m (6562 ft).
- When used at altitudes above $2000 \mathrm{~m}(6562 \mathrm{ft})$ up to a maximum of $4800 \mathrm{~m}(15,748 \mathrm{ft})$, PowerFlex 520 -series drives of voltage classes up to 480 V may not be powered from a "corner-earthed" supply system in order to maintain compliance with the CE LV Directive. See Derating Guidelines for High Altitude on page 18.
- PowerFlex 520 -series drives produce leakage current in the protective earthing conductor which exceeds 3.5 mA AC and/or 10 mA DC . The minimum size of the protective earthing (grounding) conductor used in the application must comply with local safety regulations for high protective earthing conductor current equipment.

\triangle
ATTENTION: Powerflex 520 -series drives produce $D C$ current in the protective earthing conductor which may reduce the ability of RCD's (residual current-operated protective devices) or RCM's (residual current-operated monitoring devices) of type A or AC to provide protection for other equipment in the installation. Where an RCD or RCM is used for protection in case of direct or indirect contact, only an RCD or RCM of Type B is allowed on the supply side of this product.

Installation Requirements Related to EN 61800-3 and the EMC Directive

- The drive must be earthed (grounded) as described in Connections and Grounding on page 55. See General Grounding Requirements on page 20 for additional grounding recommendations.
- Output power wiring to the motor must employ cables with a braided shield providing 75% or greater coverage, or the cables must be housed in metal conduit, or equivalent shield must be provided. Continuous shielding must be provided from the drive enclosure to the motor enclosure. Both ends of the motor cable shield (or conduit) must terminate with a low-impedance connection to earth.
Drive Frames A...E: At the drive end of the motor, either
a. The cable shield must be clamped to a properly installed "EMC Plate" for the drive. Kit number 25-EMC1-Fx.
or
b. The cable shield or conduit must terminate in a shielded connector installed in an EMC plate, conduit box, or similar.
- At the motor end, the motor cable shield or conduit must terminate in a shielded connector which must be properly installed in an earthed motor wiring box attached to the motor. The motor wiring box cover must be installed and earthed.
- All control (I/O) and signal wiring to the drive must use cable with a braided shield providing 75% or greater coverage, or the cables must be housed in metal conduit, or equivalent shielding must be provided. When shielded cable is used, the cable shield should be terminated with a low impedance connection to earth at only one end of the cable, preferably the end where the receiver is located. When the cable shield is terminated at the drive end, it may be terminated either by using a shielded connector in conjunction with a conduit plate or conduit box, or the shield may be clamped to an "EMC plate."
- Motor cabling must be separated from control and signal wiring wherever possible.
- Maximum motor cable length must not exceed the maximum length indicated in PowerFlex 520-Series RF Emission Compliance and Installation Requirements on page 55 for compliance with radio frequency emission limits for the specific standard and installation environment.

Connections and Grounding

(1) Some installations require a shielded enclosure. Keep wire length as short as possible between the enclosure entry point and the EMI filter.

PowerFlex 520-Series RF Emission Compliance and Installation Requirements

Filter Type	Standard/Limits		
	EN61800-3 Category C1 EN61000-6-3 CISPR11 Group 1 Class B	EN61800-3 Category C2 EN61000-6-4 CISPR11 Group 1 Class A (Input power $\leq 20 \mathrm{kVA})$	EN61800-3 Category C3 $(1 \leq 100 \mathrm{~A})$ CISPR11 Group 1 Class A (Input power > 20 kVA)
	-	$10 \mathrm{~m}(33 \mathrm{ft})$	$20 \mathrm{~m}(66 \mathrm{ft})$
External ${ }^{(1)}$	$30 \mathrm{~m}(16 \mathrm{ft})$	$100 \mathrm{~m}(328 \mathrm{ft})$	$100 \mathrm{~m}(328 \mathrm{ft})$

(1) See Appendix B for more information on optional external filters.

Additional Installation Requirements

This section provides information on additional requirements for category C1 and C2 installation, such as enclosures and EMC cores.

IMPORTANT	EMC cores are included with:
	- drives that have an internal EMC filter (25x-xxxxN114)
	- external EMC filter accessory kit (25-RFxxx)
IMPORTANT	An enclosure, shielded input cable, and EMC cores are not required to meet category C3 requirements.

Additional Installation Requirements

Frame Size	Category C1	Category C2				
	Enclosure	Conduit or Shielded Cable @ Input	EMC Cores Required (Included with product)	Enclosure	Conduit or Shielded Cable @ Input	EMC Cores Required (Included with product)

100...120V AC (-15\%, +10\%) - 1-Phase Input with External EMC Filter, 0...120V 1-Phase Output

A	No	No	No	No	No	No
B	No	No	No	No	No	No

200...240V AC (-15\%, +10\%) - 1-Phase Input with External EMC Filter, 0...230V 3-Phase Output

A	Yes	Yes	No	No	Input/Output	
B	Yes	Yes	Output only	No	No	Input/Output
$200 . . .240 V ~ A C(-15 \%,+10 \%) ~$	1-Phase Input with Internal EMC Filter, 0...230V 3-Phase Output ${ }^{(1)}$					

A	${ }^{*}$	${ }^{*}$	Yes	No	No	
B	${ }^{*}$	${ }^{*}$	${ }^{*}$	Yes	No	No

200...240V AC (-15\%, +10\%) - 3-Phase Input with External EMC Filter, 0...230V 3-Phase Output

A	Yes	Yes	Output only	No	No	Input/Output
B	Yes	Yes	Output only	No	No	Input/Output
C	Yes	Yes	Output only	No	No	Input/Output
D	Yes	Yes	No	No	No	Input only
E	Yes	Yes	Output only	No	No	Input only

380...480V AC (-15\%, +10\%) - 3-Phase Input with External EMC Filter, 0...460V 3-Phase Output

A	Yes	Yes	No	No	No	Input/Output
B	Yes	Yes	No	No	No	Input/Output
C	Yes	Yes	No	No	No	Input only
D	Yes	Yes	Output only	No	No	Input/Output
E	Yes	Yes	No	Yes	No	Input/Output

380...480V AC (-15\%, +10\%) - 3-Phase Input with Internal EMC Filter, 0...460V 3-Phase Output ${ }^{(1)}$

A	${ }^{*}$	${ }^{*}$	${ }^{*}$	No	No	Input/Output
B	${ }^{*}$	${ }^{*}$	${ }^{*}$	No	No	Input/Output
C	${ }^{*}$	${ }^{*}$	${ }^{*}$	No	No	Input/Output
D	${ }^{*}$	${ }^{*}$	${ }^{*}$	No	No	Input/Output
E	${ }^{*}$	${ }^{*}$		No	No	Input/Output

525...600V AC (-15\%, +10\%) - 3-Phase Input with External EMC Filter, 0...575V 3-Phase Output

A	Yes	Yes	No	No	No	Input/Output
B	Yes	Yes	No	No	No	Input/Output
C	Yes	Yes	No	No	No	Input/Output
D	Yes	Yes	No	No	No	Input/Output
E	Yes	Yes	No	Yes	No	No

(1) An (*) indicates that EMC requirements are not met.

Recommended Placement of EMC Cores

Frame A

IMPORTANT
The ground cable/shield for both input and output must pass through the EMC core(s), except for the following:

- Frame E drives with internal filters where the grounded input cable must not pass through EMC CORE-E-1.
- 600 V drives with external filters where the grounded output cable must not pass through the EMC core(s).

Recommended Placement of EMC Cores Relative to External Filter

All Frame sizes

Notes:

Start Up

This chapter describes how to start up the PowerFlex 520 -series drive. To simplify drive setup, the most commonly programmed parameters are organized in a single Basic Program Group.

Prepare for Drive Start-Up Drive Startup Task List

1. Disconnect and lock out power to the machine.
2. Verify that AC line power at the disconnect device is within the rated value of the drive.
3. If replacing a drive, verify the current drive's catalog number. Verify all options installed on the drive.
4. Verify that any digital control power is 24 volts.
5. Inspect grounding, wiring, connections, and environmental compatibility.
6. Verify that the Sink (SNK)/Source (SRC) jumper is set to match your control wiring scheme. See the PowerFlex 523 Control I/O Wiring Block Diagram on page 38 and PowerFlex 525 Control I/O Wiring Block Diagram on page 42 for location.

IMPORTANT The default control scheme is Source (SRC). The Stop terminal is jumpered to allow starting from the keypad or comms. If the control scheme is changed to Sink (SNK), the jumper must be removed from I/O Terminals 01 and 11 and installed between $1 / 0$ Terminals 01 and 04 .
7. Wire I/O as required for the application.
8. Wire the power input and output terminals.
9. Confirm that all inputs are connected to the correct terminals and are secure.
10. Collect and record motor nameplate and encoder or feedback device information. Verify motor connections.

- Is the motor uncoupled?
- What direction will the motor need to turn for the application?

11. Verify the input voltage to the drive. Verify if the drive is on a grounded system. Ensure the MOV jumpers are in the correct position. See AC Supply Source Considerations on page 19 for more information.
12. Apply power and reset the drive and communication adapters to factory default settings. To reset the drive, see parameter P053 [Reset to Defalts]. To reset the communication adapters, see the user manual of the adapter for more information.
13. Configure the basic program parameters related to the motor. See Smart Start-Up with Basic Program Group Parameters on page 65.
14. Complete the autotune procedure for the drive. See parameter $\underline{P 040}$ [Autotune] for more information.
15. If you are replacing a drive and have a backup of the parameter settings obtained using the USB utility application, use the USB utility application to apply the backup to the new drive. See Using the USB Port on page 67 for more information.

Otherwise, set the necessary parameters for your application using the LCD keypad interface, Connected Components Workbench, or RSLogix or Logix Designer if using an Add-on Profile through EtherNet/IP.

- Configure the communication parameters needed for the application (node number, IP address, Datalinks in and out, communication rate, speed reference, start source, and so on). Record these settings for your reference.
- Configure the other drive parameters needed for the drive analog and digital I/O to work correctly. Verify the operation. Record these settings for your reference.

16. Verify the drive and motor perform as specified.

- Verify that the Stop input is present or the drive will not start.

IMPORTANT If $/$ / Terminal 01 is used as a stop input, the jumper between I/0 Terminals 01 and 11 must be removed.

- Verify the drive is receiving the speed reference from the correct place and that the reference is scaled correctly.
- Verify the drive is receiving start and stop commands correctly.
- Verify input currents are balanced.
- Verify motor currents are balanced.

17. Save a backup of the drive settings using the USB utility application. See Using the USB Port on page 67 for more information.

Start, Stop, Direction and Speed Control

Factory default parameter values allow the drive to be controlled from the keypad. No programming is required to start, stop, change direction and control speed directly from the keypad.

IMPORTANT To disable reverse operation, see A544 [Reverse Disable].

If a fault appears on power up, see Fault Descriptions on page 159 for an explanation of the fault code.

Variable Torque Fan/Pump Applications

For improved motor and drive performance, tune the motor in SVC mode using parameter P040 [Autotune]. If V / Hz mode is selected, use parameter A530 [Boost Select] to adjust the boost.

Display and Control Keys

Control and Navigation Keys

Display	Display State	Description
ENET (PowerFlex 525 only)	Off	Adapter is not connected to the network.
	Steady	Adapter is connected to the network and drive is controlled through Ethernet.
	Flashing	Adapter is connected to the network but drive is not controlled through Ethernet.
LINK (PowerFlex 525 only)	Off	Adapter is not connected to the network.
	Steady	Adapter is connected to the network but not transmitting data.
	Flashing	Adapter is connected to the network and transmitting data.
LED	LED State	Description
FAULT	Flashing Red	Indicates drive is faulted.
Key	Name	Description
	Up Arrow Down Arrow	Scroll through user-selectable display parameters or groups. Increment values.
	Escape	Back one step in programming menu. Cancel a change to a parameter value and exit Program Mode.
	Select	Advance one step in programming menu. Select a digit when viewing parameter value.
	Enter	Advance one step in programming menu. Save a change to a parameter value.

Key	Name	Description
	Reverse	Used to reverse direction of the drive. Default is active. Controlled by parameters P046, P048 and P050 [Start Source x] and A544 [Reverse Disable].
	Stop	Used to start the drive. Default is active. Controlled by parameters P046, P048 and P050 [Start Source x].
	Potentiometer	Used to stop the drive or clear a fault. This key is always active. Controlled by parameter P045 [Stop Mode].

The following is an example of basic integral keypad and display functions. This example provides basic navigation instructions and illustrates how to program a parameter.

Step	Key(s)	Example Display
10. If desired, press Sel to move from digit to digit or bit to bit. The digit or bit that you can change will flash.		
11. Press Esc to cancel a change and exit Program Mode. Or Press Enter to save a change and exit Program Mode. The digit will stop flashing and the word Program on the LCD display will turn off.		
12. Press Esc to return to the parameter list. Continue to press Esc to back out of the programming menu. If pressing Esc does not change the display, then b001 [Output Freq] is displayed. Press Enter or Sel to enter the group list again.	$\langle\text { Esc }\rangle$	

Drive Programming Tools

Some features in the PowerFlex 520-series drive are not supported by older configuration software tools. It is strongly recommended that customers using such tools migrate to RSLogix 5000 (version 17.0 or greater) or Logix Designer (version 21.0 or greater) with Add-On-Profile (AOP), or Connected Components Workbench (version 5.0 or greater) to enjoy a richer, full-featured configuration experience. For Automatic Device Configuration (ADC) support, RSLogix 5000 version 20.0 or greater is required.

Description	Catalog Number/Release Version
Connected Components Workbench ${ }^{(1)}$	Version 5.0 or greater
Logix Designer	Version 21.0 or greater
RSLogix 5000	Version 17.0 or greater
Built-in USB software tool	-
Serial Converter Module ${ }^{(2)}$	22-SCM-232
USB Converter Module ${ }^{(2)}$	1203-USB
Remote Panel Mount, LCD Display	
Remote Handheld, LCD Display ${ }^{(2)}$	22-HIM-C2S

(1) Available as a free download at http://ab.rockwellautomation.com/programmable-controllers/connected-components-workbench-software.
(2) Does not support the new dynamic parameter groups (AppView, CustomView), and CopyCat functionality is limited to the linear parameter list.

Language Support

Language	Keypad/LCD Display	RSLogix $\mathbf{5 0 0 0 /}$ Logix Designer	Connected Components Workbench
English	Y	Y	Y
French	Y	Y	Y
Spanish	Y	Y	Y
Italian	Y	Y	Y
German	Y	Y	Y
Japanese	-	Y	-
Portuguese	Y	Y	-
Chinese Simplified	-	Y	Y
Korean	-	Y	-

Language	Keypad/LCD Display	RSLogix 5000/ Logix Designer	Connected Components Workbench
Polish			
(1)	Y	-	-
Turkish $^{(1)}$	Y	-	-
Czech $^{(1)}$	Y	-	-

(1) Due to a limitation of the LCD Display, some of the characters for Polish, Turkish, and Czech will be modified.

Smart Start-Up with Basic Program Group Parameters

The PowerFlex 520 -series drive is designed so that start up is simple and efficient. The Basic Program Group contains the most commonly used parameters. See Programming and Parameters on page 71 for detailed descriptions of the parameters listed here, as well as the full list of available parameters.

No.	Parameter \quad Min/Max	Display/Options	Default
P039	[Torque Perf Mode] $0 / 4$ Selects the motor control mode. (1) Setting is specific to PowerFlex 525 drives only. (2) Setting is available in Powerflex 525 FRN $5 . x x x$ and later. (3) When P039 [Torque Perf Mode] is set to 4 and A535 [Motor Fdbk Type] is set to $0,1,2$ or 3 , the drive is in open loop PM motor control mode. When P039 [Torque Perf Mode] is set to 4 and A535 [Motor Fdbk Type] is set to 4 or 5 , the drive is in closed loop PM motor control mode.	$\begin{aligned} & 0=\text { "V/Hz" } \\ & 1=\text { "SVC" } \\ & 2=\text { "Economize" } \\ & 3=\text { "Vector" (1) } \\ & 4=\text { "PM Control" } 1 \text { (1)(2)(3) } \end{aligned}$	1
P040	[Autotune] $0 / 2$ Enables a static (not spinning) or dynamic (motor spinning) autotune.	$\begin{aligned} & 0=\text { "Ready/Idle" } \\ & 1=\text { "Static Tune" } \\ & 2=\text { "Rotate Tune" } \end{aligned}$	0
P041	[Accel Time 1] $0.00 / 600.00 \mathrm{~s}$ Sets the time for the drive to accel from 0 Hz to [Maximum Freq].	0.01 s	10.00 s
P042	[Decel Time 1] $0.00 / 600.00 \mathrm{~s}$ Sets the time for the drive to decel from [Maximum Freq] to 0 Hz .	0.01 s	10.00 s
P043	[Minimum Freq] $0.00 / 500.00 \mathrm{~Hz}$ Sets the lowest frequency the drive outputs.	0.01 Hz	0.00 Hz
P044	[Maximum Freq] $0.00 / 500.00 \mathrm{~Hz}$ Sets the highest frequency the drive outputs.	0.01 Hz	60.00 Hz
P045	[Stop Mode] $0 / 11$ Stop command for normal stop. Important: $1 / 0$ Terminal 01 is always a stop input. The stopping mode is determined by the drive setting. Important: The drive is shipped with a jumper installed between I/0 Terminals 01 and 11 . Remove this jumper when using I/0 Terminal 01 as a stop or enable input. (1) Stop input also clears active fault.		0
$\begin{gathered} \text { P046, } \\ \text { P048, } \\ \text { P050 } \\ 0 \end{gathered}$		$\begin{aligned} & 1=\text { "Keypad"(1) } \\ & 2=\text { "Digln TrmBIk"(2) } \\ & 3=\text { "Serial/DSI" } \\ & 4=\text { "Network Opt" } \\ & 5=\text { "Ethernet/l/"(3) } \end{aligned}$	$\begin{aligned} & P 046=1 \\ & \text { P048 }=2 \\ & \text { P050 }=3(\text { PowerFlex 523 }) \\ & 5(\text { PowerFlex 525 }) \end{aligned}$

No.	Parameter Min/Max	Display/Options	Default
$\begin{aligned} & \hline \text { P047, } \\ & \text { P049, } \\ & \text { P051 } \end{aligned}$	[Speed Reference1] 1/16 Sets the default speed command of the drive unless overridden by P049 [Speed Reference2] or P051 [Speed Reference3]. (1) Setting is specific to PowerFlex 525 drives only.	$\begin{aligned} & 1=\text { "Drive Pot" } \\ & 2=\text { ="Keypad Freq" } \\ & 3=\text { ="Serial/DSI" } \\ & 4=\text { ="Network Opt" } \\ & 5 \end{aligned}=\text { ="0-10V Input" }$	$\begin{aligned} \text { P047 } & =1 \\ \text { P049 } & =5 \\ \text { P051 } & =3 \text { (PowerFlex 523) } \\ & 15 \text { (PowerFlex 525) } \end{aligned}$
P052	[Average kWh Cost] $00.00 / 655.35$	0.01	0.00
	Sets the average cost per kWh.		
P053	[Reset To Defalts] $0 / 4$	$0=$ "Ready//dle"	0
\bigcirc	Resets parameters to their factory defaults values. After a Reset command, the value of this parameter returns to zero. (1) Power cycle of the drive, NO parameters are reset. (2) Setting is available in Powerflex 525 FRN 5 .xxx and later. (3) Setting is available in Powerflex 523 FRN $3 . x x x$ and later.	$\begin{aligned} & 1=\text { "Param Reset" } \\ & 2=\text { "Factory Rset" } \\ & 3=\text { "Power Reset" } \\ & 4=\text { "Module Reset" } 1 \text { (1)(2)(3) } \end{aligned}$	

LCD Display with QuickView Technology

QuickView ${ }^{\text {m" }}$ technology enables text to scroll across the LCD display of the PowerFlex 520 -series drive. This allows you to easily configure parameters, troubleshoot faults and view diagnostic items without using a separate device.

Use parameter A556 [Text Scroll] to set the speed at which the text scrolls across the display. Select 0 "Off" to turn off text scrolling. See Language Support on page 64 for the languages supported by the PowerFlex 520 -series drive.

The PowerFlex 520 -series drive has a USB port that connects to a PC for the purpose of upgrading drive firmware or uploading/downloading a parameter configuration.

> | IMPORTANT | To use the USB feature of the PowerFlex 520-series drive, Microsoft .Net |
| :--- | :--- |
| | Framework 2.0 and Windows XP or later is required. |

MainsFree Programming

The MainsFree ${ }^{\text {m" }}$ programming feature allows you to quickly configure your PowerFlex 520 -series drive without having to power up the control module or install additional software. Simply connect the control module to your PC with a USB Type B cable and you can download a parameter configuration to your drive. You can also easily upgrade your drive with the latest firmware.

