PowerFlex 700 Adjustable Frequency AC Drive

Abstract

When reading this document, look for this symbol " Step x " to guide you through the 6 BASIC STEPS needed to install, start-up and program the PowerFlex 700. The information provided Does Not replace the User Manual and is intended for qualified drive service personnel only. For detailed PowerFlex 700 information including application considerations and related precautions refer to the following:

Title	Publication	Available ...
PowerFlex 700 User Manual	20B-UM001x	on the CD supplied with the drive
PowerFlex Reference Manual	PFLEX-RM001x	or at www.ab.com/manuals/dr

Step 1 Read the General Precautions

ATTENTION: This drive contains ESD (Electrostatic Discharge) sensitive parts and assemblies. Static control precautions are required when installing, testing, servicing or repairing this assembly. Component damage may result if ESD control procedures are not followed. If you are not familiar with static control procedures, reference A-B publication 8000-4.5.2, "Guarding Against Electrostatic Damage" or any other applicable ESD protection handbook.

ATTENTION: An incorrectly applied or installed drive can result in component damage or a reduction in product life. Wiring or application errors, such as, undersizing the motor, incorrect or inadequate AC supply, or excessive ambient temperatures may result in malfunction of the system.

ATTENTION: Only qualified personnel familiar with adjustable frequency AC drives and associated machinery should plan or implement the installation, start-up and subsequent maintenance of the system. Failure to comply may result in personal injury and/or equipment damage.

ATTENTION: To avoid an electric shock hazard, verify that the voltage on the bus capacitors has discharged before performing any work on the drive. Measure the DC bus voltage at the +DC \& -DC terminals of the Power Terminal Block (refer to the User Manual for location). The voltage must be zero.

ATTENTION: Risk of injury or equipment damage exists. DPI or SCANport host products must not be directly connected together via 1202 cables. Unpredictable behavior can result if two or more devices are connected in this manner.

ATTENTION: The "adjust freq" portion of the bus regulator function is extremely useful for preventing nuisance overvoltage faults resulting from aggressive decelerations, overhauling loads, and eccentric loads. It forces the output frequency to be greater than commanded frequency while the drive's bus voltage is increasing towards levels that would otherwise cause a fault. However, it can also cause either of the following two conditions to occur.

1. Fast positive changes in input voltage (more than a 10% increase within 6 minutes) can cause uncommanded positive speed changes. However an "OverSpeed Limit" fault will occur if the speed reaches [Max Speed] + [Overspeed Limit]. If this condition is unacceptable, action should be taken to 1) limit supply voltages within the specification of the drive and, 2) limit fast positive input voltage changes to less than 10%. Without taking such actions, if this operation is unacceptable, the "adjust freq" portion of the bus regulator function must be disabled (see parameters 161 and 162).
2. Actual deceleration times can be longer than commanded deceleration times. However, a "Decel Inhibit" fault is generated if the drive stops decelerating altogether. If this condition is unacceptable, the "adjust freq" portion of the bus regulator must be disabled (see parameters 161 and 162). In addition, installing a properly sized dynamic brake resistor will provide equal or better performance in most cases.
Important: These faults are not instantaneous. Test results have shown that they can take between 2-12 seconds.

ATTENTION: A contactor or other device that routinely disconnects and reapplies the AC line to the drive to start and stop the motor can cause drive hardware damage. The drive is designed to use control input signals that will start and stop the motor. If an input device is used, operation must not exceed one cycle per minute or drive damage will occur.

ATTENTION: The drive start/stop/enable control circuitry includes solid state components. If hazards due to accidental contact with moving machinery or unintentional flow of liquid, gas or solids exist, an additional hardwired stop circuit may be required to remove the AC line to the drive. An auxiliary braking method may be required.

ATTENTION: If using Output Contactors, refer to the "Output
Contactor Precaution" statement on page 1-12 of the PowerFlex 700
User Manual.

EMC Instructions

CE Conformity

Conformity with the Low Voltage (LV) Directive and Electromagnetic Compatibility (EMC) Directive has been demonstrated using harmonized European Norm (EN) standards published in the Official Journal of the European Communities. PowerFlex Drives comply with the EN standards listed below when installed according to the User and Reference Manual.

CE Declarations of Conformity are available online at: http://www.ab.com/certification/ce/docs.

Low Voltage Directive (73/23/EEC)

- EN50178 Electronic equipment for use in power installations.

EMC Directive (89/336/EEC)

- EN61800-3 Adjustable speed electrical power drive systems Part 3: EMC product standard including specific test methods.

General Notes

- If the adhesive label is removed from the top of the drive, the drive must be installed in an enclosure with side openings less than 12.5 $\mathrm{mm}(0.5 \mathrm{in}$.) and top openings less than $1.0 \mathrm{~mm}(0.04 \mathrm{in}$.) to maintain compliance with the LV Directive.
- The motor cable should be kept as short as possible in order to avoid electromagnetic emission as well as capacitive currents.
- Use of line filters in ungrounded systems is not recommended.
- PowerFlex drives may cause radio frequency interference if used in a residential or domestic environment. The user is required to take measures to prevent interference, in addition to the essential requirements for CE compliance listed below, if necessary.
- Conformity of the drive with CE EMC requirements does not guarantee an entire machine or installation complies with CE EMC requirements. Many factors can influence total machine/installation compliance.
- PowerFlex drives can generate conducted low frequency disturbances (harmonic emissions) on the AC supply system. More information regarding harmonic emissions can be found in the PowerFlex Reference Manual.