Connecting a PowerFlex 520-series drive to a PC

When connected, the drive appears on the PC and contains two files:

- GUIDE.PDF

This file contains links to relevant product documentation and software downloads.

- Fargi PF52XUSB.EXE

This file is an application to flash upgrade firmware or upload/download a parameter configuration.

It is not possible to delete these files or add more to the drive.
Double-click on the PF52XUSB.EXE file to launch the USB utility application. The main menu is displayed. Follow the program instructions to upgrade the firmware or upload/download configuration data.

: PowerFlex 520-Series USB Application		
Drive	Peripheral	Connected
PowerFlex 525 1P 240 V .50HP 1.3		
Only one control module can be connected via USB at any time.		
Upload	Upload a configuration from the drive	
Download	Download a configuration to the drive	
Flash	Flash the drive or peripheral	
To obtain the latest version of Connected Components Workbench, go to: http://ab.rockwellautomation.com/Programmable-Controllers/Connected-Components-Workbench-Software		
For the latest drive or peripheral firmware updates, go to: http://www.ab.com/support/abdrives/webupdate/index.html		
For the latest product manuals, go to: http://iterature.rockwellautomation.com/idc/qroups/public/documents/webassets/browse cateqory.hcst		

IMPORTANT Make sure your PC is powered by an AC power outlet or has a fully charged battery before starting any operation. This prevents the operation from terminating before completion due to insufficient power.

Limitation in Downloading .pf5 Configuration Files with the USB Utility Application

Before downloading a .pf5 configuration file using the USB utility application, parameter C169 [MultiDrv Sel] in the destination drive must match the incoming configuration file. If it does not, set the parameter manually to match and then cycle drive power. Also, the drive type of the .pf5 file must match the drive.

This means you cannot apply a multi-drive configuration using the USB utility application to a drive in single mode (parameter C169 [MultiDrv Sel] set to 0 "Disabled"), or apply a single mode configuration to a drive in multi-drive mode.

Notes:

Programming and Parameters

This chapter provides a complete listing and description of the PowerFlex 520series drive parameters. Parameters are programmed (viewed/edited) using either the drive's built-in keypad, RSLogix 5000 version 17.0 or greater, Logix Designer version 21.0 or greater, o r Connected Components Workbench version 5.0 or greater software. The Connected Components Workbench software can be used offline (through USB) to upload parameter configurations to the drive or online (through Ethernet connection).

Limited functionality is also available when using the Connected Components Workbench software online (through DSI and serial converter module), a legacy external HIM, or legacy software online (DriveTools SP ${ }^{\text {mi }}$). When using these methods, the parameter list can only be displayed linearly, and there is no access to communications option card programming.

For information on...	See page...
About Parameters	$\underline{71}$
Parameter Groups	$\underline{73}$
Basic Display Group	$\underline{78}$
Basic Program Group	$\underline{83}$
Terminal Block Group	$\underline{89}$
Communications Group	$\underline{101}$
Logic Group	$\underline{107}$
Advanced Display Group	$\underline{110}$
Advanced Program Group	$\underline{115}$
Network Parameter Group	$\underline{141}$
Modified Parameter Group	$\underline{142}$
Fault and Diagnostic Group	$\underline{142}$
AppView Parameter Groups	$\underline{150}$
Custom View Parameter Group	$\underline{151}$
Parameter Cross Reference by Name	$\underline{152}$

About Parameters

To configure a drive to operate in a specific way, drive parameters may have to be set. Three types of parameters exist:

- ENUM

ENUM parameters allow a selection from 2 or more items. Each item is represented by a number.

- Numeric Parameters

These parameters have a single numerical value (0.1V).

- Bit Parameters

Bit parameters have five individual digits associated with features or conditions. If the digit is 0 , the feature is off or the condition is false. If the digit is 1 , the feature is on or the condition is true.

Some parameters are marked as follows.
$O=$ Stop drive before changing this parameter.
$\sqrt[32]{ }=32$ bit parameter.
PF 525 = Parameter is specific to PowerFlex 525 drives only.

32-bit Parameters

Parameters marked 32-bit will have two parameter numbers when using RS485 communications and programming software. For example, parameters b010 [Process Display] and b011 [Process Fract] are scaled and displayed as follows.

- P043 [Minimum Freq] $=0 \mathrm{~Hz}$
- P044 [Maximum Freq] $=60 \mathrm{~Hz}$
- A481 [Process Display Lo] $=0$
- A482 [Process Display Hi] $=10$

Using the forumla,

when the drive is running at 10 Hz , the Process Value will be 1.66 .
On the drive LCD display, only parameter b010 [Process Display] is shown.

In Connected Components Workbench software, parameter b010 [Process Display] and b011 [Process Fract] are shown separately.

Parameter Groups
For an alphabetical listing of parameters, see Parameter Cross Reference by Name on page 152.

Basic Display		Output Voltage	b004	Control Source	b012	Elapsed Run Time	b019	Accum CO2 Sav	b026
		DC Bus Voltage	b005	Contrl In Status	b013	Average Power	b020	Drive Temp	b027
		Drive Status	b006	Dig In Status	b014	Elapsed kWh	b021	Control Temp	b028
		Fault 1 Code	b007	Output RPM	b015	Elapsed MWh	b022	Control SW Ver	b029
Output Freq	b001	Fault 2 Code	b008	Output Speed	b016	Energy Saved	b023		
Commanded Freq	b002	Fault 3 Code	b009	Output Power	b017	Accum kWh Sav	b024		
Output Current	b003	Process Display	b010	Power Saved	b018	Accum Cost Sav	b025		
Basic Program		Motor NP Hertz	P032	Voltage Class	P038	Maximum Freq	P044	Start Source 3	P050
		Motor OL Current	P033	Torque Perf Mode	P039	Stop Mode	P045	Speed Reference3	P051
		Motor NP FLA	P034	Autotune	P040	Start Source 1	P046	Average kWh Cost	P052
		Motor NP Poles	P035	Accel Time 1	P041	Speed Reference1	P047	Reset To Defalts	P053
Language	P030	Motor NP RPM	P036	Decel Time 1	P042	Start Source 2	P048		
Motor NP Volts	P031	Motor NP Power ${ }^{(1)}$	P037	Minimum Freq	P043	Speed Reference2	P049		
Terminal Blocks		Digin Termblk $07^{(1)}$	t067	Relay 10 nTime	t079	Analog Out High ${ }^{(2)}$	t089	Anlg Loss Delay	t098
		Digln TermBlk $08{ }^{(1)}$	t068	Relay 10 Off Time	t080	Anlg Out Setpt ${ }^{(2)}$	t090	Analog In Filter	t099
		Opto Out1 Sel ${ }^{(1)}$	t069	Relay Out2 Sel ${ }^{(1)}$	t081	Anlg $\ln 0-10 \mathrm{~V}$ Lo	t091	Sleep-Wake Sel	t100
		Opto Out1 Level ${ }^{(1)}$	t070	Relay Out2 Level ${ }^{(1)}$	t082	Anlg $\ln 0-10 \mathrm{VHi}$	t092	Sleep Level	t101
Digln Termblk 02	t062	Opto Out2 Sel ${ }^{(1)}$	t072	Relay $20 n$ Time ${ }^{(1)}$	t084	10 V Bipolar Enbl ${ }^{(1)}$	t093	Sleep Time	t102
Digln Termblk 03	t063	Opto Out2 Level ${ }^{(1)}$	t073	Relay 20 ff Time ${ }^{(1)}$	t085	Anlg In V Loss	t094	Wake Level	t103
2-Wire Mode	t064	Opto Out Logic ${ }^{(1)}$	t075	EM Brk Off Delay	t086	Anlg $\ln 4-20 \mathrm{~mA} \mathrm{Lo}$	t095	Wake Time	t104
Digin Termblk 05	t065	Relay Out1 Sel	t076	EM Brk On Delay	t087	Anlg $\ln 4-20 \mathrm{~mA} \mathrm{Hi}$	t096	Safety Open En ${ }^{(1)}$	t105
Digin TermB1k 06	t066	Relay Out1 Level	t077	Analog Out Sel ${ }^{(2)}$	t088	Anlg In mA Loss	t097	SafetyFlt RstCfg ${ }^{(1)(3)}$	t106
Communications		EN Addr Sel ${ }^{(1)}$	C128	EN Gateway Cfg $3^{(1)}$	C139	EN Data In ${ }^{(1)}$	C153	Opt Data In 4	C164
		EN IP Addr $\mathrm{Cfg} 1^{(1)}$	C129	EN Gateway (fg $4^{(1)}$	C140	EN Data In $2^{(1)}$	C154	Opt Data Out 1	C165
		EN IP Addr (fg $2^{(1)}$	C130	EN Rate Cfg ${ }^{(1)}$	C141	EN Data In $3^{(1)}$	C155	Opt Data Out 2	C166
		EN IP Addr (fg $3^{(1)}$	C131	EN Comm Flt Actn ${ }^{(1)}$	C143	EN Data In $4^{(1)}$	C156	Opt Data Out 3	C167
Comm Write Mode	C121	EN IP Addr Cfg $4^{(1)}$	C132	EN Idle Flt Actn ${ }^{(1)}$	C144	EN Data Out $1^{(1)}$	C157	Opt Data Out 4	C168
Cmd Stat Select ${ }^{(1)}$	C122	EN Subnet (fg $1^{(1)}$	C133	EN FIt Cfg Logic ${ }^{(1)}$	C145	EN Data Out $2^{(1)}$	C158	Multidrv Sel	C169
RS485 Data Rate	C123	EN Subnet (fg $2^{(1)}$	C134	EN FIt Cfg Ref ${ }^{(1)}$	C146	EN Data Out $3^{(1)}$	C159	Drv 1 Addr	(171
RS485 Node Addr	C124	EN Subnet (fg $3^{(1)}$	C135	EN Flt Cfg DL1 $1^{(1)}$	C147	EN Data Out $4{ }^{(1)}$	C160	Drv 2 Addr	C172
Comm Loss Action	C125	EN Subnet Cfg $4^{(1)}$	C136	ENFIt Cfg DL $2{ }^{(1)}$	C148	Opt Data In 1	C161	Drv 3 Addr	C173
Comm Loss Time	C126	EN Gateway Cfg $1^{(1)}$	C137	EN Flt Cfg DL $3^{(1)}$	C149	Opt Data In 2	C162	Drv 4 Addr	C174
RS485 Format	C127	EN Gateway Cfg $2^{(1)}$	C138	EN FIt Cfg DL $4{ }^{(1)}$	C150	Opt Data In 3	C163	DSII/0 Cfg	C175
Logic ${ }^{(1)}$		Stp Logic 2	L182	Stp Logic Time 0	L190	Stp Logic Time 6	L196	Step Units 4	L208
		Stp Logic 3	L183	Stp Logic Time 1	L191	Stp Logic Time 7	L197	Step Units 5	L210
		Stp Logic 4	L184	Stp Logic Time 2	L192	Step Units 0	L200	Step Units 6	L212
		Stp Logic 5	L185	Stp Logic Time 3	1193	Step Units 1	L202	Step Units 7	L214
Stp Logic 0	L180	Stp Logic 6	L186	Stp Logic Time 4	1194	Step Units 2	L204		
Stp Logic 1	L181	Stp Logic 7	188	Stp Logic Time 5	L195	Step Units 3	L206		
Advanced Display		Elapsed Time-min	d363	Speed Feedback	d376	PID2 Fdbk Displ ${ }^{(1)}$	d385	RdyBit Mode Act ${ }^{(2)(4)}$	d392
		Counter Status	d364	Encoder Speed ${ }^{(2)}$	d378	PID2 Setpnt Disp ${ }^{(1)}$	d386	Drive Status $\mathrm{2}^{(2)(3)}$	d393
		Timer Status	d365	DC Bus Ripple	d380	Position Status ${ }^{(1)}$	d387	Dig Out Status ${ }^{(2)(3)}$	d394
		Drive Type	d367	Output Powr Fctr	d381	Units Traveled $\mathrm{H}^{(1)}$	d388		
Analog $\ln 0-10 \mathrm{~V}$	d360	Testpoint Data	d368	Torque Current	d382	Units Traveled L ${ }^{(1)}$	d389		
Analog In 4-20mA	d361	Motor OL Level	d369	PID1 Fdbk Displ	d383	Fiber Status	d390		
Elapsed Time-hr	d362	Slip Hz Meter	d375	PID1 Setpnt Disp	d384	Stp Logic Status ${ }^{(1)}$	d391		

Advanced Program		Accel Time 2	A442	PID 2 Preload ${ }^{(1)}$	A478	PM HIFI NS Cur ${ }^{(1)(3)}$	A519	Reset Meters	A555
		Decel Time 2	A443	PID 2 Invert Err ${ }^{(1)}$	A479	PM Bus Reg Kd ${ }^{(1)(3)}$	A520	Text Scroll	A556
		Accel Time 3	A444	Process Disp Lo	A481	Freq $1 \mathrm{Kp}{ }^{(1)}$	A521	Out Phas Loss En	A557
		Decel Time 3	A445	Process Disp Hi	A482	Freq $1 \mathrm{Ki}^{(1)}$	A522	Positioning Mode ${ }^{(1)}$	A558
Preset Freq 0	A410	Accel Time 4	A446	Testpoint Sel	A483	Freq $2 \mathrm{Kp}{ }^{(1)}$	A523	Counts Per Unit ${ }^{(1)}$	A559
Preset Freq 1	A411	Decel Time 4	A447	Current Limit 1	A484	Freq $2 \mathrm{Ki}^{(1)}$	A524	Enh Control Word ${ }^{(1)}$	A560
Preset Freq 2	A412	Skip Frequency 1	A448	Current Limit $2^{(1)}$	A485	Freq $3 \mathrm{Kp}{ }^{(1)}$	A525	Home Save ${ }^{(1)}$	A561
Preset Freq 3	A413	Skip Freq Band 1	A449	Shear Pin1 Level	A486	Freq $3 \mathrm{Ki}{ }^{(1)}$	A526	Find Home Freg ${ }^{(1)}$	A562
Preset Freq 4	A414	Skip Frequency 2	A450	Shear Pin 1 Time	A487	PM FWKn 1 Kp ${ }^{(1)(3)}$	A527	Find Home Dir ${ }^{(1)}$	A563
Preset Freq 5	A415	Skip Freq Band 2	A451	Shear Pin2 Level ${ }^{(1)}$	A488	PM FWKn 2 Kp ${ }^{(1)(3)}$	A528	Encoder Pos To(${ }^{(1)}$	A564
Preset Freq 6	A416	Skip Frequency $3^{(1)}$	A452	Shear Pin 2 Time ${ }^{(1)}$	A489	PM Control $\mathrm{Cfg}^{(1)(3)}$	A529	Pos Reg Filter ${ }^{(1)}$	A565
Preset Freq 7	A417	Skip Freq Band $3^{(1)}$	A453	Load Loss Level ${ }^{(1)}$	A490	BoostSelect	A530	Pos Reg Gain ${ }^{(1)}$	A566
Preset Freq $8^{(1)}$	A418	Skip Frequency $4^{(1)}$	A454	Load Loss Time ${ }^{(1)}$	A491	Start Boost	A531	Max Traverse	A567
Preset Freq $9^{(1)}$	A419	Skip Freq Band $4^{(1)}$	A455	Stall Fault Time	A492	Break Voltage	A532	Traverse Inc	A568
Preset Freq $10^{(1)}$	A420	PID 1 Trim Hi	A456	Motor OL Select	A493	Break Frequency	A533	Traverse Dec	A569
Preset Freq $11^{(1)}$	A421	PID 1 Trim Lo	A457	Motor OL Ret	A494	Maximum Voltage	A534	P Jump	A570
Preset Freq $12{ }^{(1)}$	A422	PID 1 Trim Sel	A458	Drive OL Mode	A495	Motor Fdbk Type ${ }^{(2)}$	A535	Sync Time	A571
Preset Freq $13{ }^{(1)}$	A423	PID 1 RefSel	A459	IR Voltage Drop	A496	Encoder PPR ${ }^{(1)}$	A536	Speed Ratio	A572
Preset Freq $14^{(1)}$	A424	PID 1 Fdback Sel	A460	Flux Current Ref	A497	Pulse In Scale	A537	Mtr Options $\mathrm{Cfg}^{(2)(5)}$	A573
Preset Freq $15{ }^{(1)}$	A425	PID 1 Prop Gain	A461	Motor $\mathrm{Rr}^{(1)}$	A498	Ki Speed Loop ${ }^{(2)}$	A538	RdyBit Mode Cfg ${ }^{(2)(4)}$	A574
Keypad Freq	A426	PID 1 Integ Time	A462	Motor Lm ${ }^{(1)}$	A499	Kp Speed Loop ${ }^{(2)}$	A539	Flux Braking En ${ }^{(2)(3)}$	A575
MOP Freq	A427	PID 1 Diff Rate	A463	Motor Lx ${ }^{(1)}$	A500	Var PWM Disable	A540	Phase Loss Level ${ }^{(2)(3)}$	A576
MOP Reset Sel	A428	PID 1 Setpoint	A464	PM IR Voltage ${ }^{(1)(3)}$	A501	Auto Rstrt Tries	A541	Current Loop BW ${ }^{(1)(3)}$	A580
MOP Preload	A429	PID 1 Deadband	A465	PM IXd Voltage ${ }^{(1)(3)}$	A502	Auto Rstrt Delay	A542	PM Stable 1 Freq ${ }^{(1)(3)}$	A581
MOP Time	A430	PID 1 Preload	A466	PM IXq Voltage ${ }^{(1)(3)}$	A503	Start At PowerUp	A543	PM Stable 2 Freq ${ }^{(1)(3)}$	A582
Jog Frequency	A431	PID 1 Invert Err	A467	PM BEMF Voltage ${ }^{(1)(3)}$	A504	Reverse Disable	A544	PM Stable $1 \mathrm{Kp}^{(1)(3)}$	A583
Jog Accel/Decel	A432	PID 2 Trim $\mathrm{Hi}^{(1)}$	A468	Speed Reg Sel ${ }^{(1)}$	A509	Flying Start En	A545	PM Stable $2 \mathrm{Kp}{ }^{(1)(3)}$	A584
Purge Frequency	A433	PID 2 Trim Lo ${ }^{(1)}$	A469	Freq $1^{(1)}$	A510	FlyStrt CurLimit	A546	PM Stable Brk Pt ${ }^{(1)(3)}$	A585
DC Brake Time	A434	PID 2 Trim Sel ${ }^{(1)}$	A470	Freq $1 \mathrm{BW}{ }^{(1)}$	A511	Compensation	A547	PM Stepload Kp ${ }^{(1)(3)}$	A586
DC Brake Level	A435	PID 2 RefSel ${ }^{(1)}$	A471	Freq $2^{(1)}$	A512	Power Loss Mode	A548	PM 1 Efficiency ${ }^{(1)(3)}$	A587
DC Brk Time@Strt	A436	PID 2 Fdback Sel ${ }^{(1)}$	A472	Freq $2 \mathrm{BW}{ }^{(1)}$	A513	Half Bus Enable	A549	PM 2 Efficiency ${ }^{(1)(3)}$	A588
DB Resistor Sel	A437	PID 2 Prop Gain ${ }^{(1)}$	A473	Freq $3^{(1)}$	A514	Bus Reg Enable	A550	PM Algor Sel ${ }^{(1)(3)}$	A589
DB Threshold	A438	PID 2 Integ Time ${ }^{(1)}$	A474	Freq 3 BW ${ }^{(1)}$	A515	Fault Clear	A551		
S Curve \%	A439	PID 2 Diff Rate ${ }^{(1)}$	A475	PM Initial Sel ${ }^{(1)(3)}$	A516	Program Lock	A552		
PWM Frequency	A440	PID 2 Setpoint ${ }^{(1)}$	A476	PM DC Inject Cur ${ }^{(1)(3)}$	A517	Program Lock Mod	A553		
Droop Hertz@ FLA ${ }^{(1)}$	A441	PID 2 Deadband ${ }^{(1)}$	A477	PM Align Time ${ }^{(1)(3)}$	A518	Drv Ambient Sel	A554		
Network									
		This group contains parameters for the network option card that is installed. See the network option card's user manual for more information on the available parameters.							
Modified		This group contains parameters that have their values changed from the factory default. When a parameter has its default value changed, it is automatically added to this group. When a parameter has its value changed back to the factory default, it is automatically removed from this group.							