Essential Requirements for CE Compliance

Conditions 1-6 listed below must be satisfied for PowerFlex drives to meet the requirements of EN61800-3.

1. Standard PowerFlex 700 CE compatible Drive.
2. Review important precautions/attention statements throughout this document before installing the drive.
3. Grounding as described on page 1-4 of the User Manual.
4. Output power, control (I/O) and signal wiring must be braided, shielded cable with a coverage of 75% or better, metal conduit or equivalent attenuation.
5. All shielded cables should terminate with the proper shielded connector.
6. Conditions in Table A.

Table A PowerFlex 700 EN61800-3 EMC Compatibility

First Environment Restricted Distribution

Refer to
PowerFlex Reference Manual

Step 2 Mount the Drive - Minimum Requirements

Operating Temperatures

PowerFlex 700 drives are designed to operate at 0° to $40^{\circ} \mathrm{C}$ ambient.
To operate in installations between 41° and $50^{\circ} \mathrm{C}$, see Table B.

Table B Acceptable Surrounding Air Temperature \& Required Actions

Drive Catalog Number	Required Action...		
	IP 20, NEMA Type 1	IP 20, NEMA Type Open	IP 00, NEMA Type Open
	No Action Required	Remove Top Label	Remove Top Label \& Vent Plate ${ }^{(1)}$
All Except 20BC072	$40^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$	NA
20BC072	$40^{\circ} \mathrm{C}$	$45^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$

(1) To remove vent plate (see Figure 3 on page 8 for location), lift top edge of plate from the chassis. Rotate the plate out from the back plate.

Important: Removing the adhesive label from the drive changes the NEMA enclosure rating from Type 1 to Open type.

Dimensions

Figure 1 PowerFlex 700 Frames 0-3 (0 Frame Shown)

	A	B	C	D	E	Weight ${ }^{(1)} \mathrm{kg}$ (lbs.)	
						Drive	Drive \& Packaging
0	110.0 (4.33)	336.0 (13.23)	200.0 (7.87)	80.0 (3.15)	320.0 (12.60)	5.22 (11.5)	8.16 (18)
1	135.0 (5.31)	336.0 (13.23)	200.0 (7.87)	105.0 (4.13)	320.0 (12.60)	7.03 (15.5)	9.98 (22)
2	222.0 (8.74)	342.5 (13.48)	200.0 (7.87)	192.0 (7.56)	320.0 (12.60)	12.52 (27.6)	15.20 (33.5)
3	222.0 (8.74)	517.5 (20.37)	200.0 (7.87)	192.0 (7.56)	500.0 (19.69)	18.55 (40.9)	22.68 (50)

(1) Weights include HIM and Standard I / O.

Figure 2 PowerFlex 700 Frame 5

	A (Max.)	B	C (Max.)	D	E	Approx. Weight ${ }^{(1)} \mathrm{kg}$ (lbs.)	
						Drive	Drive \& Packaging
5	308.9 (12.16)	$644.5(25.37)^{(2)}$	275.4 (10.84)	225.0 (8.86)	625.0 (24.61)	37.19 (82.0)	42.18 (93.0)

(1) Weights include HIM and Standard I/O.
(2) When using the supplied junction box (100 HP drives Only), add an additional 45.1 mm (1.78 in.).

Table C PowerFlex 700 Frames

Frame	$208 / 240 V$ AC Input		400V AC Input		480V AC Input	
	ND HP	HD HP	ND kW	HD kW	ND HP	HD HP
	0.5	0.33	0.37	0.25	0.5	0.33
	1	0.75	0.75	0.55	1	0.75
	2	1.5	1.5	0.75	2	1.5
	3	2	2.2	1.5	3	2
	-	-	4	2.2	5	3
$\mathbf{1}$	-	-	5.5	4	7.5	5
$\mathbf{2}$	5	3	7.5	5.5	10	7.5
	7.5	5	11	7.5	15	10
	10	7.5	15	11	20	15
	-	-	18.5	15	25	20
	15	10	22	18.5	30	25
	20	15	30	22	40	30
	-	-	37	30	50	40

Figure 3 Bottom View Dimensions

Frame 0

Frame 1

Frame 2

Dimensions are in millimeters and (inches).

Figure 3 PowerFlex 700 Bottom View Dimensions (continued)

Frame 3 - All Drives except $50 \mathrm{HP}, 480 \mathrm{~V}$ ($37 \mathrm{~kW}, 400 \mathrm{~V}$)

Frame 3 - $50 \mathrm{HP}, 480 \mathrm{~V}$ ($37 \mathrm{~kW}, 400 \mathrm{~V}$) Normal Duty Drive

Frame 5-75 HP, 480V (55kW, 400V) Normal Duty Drive

Frame 5-100 HP, 480V Normal Duty Drive

Step 3 Power Wiring - Wire Recommendations

A variety of cable types are acceptable for drive installations. For many installations, unshielded cable is adequate, provided it can be separated from sensitive circuits. As an approximate guide, allow a spacing of 0.3 meters (1 foot) for every 10 meters (32.8 feet) of length. In all cases, long parallel runs must be avoided. Do not use cable with an insulation thickness less than or equal to $15 \mathrm{mils}(0.4 \mathrm{~mm} / 0.015 \mathrm{in}$.). See Table D.

Unshielded

THHN, THWN or similar wire is acceptable for drive installation in dry environments provided adequate free air space and/or conduit fill rates limits are provided. Do not use THHN or similarly coated wire in wet areas. Any wire chosen must have a minimum insulation thickness of 15 Mils and should not have large variations in insulation concentricity.