Fault and Diagnostic		Fault 5 Time-min	F625	Fault10 Current ${ }^{(1)}$	F650	EN Rate Act ${ }^{(1)}$	F685	Drv 1 Reference	F710
		Fault 6 Time-min ${ }^{(1)}$	F626	Fault 1 BusVolts	F651	DSII/O Act	F686	Drv 1 Logic Sts	F711
		Fault 7 Time-min ${ }^{(1)}$	F627	Fault 2 BusVolts	F652	HW Addr $1^{(1)}$	F687	Drv 1 Feedback	F712
		Fault 8 Time-min ${ }^{(1)}$	F628	Fault 3 BusVolts	F653	HW Addr $2^{(1)}$	F688	Drv 2 Logic Cmd	F713
Fault 4 Code	F604	Fault 9 Time-min ${ }^{(1)}$	F629	Fault 4 BusVolts	F654	HW Addr $3^{(1)}$	F689	Drv 2 Reference	F714
Fault 5 Code	F605	Fault10 Time-min ${ }^{(1)}$	F630	Fault 5 BusVolts	F655	HW Addr $4^{(1)}$	F690	Drv 2 Logic Sts	F715
Fault 6 Code	F606	Fault 1 Freq	F631	Fault 6 BusVolts ${ }^{(1)}$	F656	HW Addr $5^{(1)}$	F691	Drv 2 Feedback	F716
Fault 7 Code	F607	Fault 2 Freq	F632	Fault 7 BusVolts ${ }^{(1)}$	F657	HW Addr $6{ }^{(1)}$	F692	Drv 3 Logic Cmd	F717
Fault 8 Code	F608	Fault 3 Freq	F633	Fault 8 BusVolts ${ }^{(1)}$	F658	EN IP Addr Act $1^{(1)}$	F693	Drv 3 Reference	F718
Fault 9 Code	F609	Fault 4 Freq	F634	Fault 9 BusVolts ${ }^{(1)}$	F659	EN IP Addr Act $2^{(1)}$	F694	Drv 3 Logic Sts	F719
Fault10 Code	F610	Fault 5 Freq	F635	Fault10 BusVolts ${ }^{(1)}$	F660	EN IP Addr Act $3^{(1)}$	F695	Drv 3 Feedback	F720
Fault 1 Time-hr	F611	Fault 6 Freq ${ }^{(1)}$	F636	Status @ Fault 1	F661	EN IP Addr Act $4^{(1)}$	F696	Drv 4 Logic Cmd	F721
Fault 2 Time-hr	F612	Fault 7 Freq ${ }^{(1)}$	F637	Status @ Fault 2	F662	EN Subnet Act $1^{(1)}$	F697	Drv 4 Reference	F722
Fault 3 Time-hr	F613	Fault 8 Freq ${ }^{(1)}$	F638	Status @ Fault 3	F663	EN Subnet Act $2^{(1)}$	F698	Drv 4 Logic Sts	F723
Fault 4 Time-hr	F614	Fault 9 Freq ${ }^{(1)}$	F639	Status @ Fault 4	F664	EN Subnet Act $3^{(1)}$	F699	Drv 4 Feedback	F724
Fault 5 Time-hr	F615	Fault10 Freq ${ }^{(1)}$	F640	Status @ Fault 5	F665	EN Subnet Act $4^{(1)}$	F700	EN Rx Overruns ${ }^{(1)}$	F725
Fault 6 Time-hr ${ }^{(1)}$	F616	Fault 1 Current	F641	Status @ Fault ${ }^{(1)}$	F666	EN Gateway Act $1^{(1)}$	F701	EN Rx Packets ${ }^{(1)}$	F726
Fault 7 Time-hr ${ }^{(1)}$	F617	Fault 2 Current	F642	Status @ Fault $7^{(1)}$	F667	EN Gateway Act $2^{(1)}$	F702	EN Rx Errors ${ }^{(1)}$	F727
Fault 8 Time-hr ${ }^{(1)}$	F618	Fault 3 Current	F643	Status @ Fault ${ }^{(1)}$	F668	EN Gateway Act $3^{(1)}$	F703	EN Tx Packets ${ }^{(1)}$	F728
Fault 9 Time-hr ${ }^{(1)}$	F619	Fault 4 Current	F644	Status @ Fault ${ }^{(1)}$	F669	EN Gateway Act $4^{(1)}$	F704	EN Tx Errors ${ }^{(1)}$	F729
Fault10 Time-hr ${ }^{(1)}$	F620	Fault 5 Current	F645	Status @ Fault10 ${ }^{(1)}$	F670	Drv 0 Logic Cmd	F705	EN Missed IO Pkt ${ }^{(1)}$	F730
Fault 1 Time-min	F621	Fault 6 Current ${ }^{(1)}$	F646	Comm Sts - DSI	F681	Drv 0 Reference	F706	DSI Errors	F731
Fault 2 Time-min	F622	Fault 7 Current ${ }^{(1)}$	F647	Comm Sts - Opt	F682	Drv 0 Logic Sts	F707		
Fault 3 Time-min	F623	Fault 8 Current ${ }^{(1)}$	F648	Com Sts-Emb Enet ${ }^{(1)}$	F683	Drv 0 Feedback	F708		
Fault 4 Time-min	F624	Fault 9 Current ${ }^{(1)}$	F649	EN Addr Src ${ }^{(1)}$	F684	Drv 1 Logic Cmd	F709		

(1) Parameter is specific to PowerFlex 525 drives only.
(2) Parameter is also available in PowerFlex 523 FRN $3 . x x x$ and later.
(3) Parameter is available in PowerFlex 525 FRN 5.xxx and later.
(4) Parameter is available in PowerFlex 525 FRN 3.xxx and later.
(5) Parameter is available in PowerFlex 525 FRN 2.xxx and later.

AppView Parameter Groups

PowerFlex 520 -series drives include various AppView" ${ }^{\text {m" }}$ parameter groups that groups certain parameters together for quick and easy access based on different types of applications. See AppView Parameter Groups on page 150 for more information.

Conveyor		Motor NP Volts	P031	Decel Time 1	P042	Digln TermBIk 03	t063	Anlg In mA Loss	t097
		Motor NP Hertz	P032	Minimum Freq	P043	Opto Out1 Sel	t069	Slip Hz Meter	d375
		Motor OL Current	P033	Maximum Freq	P044	Relay Out1 Sel	t076	Preset Freq0	A410
		Motor NP FLA	P034	Stop Mode	P045	Anlg $\ln 0-10 \mathrm{~V}$ Lo	t091	Jog Frequency	A431
Language	P030	Motor NP Poles	P035	Start Source 1	P046	Anlg $\ln 0-10 \mathrm{VHi}$	t092	Jog Accel/Decel	A432
Output Freq	b001	Autotune	P040	Speed Reference1	P047	Anlg In4-20mA Lo	t095	S Curve \%	A439
Commanded Freq	b002	Accel Time 1	P041	DigIn TermBlk 02	t062	Anlg In4-20mA Hi	t096	Reverse Disable	A544
Mixer		Commanded Freq	b002	Motor NP Poles	P035	Stop Mode	P045	Anlg $\ln 4-20 \mathrm{~mA} \mathrm{Lo}$	t095
		Output Current	b003	Autotune	P040	Start Source 1	P046	Anlg In4-20mA Hi	t096
		Motor NP Volts	P031	Accel Time 1	P041	Speed Reference1	P047	Anlg In mA Loss	t097
		Motor NP Hertz	P032	Decel Time 1	P042	Relay Out1 Sel	t076	Preset Freq0	A410
Language	P030	Motor OL Current	P033	Minimum Freq	P043	Anlg In 0-10V Lo	t091	Stall Fault Time	A492
Output Freq	b001	Motor NP FLA	P034	Maximum Freq	P044	Anlg $\ln 0-10 \mathrm{VHi}$	t092		
Compressor		Motor NP Hertz	P032	Maximum Freq	P044	Anlg In 0-10V Lo	t091	Start At PowerUp	A543
		Motor OL Current	P033	Stop Mode	P045	Anlg In 0-10V Hi	t092	Reverse Disable	A544
		Motor NP FLA	P034	Start Source 1	P046	Anlg In4-20mA Lo	t095	Power Loss Mode	A548
		Motor NP Poles	P035	Speed Reference1	P047	Anlg In4-20mA Hi	t096	Half Bus Enable	A549
Language	P030	Autotune	P040	Relay Out1 Sel	t076	Anlg In mA Loss	t097		
Output Freq	b001	Accel Time 1	P041	Analog Out Sel	t088	Preset Freq0	A410		
Commanded Freq	b002	Decel Time 1	P042	Analog Out High	t089	Auto Rstrt Tries	A541		
Motor NP Volts	P031	Minimum Freq	P043	Anlg Out Setpt	t090	Auto Rstrt Delay	A542		
Centrifugal Pump		Motor OL Current	P033	Start Source 1	P046	Anlg In4-20mA Hi	t096	PID 1 Diff Rate	A463
		Motor NP FLA	P034	Speed Reference1	P047	Anlg In mA Loss	t097	PID 1 Setpoint	A464
		Motor NP Poles	P035	Relay Out1 Sel	t076	Preset Freq 0	A410	PID 1 Deadband	A465
		Autotune	P040	Analog Out Sel	t088	PID 1 Trim Hi	A456	PID 1 Preload	A466
Language	P030	Accel Time 1	P041	Analog Out High	t089	PID 1 Trim Lo	A457	Auto Rstrt Tries	A541
Output Freq	b001	Decel Time 1	P042	Anlg Out Setpt	t090	PID 1 RefSel	A459	Auto Rstrt Delay	A542
Commanded Freq	b002	Minimum Freq	P043	Anlg $\ln 0-10 \mathrm{~V}$ Lo	t091	PID 1 Fdback Sel	A460	Start At PowerUp	A543
Motor NP Volts	P031	Maximum Freq	P044	Anlg $\ln 0-10 \mathrm{VHi}$	t092	PID 1 Prop Gain	A461	Reverse Disable	A544
Motor NP Hertz	P032	Stop Mode	P045	Anlg $\ln 4-20 \mathrm{~mA} \mathrm{Lo}$	t095	PID 1 Integ Time	A462		
Blower/Fan		Motor OL Current	P033	Start Source 1	P046	Anlg $\ln 4-20 \mathrm{~mA} \mathrm{Hi}$	t096	PID 1 Diff Rate	A463
		Motor NP FLA	P034	Speed Reference1	P047	Anlg In mA Loss	t097	PID 1 Setpoint	A464
		Motor NP Poles	P035	Relay Out1 Sel	t076	Preset Freq 0	A410	PID 1 Deadband	A465
		Autotune	P040	Analog Out Sel	t088	PID 1 Trim Hi	A456	PID 1 Preload	A466
Language	P030	Accel Time 1	P041	Analog Out High	t089	PID 1 Trim Lo	A457	Auto Rstrt Tries	A541
Output Freq	b001	Decel Time 1	P042	Anlg Out Setpt	t090	PID 1 Ref Sel	A459	Auto Rstrt Delay	A542
Commanded Freq	b002	Minimum Freq	P043	Anlg $\ln 0-10 \mathrm{~V}$ Lo	t091	PID 1Fdback Sel	A460	Start At PowerUp	A543
Motor NP Volts	P031	Maximum Freq	P044	Anlg $\ln 0-10 \mathrm{VHi}$	t092	PID 1 Prop Gain	A461	Reverse Disable	A544
Motor NP Hertz	P032	Stop Mode	P045	Anlg $\ln 4-20 \mathrm{~mA} \mathrm{Lo}$	t095	PID 1 Integ Time	A462	Flying Start En	A545

Extruder			Motor NP Hertz	P032	Stop Mode	P045	Anlg In4-20mA Lo	t095	Encoder PPR
			Motor OL Current	P033	Start Source 1	P046	Anlg In4-20mA Hi	t096	Pulse In Scale

(1) This AppView parameter group is specific to PowerFlex 525 drives only.

CustomView Parameter Group

PowerFlex 520-series drives include a CustomView ${ }^{\text {mim }}$ parameter group for you to store frequently used parameters for your application. See CustomView Parameter Group on page 151 for more information.

Custom Group

[^3]
Basic Display Group

b001 [Output Freq]
Related Parameter(s): b002, b010, P043, P044, P048, P050, P052
Output frequency present at $\mathrm{T} 1, \mathrm{~T} 2 \& \mathrm{~T} 3(\mathrm{U}, \mathrm{V} \& \mathrm{~W})$. Does not include slip frequency.

Values	Default:	Read Only
	Min/Max:	0.00/[Max
	Display:	0.01 Hz
b002 [Commanded Freq]		
Value of the active frequency command even if the drive is not running.		
IMPORTANT		an come fro
Values	Default:	Read Only
	Min/Max:	0.00/[Max
	Display:	0.01 Hz
b003 [Output Current]		
Output current present at T1, T2 \& T3 (U, V \& W).		
Values	Default:	Read Only
	Min/Max:	0.00/(Drive
	Display:	0.01 A

b004 [Output Voltage]
Related Parameter(s): P031, A530, A534
Output voltage present at T1, T2 \& T3 (U, V \& W).

Values	Default:	Read Only
	Min/Max:	$0.0 /$ Drive Rated Volts
	Display:	0.1 V

b005 [DC Bus Voltage]
Filtered DC bus voltage level of the drive.

Values	Default:	Read Only	
	Min/Max:	0/1200VDC	
	Display:	1VDC	
b006 [Drive Status]			Related Parameter(s): $\mathbf{A 5 4 4}$
Present operating condition of the drive.			
	(1)	e, $0=$ False/lnactive Digit 1 Digit 2 Digit 3 Digit 4 Digit 5	
(1) Setting is specific to Pewerlex 525 drives only.			
Values	Default:	Read Only	
	Min/Max:	00000/11111	
	Display:	00000	

Basic Display Group (continued)

b007 [Fault 1 Code]
b008 [Fault 2 Code]
b009 [Fault 3 Code]
A code that represents a drive fault. Codes appear in these parameters in the order they occur (b007 [Fault 1 Code] $=$ the most recent fault). Repetitive faults are only recorded once. See Fault and Diagnostic Group for more information.

Values	Default:	Read Only
	Min/Max:	F0/F127
	Display:	F0

b010 [Process Display]

Related Parameter(s): b001, A481, A482
(32) 32 bit parameter.

Output frequency scaled by A481[Process Disp Lo] and A482 [Process Disp Hi].
Scaled Process Value (PV) $=(([$ Process Disp Hi] - [Process Disp Lo] $) x([$ [Output Freq] - [Minimum Freq]]) $) /([$ Maximum Freq] - [Minimum Freq] $)$

Values	Default:	Read Only
	Min/Max:	$0.00 / 9999.00$
	Display:	0.01

b012 [Control Source]

Related Parameter(s): P046, P047, P048, P049, P050, P051, t062, t063, t065-t068, L180-L187, A410-A425
 See Start and Speed Reference Control on page 49 for more information.

Example	
Display reads...	Description
2004	Start source comes from Network Opt and Frequency source is Purge.
113	Start source comes from Serial/DSI and Frequency source comes from PID1 Output.
155	Start source and Frequency source comes from EtherNet//P.
052	Start source comes from DigIn TrmBIk and Frequency source from 0-10V Input.
011	Start source comes from Keypad and Frequency source comes from Drive Pot.

(1) Select this setting if using the optional PowerFlex 25-COMM-E2P, 25-COMM-D, or 25-COMM-P adapters as the Start source and/or Frequency source.
(2) Setting is specific to PowerFlex 525 drives only.

Values	Default:	Read Only
	Min/Max:	$0000 / 2165$
	Display:	0000

Basic Display Group (continued)

b013 [Contrl In Status]
Related Parameter(s): b002, P044, P045
State of the digital terminal blocks $1 . . .3$ and DB transistor.
IMPORTANT Actual control commands may come from a source other than the control terminal block.

(1) The DB Transistor "on" indication must have a 0.5 s hysteresis. It will turn on and stay on for at least 0.5 s every time the DB transistor is turned on.

Values	Default:	Read Only
	Min/Max:	$0000 / 1111$
	Display:	0000

b014 [Dig In Status]

Related Parameter(s): t065-t068
State of the programmable digital inputs.

[] [] [] [] []	
Digln TBIk 5	Digit 1
Digln TBlk 6	Digit 2
Digln TB1k $7^{\text {(1) }}$	Digit 3
Digln TBIk $8^{(1)}$	Digit 4
Not Used	

(1) Setting is specific to Powerflex 525 drives only.

Values	Default:	Read Only
	Min/Max:	0000/1111
	Display:	0000
b015 [Output RPM]		
Current output frequency in rpm. Scale is based on P035 [Motor NP Poles].		
Values	Default:	Read Only
	Min/Max:	0/24000 rpm
	Display:	1 rpm
b016 [Output Speed]		
Current output frequency in \%. Scale is 0% at 0.00 Hz to 100% at P044 [Maximum Freq].		
Values	Default:	Read Only
	Min/Max:	0.0/100.0\%
	Display:	0.1\%

b017 [Output Power]

Related Parameter(s): b018
Output power present at T1, T2 \& T3 ($\mathrm{U}, \mathrm{V} \& \mathrm{~W}$).

Values	Default:	Read Only
	Min/Max:	$0.00 /($ Drive Rated Power x 2)
	Display:	0.01 kW

Basic Display Group (continued)

b018 [Power Saved]

Related Parameter(s): b017
Instantaneous power savings of using this drive compared to an across the line starter.

Values	Default:	Read Only
	Min/Max:	0.00/655.3
	Display:	0.01 kW
b019 [Elapsed Run time]		
Accumulated time drive is outputting power. Time is displayed in 10 hour increments.		
Values	Default:	Read Only
	Min/Max:	0/65535 x
	Display:	1 = 10 hr
b020 [Average Power]		
Average power used by the motor since the last reset of the meters.		
Values	Default:	Read Only
	Min/Max:	0.00/(Drive
	Display:	0.01 kW

b021 [Elapsed kWh]

Related Parameter(s): b022
Accumulated output energy of the drive. When the maximum value of this parameter is reached, it resets to zero and $\underline{\underline{0} 022}$ [Elapsed MWh] is incremented.

Values	Default:	Read Only
	Min/Max:	$0.0 / 100.0 \mathrm{kWh}$
	Display:	0.1 kWh

b022 [Elapsed MWh] Related Parameter(s): b021
Accumulated output energy of the drive.

Values	Default:	Read Only
	Min/Max:	$0.0 / 6553.5 \mathrm{MWh}$
	Display:	0.1 MWh

b023 [Energy Saved]

Related Parameter(s): A555
Total energy savings of using this drive compared to an across the line starter since the last reset of the meters.

Values	Default:	Read Only
	Min/Max:	$0.0 / 6553.5 \mathrm{kWh}$
	Display:	0.1 kWh

b024 [Accum kWh Sav]

Related Parameter(s): $\underline{\text { b025 }}$
Total approximate accumulated energy savings of the drive compared to using an across the line starter.

Values	Default:	Read Only
	Min/Max:	$0.0 / 6553.5 \mathrm{kWh}$
	Display:	$0.1=10 \mathrm{kWh}$

Basic Display Group (continued)

b025 [Accum Cost Sav]
Related Parameter(s): b024, P052, A555
Total approximate accumulated cost savings of the drive compared to using an across the line starter. [Accum Cost Sav] = [Average kWh cost] \times [Accum kWh Sav]

Values	Default:	Read Only
	Min/Max:	$0.0 / 6553.5$
	Display:	0.1

b026 [Accum CO2 Sav]

Total approximate accumulated CO2 savings of the drive compared to using an across the line starter.

Values	Default:	Read Only
	Min/Max:	$0.0 / 6553.5 \mathrm{~kg}$
	Display:	0.1 kg

b027 [Drive Temp]

Present operating temperature of the drive heatsink (inside module).

Values	Default:	Read Only
	Min/Max:	$0 / 120^{\circ} \mathrm{C}$
	Display:	$1^{\circ} \mathrm{C}$

b028 [Control Temp]

Present operating temperature of the drive control.

Values	Default:	Read Only
	Min/Max:	$0 / 120^{\circ} \mathrm{C}$
	Display:	$1^{\circ} \mathrm{C}$
b029 [Control SW Ver] Current drive firmware version.		
	Default:	
	Min/Max:	Read Only
	Display:	$0.000 / 65.535$

Basic Program Group

(1) Due to a limitation of the LCD Display, some of the characters for Polish, Turkish, and Czech will be modified.

P031 [Motor NP Volts]
Related Parameter(s): b004, A530, A531, A532, A533
Stop drive before changing this parameter.
Sets the motor nameplate rated volts.