Shielded/Armored Cable

Shielded cable is recommended if sensitive circuits or devices are connected or mounted to the machinery driven by the motor. See Table D. For further information on acceptable and unacceptable cable types, refer to "Power Wiring" in the PowerFlex 700 User Manual.
Table D Recommended Shielded Cable

Type		Wire Type(s)	Description
Power	Standard (Option 1)	$600 \mathrm{~V}, 90^{\circ} \mathrm{C}\left(194^{\circ} \mathrm{F}\right)$ XHHW2/RHW-2 Anixter B209500-B209507, Belden 29501-29507, or equivalent	- Four tinned copper conductors with XLP insulation. - Copper braid/aluminum foil combination shield and tinned copper drain wire. - PVC jacket.
	Standard (Option 2)	Tray rated $600 \mathrm{~V}, 90^{\circ} \mathrm{C}\left(194^{\circ} \mathrm{F}\right)$ RHH/RHW-2 Anixter OLF-7xxxxx or equivalent	- Three tinned copper conductors with XLPE insulation. - 5 mil single helical copper tape $(25 \%$ overlap min.) with three bare copper grounds in contact with shield. - PVC jacket.
	Class I \& II; Division I \& II	Tray rated $600 \mathrm{~V}, 90^{\circ} \mathrm{C}\left(194^{\circ} \mathrm{F}\right)$ RHH/RHW-2 Anixter 7V-7xxxx-3G or equivalent	- Three bare copper conductors with XLPE insulation and impervious corrugated continuously welded aluminum armor. - Black sunlight resistant PVC jacket overall. - Three copper grounds on \#10 AWG and smaller.

Table E Power Terminal Block Specifications

Name	Frame	Description	Wire Size Range ${ }^{(1)}$		Torque	
			Maximum	Minimum	Maximum	Recommended
Power Terminal Block	0 \& 1	Input power and motor connections	$\begin{aligned} & 4.0 \mathrm{~mm}^{2} \\ & (10 \mathrm{AWG}) \end{aligned}$	$\begin{aligned} & 0.5 \mathrm{~mm}^{2} \\ & (22 \mathrm{AWG}) \end{aligned}$	$\begin{aligned} & 1.7 \mathrm{~N}-\mathrm{m} \\ & (15 \mathrm{lb} .-\mathrm{in} .) \end{aligned}$	$\begin{aligned} & 0.8 \mathrm{~N}-\mathrm{m} \\ & (7 \mathrm{lb} . \mathrm{in} .) \end{aligned}$
	2	Input power and motor connections	$\begin{aligned} & 10.0 \mathrm{~mm}^{2} \\ & (6 \mathrm{AWG}) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.8 \mathrm{~mm}^{2} \\ & (18 \mathrm{AWG}) \end{aligned}$	$\begin{aligned} & 1.7 \mathrm{~N}-\mathrm{m} \\ & (15 \mathrm{lb} .-\mathrm{in} .) \end{aligned}$	$\begin{array}{\|l\|} \hline 1.4 \mathrm{~N}-\mathrm{m} \\ (12 \mathrm{lb} .-\mathrm{in} .) \\ \hline \end{array}$
	3	Input power and motor connections	$\begin{aligned} & 25.0 \mathrm{~mm}^{2} \\ & (3 \mathrm{AWG}) \\ & \hline \end{aligned}$	$\begin{aligned} & 2.5 \mathrm{~mm}^{2} \\ & \text { (14 AWG) } \end{aligned}$	$\begin{aligned} & 3.6 \mathrm{~N}-\mathrm{m} \\ & (32 \mathrm{lb} .-\mathrm{in} .) \end{aligned}$	$\begin{aligned} & 1.8 \mathrm{~N}-\mathrm{m} \\ & (16 \mathrm{lb} .-\mathrm{in} .) \end{aligned}$
		BR1, 2 terminals	$\begin{aligned} & \hline 10.0 \mathrm{~mm}^{2} \\ & (6 \mathrm{AWG}) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.8 \mathrm{~mm}^{2} \\ & (18 \mathrm{AWG}) \end{aligned}$	$\begin{aligned} & 1.7 \mathrm{~N}-\mathrm{m} \\ & (15 \mathrm{lb} .-\mathrm{in} .) \end{aligned}$	$\begin{aligned} & 1.4 \mathrm{~N}-\mathrm{m} \\ & (12 \mathrm{lb} .-\mathrm{in} .) \end{aligned}$
	$\begin{aligned} & 5 \\ & (75 \mathrm{HP}) \end{aligned}$	Input power, BR1, $2, D C+, D C-$ and motor connections	$\begin{aligned} & 35.0 \mathrm{~mm}^{2} \\ & (1 / 0 \mathrm{AWG}) \end{aligned}$	$\begin{aligned} & 2.5 \mathrm{~mm}^{2} \\ & \text { (14 AWG) } \end{aligned}$	$\begin{aligned} & \text { 3.6 N-m } \\ & \text { (32 lb.-in.) } \end{aligned}$	$\begin{aligned} & 3.6 \mathrm{~N}-\mathrm{m} \\ & (32 \mathrm{lb} . \mathrm{in} .) \end{aligned}$
		PE	$\begin{aligned} & 35.0 \mathrm{~mm}^{2} \\ & (1 / 0 \mathrm{AWG}) \end{aligned}$	$\begin{aligned} & 16.0 \mathrm{~mm}^{2} \\ & \text { (6 AWG) } \end{aligned}$	$\begin{aligned} & 5 \mathrm{~N}-\mathrm{m} \\ & (44 \mathrm{lb} .-\mathrm{in} .) \end{aligned}$	$\begin{aligned} & 5 \mathrm{~N}-\mathrm{m} \\ & (44 \mathrm{lb} . \mathrm{in} .) \end{aligned}$
	$\begin{array}{\|l\|} \hline 5 \\ \text { (100 } \\ \text { HP) } \end{array}$	Input power, DC+, DC- and motor connections	$\begin{aligned} & 70.0 \mathrm{~mm}^{2} \\ & (3 / 0 \mathrm{AWG}) \end{aligned}$	$\begin{aligned} & 16.0 \mathrm{~mm}^{2} \\ & \text { (4 AWG) } \end{aligned}$	$\begin{aligned} & 15 \mathrm{~N}-\mathrm{m} \\ & (133 \mathrm{lb} .-\mathrm{in} .) \end{aligned}$	$\begin{aligned} & 15 \mathrm{~N}-\mathrm{m} \\ & (133 \mathrm{lb} .-\mathrm{in} .) \end{aligned}$
		BR1, 2, terminals	$\begin{aligned} & 35.0 \mathrm{~mm}^{2} \\ & (1 / 0 \mathrm{AWG}) \end{aligned}$	$\begin{aligned} & 2.5 \mathrm{~mm}^{2} \\ & \text { (14 AWG) } \end{aligned}$	$\begin{aligned} & 3.6 \mathrm{~N}-\mathrm{m} \\ & (32 \mathrm{lb} .-\mathrm{in} .) \end{aligned}$	$\begin{aligned} & \text { 3.6 N-m } \\ & (32 \mathrm{lb} .-\mathrm{in} .) \end{aligned}$
		PE	$\begin{aligned} & 35.0 \mathrm{~mm}^{2} \\ & (1 / 0 \mathrm{AWG}) \\ & \hline \end{aligned}$	$\begin{aligned} & 16.0 \mathrm{~mm}^{2} \\ & (6 \mathrm{AWG}) \\ & \hline \end{aligned}$	$\begin{aligned} & 5 \mathrm{~N}-\mathrm{m} \\ & (44 \mathrm{lb} .-\mathrm{in} .) \end{aligned}$	$\begin{array}{\|l} 5 \mathrm{~N}-\mathrm{m} \\ (44 \mathrm{lb} . \mathrm{in} .) \end{array}$
AUX Terminal Block	0-3	Auxiliary Control Voltage ${ }^{(2)}$	$\begin{aligned} & 1.3 \mathrm{~mm}^{2} \\ & (16 \mathrm{AWG}) \end{aligned}$	$\begin{aligned} & 0.2 \mathrm{~mm}^{2} \\ & (24 \mathrm{AWG}) \end{aligned}$	-	-
	5		$\begin{array}{\|l\|} \hline 4.0 \mathrm{~mm}^{2} \\ (10 \mathrm{AWG}) \\ \hline \end{array}$	$\begin{aligned} & 0.5 \mathrm{~mm}^{2} \\ & (22 \mathrm{AWG}) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.6 \mathrm{~N}-\mathrm{m} \\ & (5.3 \mathrm{lb} .-\mathrm{in} .) \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 0.6 \mathrm{~N}-\mathrm{m} \\ (5.3 \mathrm{lb} .-\mathrm{in} .) \end{array}$