Values	Default:	Drive Rated Volts	
	Min/Max:	10 V (for 230V Drives), 20 V (for 460V Drives), 25 V (for 600V Drives)/Drive Rated Volts	
	Display:	1V	
P032 [Motor NP Hertz]			Related Parameter(s): $\mathbf{A 4 9 3}, \underline{\text { A530 }}$, $\underline{\text { 5531, }}$, $5532, ~ \underline{A 533}$
O Stop drive before changing this parameter.			
Sets the motor nameplate rated frequency.			
Values	Default:	60 Hz	
	Min/Max:	15/500 Hz	
	Display:	1 Hz	

P033 [Motor OL Current]
Related Parameter(s): $\mathbf{t 0 6 9}, \mathbf{t 0 7 2}, \mathbf{t 0 7 6}$, $\mathbf{0 8 1}, \underline{\text { A484, A485, A493 }}$
Sets the motor nameplate overload current. Used to determine motor overload conditions and can be set from 0.1 A to 200% of drive rated current.
IMPORTANT The drive will fault on an F007 "Motor Overload" ifthe value of this parameter is exceeded based on class 10 motor overload protection according to NEC article 430 and motor over-temperature protection according to NEC article 430.126 (A) (2). UL 508C File 29572

Values	Default:	Drive Rated Amps
	Min/Max:	$0.0 /($ Drive Rated Amps x 2)
	Display:	0.1 A

Basic Program Group (continued)

P034 [Motor NP FLA]

Related Parameter(s): P040
Sets the motor nameplate FLA. Used to assist the Autotune routine and motor control.

Values	Default:	Based on Drive Rating	
	Min/Max:	0.1/(Drive Rated Amps x 2)	
	Display:	0.1 A	
P035	tor NP Poles]		Related Parameter(s) $\underline{\underline{\text { b015 }}}$
Sets the number of poles in the motor.			
Values	Default:	4	
	Min/Max:	2/40	
	Display:	1	

P036 [Motor NP RPM]
Stop drive before changing this parameter.
Sets the rated nameplate rpm of the motor. Used to calculate the rated slip of the motor. To reduce the slip frequency, set this parameter closer to the motor synchronous speed.

Values	Default:	1750 rpm
	Min/Max:	$0 / 24000 \mathrm{rpm}$
	Display:	1 rpm

P037 [Motor NP Power]

[PF525 Powerflex 525 only.
Sets the motor nameplate power. Used in PM regulator.

Values	Default:	Drive Rated Power
	Min/Max:	$0.00 /$ Drive Rated Power
	Display:	0.01 kW

P038 [Voltage Class]

Stop drive before changing this parameter.
Sets the voltage class of 600 V drives. Only applicable to 600 V drives.

Options	2 "480V"	
	3 "600V" (Default)	
P039 [Torque Perf Mode]		Related Parameter(s): P040, $\underline{\text { A530 }}$, $\underline{\text { S531, }}$ A532, $\underline{\text { A533, }}$, $\underline{\text { S35 }}$
Stop drive before changing this parameter.		

Selects the motor control mode.
The PowerFlex 523 and PowerFlex 525 drives are capable of performing with the following motor control modes.

Options	0 "V/Hz"	
	1 "SVC" (Default)	
	2 "Economize"	
	3 "Vector"(1)	
	4 "PM Control"(1) (2)	When P039 [Torque Perf Mode] is set to 4 and A535 [Motor Fdbk Type] is set to $0,1,2$ or 3 , the drive is in open loop PM motor control mode.
		When P039 [Torque Perf Mode] is set to 4 and A535 [Motor Fdbk Type] is set to 4 or 5 , the drive is in closed loop PM motor control mode.

[^4]
Basic Program Group (continued)

P040 [Autotune]
Stop drive before changing this parameter.
Enables a static (not spinning) or dynamic (motor spinning) autotune to automatically set the motor parameters. Set the parameter value to a one or two, then issue a valid "Start" command to begin the routine. After the routine is complete the parameter resets to a zero. A failure (such as if a motor is not connected) results in an Autotune Fault. It is recommended to perform a full rotate tune when using VVC mode.

IMPORTANT All motor parameters in the Basic Program group must be set before running the routine. If a start command is not given (or a stop command is given) within 30 s, the parameter automatically returns to a zero and an Autotune Fault occurs.

ATTENTION: Rotation of the motor in an undesired direction can occur during this procedure. To guard against possible injury and/or equipment damage, it is recommended that the motor be disconnected from the load before proceeding.

P041 [Accel Time 1]

Sets the time for the drive to accelerate from 0 Hz to P 044 [Maximum Freq].
Accel Rate $=[$ Maximum Freq] $/$ [Accel Time $x]$

P042 [Decel Time 1]

Sets the time for the drive to decelerate from $\mathbf{P 0 4 4}[\mathrm{Maximum} \mathrm{Freq]} \mathrm{to} 0 \mathrm{~Hz}$.
Decel Rate $=$ [Maximum Freq] $/$ Decel Time $x]$

Basic Program Group (continued)

P043 [Minimum Freq]
Related Parameter(s): b001, b002, b013, P044, A530, A531
Stop drive before changing this parameter.
Sets the lowest frequency the drive outputs.

Values	Default:	0.00 Hz
	Min/Max:	$0.00 / 500.00 \mathrm{~Hz}$
	Display:	0.01 Hz

P044 [Maximum Freq]

Stop drive before changing this parameter.
Sets the highest frequency the drive outputs.
IMPORTANT This value must be greater than the value set in P043 [Minimum Freq].

Values	Default:	60.00 Hz
	Min/Max:	$0.00 / 500.00 \mathrm{~Hz}$
	Display:	0.01 Hz

P045 [Stop Mode]
Related Parameter(s): t086, t087, $\underline{\text { A434, A435, A550 }}$
Determines the stopping mode used by the drive when a stop is initiated.

Basic Program Group (continued)

P046 [Start Source 1]
Related Parameter(s): b012, t064, (125
P048 [Start Source 2]
P050 [Start Source 3]
Stop drive before changing this parameter.
Configures the start source of the drive. Changes to these inputs take effect as soon as they are entered. P046 [Start Source 1] is the factory default start source unless overridden. See Start and Speed Reference Control on page 49 for more information.
IMPORTANT For all settings except when t064 [2-Wire Mode] is set to 1 "Level Sense", the drive must receive a leading edge from the start input for the drive to start after a stop input, loss of power, or fault condition.

Options	1	"Keypad"	[Start Source 1] default
	2	"Digln TrmBIk"	[Start Source 2] default
	3	"Serial/DSI"	[Start Source 3] default for PowerFlex 523
		"Network Opt" ${ }^{\text {(1) }}$	
	5	"EtherNet//P"(2)	[Start Source 3] default for PowerFlex 525

(1) Select this setting if using the optional PowerFlex 25-COMM-E2P, $25-C O M M-D$, or $25-C O M M-P$ adapters as the start source.
(2) Setting is specific to PowerFlex 525 drives only.

P047 [Speed Reference1] Related Parameter(s): (125
P049 [Speed Reference2]
P051 [Speed Reference3]
Selects the source of speed command for the drive. Changes to these inputs take effect as soon as they are entered. P047 [Speed Reference1] is the factory default speed reference unless overridden.
See Start and Speed Reference Control on page 49 for more information.

Options	1 "Drive Pot"	[Speed Reference1] default
	2 "Keypad Freq"	
	3 "Serial/DSI"	[Speed Reference3] default for PowerFlex 523
	4 "Network Opt" ${ }^{(1)}$	
	5 "0-10V Input"	[Speed Reference2] default
	6 "4-20mA Input"	
	7 "Preset Freq"	
	8 "Anlg In Mult"(2)	
	9 "MOP"	
	10 "Pulse Input"	
	11 "PID1 Output"	
	12 "PID2 Output" ${ }^{(2)}$	
	13 "Step Logic" ${ }^{(2)}$	
	14 "Encoder"(2)	
	15 "EtherNet/IP"(2)	[Speed Reference3] default for PowerFlex 525
	16 "Positioning"(2)	Referencing from A558 [Positioning Mode]

(1) Select this setting if using the optional PowerFlex 25-COMM-E2P, 25-COMM-D, or 25-COMM-P adapters as the speed reference.
(2) Setting is specific to PowerFlex 525 drives only.

P052 [Average kWh Cost]
Related Parameter(s): $\mathbf{b 0 2 5}$
Sets the average cost per kWh.

Values	Default:	0.00
	Min/Max:	$0.00 / 655.35$
	Display:	0.01

Basic Program Group (continued)

P053 [Reset To Defalts]

Stop drive before changing this parameter.
Resets all parameters to their factory default values. After a Reset command, the value of this parameter returns to zero.

Parameters that are NOT Reset when P053 = 1

Parameter
P030 [Language]
C121 [Comm Write Mode]
C122 [Cmd Stat Select]
C123 [RS485 Data Rate]
C124 [RS485 Node Addr]
C124 [Comm Loss Action]
C126 [Comm Loss Time]
C127 [RS485 Format]
C128 [EN Addr Sel]
C129 [EN IP Addr Cfg 1]
C130 [EN IP Addr Cfg 2]
C131 [EN IP Addr Cfg 3]
C132 [EN IP Addr Cfg 4]
C133 [EN Subnet Cfg 1]
C134 [EN Subnet Cfg 2]
C135 [EN Subnet Cfg 3]
C136 [EN Subnet Cfg 4]
C137 [EN Gateway Cfg 1]

Parameters that are Reset when P053 = 3

Parameter	Parameter Name
C159 [EN Data Out 3]	P031 [Motor NP Volts]
C160 [EN Data Out 4]	P033 [Motor OL] Current
C161 [Opt Data In 1]	P034 [Motor NP FLA]
C162 Data In 2]	P035 [Motor NP Poles]
C163 [Opt Data In 3]	P038 [Voltage Class]
C164 Data In 4]	A435 [DC Brake Level]
C165 [Opt Data Out 1]	A484 [Current Limit 1]
C166 [Opt Data Out 2]	A485 [Current Limit 2]
C167 [Opt Data Out 3]	A486 [Shear Pin1 Level]
C168 [Opt Data Out 4]	A488 [Shear Pin2 Level]
C169 [MultiDrv Sel]	A490 [Load Loss Level]
C171 [Drv 1 Addr]	A496 [IR Voltage Drop]
C172 [Drv 2 Addr]	A497 [Flux Current Ref]
C173 [Drv 3 Addr]	A530 [Boost Select]
C174 [Drv 4 Addr]	A531 [Start Boost]
C175 [DSI I/0 Cfg]	A532 [Break Voltage]
GC [Parameters in Custom Group]	A533 [Break Frequency]
	A534 [Maximum] Voltage

Options $0 \quad$ "Ready/Idle" (Default)

1	"Param Reset"	Does not reset custom groups, parameter PO30 [Language], and communication parameters.
2	"Factory Rset"	Restore drive to factory condition.
3	"Power Reset"	Resets only power parameters. Can be used when swapping power modules.
4	"Module Reset"(1) (2)	Power cycle of the drive, NO parameters are reset.

(1) Setting is available in PowerFlex 525 FRN 5.xxx and later.
(2) Setting is available in PowerFlex 523 FRN 3.xxx and later.

Terminal Block Group

t062	[Digln TermBIk 02]	t063	[Digln TermBIk 03]
t065	[DigIn TermBIk 05]	t066	[DigIn TermBIk 06]
t067	[Digln TermBlk 07]	t068	[Digln TermBlk 08]
[PF525	Powerflex 525 only.		

Related Parameter(s): $\underline{\mathbf{0 1 2}, \mathrm{b013}, \underline{\mathrm{~b} 014, ~} \mathrm{P} 045, \mathrm{P} 046, \mathrm{P} 048, \mathrm{P} 049, \mathrm{P} 050, \mathrm{P} 051, \mathrm{t} 064,}$ t086, A410-A425, A427, A431, A432, A433, A434, A435, A442, A443, A488, A535, A560, A562, A563, A567, , 2571

Stop drive before changing this parameter.
Programmable digital input. Changes to these inputs takes effect as soon as they are entered. If a digital input is set for a selection that is only usable on one input, no other input can be set for the same selection.

Options	0 "Not Used"	Terminal has no function but can be read over network communications with $\underline{\text { b013 }}$ [Contrl In Status] and b014 [Dig In Status].
	1 "Speed Ref 2"	Selects P049 [Speed Reference2] as drive's speed command.
	2 "Speed Ref 3"	Selects P051 [Speed Reference3] as drive's speed command.
	3 "Start Src 2"	Selects P048 [Start Source 2] as control source to start the drive.
	4 "Start Src 3"	Selects P050 [Start Source 3] as control source to start the drive.
	5 "Spd + Strt 2"	[DigIn TermBIk 07] default. Selects combination of P049 [Speed Reference2] and P048 [Start Source 2] as speed command with control source to start the drive.
	6 "Spd + Strt 3"	Selects combination of P051 [Speed Reference3] and P050 [Start Source 3] as speed command with control source to start the drive.
	7 "Preset Freq" (PF523: only for Digln TermBIk 03, 05, and 06)	[DigIn TermBIk 05] and [Digin TermBIk 06] default. - Selects a preset frequency in Velocity mode (P047, P049, P051 [Speed Referencex] =1...15). See $\mathrm{A410} \mathrm{\ldots} \mathrm{A425} \mathrm{[Preset} \mathrm{Freq} \mathrm{x]}$. - Selects a preset frequency and position in Positioning mode (P047, P049, P051 [Speed Referencex] =16). See L200...L214 [Step Units x] (only for PowerFlex 525 drives).
		IMPORTANT Digital Inputs have priority for frequency control when programmed as Preset Speed and are active. See Start Source and Speed Reference Selection on page 49 for more information.
	8 "Jog"	- When input is present, drive accelerates according to the value set in A432 [Jog Accel/Decel] and ramps to the value set in A431 [Jog Frequency]. - When input is removed, drive ramps to a stop according to the value set in A432 [Jog Accel/Decel]. - A valid Start command will override this input.
	9 "Jog Forward"	[DigIn TermBIk 08] default. Drive accelerates to A431 [Jog Frequency] according to A432 [Jog Accel/Decel] and ramps to a stop when input becomes inactive. A valid Start command will override this input.
	10 "Jog Reverse"	Drive accelerates to $\mathbf{A 4 3 1}$ [Jog Frequency] according to $\mathbf{A 4 3 2}$ [Jog Accel/Decel] and ramps to a stop when input becomes inactive. A valid Start command will override this input.
	11 "Acc/Dec Sel2" ${ }^{(1)}$	If active, determines which Accel/Decel time will be used for all ramp rates except jog. Can be used with option 29 "Acc/Dec Sel3" for additional Accel/Decel times. See A442 [Accel Time 2] for more information.
	12 "Aux Fault"	When enabled, an F002 "Auxiliary Input" fault will occur when the input is removed.
	13 "Clear Fault"	When active, clears an active fault.
	14 "RampStop,CF"	Causes drive to immediately ramp to a stop regardless of how P045 [Stop Mode] is set.
	15 "CoastStop,CF"	Causes drive to immediately coast to a stop regardless of how P045 [Stop Mode] is set.
	16 "DCInjStop,CF"	Causes drive to immediately begin a DC Injection stop regardless of how P045 [Stop Mode] is set.
	17 "MOP Up"	Increases the value of A427 [MOP Freq] at the rate set in $\underline{\text { A430 [MOP Time]. }}$
	18 "MOP Down"	Decreases the value of A427 [MOP Freq] at the rate set in A430 [MOP Time].
	19 "Timer Start" ${ }^{(1)}$	Clears and starts the timer function. May be used to control the relay or opto outputs.
	20 "Counter $\ln ^{\prime \prime}{ }^{(1)}$	Starts the counter function. May be used to control the relay or opto outputs.
	21 "Reset Timer"	Resets the internal active timer, $\underline{\underline{L}} \mathbf{3 6 5}$ [Timer Status]. For more information, see Timer Function on page 211.
	22 "Reset Countr"	Resets the count in the accumulated internal active counter, d 364 [Counter Status]. For more information, see Counter Function on page 212.
	23 "Rset Tim\&Cnt"	Resets both the internal active timer and accumulated internal active counter.
	24 "Logic $\ln 1$ "(1)(2)	Logic function input number 1. May be used to control the relay or opto outputs ($\mathbf{t 0 7 6}$, t081 [Relay Outx Sel] and t069, t072 [Opto Outx Sel], options 11...14). May be used in conjunction with StepLogic parameters L180...L187 [Stp Logic x].
	25 "Logic $\ln 2$ "(1)(2)	Logic function input number 2. May be used to control the relay or opto outputs (t076, t081 [Relay Outx Sel] and t069, t072 [Opto Outx Sel], options 11...14). May be used in conjunction with StepLogic parameters L180...L187 [Stp Logic x].

ATTENTION: If a hazard of injury due to movement of equipment or material exists, an auxiliary mechanical braking device must be used.

41 "Freeze-Fire"	When inactive, will cause an immediate F094 "Function Loss" fault. Use to safely bypass the drive with an external switching device.
42 "SW Enable"	Works like an interlock that has to be active for the drive to run.
43 "SherPin1 Dis"	Disables shear pin 1 but leaves shear pin 2 active. If A488 [Shear Pin 2 Level] is greater than 0.0 A, shear pin 2 is enabled.
44 Reserved	
45 Reserved	
46 Reserved	
47 Reserved	

(1) This function may be tied to one input only.
(2) Setting is specific to PowerFlex 525 drives only.
t064 [2-Wire Mode]
Stop drive before changing this parameter.
Programs the mode of trigger only for t062 [Digln TermBlk 02] and t063 [Digln TermBlk 03] when 2-wire option is being selected as P046, P048 or P050 [Start Source x].

Options	0 "Edge Trigger" (Default)	Standard 2-Wire operation.
	1 "Level Sense"	- I/0 Terminal 01 "Stop" = Coast to stop. Drive will restart after a Stop command when: - Stop is removed and - Start is held active - I/O Terminal 03 "Run REV"
		ATTENTION: Hazard of injury exists due to unintended operation. When t064 [2-Wire Mode] is set to option 1, and the Run input is maintained, the Run inputs do not need to be toggled after a Stop input for the drive to run again. A Stop function is provided only when the Stop input is active (open).
		ATTENTION: When operating in 2-Wire Level Sense (Run Level), the PowerFlex 523 and PowerFlex 525 drive should only be controlled from the Digital Input Terminal Blocks. This should NOT be used with any other DSI or Network device.
	2 "Hi-Spd Edge"	
		IMPORTANT There is greater potential voltage on the output terminals when using this option.
		- Outputs are kept in a ready-to-run state. The drive will respond to a Start command within 10 ms . - I/O Terminal 01 "Stop" = Coast to stop. - I/O Terminal 03 "Run ReV"
	3 "Momentary"	- Drive will start after a momentary input from either the Run FWD input (I/0 Terminal 02) or the Run REV input (I/0 Terminal 03). - I/O Terminal 01 "Stop" = Stop according to the value set in P045 [Stop Mode].

t069 [Opto Out1 Sel]
t072 [Opto Out2 Sel]
[PF525 Powerflex 525 only.
Determines the operation of the programmable digital outputs.