${ }^{(1)}$ Maximum/minimum sizes that the terminal block will accept - these are not recommendations.
(2) External control power:

UL Installation - 300 V DC, $\pm 10 \%$, Non UL Installation - $270-600 \mathrm{~V}$ DC, $\pm 10 \%$.
$0-3$ Frame - $40 \mathrm{~W}, 165 \mathrm{~mA}, 5$ Frame - $80 \mathrm{~W}, 90 \mathrm{~mA}$.

Power \& Ground Wiring

Step 4 Control Wiring

- Always use copper wire.
- Wire with an insulation rating of 600 V or greater is recommended.
- Control and signal wires should be separated from power wires by at least 0.3 meters (1 foot).
- I/O terminals labeled "(-)" or "Common" are not referenced to earth ground and are designed to greatly reduce common mode interference. Grounding these terminals can cause signal noise.

ATTENTION: Configuring an analog input for $0-20 \mathrm{~mA}$ operation and driving it from a voltage source could cause component damage. Verify proper configuration prior to applying input signals.

ATTENTION: Hazard of personal injury or equipment damage exists when using bipolar input sources. Noise and drift in sensitive input circuits can cause unpredictable changes in motor speed and direction. Use speed command parameters to help reduce input source sensitivity.

Table F Recommended Control Wire

Type		Wire Type(s)	Description	$\begin{array}{l}\text { Insulation } \\ \text { Rating }\end{array}$
Signal	Analog I/O	Belden 8760/9460 (or equiv.)	$0.750 \mathrm{~mm}^{2}$ (18AWG), twisted pair, 100% shield with drain ${ }^{(1)}$.	$\begin{aligned} & 300 \mathrm{~V}, \\ & 60^{\circ} \mathrm{C} \\ & \left(140^{\circ} \mathrm{F}\right), \\ & \text { Minimum } \end{aligned}$
		Belden 8770 (or equiv.)	$0.750 \mathrm{~mm}^{2}$ (18AWG), 3 cond., shielded for remote pot only.	
	Encoder/ Pulse I/O	Less than or equal to 30 m (98 ft.) - Belden 9728 (or equiv.)	$0.196 \mathrm{~mm}^{2}(24 \mathrm{AWG}),$ individually shielded.	
		Greater than $30 \mathrm{~m}(98 \mathrm{ft}$.) Belden 9773(or equiv.)	$0.750 \mathrm{~mm}^{2}$ (18AWG), twisted pair, shielded.	
$\begin{aligned} & \hline \text { Digital } \\ & \text { I/O } \end{aligned}$	Unshielded	Per US NEC or applicable national or local code	-	$\begin{aligned} & 300 \mathrm{~V}, \\ & 60^{\circ} \mathrm{C} \\ & \left(140^{\circ} \mathrm{F}\right), \\ & \text { Minimum } \end{aligned}$
	Shielded	Multi-conductor shielded cable such as Belden 8770 (or equiv.)	$0.750 \mathrm{~mm}^{2}(18 \mathrm{AWG}), 3$ conductor, shielded.	