Options	Setting Output Changes State When...	Hysteresis
0 "Ready/Fault"	Opto outputs are active when power is applied. Indicates that the drive is ready for operation. Opto outputs are inactive when power is removed or a fault occurs.	None
1 "At Frequency"	Drive reaches commanded frequency.	0.5 Hz above; 1.0 Hz below
2 "MotorRunning"	Motor is receiving power from the drive.	None
3 "Reverse"	Drive is commanded to run in reverse direction.	None
4 "Motor Overld"	Motor overload condition exists.	100 ms time delay on or off
5 "Ramp Reg"	Ramp regulator is modifying the programmed accel/decel times to avoid an overcurrent or overvoltage fault from occurring.	100 mstime delay on or off
6 "Above Freq"	Drive exceeds the frequency (Hz) value set in t 070 or t 073 [0 pto Outx Level]].	100 ms time delay on or off
7 "Above Cur"	Drive exceeds the current (\% Amps) value set in $\underline{\underline{070} \text { or } \underline{073} \text { [Opto Outx Level]. }}$	100 mst time delay on or off
	IMPORTANT Value for $\mathbf{t 0 7 0}$ or $\mathbf{t 0 7 3}$ [Opto Outx Level] must be entered in percent of drive rated output current.	
8 "Above DCVolt"	Drive exceeds the DC bus voltage value set in 0 070 or 0073 [Opto Outx Level].	100 ms time delay on or off
9 "Retries Exst"	Value set in $\underline{\text { A541 [}}$ [uto Rstrt Tries] is exceeded.	None
10 "Above Anlg V"	Analog input voltage ($0-10 \mathrm{~V}$ input) exceeds the value set in t 070 or t 073 [0 pto Outx Level].	100 mst time delay on or off
	IMPORTANT Do not use if t093 [10V Bipolar Enbl] is set to 1 "Bi-Polar In".	
11 "Above PF Ang"	Power Factor angle exceeds the value set in 0070 or 0773 [Opto Outx Level].	100 mst time delay on or off
12 "Anlg In Loss"	Analog input loss has occurred. Program $\mathbf{t 0 9 4}$ [Anlg In V Loss] or $\underline{097}$ [Anlg In mA Loss] for desired action when input loss occurs.	$0 \mathrm{n}, 2 \mathrm{~mA} / \pm 1 \mathrm{~V}$ Off $3 \mathrm{~mA} / \pm 1.5 \mathrm{~V}$
13 "ParamControl"	Output is directly controlled by the state of the $\mathbf{t 0 7 0}$ or $\mathbf{0} 073$ [Opto Outx Level]. A value of 0 causes the output to turn off. A value of 1 or greater in this parameter causes the output to turn on.	None
14 "NonRec Fault"	- Value set in A541 [Auto Rstrt Tries] is exceeded or - A541 [Auto Rstrt Tries] is not enabled or - A non-resettable fault has occurred.	None
15 "EM Brk Cntrl"	EM Brake is energized. Program t087 [EM Brk On Delay] and 0086 [EM Brk Off Delay] for desired action.	None
16 "Thermal 0L"	Relay energizes when thermal Motor overload counter is above the value set in $\mathbf{t 0 7 7}$ or $\mathbf{0 8 2}$ [Relay Outx Level]. It also energizes if the drive is within $5^{\circ} \mathrm{C}$ of the drive overheat trip point.	None
17 "Amb OverTemp"	Relay energizes when control module over temperature occurs.	None
18 "Local Active"	Active when drive P046, P048 or P050 [Start Source x] is in local keypad control.	None
19 "Comm Loss"	Active when communication is lost from any comm source with reference or control.	None
20 "Logic ln 1"	An input is programmed as "Logic Input 1" and is active.	None
21 "Logic $\ln 2^{\prime \prime}$	An input is programmed as "Logic Input 2" and is active.	None
22 "Logic 1 \& 2"	Both Logic inputs are programmed and active.	None
23 "Logic 1 or 2"	One or both Logic inputs are programmed and one or both is active.	None
24 "StpLogic Out"	Drive enters StepLogic step with Command Word set to enable Logic output.	None
25 "Timer Out"	Timer has reached the value set in 070 or 0073 [Opto Outx Level] or not timing.	None
26 "Counter Out"	Counter has reached the value set in 0700 or $\mathbf{0 7 3}$ [Opto Outx Level] or not counting.	None
27 "At Position"	Drive is in Positioning mode and has reached the commanded position. Tolerance is adjusted with A564 [Encoder Pos Tol].	-
28 "At Home"	Drive is in Positioning mode and has reached the home position. Tolerance is adjusted with 4564 [Encoder Pos Tol].	-
29 "Safe-Off"	Both safe-off inputs are active.	-
30 "SafeTqPermit" ${ }^{\text {IT }}$	Both safe-off inputs are inactive (closed).	-
31 "AutoRst Ctdn" (1)	Drive is counting down to an automatic restart.	-

Values	Default:	
	Opto Out1 Sel:	2
	Opto Out2 Sel:	1
	Min/Max:	$0 / 3$
	Display:	1

(1) Setting is available in FRN $5 . x x x$ and later.

Terminal Block Group (continued)

t070 [Opto Out1 Level] Related Parameter(s): 0 069, t072								
t073 [Opto Out2 Level]								
$\sqrt[32]{ } 32$ bit parameter.								
PF525 Powerflex 525 only.								
Determines the on/off point for the digital outputs when $\mathrm{t069}$ or t 072 o Outx Sel] is set to the values shown below.								
Min/Max Value Range Based On [Opto Outx Sel] Setting								
6: $0 . . .500 \mathrm{~Hz}$		10:	0...100\%	16:	0.1...9999 s	20:		
	7: 0 0...180\%	11	0/1	17:	1...9999 counts	26:	0...150\%	
8	0...815V	13	0...800	18:	0... 180°	-		
Values	Default:			0.0				
	Min/Max:			0.0/9999.0				
	Display:			0.1				

t075 [Opto Out Logic]
[PF525 Powerflex 525 only.
Determines the logic (Normally Open/NO or Normally Closed/NC) of the digital outputs only.

Setting	Digital Out 1 Logic	Digital Out 2 Logic

0	NO	NO
1	NC	NO
2	NO	NC
3	NC	NC

Values	Default:	0
	Min/Max:	$0 / 3$
	Display:	1

t076 [Relay Out1 Sel]

Related Parameter(s): P046, P048, P050, t070, t073, t077, t082, t086, t087, t093, t094, t097, A541, A564

t081 [Relay Out2 Sel]

PF525) Powerflex 525 only.
Determines the operation of the programmable output relay.

Options	Output Relay Changes State When...	Hysteresis
0 "Ready/Fault"	Relay changes state when power is applied. Indicates that the drive is ready for operation. Relay returns drive to shelf state when power is removed or a fault occurs.	None
1 "At Frequency"	Drive reaches commanded frequency.	0.5 Hz above; 1.0 Hz below
2 "MotorRunning"	Motor is receiving power from the drive.	None
3 "Reverse"	Drive is commanded to run in reverse direction.	None
4 "Motor Overld"	Motor overload condition exists.	100 ms time delay on or off
5 "Ramp Reg"	Ramp regulator is modifying the programmed accel/ decel times to avoid an overcurrent or overvoltage fault from occurring.	100 ms time delay on or off
6 "Above Freq"	Drive exceeds the frequency (Hz) value set in t 077 or t 082 [Relay Outx Level].	100 ms time delay on or off
7 "Above Cur"	Drive exceeds the current (\% Amps) value set in $\underline{\text { 077 }}$ or $\underline{0822}$ [Relay Outx Level]].	100 mst time delay on or off
	IMPORTANT Value for t077 or t082 [Relay Outx Level]] must be entered in percent of drive rated output current.	
8 "Above DCVolt"	Drive exceeds the DC bus voltage value set in $\underline{077}$ or $\underline{0} 082$ [Relay Outx Level].	100 ms time delay on or off
9 "Retries Exst"	Value set in $\underline{\text { A541 [}}$ [Auto Rstrt Tries] is exceeded.	None
10 "Above Anlg V"	Analog input voltage (0-10V input) exceeds the value set in $\underline{0777}$ or $\underline{082}$ [Relay Outx Level].	100 mstime delay on or off
	IMPORTANT Do not use if t093 [10V Bipolar Enbl] is set to 1 "Bi-Polar In".	
11 "Above PF Ang"	Power Factor angle exceeds the value set in t077 or t082 [Relay Outx Level].	100 mst time delay on or off
12 "Anlg In Loss"	Analog input loss has occurred. Program t094 [Anlg In V Loss] or $\mathbf{0 0 9 7}$ [Anlg In mA Loss] for desired action when input loss occurs.	$\begin{aligned} & 0 \mathrm{n}, 2 \mathrm{~mA} / \pm 1 \mathrm{~V} \\ & 0 \mathrm{ff}, 3 \mathrm{~mA} / \pm 1.5 \mathrm{~V} \end{aligned}$
13 "ParamControl"	Output will be directly controlled by the state of the 0077 or $\mathbf{0 8 8 2}$ [Relay Outx Level]. A value of 0 causes the output to turn off. A value of 1 or greater in this parameter causes the output to turn on.	None
14 "NonRec Fault"	- Value set in A541 [Auto Rstrt Tries] is exceeded or - A541 [Auto Rstrt Tries] is not enabled or - A non-resettable fault has occurred.	None
15 "EM Brk Cntrl"	EM Brake is energized. Program $\underline{087}$ [EM Brk On Delay] and ± 086 [EM Brk Off Delay] for desired action.	None
16 "Thermal 0L"	Relay energizes when thermal Motor overload counter is above the value set in $\mathbf{t 0 7 7}$ or t082 [Relay Outx Level]. It also energizes if the drive is within $5^{\circ} \mathrm{C}$ of the drive overheat trip point.	None
17 "Amb OverTemp"	Relay energizes when control module over temperature occurs.	None
18 "Local Active	Active when drive P046, P048 or P050 [Start Source x] is in local keypad control.	None
19 "Comm Loss"	Active when communication is lost from any comm source with reference or control.	None
20 "Logic $\ln 1^{\prime \prime}$ (1)	An input is programmed as "Logic Input 1" and is active.	None
$21^{\prime \prime}$ Logic $\ln 2^{\prime \prime}$ (1)	An input is programmed as "Logic Input 2" and is active.	None
$22^{\prime 2}$ Logic 1 \& 2"(1)	Both Logic inputs are programmed and active.	None
23 "Logic 1 or 2" ${ }^{\text {" }}$ (1)	One or both Logic inputs are programmed and one or both is active.	None
24 "StpLogic Out"(1)	Drive enters StepLogic step with Command Word set to enable Logic output.	None
25 "Timer Out"	Timer has reached the value set in t 077 or $\mathbf{t 0 8 2}$ [Relay Outx Level] or not timing.	None
$26^{\text {"Counter Out" }}$	Counter has reached the value set in t 077 or $\mathbf{t 0 8 2}$ [Relay Outx Level] or not counting.	None
27 "At Position" ${ }^{\text {(1) }}$	Drive is in Positioning mode and has reached the commanded position. Tolerance is adjusted with A 564 [Encoder Pos Toll.	-
28 "At Home" (1)	Drive is in Positioning mode and has reached the home position. Tolerance is adjusted with A564 [Encoder Pos Tol].	-
29 "Safe-Off" (1)	Both safe-off inputs are active.	-
30 "SafeTqPermit"(1)(2)	Both safe-off inputs are inactive (closed).	-
31 "AutoRst (tdn" ${ }^{\text {(1) }(2)}$	Drive is counting down to an automatic restart.	-

Values	Default:	
	Relay Out1 Sel:	0
	Relay Out2 Sel:	2
	Min/Max:	$0 / 3$
	Display:	1

(1) Setting is specific to PowerFlex 525 drives only.
(2) Setting is available in FRN $5 . x x x$ and later.

t079 [Relay 1 On Time]

t084 [Relay 2 On Time]
PF 525 PowerFlex 525 only.
Sets the delay time before Relay energizes after required condition is met.

Values	Default:	0.0 s
	Min/Max:	$0.0 / 600.0 \mathrm{~s}$
	Display:	0.1 s

$\mathbf{t 0 8 0}$	[Relay 1 0ff Time]
t085	[Relay 2 0ff Time]
PF 525	PowerFlex 525 only.

Sets the delay time before Relay de-energizes after required condition ceases.

Terminal Block Group (continued)

t087 [EM Brk On Delay]

Related Parameter(s): P045
Sets the time the drive remains at minimum frequency (after releasing the brake coil relay) before stopping if EM Brake Control Mode is enabled with P045 [Stop Mode].

t088 [Analog Out Sel]

Related Parameter(s): $\mathbf{0 9 0}$
The $0-10 \mathrm{~V}, 0-20 \mathrm{~mA}$ or $4-20 \mathrm{~mA}$ analog output can be used to provide a signal proportional to several drive conditions. This parameter also selects which analog calibration parameters to use. ${ }^{1}$

Options	Output Range	Minimum Output Value	Maximum Output Value = t089 [Analog Out High]	Filter ${ }^{(1)}$	Related Parameter
0 "OutFreq 0-10"	0-10V	$\mathrm{OV}=0 \mathrm{~Hz}$	[Maximum Freq]	None	b001
1 "OutCurr 0-10"	0-10V	$\mathrm{OV}=0 \mathrm{~A}$	200\% Drive Rated Current	Filter A	b003
2 "OutVolt 0-10"	0-10V	$\mathrm{OV}=0 \mathrm{~V}$	120\% Drive Rated Output Volts	None	b004
3 "OutPowr 0-10"	0-10V	$\mathrm{OV}=0 \mathrm{~kW}$	200\% Drive Rated Power	Filter A	b017
4 "OutTorq 0-10"	0-10V	$\mathrm{OV}=0 \mathrm{~A}$	200\% Drive Rated Current	Filter A	d382
5 "TstData 0-10"	0-10V	OV $=0000$	65535 (Hex FFFF)	None	-
6 "Setpnt 0-10"	0-10V	OV = 0\%	100.0\% Setpoint setting	None	t090
7 "DCVolt 0-10"	0-10V	$\mathrm{OV}=0 \mathrm{~V}$	100.0\% of trip value	None	b005
8 "OutFreq 0-20"	0-20 mA	$0 \mathrm{~mA}=0 \mathrm{~Hz}$	[Maximum Freq]	None	b001
9 "OutCurr 0-20"	0-20 mA	$0 \mathrm{~mA}=0 \mathrm{~A}$	200\% Drive Rated Current	Filter A	b003
10 "OutVolt 0-20"	0-20 mA	$0 \mathrm{~mA}=0 \mathrm{~V}$	120\% Drive Rated Output Volts	None	b004
11 "OutPowr 0-20"	0-20 mA	$0 \mathrm{~mA}=0 \mathrm{~kW}$	200\% Drive Rated Power	Filter A	b017
12 "OutTorq 0-20"	0-20 mA	$0 \mathrm{~mA}=0 \mathrm{~A}$	200\% Drive Rated Current	Filter A	d382
13 "TstData 0-20"	0-20 mA	$0 \mathrm{~mA}=0000$	65535 (Hex FFFF)	None	-
14 "Setpnt 0-20"	0-20 mA	$0 \mathrm{~mA}=0 \%$	100.0\% Setpoint setting	None	$\underline{\mathrm{t} 090}$
15 "DCVolt 0-20"	0-20 mA	$0 \mathrm{~mA}=0 \mathrm{~V}$	100.0\% of trip value	None	b005
16 "OutFreq 4-20"	4-20 mA	$4 \mathrm{~mA}=0 \mathrm{~Hz}$	[Maximum Freq]	None	b001
17 "OutCurr 4-20"	$4-20 \mathrm{~mA}$	$4 \mathrm{~mA}=0 \mathrm{~A}$	200\% Drive Rated Current	Filter A	b003
18 "OutVolt 4-20"	$4-20 \mathrm{~mA}$	$4 \mathrm{~mA}=0 \mathrm{~V}$	120\% Drive Rated Output Volts	None	b004
19 "OutPowr 4-20"	$4-20 \mathrm{~mA}$	$4 \mathrm{~mA}=0 \mathrm{~kW}$	200\% Drive Rated Power	Filter A	$\underline{\text { b017 }}$
20 "OutTorq 4-20"	$4-20 \mathrm{~mA}$	$4 \mathrm{~mA}=0 \mathrm{~A}$	200\% Drive Rated Current	Filter A	d382
21 "TstData 4-20"	$4-20 \mathrm{~mA}$	$4 \mathrm{~mA}=0000$	65535 (Hex FFFF)	None	-
22 "Setpnt 4-20"	$4-20 \mathrm{~mA}$	$4 \mathrm{~mA}=0 \%$	100.0\% Setpoint setting	None	t090
23 "DCVolt 4-20"	4-20 mA	$4 \mathrm{~mA}=0 \mathrm{~V}$	100.0\% of trip value	None	b005

(1) Filter A is a single pole digital filter with a 162 ms time constant. Given a $0 \ldots 100 \%$ step input from a steady state, the output of Filter A takes 500 ms to get to 95% of maximum, 810 ms to get to 99%, and 910 ms to get to 100%.

Values	Default:	0
	Min/Max:	$0 / 23$
	Display:	1

(1) Parameter is also available in PowerFlex 523 FRN $3 . x x x$ and later. PowerFlex 523 series B drive is required.

Terminal Block Group (continued)

t089 [Analog Out High]

Scales the maximum output value (V or mA) when the source setting is at maximum. ${ }^{(1)}$

Values	Default:	100%
	Min/Max:	$0 / 800 \%$
	Display:	1%

(1) Parameter is also available in PowerFlex 523 FRN $3 . x x x$ and later. PowerFlex 523 series B drive is required.
t090 [Anlg Out Setpt]
Sets the percentage of output desired when 0888 [Analog Out Sel] is set to 6, 14 or 22 "Analog Setpoint". ${ }^{11)}$

Values	Default:	0.0%
	Min/Max:	$0.0 / 100.0 \%$
	Display:	0.1%

(1) Parameter is also available in PowerFlex 523 FRN $3 . x x x$ and later. PowerFlex 523 series B drive is required.

t091 [Anlg $\ln \mathbf{0 - 1 0 V}$ Lo]

Related Parameter(s): P043, t092, t093
Stop drive before changing this parameter.
Sets the percentage (based on 10V) of input voltage applied to the 0-10V analog input used to represent P043 [Minimum Freq].
Analog inversion can be accomplished by setting this value larger than $\mathbf{0} 022$ [Anlg In $0-10 \mathrm{VHi}$].
If t 093 [10V Bipolar Enbl] is set to 1 "Bi-Polar In", this parameter is ignored.

Values	Default:	0.0\%	
	Min/Max:	0.0/200.0\%	
	Display:	0.1\%	
t092 [Anlg In 0-10V Hi] Stop drive before changing this parameter.			
Sets the percentage (based on 10V) of input voltage applied to the $0-10 \mathrm{~V}$ analog input used to represent P044 [Maximum Freq]. Analog inversion can be accomplished by setting this value smaller than t091 [Anlg In 0-10V Lo]. If t093 [10V Bipolar Enbl] is set to 1 "Bi-Polar In", the same value applies to positive and negative voltage.			
Values	Default:	100.0\%	
	Min/Max:	0.0/200.0\%	
	Display:	0.1\%	

t093 [10V Bipolar Enbl]

PF525 Powerflex 525 only.
Enables/disables bi-polar control. In bi-polar mode direction is commanded by the polarity of the voltage.
If bi-polar control is enabled, P043 [Minimum Freq] and t091 [Anlg In 0-10V Lo] are ignored.

Options	0 "Uni-Polar In" (Default)	$0-10 \mathrm{~V}$ only
	1	"Bi-Polar In^{\prime}

Terminal Block Group (continued)

t094 [Anig In V Loss]

Related Parameter(s): P043, P044, $\mathbf{~ 4 4 2 6 , ~ A 4 2 7 ~}$
Sets the response to a loss of input. When the $0-10 \mathrm{~V}$ input (or $-10 \mathrm{to}+10 \mathrm{~V}$) is used for any reference, any input less than 1 V is reported as a signal loss. Input must exceed 1.5 V for the signal loss condition to end.
If enabled, this function affects any input that is being used as a speed reference, PID reference or PID setpoint in the drive.
Options 0 "Disabled" (Default)
1 "Fault (F29)"

2 "Stop"
3 "Zero Ref"
4 "Min Freq Ref"
5 "Max Freq Ref"
6 "Key Freq Ref"
7 "MOP Freq Ref"
8 "Continu Last"

t095 [Anlg $\ln 4-20 \mathrm{~mA}$ Lo]

Related Parameter(s): P043, $\underline{\underline{006}}$
Stop drive before changing this parameter.
Sets the percentage (based on 4-20 mA) of input current applied to the 4-20 mA analog input used to represent P043 [Minimum Freq].
Analog inversion can be accomplished by setting this value larger than t096 [Anlg In4-20mA Hi].

Values	Default:	0.0\%	
	Min/Max:	0.0/100.0\%	
	Display:	0.1\%	
t096 [Anlg In4-20mA Hi]Stop drive before changing this parameter.			
Sets the percentage (based on $4-20 \mathrm{~mA}$) of input current applied to the $4-20 \mathrm{~mA}$ analog input used to represent P 044 [Maximum Freq]. Analog inversion can be accomplished by setting this value smaller than t095 [Anlg In4-20mA Lo].			
Values	Default:	100.0\%	
	Min/Max:	0.0/200.0\%	
	Display:	0.1\%	

t097 [Anlg In mA Loss]

Related Parameter(s): P043, P044, $\mathbf{\text { A426, A427 }}$
Sets the response to a loss of input. When the $4-20 \mathrm{~mA}$ input is used for any reference, any input less than 2 mA is reported as a signal loss. Input must exceed 3 mA for the signal loss condition to end.
If enabled, this function affects any input that is being used as a speed reference or PID reference or PID setpoint in the drive.

Options	0 "Disabled" (Default)
	1 "Fault (F29)"
	2 "Stop"
	3 "Zero Ref"
	4 "Min Freq Ref"
	5 "Max Freq Ref"
	6 "Key Freq Ref"
	7 "MOP Freq Ref"
	8 "Continu Last"

Terminal Block Group (continued)

t098 [Anlg Loss Delay]

Sets the length of time after power-up during which the drive detects no analog signal loss. Response to an analog signal loss is set in $\underline{0} 094$ or $\mathbf{t 0 9 7}$ [Analog In x Loss].

Values	Default:	0.0 s
	Min/Max:	$0.0 / 20.0 \mathrm{~s}$
	Display:	0.1 s

t099 [Analog In Filter]

Sets the level of additional filtering of the analog input signals. A higher number increases filtering and decreases bandwidth. Each setting doubles the applied filtering ($1=2 x$ filter, 2 $=4 x$ filter, and 50 on).