(1) If the wires are short and contained within a cabinet which has no sensitive circuits, the use of shielded wire may not be necessary, but is always recommended.

Table G I/O Terminal Blocks

Name	Frame	Description	Wire Size Range ${ }^{(1)}$		Torque	
			Maximum	Minimum	Maximum	Recommended
I/O Terminal Block	0-5	Signal \& control connections	$\begin{aligned} & 2.1 \mathrm{~mm}^{2} \\ & \text { (14 AWG) } \end{aligned}$	$\begin{array}{\|l\|} \hline 0.30 \mathrm{~mm}^{2} \\ (22 \mathrm{AWG}) \end{array}$	$\begin{array}{\|l} \hline 1.36 \mathrm{~N}-\mathrm{m} \\ \text { (12 lb.-in.) } \end{array}$	$\begin{aligned} & \hline 1.36 \mathrm{~N}-\mathrm{m} \\ & \text { (12 lb.-in.) } \end{aligned}$
Encoder Terminal Block ${ }^{(2)}$	0-5	Encoder power \& signal connections	$\begin{aligned} & 0.75 \mathrm{~mm}^{2} \\ & (18 \mathrm{AWG}) \end{aligned}$	$\begin{array}{\|l\|} \hline 0.196 \mathrm{~mm}^{2} \\ (24 \mathrm{AWG}) \end{array}$	$\begin{aligned} & 1.36 \mathrm{~N}-\mathrm{m} \\ & (12 \mathrm{lb} . \mathrm{in} .) \end{aligned}$	$\begin{aligned} & 1.36 \mathrm{~N}-\mathrm{m} \\ & (12 \mathrm{lb} . \mathrm{in} .) \end{aligned}$
SHLD Terminal	0-5	Terminating point for wiring shields	-	-	$\begin{array}{\|l} \hline 1.6 \mathrm{~N}-\mathrm{m} \\ (14 \mathrm{lb} . \mathrm{in} .) \end{array}$	$\begin{aligned} & 1.6 \mathrm{~N}-\mathrm{m} \\ & (14 \mathrm{lb} . \mathrm{in} .) \end{aligned}$

(1) Maximum/minimum sizes that the terminal block will accept - these are not recommendations.
(2) Not available with Standard Control option.

I/O Terminal Blocks

Figure 4 Vector Control Option I/O Terminal Designations

Vector Control Option	No.	Signal		Description	
	1	Analog $\ln 1(-)^{(1)}$	(2)	Isolated ${ }^{(3)}$, bipolar, differential, $\pm 10 \mathrm{~V} / 4-20 \mathrm{~mA}, 11$ bit \& sign, 88 k ohm input impedance. For 4-20mA, a jumper must be installed at terminals 17 \& 18 (or 19 \& 20).	$\begin{aligned} & 320- \\ & 327 \end{aligned}$
	2	Analog $\ln 1(+)^{(1)}$			
	3	Analog $\ln 2(-)^{(1)}$			
	4	Analog ln $2(+)^{(1)}$			
	5	Pot Common	-	For (+) and (-) 10V pot references.	
	6	Analog Out 1 (-)	(2)	Bipolar (current output is not bipolar), $\pm 10 \mathrm{~V} / 4-20 \mathrm{~mA}$, 11 bit \& sign, voltage mode - limit current to 5 mA . Current mode max. load resistance is 400 ohms.	$\begin{aligned} & 340-1 \\ & 347 \end{aligned}$
	7	Analog Out 1 (+)			
	8	Analog Out 2 (-)			
	9	Analog Out 2 (+)			
	10	Reserved for Future Use			
	11	Digital Out 1 - N.C. ${ }^{(4)}$	Fault	Max. Resistive Load: 240V AC/30V DC - 1200VA, 150W Max. Current: 5A, Min. Load: 10mA Max. Inductive Load: 240V AC/30V DC - 840VA, 105W Max. Current: 3.5A, Min. Load: 10mA	$\begin{aligned} & 380- \\ & 391 \end{aligned}$
	12	Digital Out 1 Common			
	13	Digital Out 1 - N.O. ${ }^{(4)}$	NOT Fault		
	14	Digital Out 2 - N.C. ${ }^{(4)}$	NOT Run		
	15	Digital Out 2/3 Com.			
	16	Digital Out 3-N.O. ${ }^{(4)}$	Run		
	17	Current In Jumper ${ }^{(1)}$ Analog In 1		Placing a jumper across terminals 17 \& 18 (or 19 \& 20) will configure that analog input for current.	
	18				
	19	Current In Jumper ${ }^{(1)}$ -			
	20	Analog In 2			
	21	-10V Pot Reference	-	2k ohm minimum load.	
	22	+10V Pot Reference	-		
	23	Reserved for Future Use			
	24	+24VDC ${ }^{(5)}$	-	Drive supplied logic input power. ${ }^{(5)}$	
	25	Digital In Common	-		
	26	24 V Common ${ }^{(5)}$	-	Same as terminal 24.	
	27	Digital In 1	Stop - CF	115 V AC, $50 / 60 \mathrm{~Hz}$ - Opto isolated Low State: less than 30V AC High State: greater than 100V AC 24V DC - Opto isolated Low State: less than 5V DC High State: greater than 20V DC 11.2 mA DC	$\begin{aligned} & 361- \\ & 366 \end{aligned}$
	28	Digital In 2	Start		
	29	Digital In 3	Jog		
	30	Digital In 4	Speed Sel 1		
	31	Digital In 5	Speed Sel 2		
	32	Digital In $6 /$ Hardware Enable, see pg. 13	Speed Sel 3		

(1) Important: 4-20mA operation requires a jumper at terminals 17 \& 18 (or 19 \& 20). Drive damage may occur if jumper is not installed.
(2) These inputs/outputs are dependant on a number of parameters (see "Related Parameters").
(3) Differential Isolation - External source must be maintained at less than 160 V with respect to PE. Input provides high common mode immunity.
(4) Contacts in unpowered state. Any relay programmed as Fault or Alarm will energize (pick up) when power is applied to drive and deenergize (drop out) when a fault or alarm exists. Relays selected for other functions will energize only when that condition exists and will deenergize when condition is removed.
(5) 150 mA maximum Load. Not present on 115 V versions.

Encoder Terminal Block (Vector Control Option Only)

Figure 5 Encoder Terminal Designations

See "Detail" in	No.	Description (refer to User Manual for encoder specifications)	
	8	$+12 V$	DC Power

Figure 6 Sample Encoder Wiring

1/0	Connection Example
Encoder Power - External Power Source	
Encoder Signal - Differential, Dual Channel	

Hardware Enable Circuitry (Vector Control Option Only)

By default, the user can program a digital input as an Enable input. The status of this input is interpreted by drive software. If the application requires the drive to be disabled without software interpretation, a "dedicated" hardware enable configuration can be utilized. This is done by removing a jumper and wiring the enable input to "Digital In 6" (see below).

1. Remove the I/O Control Cassette \& cover as described in the User Manual.
2. Locate \& remove Jumper J 10 on the Main Control Board (see diagram).
3. Re-assemble cassette.
4. Wire Enable to "Digital In 6" (see Figure 4).
5. Verify that [Digital In6 Sel], parameter 366 is set to " 1 , Enable."

Figure 7 Standard Control Option I/O Terminal Designations

Standard Control Option	No.	Signal	릉	Description	㜢
	1	Anlg Volts ln 1 (-)	(2)	Isolated ${ }^{(3)}$, bipolar, differential, $\pm 10 \mathrm{~V}, 11$ bit \& sign, 88 k ohm input impedance.	$\begin{aligned} & 320- \\ & 327 \end{aligned}$
	2	Anlg Volts $\ln 1$ (+)			
	3	Anlg Volts $\ln 2(-)$	(2)	Isolated ${ }^{(4)}$, bipolar, differential, $\pm 10 \mathrm{~V}, 11$ bit \& sign, 88 k ohm input impedance.	
	4	Anlg Volts In 2 (+)			
	5	Pot Common	-	For (+) and (-) 10V pot references.	
	6	Anlg Volts Out 1 (-)	(2)	Bipolar, $\pm 10 \mathrm{~V}, 11$ bit \& sign, 2 k ohm minimum load.	$\begin{array}{\|l\|} 340- \\ 344 \end{array}$
	7	Anlg Volts Out 1 (+)			
	8	Anlg Current Out 1 (-)	(2)	4-20mA, 11 bit \& sign, 400 ohm maximum load.	
	9	Anlg Current Out 1 (+)			
	10	Reserved for Future Use			
	11	Digital Out 1 - N.C. ${ }^{(1)}$	Fault	Max. Resistive Load: 240V AC/30V DC - 1200VA, 150W Max. Current: 5A, Min. Load: 10mA Max. Inductive Load: 240V AC/30V DC - 840VA, 105W Max. Current: 3.5A, Min. Load: 10 mA	$\begin{aligned} & 380- \\ & 387 \end{aligned}$
	12	Digital Out 1 Common			
	13	Digital Out 1 -N.O. ${ }^{(1)}$	NOT Fault		
	14	Digital Out 2 - N.C. ${ }^{(1)}$	NOT Run		
	15	Digital Out 2 Common			
	16	Digital Out 2 - N.O. ${ }^{(1)}$	Run		
	17	Anlg Current In $1(-)$	(2)	Isolated ${ }^{(3)}, 4-20 \mathrm{~mA}, 11$ bit \& sign, 124 ohm input impedance.	$\begin{aligned} & 320- \\ & 327 \end{aligned}$
	18	Anlg Current In 1 (+)			
	19	Anlg Current In $2(-)$	(2)	Isolated ${ }^{(4)}, 4-20 \mathrm{~mA}, 11$ bit \& sign, 124 ohm input impedance.	
	20	Anlg Current In 2 (+)			
	21	-10V Pot Reference	-	2k ohm minimum.	
	22	+10V Pot Reference	-		
	23	Reserved for Future Use			
	24	+24VDC ${ }^{(5)}$	-	Drive supplied logic input power. ${ }^{(5)}$	
	25	Digital In Common	-		
	26	24 V Common ${ }^{(5)}$	-	Drive supplied logic input power. ${ }^{(5)}$	
	27	Digital In 1	Stop - CF	115 V AC, $50 / 60 \mathrm{~Hz}$ - Opto isolated Low State: less than 30V AC High State: greater than 100V AC 24V AC/DC, $50 / 60 \mathrm{~Hz}$-Opto isolated Low State: less than 5V AC/DC High State: greater than 20V AC/DC 11.2 mADC	$\begin{aligned} & 361- \\ & 366 \end{aligned}$
	28	Digital In 2	Start		
	29	Digital In 3	Jog		
	30	Digital In 4	Speed Sel 1		
	31	Digital In 5	Speed Sel 2		
	32	Digital $\ln 6$	Speed Sel 3		