Values	Default:	0
	Min/Max:	$0 / 14$
	Display:	1

t100 [Sleep-Wake Sel]

Related Parameter(s): $\mathrm{t} 101, \mathrm{t} 102, \mathrm{t} 103$
Drive "sleeps" if the appropriate analog input drops below the set t 101 [Sleep Level] for the time set in $\underline{\underline{t} 102 \text { [Sleep Time] and the drive is running. When entering sleep mode the drive }}$ ramps to zero and the run indicator on the keypad display flashes to indicate the drive is in "sleep" mode.
When the appropriate analog input rises above the set [Wake Level], the drive "wakes" and ramps to the commanded frequency. Inversion can be accomplished by setting [Sleep Level] to a higher setting thant103 [Wake Level].

t101 [Sleep Level]

Sets the analog input level the drive must reach to enter sleep mode.

Values	Defaul:	10.0%
	Min/Max:	$0.0 / 100.0 \%$
	Display:	0.1%

t102 [Sleep Time]

Sets the analog input time the drive must stay below to enter sleep mode.

Values	Default:	0.0 s
	Min/Max:	$0.0 / 600.0 \mathrm{~s}$
	Display:	0.1 s

t103 [Wake Level]

Sets the analog input level the drive must reach to wake from sleep mode.

Values	Default:	15.0%
	Min/Max:	$0.0 / 100.0 \%$
	Display:	0.1%

Terminal Block Group (continued)

t104 [Wake Time]
Sets the analog input time the drive must stay above to wake from sleep mode.

Values	Default:	0.0 s
	Min/Max:	$0.0 / 600.0 \mathrm{~s}$
	Display:	0.1 s

t105 [Safety Open En]
(PF525) PowerFlex 525 only.
Sets the action when both safety inputs (Safety 1 and Safety 2) are disabled (de-energized - no power is applied).
Options 0 "FaultEnable" (Default)
1 "FaultDisable"
t106 [SafetyFIt RstCfg]
[PF525) Powerflex 525 only.
(With FRN 5.xxx and later.)
Sets the method of resetting fault F111 "Safety Hardware" either by means of a power cycle or fault clear operation.

Options	0 "PwrCycleRset" (Default)	Reset fault F111 using power cycle.
	"FltClr Reset"	Reset fault F111 using fault clear mechanism without power cycle.

Communications Group

C121 [Comm Write Mode]

Saves parameter values in active drive memory (RAM) or in drive non-volatile memory (EEPROM).

	ATTENTION: If
IMPORTANT Parameter values set prior to setting 1"RAM only" are saved in RAM.	
Options 0 "Save" (Default)	
1 "RAM only"	
C122 [Cmd Stat Select]	
Selects velocity-specific or position/fibers-specific Command and Status Word bit definitions for use over a communication network. See Writing (06) Logic Command Data on page 203 for more information. This parameter cannot be changed when an I/0 connection is established through the communication adapter or the drive's embedded EtherNet/IP port.	
Options 0 "Velocity" (Default)	
1 "Position"	
C123 [RS485 Data Rate]	
Sets the communications baud rate (bits/second) for the RS485 port. A reset or power cycle is required after selection is made.	
Options	0 "1200"
	1 " 2400 "
	2 " 4800 "
	3 "9600" (Default)
	4 "19,200"
	5 " 38,400 "

C124 [RS485 Node Addr]

Sets the Modbus drive node number (address) for the RS485 port if using a network connection. A reset or power cycle is required after selection is made.

Values	Default:	100
	Min/Max:	1/247
	Display:	1
C125 [Comm Loss Action]		
Sets the drive's response to a loss of connection or excessive communication errors on the RS485 port.		
Options	0 "Fault" (Default)	
	1 "Coast Stop"	Stops
	2 "Stop"	Stops
	3 "Continu Last"	Drive

C126 [Comm Loss Time]

Related Parameter(s): © 125
Sets the time that the drive remains in communication loss with the RS485 port before taking the action specified in C125 [Comm Loss Action]. See Appendix C for more information.

IMPORTANT							This setting is effective only if $/ / 0$ that controls the drive is transmitted through the RS485 port.
Values	Default:	5.0 s					
	Min/Max:	$0.1 / 60.0 \mathrm{~s}$					
	Display:	0.1 s					

Communications Group (continued)

C127 [RS485 Format]

Determines the details related to the specific Modbus protocol used by the drive. A reset or power cycle is required after selection is made.

Communications Group (continued)

Communications Group (continued)

C143 [EN Comm Flt Actn]

[PF525 PowerFlex 525 only.
Sets the action that the EtherNet//P interface and drive takes if the EtherNet/IP interface detects that Ethernet communications have been disrupted.
IMPORTANT This setting is effective only if $/ / 0$ that controls the drive is transmitted through the EtherNet/IP interface.

	ATTENTION: Risk of injury or equipment damage exists. Parameter C143 [EN Comm Flt Actn] lets you determine the action of the EtherNet/P interface and connected drive if communications are disrupted. By default, this parameter faults the drive. You can set this parameter so that the drive continues to run. Precautions should be taken to ensure that the setting of this parameter does not create a risk of injury or equipment damage. When commissioning the drive, verify that your system responds correctly to various situations (for example, a disconnected drive).	
Options	0 "Fault" (Default)	
	1 "Stop"	Drive stops per P045 [Stop Mode] setting.
	2 "Zero Data"	Note: The Reference and Datalink values transmitted to the drive will be set to " 0 ".
	3 "Hold Last"	Note: The Logic Command, Reference, and Datalink values transmitted to the drive will be held at their last value.
	4 "Send Flt Cfg"	Note: The Logic Command, Reference, and Datalink values will be transmitted to the drive as configured in C145, C 146 , and C147...C150.

C144 [EN Idle Flt Actn]

Related Parameter(s): $\mathbf{P 0 4 5}, \underline{\mathrm{C} 145}, \underline{\mathrm{C} 146,} \mathbf{(1 4 7 - \mathbf { C 1 5 0 }}$
PF 525 PowerFlex 525 only.
Sets the action that the EtherNet//P interface and drive takes if the EtherNet/P interface detects that the scanner is idle because the controller was switched to program mode.
ATTENTION: Risk of injury or equipment damage exists. Parameter C144 [EN Idle FIt Actn] lets you determine the action of the EtherNet/IP interface and
connected drive if the scanner is idle. By default, this parameter faults the drive. you can set this parameter so that the drive continues to run. Precautions
should be taken to ensure that the setting of this parameter does not create a risk of injury or equipment damage. When commissioning the drive, verify that
your system responds correctly to various situations (for example, a disconnected drive).

C145 [EN Flt Cfg Logic]

Related Parameter(s): $\mathbf{C 1 4 3}, \underline{(144}$
(32 32 bit parameter.
PF 525 PowerFlex 525 only.
Sets the Logic Command data that is sent to the drive if any of the following is true:

- C143 [EN Comm Flt Actn] is set to 4 "Send Flt Cfg" and communications are disrupted.
- C144 [EN Idle Flt Actn] is set to 4 "Send Flt Cfg" and the scanner is put into Program or Test mode.

See Writing (06) Logic Command Data on page 203 for more information.

Values	Default:	0000
	Min/Max:	$0000 /$ FFFF
	Display:	0000

Communications Group (continued)

C146 [EN Flt Cfg Ref]			Related Parameter(s): $\mathbf{C 1 4 3}$, $\mathbf{C 1 4 4}$
(32) 32 bit parameter.			
[PF525 Powerflex 525 only.			
Sets the Reference data that is sent to the drive if any of the following is true:			
- C143 [EN Comm Flt Actn] is set to 4 "Send Flt Cfg" and communications are disrupted.			
- C144 [EN Idle Flt Actn] is set to 4 "Send Flt Cfg" and the scanner is put into Program or Test mode.			
Values	Default:	0	
	Min/Max:	0/50000	
	Display:	1	

C147 [EN FIt Cfg DL 1]
C148 [EN FIt Cfg DL 2]
C149 [EN FIt Cfg DL 3]
C150 [EN FIt Cfg DL4]
[PF525 Powerflex 525 only.
Sets the Ethernet Datalink Input data that is sent to the drive if any of the following is true:

- C143 [EN Comm Flt Actn] is set to 4 "Send Flt Cfg" and communications are disrupted.
- C144 [EN Idle Flt Actn] is set to 4 "Send Flt Cfg" and the scanner is put into Program or Test mode.

Values	Default:	0
	Min/Max:	$0 / 65535$
	Display:	1

C153 [EN Data In 1]
C154 [EN Data In 2]
C155 [EN Data In 3]
C156 [EN Data In 4]
© PF525 Powerflex 525 only.
Datalink parameter number whose value is written from the embedded EtherNet/IP data table. This parameter cannot be changed when an I/0 connection is established through the drive's embedded EtherNet/IP port.

Values	Default:	0
	Min/Max:	$0 / 800$
	Display:	1

C157 [EN Data Out 1]
C158 [EN Data Out 2]
C159 [EN Data Out 3]
C160 [EN Data Out 4]
[PF525 Powerflex 525 only.
Datalink parameter number whose value is read from the embedded EtherNet/IP data table. This parameter cannot be changed when an $1 / 0$ connection is established through the drive's embedded EtherNet/IP port.

Values	Default:	0
	Min/Max:	$0 / 800$
	Display:	1

Communications Group (continued)

C161 [Opt Data In 1]
C162 [Opt Data In 2]
C163 [Opt Data In 3]
C164 [Opt Data In 4]
Datalink parameter number whose value is written from the High Speed Drive Serial Interface (HSDSI) data table. This parameter cannot be changed when an I/0 connection is established through the communication adapter.

Values	Default:	0
	Min/Max:	$0 / 800$
	Display:	1

C165 [Opt Data Out 1]
C166 [Opt Data Out 2]
C167 [Opt Data Out 3]
C168 [Opt Data Out 4]
Datalink parameter number whose value is read from the HSDSI data table. This parameter cannot be changed when an I/0 connection is established through the communication adapter.

Values	Default:	0
	Min/Max:	$0 / 800$
	Display:	1

C169 [MultiDrv Sel]

Sets the configuration of the drive that is in multi-drive mode. A reset or power cycle is required after selection is made.

| Options | 0 | "Disabled" (Default) |
| :--- | :--- | :--- | | No multi-drive master from the internal network option module or embedded Ethernet port. The drive can still function as a |
| :--- |
| multi-drive slave or as a single drive (no multi-drive used). |

(1) Setting is specific to PowerFlex 525 drives only.

C171	1 Addr]		Related Parameter(s):
C172	2 Addr]		
C173	3 Addr]		
C174	4 Addr]		
Sets the selectio	esponding n made.	chained	cycle is required after
Values	Default:		
	Drv 1 Addr:	2	
	Drv 2 Addr:	3	
	Drv 3 Addr:	4	
	Drv 4 Addr:	5	
	Min/Max:	1/247	
	Display:	1	

C175 [DSII/0 Cfg]

Sets the configuration of the Drives that are active in the multi-drive mode. Identifies the connections that would be attempted on a reset or power cycle. A reset or power cycle is required after selection is made.

Options	0 "Drive 0" (Default)
	1 "Drive 0-1"
	2 "Drive 0-2"
	3 "Drive 0-3"
	4 "Drive 0-4"

Logic Group

1180	[Stp Logic 0]	1181	[Stp Logic 1]	Related Parameter(s):
1182	[Stp Logic 2]	1183	[Stp Logic 3]	
1184	[Stp Logic 4]	1185	[Stp Logic 5]	
1186	[Stp Logic 6]	1187	[Stp Logic 7]	
Stop drive before changing this parameter.				
[PF5 525 Powerflex 525 only.				

Values	Default:	$00 F 1$
	Min/Max:	$0000 /$ FAFF
	Display	0001

See Appendix Dand Appendix E for more information on applying Step Logic and Position StepLogic.
Parameters L180...L187 are only active if P047, P049, or P051 [Speed Referencex] is set to 13 "Step Logic" or 16 "Positioning". These parameters can be used to create a custom profile of frequency commands. Each "step" can be based on time, status of a Logic input or a combination of time and the status of a Logic input.
Digits $1 . . .4$ for each [Stp Logic x] parameter must be programmed according to the desired profile. A Logic input is established by setting a digital input, parameters $\mathbf{t 0 6 2 ,} \mathbf{t 0 6 3}$, t065.... 0668 [Digln TermBIk xx] to 24 "Logic In $1^{\prime \prime}$ and/or 25 "Logic In 2" or by using Bits 6 and 7 of A560 [Enh Control Word].
A time interval between steps can be programmed using parameters $\underline{\text { L190....L197 [Stp Logic Time x]. See the table below for related parameters. }}$
The speed for any step is programmed using parameters A 410A417 [Preset Freq X].

Step	StepLogic Parameter	Related Preset Frequency Parameter (Can be activated independent of StepLogic Parameters)	Related StepLogic Time Parameter (Active when L180...L187 Digit $\mathbf{1}$ or 2 are set to 1, b, C, d or E)
0	L180 [Stp Logic 0]	A410 [Preset Freq 0]	L190 [Stp Logic Time 0]
1	L181 [Stp Logic 1]	A411 [Preset Freq 1]	L191 [Stp Logic Time 1]
2	L182 [Stp Logic 2]	A412 [Preset Freq 2]	L192 [Stp Logic Time 2]
3	L183 [Stp Logic 3]	A413 [Preset Freq 3]	L193 [Stp Logic Time 3]
4	L184 [Stp Logic 4]	A414 [Preset Freq 4]	L194 [Stp Logic Time 4]
5	L185 [Stp Logic 5]	A415 [Preset Freq 5]	L195 [Stp Logic Time 5]
6	L186 [Stp Logic 6]	A416 [Preset Freq 6]	L196 [Stp Logic Time 6]
7	L187 [Stp Logic 7]	A417 [Preset Freq 7]	L197 [Stp Logic Time 7]

The position for any step is programmed using parameters L200...L214 [Step Units X].

Step	StepLogic Position Parameter
0	L200 [Step Units 0] \& L201 [Step Units F 0]
1	L202 [Step Units 1] \& L203 [Step Units F 1]
2	L204 [Step Units 2] \& L205 [Step Units F 2]
3	L206 [Step Units 3] \& L207 [Step Units F 3]
4	L208 [Step Units 4] \& L209 [Step Units F 4]
5	L210 [Step Units 5] \& L211 [Step Units F5]
6	L212 [Step Units 6] \& L213 [Step Units F 6]
7	L214 [Step Units 7] \& L215 [Step Units F7]

How StepLogic Works

The StepLogic sequence begins with a valid start command. A normal sequence always begins with L180 [Stp Logic 0].

Digit 1: Logic for next step

This digit defines the logic for the next step. When the condition is met the program advances to the next step. Step 0 follows Step 7. Example: Digit 1 is set to 3 . When "Logic $\ln 2$ " becomes active, the program advances to the next step.
Digit 2: Logic to jump to a different step
For all settings other than F, when the condition is met, the program overrides Digit 0 and jumps to the step defined by Digit 3 .

Digit 3: Different step to jump

When the condition for Digit 2 is met, this digit setting determines the next step or to end the program.

Digit 4: Step settings

This digit defines additional characteristics of each step.
Any StepLogic parameter can be programmed to control a relay or opto output, but you can not control different outputs based on the condition of different StepLogic commands.

StepLogic Settings

The logic for each function is determined by the four digits for each StepLogic parameter. The following is a listing of the available settings for each digit. See Appendix D for more information.

Velocity Control Settings (Digit 4)

Required Setting	Accel/Decel Param. Used	StepLogic Output State	Commanded Direction
0	Accel/Decel 1	Off	FWD
1	Accel/Decel 1	Off	REV
2	Accel/Decel 1	Off	No Output
3	Accel/Decel 1	On	FWD
4	Accel/Decel 1	On	REV
5	Accel/Decel 1	On	No Output
6	Accel/Decel 2	Off	FWD
7	Accel/Decel 2	Off	REV
8	Accel/Decel 2	Off	No Output
9	Accel/Decel 2	On	FWD
A	Accel/Decel 2	On	REV
b	Accel/Decel 2	On	No Output

Positioning Settings (Digit 4)

Required Setting	Accel/Decel Param. Used	StepLogic Output State	Direction From Home	Type of Command
0	Accel/Decel 1	Off	FWD	Absolute
1	Accel/Decel 1	Off	FWD	Incremental
2	Accel/Decel 1	Off	REV	Absolute
3	Accel/Decel 1	Off	REV	Incremental
4	Accel/Decel 1	On	FWD	Absolute
5	Accel/Decel 1	0n	FWD	Incremental
6	Accel/Decel 1	On	REV	Absolute
7	Accel/Decel 1	On	REV	Incremental
8	Accel/Decel 2	Off	FWD	Absolute
9	Accel/Decel 2	Off	FWD	Incremental
A	Accel/Decel 2	Off	REV	Absolute
b	Accel/Decel 2	Off	REV	Incremental
c	Accel/Decel 2	On	FWD	Absolute
d	Accel/Decel 2	0n	FWD	Incremental
E	Accel/Decel 2	On	REV	Absolute
F	Accel/Decel 2	On	REV	Incremental

Settings (Digit 3)

Setting	Description
0	Jump to Step 0
1	Jump to Step 1
2	Jump to Step 2
3	Jump to Step 3
4	Jump to Step 4
5	Jump to Step 5
6	Jump to Step 6
7	Jump to Step 7
8	End Program (Normal Stop)
9	End Program (Coast to Stop)
A	End Program and Fault (F2)

Settings (Digit 2 and 1)

Setting	Description
0	Skip Step (Jump Immediately)
1	Step Based on [Stp Logic Time x]
2	Step if "Logic In 1" is Active
3	Step if "Logic $\ln 2$ " is Active
4	Step if "Logic In 1" is Not Active
5	Step if "Logic In 2" is Not Active
6	Step if either "Logic In 1" or "Logic ln 2" is Active
7	Step if both "Logic In 1" and "Logic ln 2" are Active
8	Step if neither "Logic In 1" nor "Logic In 2" is Active
9	Step if "Logic In 1" is Active and "Logic In 2" is Not Active
A	Step if "Logic ln 2" is Active and "Logic In 1" is Not Active
b	Step after [Stp Logic Time x] and "Logic In 1" is Active
c	Step after [Stp Logic Time x] and "Logic In 2" is Active
d	Step after [Stp Logic Time x] and "Logic In 1" is Not Active
E	Step after [Stp Logic Time x] and "Logic In 2" is Not Active
F	Do Not Step/Ignore Digit 2 Settings

Logic Group (continued)

L190	[Stp Logic Time 0]	L191	[Stp Logic Time 1]
L192	[Stp Logic Time 2]	L193	[Stp Logic Time 3]
L194	[Stp Logic Time 4]	L195	[Stp Logic Time 5]
L196	[Stp Logic Time 6]	L197	[Stp Logic Time 7]
(PF 525 PowerFlex 525 only.			

Sets the time to remain in each step if the corresponding command word is set to "Step based on time".

Values	Default:	30.0 s
	Min/Max:	$0.0 / 999.9 \mathrm{~s}$
	Display:	0.1 s

L200	[Step Units 0]	L202	$[$ Step Units 1]
L204	$[$ Step Units 2]	L206	
LStep Units 3]			
L208	$[$ Step Units 4]	L210	$[$ Step Units 5]
L212	$[$ Step Units 6]	L214	$[$ Step Units 7]

$\sqrt[32]{ } 32$ bit parameter.
PF525 PowerFlex 525 only.
Sets the position in user-defined units the drive must reach at each step.

Values	Default:	0.00
	Min/Max:	$0.00 / 6400.00$
	Display:	0.01

Advanced Display Group

d360 [Analog In 0-10V]
Related Parameter(s): t091, t092
Displays the 0-10V analog input as a percent of full scale.

Values	Default:	Read Only	
	Min/Max:	0.0/100.0\%	
	Display:	0.1\%	
d361 [Analog \ln 4-20mA]			Related Parameter(s): $\mathbf{t 0 9 5}$, $\mathbf{0 9 6}$
Displays the 4-20 mA analog input as a percent of full scale.			
Values	Default:	Read Only	
	Min/Max:	0.0/100.0\%	
	Display:	0.1\%	

d362 [Elapsed Time-hr]
Related Parameter(s): $\mathbf{A 5 5 5}$
Displays the total elapsed powered-up time (in hours) since timer reset. The timer stops when it reaches the maximum value.

Values	Default:	Read Only
	Min/Max:	$0 / 32767 \mathrm{hr}$
	Display:	1 hr

d363 [Elapsed Time-min]
Related Parameter(s): d362, A555
Displays the total elapsed powered-up time (in minutes) since timer reset. Resets to zero when maximum value is reached and increments d 362 [Elapsed Time-hr] by one.