[^0]
I/O Wiring Examples

Input/Output	Connection Example	Required Parameter Changes
Potentiometer Unipolar Speed Reference ${ }^{(1)}$ 10k Ohm Pot. Recommended (2 k Ohm Minimum)		- Adjust Scaling: Parameters 91/92 and 325/326 - View Results: Parameter 002
Joystick Bipolar Speed Reference $\pm 10 \mathrm{~V}$ Input		- Set Direction Mode: Parameter 190 = "1, Bipolar" - Adjust Scaling: Parameters 91/92 and 325/326 - View Results: Parameter 002
Analog Input Bipolar Speed Reference $\pm 10 \mathrm{~V}$ Input		- Set Direction Mode: Parameter 190 = "1, Bipolar" - Adjust Scaling: Parameters 91/92 and 325/326 - View Results: Parameter 002
Analog Voltage Input Unipolar Speed Reference 0 to +10 V Input		- Configure Input with parameter 320 - Adjust Scaling: Parameters 91/92 and 325/326 - View results: Parameter 002
Analog Current Input Unipolar Speed Reference Standard 4-20 mA Input		- Configure Input for Current: Parameter 320, Bit 1 = "1, Current" - Adjust Scaling: Parameters 91/92 and 325/326 - View Results: Parameter 002
Analog Current Input Unipolar Speed Reference Vector 4-20 mA Input		- Configure Input for Current: Parameter 320 and add jumper at appropriate terminals - Adjust Scaling: Parameters 91/92 and 325/326 - View results: Parameter 002
Analog Output $\pm 10 \mathrm{~V}, 4-20 \mathrm{~mA}$ Bipolar +10V Unipolar (shown) Standard Control 4-20 mA Unipolar (use term. 8 \& 9)		- Configure with Parameter 340 - Select Source Value: Parameter 384, [Digital Out1 Sel] - Adjust Scaling: Parameters 343/344

(1) Refer to the Attention statement on page 11 for important bipolar wiring information.

I/O Wiring Examples (continued)

Input/Output	Connection Example	Required Parameter Changes
2-Wire Control		
Non-Reversing		
24V DC internal		
supply		

[^1]
Step 5 Start-Up Check List

\square 1. Verify supply voltage.

\square 2. Check power wiring.

\square 3. Check control wiring.

\square 4. Apply AC power and control voltages to the drive.
If any of the six digital inputs are configured to Stop - CF
($\mathrm{CF}=$ Clear Fault) or Enable, verify that signals are present or the drive will not start. Refer to Troubleshooting - Abbreviated Fault \& Alarm Listing on page 26 for a list of potential digital input conflicts. If the STS LED is not flashing green at this point, refer to Status Indicators on page 18.

- 5. Select Start-Up method: SMART Start . . .

ALT Esc

or any of the other start-up routines . . .

Status Indicators

Name	Color	State	Description
	Green	Steady	Illuminates when power is applied to the drive.
$0 \text { STS }$	Green	Flashing	Drive ready, but not running and no faults are present.
		Steady	Drive running, no faults are present.
	Yellow	Flashing, Drive Stopped	A type 2 alarm condition exists, the drive cannot be started. Check parameter 212 [Drive Alarm 2].
		Flashing, Drive Running	An intermittent type 1 alarm condition is occurring. Check parameter 211 [Drive Alarm 1].
		Steady, Drive Running	A continuous type 1 alarm condition exists. Check parameter 211 [Drive Alarm 1].
	Red	Flashing	Fault has occurred. Check [Fault x Code] or Fault Queue.
		Steady	A non-resettable fault has occurred.
- PORT ○ MOD - net A - NET B	Refer to the Communication Adapter User Manual.		Status of DPI port internal communications (if present).
			Status of communications module (when installed).
			Status of network (if connected).
			Status of secondary network (if connected).

Step 6 Program the Drive - Parameter Files \& Groups

Important Notes about Parameters

O = Stop drive before changing this parameter.
$\sqrt[32]{ }=32$ bit parameter in the Standard Control option. All parameters in the Vector Control option are 32 bit.
FV = Parameter only displayed when [Motor Cntl Sel] is set to "4."
Standard $=$ This parameter is specific to the Standard Control Option.
Vector = This parameter will only be available with the Vector Control option.
Important: Some parameters will have two unit values:

- Analog inputs can be set for current or voltage with [Anlg In Config], param. 320.
- Setting [Speed Units], parameter 79 on Vector Control drives selects Hz or RPM.
- Values that pertain to Vector Control drives only will be indicated by "Vector."
(i) indicates that additional information is available in Appendix C of the User Manual.