Values	Default:	Read Only
	Min/Max:	$0.0 / 60.0 \mathrm{~min}$
	Display:	0.1 min

d364 [Counter Status]

Displays the current value of the counter if enabled.

d367 [Drive Type]

Displays the Drive type setting. Used by Rockwell Automation field service personnel (not write accessible by non Rockwell Automation technical personnel).

Values	Default:	Read Only
	Min/Max:	$0 / 65535$
	Display:	1

Advanced Display Group (continued)

d368 [Testpoint Data]
Related Parameter(s): A483
Displays the present value of the function selected in $\underline{A 483}$ [Testpoint Sel].

Values	Default:	Read Only
	Min/Max:	$0 / F F F F$
	Display:	1

d369 [Motor OL Level]

Displays the motor overload counter.

Values	Default:	Read Only
	Min/Max:	$0.0 / 150.0 \%$
	Display:	0.1%

d375 [Slip Hz Meter]
Related Parameter(s): P032
Displays the current amount of slip or droop (absolute value) being applied to the motor frequency. Drives applies slip based on the setting for P032 [Motor NP Hertz].

d378 [Encoder Speed]

$\sqrt[32]{ } 32$ bit parameter.
Provides a monitoring point that reflects the speed measured from the feedback device. This shows the encoder or pulse train speed even if not used directly to control motor speed. ${ }^{(1)}$

Values	Default:	Read Only
	Min/Max:	$0.0 / 64000.0 \mathrm{rpm}$
	Display:	0.1 rpm

(1) Parameter is also available in PowerFlex 523 FRN $3 . x x x$ and later.
d380 [DC Bus Ripple]
Displays the real-time value of the DC bus ripple voltage.

Values	Default:	Read Only
	Min/Max:	0/410VDC for 230V AC drives; 820VDC for 460VAC drives; 1025VDC for 600VAC drives
	Display:	VV DC

d381 [Output Powr Fctr]

Displays the angle in electrical degrees between motor voltage and motor current.

Values	Default:	Read Only
	Min/Max:	$0.0 / 180.0 \mathrm{deg}$
	Display:	0.1 deg

Advanced Display Group (continued)

d382 [Torque Current]

Displays the current value of the motor torque current measured by the drive.

Values	Default:	Read Only
	Min/Max:	0.00/(Drive Rated Amps x 2)
	Display:	0.01 A
d383 [PID1 Fdbk Displ]		
d385 [PID2 Fdbk Displ] PF525 PowerFlex 525 only.		
Displays the active PID Feedback value.		
Values	Default:	Read Only
	Min/Max:	0.0/100.0\%
	Display:	0.1\%
d384 [PID1 Setpnt Disp]		
d386 [PID2 Setpnt Disp] PF 525 PowerFlex 525 only.		
Displays the active PID Setpoint value.		
Values	Default:	Read Only
	Min/Max:	0.0/100.0\%
	Display:	0.1\%

d387 [Position Status]

©F525 PowerFlex 525 only.
Displays the present operating condition of the drive. When in Positioning mode, Bit 1 indicates positive or negative position in relation to Home.
핌ㅁㅁㅁㅁ

	1 = Condition True, $0=$ Condition False	
	Dir Positive	Digit 1
	At Position	Digit 2
	At Home	Digit 3
	Drive Homed	Digit 4

Not Used

Values	Default:	Read Only
	Min/Max:	$0000 / 1111$
	Display:	0000

Values	Default:	Read Only
	Min/Max:	$0 / 64000$
	Display:	1

Advanced Display Group (continued)

d389 [Units Traveled L]
Stop drive before changing this parameter.
(PF525) Powerflex 525 only.
Displays the number of user-defined units traveled from the home position. See $d 387$ [Position Status] for direction of travel.

Values	Default:	Read Only
	Min/Max:	$0.00 / 0.99$
	Display:	0.01

d390 [Fiber Status]

Present status of the Fibers features.

d391 [Stp Logic Status]

[PF525 PowerFlex 525 only.
Displays the current step of the Step Logic profile as defined by parameters L180...L187 [Step Logic x] when P047 [Speed Reference1] is set to 13 "Step Logic" or 16 "Positioning".

Values	Default:	Read Only
	Min/Max:	$0 / 8$
	Display:	1

d392 [RdyBit Mode Act]

(With PowerFlex 525 FRN 3.xxx and later.)
(With Powerflex 523 FRN 3.xxx and later.)
Displays the value of A574 [RdyBit Mode Cfg].

Values	Default:	Read Only
	Min/Max:	$0 / 1$
	Display:	1

Advanced Display Group (continued)

d393 [Drive Status 2]

(With PowerFlex 525 FRN 5.xxx and later.)
(With PowerFlex 523 FRN 3.xxx and later.)
Displays the present operating condition of the drive.

(1) Bit status is specific to PowerFlex 525 drives only.

Values	Default:	Read Only
	Min/Max:	$0 / 65535$
	Display:	1

d394 [Dig Out Status]

(With PowerFlex 525 FRN 5.xxx and later.)
(With PowerFlex 523 FRN 3.xxx and later.)
Displays relay output and opto output status.

[1] [1] [] [] []	
Rly1 Status	Digit 1
Rly2 Status ${ }^{(1)}$	Digit 2
Opto1 Status ${ }^{(1)}$	Digit 3
Opt02 Status ${ }^{(1)}$	Digit 4
Not Used	

Status	Bit Value $=\mathbf{0}$	Bit Value $=\mathbf{1}$
Relay 1 status (Normally Open)	Not activated (Relay 1 open)	Activated (Relay 1 closed)
Relay 2 status (Normally Closed)	Not activated (Relay 2 closed)	Activated (Relay 2 open)
Opto 1 status	Not activated	Activated
Opto 2 status	Not activated	Activated

(1) Setting is specific to PowerFlex 525 drives only.

Values	Default:	Read Only
	Min/Max:	$0 / 15$
	Display:	1

Advanced Program Group

A410 $[$ Preset Freq 0]	A411 [Preset Freq 1]
A412 $[$ Preset Freq 2]	A413 [Preset Freq 3]
A414 $[$ Preset Freq 4]	A415 [Preset Freq 5]
A416 [Preset Freq 6]	A417 [Preset Freq 7]
A418 [Preset Freq 8]	A419 [Preset Freq 9]
A420 [Preset Freq 10]	A421 [Preset Freq 11]
A422 [Preset Freq 12]	A423 [Preset Freq 13]
A424 [Preset Freq 14]	A425 [Preset Freq 15]
[PF525 PowerFlex 525 only.	

Sets the frequency of the drive outputs to the programmed value when selected.

For PowerFlex 525					
	Default Accel/Decel Used	Preset Input 1 (DigIn TermBlk 05)	Preset Input 2 (DigIn TermBlk 06)	Preset Input 3 (DigIn TermBlk 07)	Preset Input 4 (DigIn TermBlk 08)
Preset Setting $0^{(1)}$	1	0	0	0	0
Preset Setting 1	1	1	0	0	0
Preset Setting 2	2	0	1	0	0
Preset Setting 3	2	1	1	0	0
Preset Setting 4	1	0	0	1	0
Preset Setting 5	1	1	0	1	0
Preset Setting 6	2	0	1	1	0
Preset Setting 7	2	1	1	1	0
Preset Setting 8	1	0	0	0	1
Preset Setting 9	1	1	0	0	1
Preset Setting 10	2	0	1	0	1
Preset Setting 11	2	1	1	0	1
Preset Setting 12	1	0	0	1	1
Preset Setting 13	1	1	0	1	1
Preset Setting 14	2	0	1	1	1
Preset Setting 15	2	1	1	1	1
For PowerFlex 523					
	Default Accel/Decel Used	Preset Input 1 (DigIn TermBlk 05)	Preset Input 2 (DigIn TermBlk 06)	Preset Input 3 (DigIn TermBlk 03)	-
Preset Setting $0^{(1)}$	1	0	0	0	-
Preset Setting 1	1	1	0	0	
Preset Setting 2	2	0	1	0	
Preset Setting 3	2	1	1	0	
Preset Setting 4	1	0	0	1	
Preset Setting 5	1	1	0	1	
Preset Setting 6	2	0	1	1	
Preset Setting 7	2	1	1	1	

(1) Preset Setting 0 is only available if P047, P049 or P051 [Speed Referencex] is set to 7 "Preset Freq".

Values	Defaults:	
	Preset Freq 0:	0.00 Hz
	Preset Freq 1:	5.00 Hz
	Prest Freq 2:	10.00 Hz
	Preset Freq 3:	20.00 Hz
	Preset Freq 4:	30.00 Hz
	Preset Freq 5:	40.00 Hz
	Preset Freq 6:	50.00 Hz
	Preset Freq 7...15:	60.00 Hz
	Min/Max:	$0.00 / 500.00 \mathrm{~Hz}$
	0.01 Hz	

Advanced Program Group (continued)

A426 [Keypad Freq]

Related Parameter(s): P047, P049, P051
Provides the drive frequency command using the built-in keypad navigation. When P047, P049 or P051 [Speed Referencex] selects 2 "Keypad Freq", the value set in this parameter controls the frequency of the drive. The value of this parameter can also be changed when navigating with the keypad by pressing the Up or Down arrow keys.

Values	Default:	60.00 Hz
	Min/Max:	$0.00 / 500.00 \mathrm{~Hz}$
	Display:	0.01 Hz

A427 [MOP Freq]

Provides the drive frequency command using the built-in Motor Operated Potentiometer (MOP).
IMPORTANT Frequency is not written to non-volatile storage until drive is powered-down. If both MOP Up and MOP Down are applied at the same time, the inputs are ignored and the frequency is unchanged.

Values	Default:	60.00 Hz
	Min/Max:	$0.00 / 500.00 \mathrm{~Hz}$
	Display:	0.01 Hz

A428 [MOP Reset Sel]

Determines if the current MOP reference command is saved on power down.

Options	0	"Zero MOP Ref"
	"Save MOP Ref" (Default)	Resets the MOP frequency to zero on power down and stop.

A429 [MOP Preload]

Determines the operation of the MOP function.

Options	0 "No preload" (Default)	
	1 "Preload"	Bumpless Tra
A430 [MOP Time]		
Sets the rate of change of the MOP reference.		
Values	Default:	10.0 s
	Min/Max:	0.1/600.0s
	Display:	0.15

A431 [Jog Frequency]

Related Parameter(s): P044
Sets the output frequency when a jog command is issued.

Values	Default:	10.00 Hz
	Min/Max:	$0.00 /[$ Maximum Freq]
	Display:	0.01 Hz

A432 [Jog Accel/Decel]

Sets the acceleration and deceleration time used when in jog mode.

Values	Default:	10.00 s
	Min/Max:	$0.01 / 600.00 \mathrm{~s}$
	Display:	0.01 s

Advanced Program Group (continued)

A433 [Purge Frequency]
Related Parameter(s): t062, t063, t065-t068
Provides a fixed frequency command value when $\mathbf{t 0 6 2}, \mathbf{t 0 6 3}, \mathbf{t 0 6 5}$ - $\mathbf{0} 068$ [Digln TermBIk xx] is set to 40 "Purge".

Values	Default:	5.00 Hz	
	Min/Max:	$0.00 / 500.00 \mathrm{~Hz}$	
	Display:	0.01 Hz	
A434 [DC Brake Time]			Related Parameter(s): P045, A435
Sets the length of time that DC brake current is "injected" into the motor.			
Values	Default:	0.0 s	
	Min/Max:	0.0/99.9 s	
	Display:	0.1 s	

A435 [DC Brake Level]

Related Parameter(s): $\underline{\text { P045 }}$
Defines the maximum DC brake current, in amps, applied to the motor when P045 [Stop Mode] is set to either 4 "Ramp" or 6 "DC Brake".

ATTENTION: If a hazard of injury due to movement of equipment or material exists, an auxiliary mechanical braking device must be used. This feature should not be used with synchronous motors. Motors may be demagnetized during braking.

Values	Default:	Drive Rated Amps $\times 0.05$
	Min/Max:	$0.00 /($ Drive Rated Amps $\times 1.80)$
	Display:	0.01 A

A436 [DC Brk Time@Strt]
Related Parameter(s): $\mathbf{P 0 4 5 , ~ \underline { A 4 3 5 }}$

Advanced Program Group (continued)

A437 [DB Resistor Sel]
Stop drive before changing this parameter.
Enables/disables external dynamic braking and selects the level of resistor protection.
IMPORTANT When A437 [DB Resistor Sel] is set to a value greater than " 0 ", the value set in parameter A550 [Bus Reg Enable] will not take effect.

Options	0	"Disabled" (Default)	
	1	"Norml RA Res"	5\%
	2	"NoProtection"	100\%
		"3...99\% DutyCycle"	

A438 [DB Threshold]

Related Parameter(s): A437
Sets the DC bus voltage threshold for Dynamic Brake operation. If DC bus voltage rises above this level, Dynamic Brake turns on. Lower values makes the dynamic braking function more responsive but may result in nuisance Dynamic Brake activation (IGBT can modulate continuously).

Values	Default:	100.0%
	Min/Max:	$10.0 / 110.0 \%$
	Display:	0.1%

A439 [S Curve \%]

Enables a fixed shape S -Curve that is applied to the acceleration and deceleration ramps (including jog).
S-Curve Time $=$ (Accel or Decel Time) $\times(S$-Curve Setting in percentage)

Advanced Program Group (continued)

A440 [PWM Frequency]

Sets the carrier frequency for the PWM output waveform. The chart below provides derating guidelines based on the PWM frequency setting.

A441 [Droop Hertz@ FLA]

PF525 PowerFlex 525 only.
Reduces the frequency based on current. This frequency is subtracted from the commanded output frequency. Generally Slip and Droop would not both be used, but if both are enabled they simply subtract from each other. Typically used in load sharing schemes.

Values	Default:	0.0 Hz
	Min/Max:	$0.0 / 10.0 \mathrm{~Hz}$
	Display:	0.1 Hz

A442 [Accel Time 2]

Time for the drive to ramp from 0.0 Hz to P044 [Maximum Freq] if Accel Time 2 is selected.
Accel Rate $=$ [Maximum Freq] / [Accel Time]

A443 [Decel Time 2]

Related Parameter(s): P044
Time for the drive to ramp from P044 [Maximum Freq] to 0.0 Hz if Decel Time 2 is selected.
Decel Rate $=$ [Maximum Freq] $/$ [Decel Time]

Values	Default:	10.00 s
	Min/Max:	$0.00 / 600.00 \mathrm{~s}$
	Display:	0.01 s

Advanced Program Group (continued)

A444 [Accel Time 3]

A446 [Accel Time 4]
Sets the rate of acceleration for all speed increases when selected by digital inputs.

Values	Default:	10.00 s
	Min/Max:	$0.00 / 600.00 \mathrm{~s}$
	Display:	0.01 s

A445 [Decel Time 3]

A447 [Decel Time 4]
Sets the rate of deceleration for all speed decreases when selected by digital inputs.

Advanced Program Group (continued)

A456 [PID 1 Trim Hi]
A468 [PID 2 Trim Hi]
PF5 525 Powerflex 525 only.
Scales the upper value of the trim frequency when trim is active.

[^5]
Advanced Program Group (continued)

A459 [PID 1 Ref Sel]
 A471 [PID 2 Ref Sel]

PF525 PowerFlex 525 only.

Stop drive before changing this parameter.
Selects the source of the PID reference.

Options	0 "PID Setpoint" (Default)
	1 "Drive Pot"
	2 "Keypad Freq"
	3 "Serial/DSI"
	4 "Network Opt"
	5 "0-10V Input"
	6 "4-20mA Input"
	7 "Preset Freq"
	8 "Anlgln Multi" ${ }^{(1)}$
	9 "MOP Freq"
	10 "Pulse Input"
	11 "Step Logic" ${ }^{(1)}$
	12 "Encoder"(1)
	13 "EtherNet//P"(1)

(1) Setting is specific to PowerFlex 525 drives only.

A460 [PID 1 Fdback Sel]

A472 [PID 2 Fdback Sel]

PF525) PowerFlex 525 only.
Selects the source of the PID feedback.

Options	0 "0-10V Input" (Default)	Note: PID does not function with bipolar input. Negative voltages are ignored and treated as zero.
	1 "4-20mA Input"	
	2 "Serial/DSI"	
	3 "Network Opt"	
	4 "Pulse Input"	
	5 "Encoder"(1)	
	6 "EtherNet/IP"(1)	

A461 [PID 1 Prop Gain]			Related Parameter(s): $\underline{\text { A459, }} \underline{\text { A471 }}$
A473 [PID 2 Prop Gain] PF525) PowerFlex 525 only.			
Sets the value for the PID proportional component when the PID mode is enabled.			
Values	Default:	0.01	
	Min/Max:	0.00/99.99	
	Display:	0.01	

Advanced Program Group (continued)

A463 [PID 1 Diff Rate]

| A475 [PID 2 Diff Rate] |
| :--- | :--- |
| [PF525 Powerflex 525 only. |

Sets the value (in $1 /$ second) for the PID differential component when PID mode is enabled.

Values	Default:	0.00
	Min/Max:	0.00/99.99
	Display:	0.01
A464 [PID 1 Setpoint]		
A476 [PID 2 Setpoint] (PF525) PowerFlex 525 only.		
Provides an internal fixed value for process setpoint when PID mode is enabled.		
Values	Default:	0.0\%
	Min/Max:	0.0/100.0\%
	Display:	0.1\%
A465 [PID 1 Deadband]		
A477 [PID 2 Deadband] [PF525 PowerFlex 525 only.		
Sets a range, in percent above and below the PID Reference, that the PID output will ignore.		
Values	Default:	0.0\%
	Min/Max:	0.0/10.0\%
	Display:	0.1\%

A466 [PID 1 Preload]

A478 [PID 2 Preload]

PF525 Powerflex 525 only.
Sets the value used to preload the integral component on start or enable.

Values	Default:	0.0 Hz
	Min/Max:	$0.0 / 500.0 \mathrm{~Hz}$
	Display:	0.1 Hz

A467 [PID 1 Invert Err]
A479 [PID 2 Invert Err]
[FF525 Powerflex 525 only.
Changes the sign of the PID error.
Options 0 "Normal" (Default)
1 "Inverted"

Advanced Program Group (continued)

A481 [Process Disp Lo]			Related Parameter(s): $\underline{\underline{010}, \underline{1} \mathbf{0 4 3}}$
Values	Default:	0.00	
	Min/Max:	0.00/99.99	
	Display:	0.01	
A482 [Process Disp Hi]			Related Parameter(s): $\underline{\text { b010, }} \underline{\underline{\text { P044 }}}$
Sets the value displayed in $\underline{\text { b010 }}$ [Process Display] when the drive is running at P044 [Maximum Freq].			
Values	Default:	0.00	
	Min/Max:	0.00/99.99	
	Display:	0.01	

A483 [Testpoint Sel]

Used by Rockwell Automation field service personnel.

Advanced Program Group (continued)

A490 [Load Loss Level]

Related Parameter(s): A491
PF525) Powerflex 525 only.
Provides a software trip (Load Loss fault) when the current drops below this level for the time specified in A491 [Load Loss Time].

Values	Default:	0.0 A
	Min/Max:	$0.0 /$ Drive Rated Amps
	Display:	0.1 A

A491 [Load Loss Time] Related Parameter(s): A490
PF525 PowerFlex 525 only.
Sets the required time for the current to be below A490 [Load Loss Level] before a Load Loss fault occurs.

Values	Default:	0 s
	Min/Max:	$0 / 9999 \mathrm{~s}$
	Display:	1 s

A492 [Stall Fault Time]

Sets the time that the drive remains in stall mode before a fault is issued.

Options	0 "60 Seconds" (Default)
	1 "120 Seconds"
	2 "240 Seconds"
	3 "360 Seconds"
	4 "480 Seconds"
	5 "Flt Disabled"

A493 [Motor OL Select]

Related Parameter(s): P032, P033
Drive provides Class 10 overload protection. Settings $0 . . .2$ select the derating factor for the I^{2} t overload function.

A494 [Motor OL Ret]

Selects whether the motor overload counter is saved on power-down or reset on power-up.

Options	0	"Reset" (Default)
	1	"Save"

Advanced Program Group (continued)

A495 [Drive OL Mode]

Determines how the drive handles overload conditions that would otherwise cause the drive to fault.

Options	0 "Disabled"		
	1 "Reduce CLim"		
	2 "Reduce PWM"		
	3 "Both-PWM 1st" (Default)		
A496 [IR Voltage Drop]			Related Parameter(s): $\underline{\text { P040 }}$
Value of volts dropped across the resistance of the motor stator (autotune) for induction motor.			
Values	Default:	Based on Drive	
	Min/Max:	0.0/600.0VAC	
	Display:	0.1VAC	

A497 [Flux Current Ref]

This is the current necessary for full motor flux. The value should be set to the full speed no-load current of the motor.

Values	Default:	Based on Drive Rating
	Min/Max:	$0.00 /($ Drive Rated Amps x 1.4)
	Display:	0.01 A

A498 [Motor Rr]

(PF525) PowerFlex 525 only.
Rotor resistance of induction motor. The value of this parameter will populate when a full rotate tune is performed.

Values	Default:	Based on Drive Rating
	Min/Max:	$0.00 / 655.35$ ohm
	Display:	0.01 ohm

A499 [Motor Lm]

PF525 PowerFlex 525 only.
Mutual Inductance of induction motor. The value of this parameter will populate when a full rotate tune is performed.

Values	Default:	Based on Drive Rating
	Min/Max:	$0.0 / 6553.5 \mathrm{mH}$
	Display:	0.1 mH

A500 [Motor Lx]

PF 525 PowerFlex 525 only.
Leakage Inductance of induction motor. The value of this parameter will populate when a full rotate tune is performed.

Values	Default:	Based on Drive Rating
	Min/Max:	$0.0 / 6553.5 \mathrm{mH}$
	0.1 mH	

A501 [PM IR Voltage]

PF 525 PowerFlex 525 only.
(With FRN 5.xxx and later.)
Voltage across the stator resistance of the PM motor at the rated motor current displayed in line-to-line rms value.

Values	Default:	11.50 V
	Min/Max:	$0.00 / 655.35 \mathrm{~V}$
	Display:	0.01 V

Advanced Program Group (continued)

A502 [PM IXd Voltage]

PF525 PowerFlex 525 only.
(With FRN 5.xxx and later.)
Voltage across the d-axis stator inductance of the PM motor at the rated motor current and the rated motor frequency displayed in line-to-line rms value.

Values	Default:	17.91V
	Min/Max:	0.00/655.35V
	Display:	0.01 V
A503 [PM IXq Voltage]		
PF525 PowerFlex 525 only.		
(With FRN 5.xxx and later.)		
Voltage across the q-axis stator inductance of the PM motor at the rated motor current and the rated motor frequency displayed in line-to-line rms value.		
Values	Default:	53.21V
	Min/Max:	0.00/655.35V
	Display:	0.01V

A504 [PM BEMF Voltage]

(PF525) PowerFlex 525 only.
(With FRN 5.xxx and later.)
Back electromotive force (EMF) voltage.

Values	Default:	1640.0 Drive Rated Volts
	Min/Max:	$0.0 / 6000.0$ Drive Rated Volts
	Display:	0.1 V

A509 [Speed Reg Sel]

PF525) PowerFlex 525 only.
Determines if Pl gain of the "Vector" control mode speed regulator is set automatically or manually. Parameters $\underline{\text { A521...A526 are set automatically by this parameter. }}$

Options 0 "Automatic" (Default)		
A510 [Freq 1]		
A512 [Freq 2]		
A514 [Freq 3]		
PF525 PowerFlex 525 only.		
Sets the "Vector" control mode frequency.		
Values	Default:	
	Freq 1:	8.33\%
	Freq 2:	15.00\%
	Freq 3:	20.00\%
	Min/Max:	0.00/200.00\%
	Display:	0.01\%

Advanced Program Group (continued)

A511 [Freq 1 BW]
A513 [Freq 2 BW]
A515 [Freq 3 BW]
PF525. PowerFlex 525 only.
Speed control loop bandwidth for "Vector" control mode.

Values	Default:	10 Hz
	Min/Max:	$0 / 40 \mathrm{~Hz}$
	Display:	1 Hz

A516 [PM Initial Sel]
PF 525 PowerFlex 525 only.
(With FRN 5.xxx and later.)
PM initial angle detect.
Options 0 "Align" (Default)

1	"HFI"
2	"Six Pulse"

A517 [PM DC Inject Cur]
©F 525 PowerFlex 525 only.
(With FRN 5.xxx and later.)
Maximum DC current in amps applied to the motor in order to reset the rotor position of a PM motor.

Values	Default:	30%
	Min/Max:	$0 / 300 \%$
	Display:	1%

A518 [PM Align Time]
PF525 PowerFlex 525 only.
(With FRN 5.xxx and later.)
Magnetic pole reorientation time.

Values	Default:	0.7 s
	Min/Max:	$0.0 / 60.0 \mathrm{~s}$
	Display:	0.1 s

A519 [PM HFI NS Cur]
PF525 PowerFlex 525 only.
(With FRN 5.xxx and later.)
High Frequency Injection (HFI) North South Current to detect N/S Magnet.

Values	Default:	100%
	Min/Max:	$0 / 300 \%$
	Display:	1%

A520 [PM Bus Reg Kd]
PF525 PowerFlex 525 only.
(With FRN 5.xxx and later.)
Derivative gain for bus regulator.

Values	Default:	2
	Min/Max:	$0 / 500$
	Display:	1

Advanced Program Group (continued)

Sets P-gain of "Vector" control mode when in frequency region 1,2 or 3 for faster speed response during dynamic-state where motor is still accelerating. If A509 [Speed Reg Sel] is set to 1 "Manual", these parameters can be changed.

Values	Default:	100.0\%
	Min/Max:	0.0/500.0\%
	Display:	0.1\%
$\begin{aligned} & \text { A522 [Freq } 1 \mathrm{Ki}] \\ & \text { A524 } \\ & \text { A5req } 2 \mathrm{Ki}] \\ & \text { AFreq } 3 \mathrm{Ki}] \end{aligned}$		
[PF525 Powerflex 525 only.		
Sets I-gain of "Vector" control mode when in frequency region 1, 2 or 3 for faster speed response during steady-state where motor is at its rated speed. If A509 [Speed Reg Sel] is set to 1 "Manual", these parameters can be changed.		
Values	Default:	0.100 s
	Min/Max:	0.000/10.000 s
	Display:	0.001 s

A527 [PM FWKn 1 Kp]

PF525 PowerFlex 525 only.
(With FRN 5.xxx and later.)
The gain to ensure good performance in field weakening region.

Values	Default:	250%
	Min/Max:	$0 / 2000 \%$
	Display:	1%

A528 [PM FWKn $2 \mathrm{Kp]}$

PF525. PowerFlex 525 only.
(With FRN 5.xxx and later.)
The gain to ensure robustness under step load in weakening region.

Values	Defaul:	100%
	Min/Max:	$100 / 8000 \%$
	Display:	1%

Advanced Program Group (continued)

A529 [PM Control Cfg]

PFF525 Powerflex 525 only.
(With FRN 5.xxx and later.)
Control configuration for Feed Forward Decouple (FFD), Maximum Torque Per Amp (MTPA), and Load Disturbance Observer (LDOB).

$1=$ Condition True, $0=$ Condition False	
FFD (Feed Forward Decouple)	Digit 1
MTPA (Maximum Torque Per Amp)	Digit 2
LDOB (Load Disturbance Observer)	Digit 3 Used
Not Used	

Values	Default:	00111
	Min/Max:	$00000 / 00111$
	Display:	00000

A530 [Boost Select]

Sets the boost voltage (\% of P031 [Motor NP Volts]) and redefines the V/Hz curve. Only used for V/Hz control modes.

Options 0 "Custom V/Hz"

1 "30.0, VT"	Fan/Pump Curves (Variable Torque)
2 "35.0, VT"	
3 " $40.0, \mathrm{VT}$ "	
4 " $45.0, \mathrm{VT}$ "	
$5{ }^{\prime \prime} 0.0, \mathrm{no} \mathrm{IR}{ }^{\prime}$	Boost Voltage (\% of Base) (Constant Torque)
6 " 0.0 " (Default for 400 V and 600 V drives, 5 HP and above)	
7 "2.5, CT" (Default for 200 V drives, 5 HP and above)	
$\begin{aligned} & 8 \\ & 8 \end{aligned} \begin{gathered} \text { ".0., CT" } \\ \text { (Default for drives below } 5 \text { HP) } \end{gathered}$	
9 "7.5, CT"	
10 "10.0, CT"	
11 "12.5, CT"	
12 "15.0, CT"	
13 "17.5, CT"	
14 "20.0, CT"	

Advanced Program Group (continued)

A531 [Start Boost]
Related Parameter(s): P031, P032, P039, A530
Sets the boost voltage (\% of P031 [Motor NP Volts]) and redefines the V/Hz curve when A530 [Boost Select] $=0$ "Custom V/Hz" and P039 [Torque Perf Mode] = 0 " V / Hz ".

Values Defaul: $\quad 2.5 \%$
Min/Max: 0.0/25.0\%
Display: 0.1%

A532 [Break Voltage]
Related Parameter(s): P031, P032, P039, A530, A533
Sets the voltage (in percent of [Base Frequency]) at the A 533 [Break Frequency] if A 530 [Boost Select] is set to 0 "Custom V/Hz".

Values	Default:	25.0%
	Min/Max:	$0.0 / 100.0 \%$
	Display:	0.1%

A533 [Break Frequency]

Related Parameter(s): P031, P032, P039, A530, A532
Sets the frequency where A532 [Break Voltage] is applied if A530 [Boost Select] is set to 0 "Custom V/Hz".

Values	Default:	15.0 Hz
	Min/Max:	$0.0 / 500.0 \mathrm{~Hz}$
	Display:	0.1 Hz

A534 [Maximum Voltage]

Related Parameter(s): $\underline{b 004}$
Sets the highest voltage the drive outputs.

Values	Default:	Drive Rated Volts
	Min:	10 V AC (on 230V AC Drives); 20V AC (on 460V AC Drives); 25V AC (on 600V AC Drives)
	Max:	255 V AC (on 230V AC Drives); 510V AC (on 460V AC Drives); 637.5V AC (on 600V AC Drives)
	Display:	1 V AC

Advanced Program Group (continued)

A535 [Motor Fdbk Type]
Related Parameter(s):P039, A537
Stop drive before changing this parameter.
Selects the encoder type. ${ }^{(1)}$

ATTENTION: The loss of analog input, encoder or other feedback may cause unintended speed or motion. Take appropriate precautions to guard against possible unintended speed or motion.

		Allowable Control Modes (See P039 [Torque Perf Mode])	Hardware Inputs
Options	0 "None" (Default)	V/Hz, SVC, Economize, Vector, PM Control	-
	1 "Pulse Train"	V/Hz, SVC, Economize, PM Control	[Digln TermBlk 05] for PowerFlex 523 [Digln TermBlk 07] for PowerFlex 525
	2 "Single Chan"(2)	V/Hz, SVC, Economize, PM Control	
	3 "Single Check"(2)	V/Hz, SVC, Economize, PM Control	Optional incremental encoder card
	4 "Quadrature" ${ }^{\text {en }}$	V/Hz, SVC, Economize, Vector, PM Control	(catalog number 25-ENC-1)
	5 "Quad Check"(2)	V/Hz, SVC, Economize, Vector, PM Control	

(1) Parameter is also available in PowerFlex 523 FRN 3.xxx and later.
(2) Setting is specific to PowerFlex 525 drives only.

A536 [Encoder PPR]

PF525 PowerFlex 525 only.
Specifies the encoder Pulses Per Revolution (PPR) when an encoder is used.
To achieve speed range/accuracy for SVC and VVC closed loop control, a minimum of 1024 PPR encoder is recommended. The maximum encoder pulse is 250 kHz . For more information, see Determine Encoder Pulse Per Revolution (PPR) Specification Based on Speed Resolution on page 217.

Values	Default:	1024 PPR
	Min/Max:	$1 / 20000$ PPR
	Display:	1 PPR

A537 [Pulse In Scale]

Related Parameter(s): t065, t067, A535
 Input frequency (Hz) / Pulse in Scale = Output frequency (Hz)

Values	Default:	64
	Min/Max:	$0 / 20000$
	Display:	1

A538 [Ki Speed Loop]

Sets the I-gain used in the PI calculation of the speed loop when feedback is used. Applicable to V / Hz and SVC modes in closed loop control only. ${ }^{(1)}$

Values	Default:	2.0
	Min/Max:	$0.0 / 400.0$
	Display:	0.1

(1) Parameter is also available in PowerFlex 523 FRN $3 . x x x$ and later.

A539 [Kp Speed Loop]

Sets the P-gain used in the PI calculation of the speed loop when feedback is used. Applicable to V / Hz and SVC modes in closed loop control only. ${ }^{(1)}$

Values	Default:	5.0
	Min/Max:	$0.0 / 200.0$
	Display:	0.1

(1) Parameter is also available in PowerFlex 523 FRN 3.xxx and later.

Advanced Program Group (continued)

A540 [Var PWM Disable]
Related Parameter(s): A440
Stop drive before changing this parameter.
Enables/disables a feature that varies the carrier frequency for the PWM output waveform defined by A440 [PWM Frequency].

		ge an ationa
Values	Default:	0
	Min/Max:	0/9
	Display:	1

A542 [Auto Rstrt Delay] Related Parameter(s): A541
Sets the time between restart attempts if A541 [Auto Rstrt Tries] is not zero.

Values	Default:	1.0 s
	Min/Max:	$0.0 / 120.0 \mathrm{~s}$
	Display:	0.1 s

A543 [Start At PowerUp]

\bigcirc Stop drive before changing this parameter.
Enables/disables drive start on power up without a Run command being cycled. Requires a digital input configured for Run and a valid run signal.

ATTENTION: Equipment damage and/or personal injury may result if this parameter is used in an inappropriate application. Do not use this function without considering applicable local, national and international codes, standards, regulations or industry guidelines.		
Options 0 "Disabled" (Defaul)		
1 "Enabled"		
A544 [Reverse Disable]		Related Parameter(s): $\mathrm{b006}$
Stop drive before changing this parameter.		
Enables/disables the function that allows the direction of motor rotation to be changed.		
Options	0 "Rev Enabled" (Default)	
	1 "Rev Disabled"	

A545 [Flying Start En]

Sets the condition that allows the drive to reconnect to a spinning motor at actual RPM.

Options	0	"Disabled" (Default)
	"Enabled"	

Advanced Program Group (continued)

A546 [FlyStrt CurLimit]

Used to determine when the drive has matched the motor frequency if flying start is enabled.

Values	Default:	150%
	Min/Max:	$30 / 200 \%$
	Display:	1%

A547 [Compensation]

Enables/disables correction options that may improve problems with motor instability.

Options	0 "Disabled"	No compensation.
1 "Electrical" (Default)	Some drive/motor combinations have inherent instabilities which are exhibited as non-sinusodial motor currents. This setting attempts to correct this condition	
2 "Mechanical"	Some motor/load combinations have mechanical resonances which can be excited by the drive current regulator. This setting slows down the current regulator response and attempts to correct this condition.	

A548 [Power Loss Mode]

Sets the reaction to a loss of input power.

| Options | 0 | "Coast" (Default) |
| :--- | :--- | :--- |\quad Drive faults and motor coasts to a stop..$~\left[\begin{array}{ll} & \text { "Decel" }\end{array}\right.$

A549 [Half Bus Enable]

Enables/disables the power ride through function which allows the drive to maintain power to the motor at 50% drive input voltage during short-term power sag conditions.

A551 [Fault Clear]

Stop drive before changing this parameter.
Resets a fault and clears the fault queue.

Options	"Ready/Idle" (Default)	
1 "Reset Fault"	Resets the active fault but does not clear any fault buffer.	
2	"Clear Buffer"	Resets the active fault and clears all fault buffers to " 0 ".

A552 [Program Lock]

Related Parameter(s): A553
Protects parameters against change by unauthorized personnel with a 4-digit password.

Values	Default:	0000
	Min/Max:	$0000 / 9999$
	Display:	1111

Advanced Program Group (continued)

A553 [Program Lock Mod]
Related Parameter(s): A552

Options	0 "Full Lock" (Default)	All parameters are locked except [Program Lock].
	1 "Keypad Lock"	All parameters are locked except [Program Lock] from keypad access but can still be accessed over communications.
	2 "Custom Only"	All parameters are locked and hidden except custom group and [Program Lock].
	3 "KeyPd Custom"	All parameters are locked and hidden except custom group and [Program Lock] from keypad access but can still be accessed over communications.

A554 [Drv Ambient Sel]

Sets the maximum expected ambient of the drive when used above $50^{\circ} \mathrm{C}$. When ambient temperature is above $50^{\circ} \mathrm{C}$, the drive will apply necessary current derating.

A555 [Reset Meters]

Resets the values stored in the parameters that track fault times and energy usage.

Options	$0 \quad$ "Ready/Idle" (Default)	
1	"Reset Meters"	Resets kWh, MWh, Accum kWh, Cost, and CO2 Sav parameter values.
2	"Reset Time"	Resets min, hr, and x10 hr.

A556 [Text Scroll]

Sets the scrolling speed of the text in the LCD display.

Options	0 "Off"
	1 "Low Speed"
	2 "Mid Speed" (Default)
	3 "High Speed"

A557 [Out Phas Loss En]

Enable/disable output phase loss detection.

Advanced Program Group (continued)

A559 [Counts Per Unit]

PF525 PowerFlex 525 only.
Sets the number of encoder counts equal to one user-defined unit.

Values	Default:	4096
	Min/Max:	$1 / 32000$
	Display:	1

A560 [Enh Control Word]

Related Parameter(s): t062, t063, t065-t068, A571
PF525 Powerflex 525 only.
Allows control of positioning and other functions through parameter control for use over comms. The functions replicate the digital input options and function in the same way.
[1] [[[[[[

Values	Default:	00000000
	Min/Max:	$00000000 / 111111111$
	Display:	00000000

A561 [Home Save]

PF525. PowerFlex 525 only.
Determines whether the current position is saved on power down.

Options	0 "Home Reset" (Default)	Position resets to zero on power up.
	1 "Home Saved"	

Advanced Program Group (continued)

A562 [Find Home Freq]

PF525 PowerFlex 525 only.
Sets the maximum frequency the drive uses when "Find Home" is issued.

Values	Default:	10.0 Hz
	Min/Max:	$0.1 / 500.0 \mathrm{~Hz}$
	Display:	0.1 Hz

A563 [Find Home Dir]

Stop drive before changing this parameter.
© P 525 PowerFlex 525 only.
Sets the direction the drive commands when "Find Home" is issued.
Options 0 "Forward" (Default)

1 "Reverse"

A564 [Encoder Pos Tol]

PF525 PowerFlex 525 only.
Sets the "At Position" and the "At Home' tolerance around the encoder count. The value is added to and subtracted from the target encoder unit value to create the tolerance range.

Values	Default:	100
	Min/Max:	$1 / 50000$
	Display:	1

A565 [Pos Reg Filter]

PF525) PowerFlex 525 only.
Sets the error signal filter in the position regulator.

Values	Default:	8
	Min/Max:	$0 / 15$
	Display:	1

A566 [Pos Reg Gain]

PF525 PowerFlex 525 only.
Sets the gain adjustment for the position regulator.

Values	Default:	3.0
	Min/Max:	$0.0 / 200.0$
	Display:	0.1

[^0]: Allen-Bradley, Rockwell Automation, Rockwell Software, PowerFlex, Connected Components Workbench, Studio 5000, Studio 5000 Logix Designer, DriveTools SP, AppView, CustomView, QuickView, MainsFree Programming, PointStop, and TechConnect are trademarks of Rockwell Automation, Inc.

[^1]: 1) When the drive is controlling motors with lower amp ratings, refer to the drive nameplate for drive input current rating.
[^2]: (1) Normal Duty (ND) and Heavy Duty (HD) ratings are available for this drive.

 When the drive is controlling motors with lower amp ratings, refer to the drive nameplate for drive input current rating.
 The AIC ratings of the Bulletin 140M Motor Protector Circuit Breakers may vary. See Bulletin 140 M Motor Protection Circu
 The AlC ratings of the Bulletin 140M Motor Protector Circuit Breakers may vary. See Bulletin 140M Motor Protection Circuit Breakers Application Ratings.
 Bulletin 140M with adjustable current range should have the current trip set to the minimum range that the device will not trip.
 Manual Self-Protected (Type E) Combination Motor Controller, UL Listed for $480 \mathrm{Y} / 277$ and $600 \mathrm{Y} / 347 \mathrm{AC}$ input. Not UL listed for use on 480 V or 600 V Delta/Delta, corner ground, or high-resistance ground systems.
 When using a Manual Self-Protected (Type E) Combination Motor Controller with this drive power rating, the drive must be installed in a ventilated or non-ventilated enclosure with the minimum volume specified in this column. Application specific thermal
 considerations may require a larger enclosure.
 (7) Circuit breaker selection is not available for this drive rating.

[^3]: This group can store up to 100 parameters.

[^4]: (1) Setting is specific to PowerFlex 525 drives only.
 (2) Setting is available in PowerFlex 525 FRN 5.xxx and later.

[^5]: (1) Setting is specific to PowerFlex 525 drives only.