Frequently Used Parameters

| | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \(\underline{\text { I }}\) \& \[
\begin{aligned}
\& \text { o } \\
\& \text { 훙 }
\end{aligned}
\] \& 2 \& Parameter Name \& Description \& \multicolumn{2}{|l|}{Values} \& 佼 \\
\hline \multirow[t]{3}{*}{} \& \multirow[t]{2}{*}{} \& 091 \& \begin{tabular}{l}
[Speed Ref A Hi] \\
Scales the upper value of the [Speed Ref A Sel] selection when the source is an analog input.
\end{tabular} \& Default: Min/Max: Units: \& \[
\begin{aligned}
\& \hline \text { [Maximum Speed] } \\
\& -/+[\text { Maximum Speed] } \\
\& 0.1 \mathrm{~Hz} \\
\& 0.01 \mathrm{RPM} \text { Vector }
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 079 \\
\& 082
\end{aligned}
\] \\
\hline \& \& 092 \& \begin{tabular}{l}
[Speed Ref A Lo] \\
Scales the lower value of the [Speed Ref A Sel] selection when the source is an analog input.
\end{tabular} \& Default: Min/Max: Units: \& \[
\begin{aligned}
\& 0.0 \\
\& -/+[\text { Maximum Speed }] \\
\& 0.1 \mathrm{~Hz} \\
\& 0.01 \mathrm{RPM} \text { Vector }
\end{aligned}
\] \& \[
\begin{aligned}
\& 079 \\
\& 081
\end{aligned}
\] \\
\hline \& \& 101
102
103
104
105
106
107 \& \begin{tabular}{l}
[Preset Speed 1] \\
[Preset Speed 2] \\
[Preset Speed 3] \\
[Preset Speed 4] \\
[Preset Speed 5] \\
[Preset Speed 6] \\
[Preset Speed 7] \\
Provides an internal fixed speed command value. In bipolar mode direction is commanded by the sign of the reference.
\end{tabular} \& Default:

Min/Max:

Units: \& $5.0 \mathrm{~Hz} / 150 \mathrm{RPM}$ vector $10.0 \mathrm{~Hz} / 300 \mathrm{RPM}$ vector $20.0 \mathrm{~Hz} / 600 \mathrm{RPM}$ Vector $30.0 \mathrm{~Hz} / 900 \mathrm{RPM}$ vecoror $40.0 \mathrm{~Hz} / 1200 \mathrm{RPM}$ vector $50.0 \mathrm{~Hz} / 1500 \mathrm{RPM}$ Vector $60.0 \mathrm{~Hz} / 1800 \mathrm{RPM}$ Vector $-/+[$ Maximum Speed] 0.1 Hz 1 RPM Vector \& $$
\begin{aligned}
& 079 \\
& 090 \\
& 093
\end{aligned}
$$

\hline \multirow{5}{*}{| d |
| :--- |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| |} \& \& \[

$$
\begin{aligned}
& 140 \\
& 141
\end{aligned}
$$

\] \& | [Accel Time 1] |
| :--- |
| [Accel Time 2] |
| Sets the rate of accel for all speed increases. $\frac{\text { Max Speed }}{\text { Accel Time }}=\text { Accel Rate }$ | \& | Default: |
| :--- |
| Min/Max: |
| Units: | \& \[

$$
\begin{aligned}
& \text { 10.0 Secs } \\
& 10.0 \text { Secs } \\
& 0.1 / 3600.0 \text { Secs } \\
& 0.1 \text { Secs }
\end{aligned}
$$
\] \& 142

143
146
361
thru
366

\hline \& \multirow[t]{2}{*}{} \& \[
$$
\begin{array}{|l|}
\hline 142 \\
143
\end{array}
$$

\] \& | [Decel Time 1] |
| :--- |
| [Decel Time 2] |
| Sets the rate of decel for all speed decreases. $\frac{\text { Max Speed }}{\text { Decel Time }}=\text { Decel Rate }$ | \& | Default: |
| :--- |
| Min/Max: |
| Units: | \& 10.0 Secs

10.0 Secs
$0.1 / 3600.0$ Secs
0.1 Secs \& 140
141
146
361
thru
366

\hline \& \& 146 \& | [S Curve \%] |
| :--- |
| Sets the percentage of accel or decel time that is applied to the ramp as S Curve. Time is added, $1 / 2$ at the beginning and $1 / 2$ at the end of the ramp. | \& Default: Min/Max: Units: \& \[

$$
\begin{aligned}
& \text { 0\% } \\
& 0 / 100 \% \\
& 1 \%
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 140 \\
& \text { thru } \\
& 143
\end{aligned}
$$
\]

\hline \& $$
\begin{aligned}
& n \\
& E
\end{aligned}
$$ \& \multirow[t]{2}{*}{\[

148
\]

\[
150

\]} \& | [Current Lmt Val] |
| :--- |
| Defines the current limit value when [Current Lmt Sel] = "Cur Lim Val." | \& \multicolumn{2}{|l|}{| Default: | [Rated Amps] $\times 1.5$ |
| :--- | :--- |
| | (Equation yields approxi- |
| | mate default value.) |
| Min/Max: | Based on Drive Rating |
| Units: | 0.1 Amps |} \& \[

$$
\begin{aligned}
& 147 \\
& 149
\end{aligned}
$$
\]

\hline \& \[
$$
\begin{aligned}
& \text { च } \\
& \text { W }
\end{aligned}
$$

\] \& \& | [Drive OL Mode] |
| :--- |
| Selects the drive's response to increasing drive temperature. | \& Default: Options: \& | 3 | "Both-PWM 1st" |
| :--- | :--- |
| 0 | "Disabled" |
| 1 | "Reduce CLim" |
| 2 | "Reduce PWM" |
| 3 | "Both-PWM 1st" | \& 219

\hline
\end{tabular}

$\stackrel{1}{1 \times}$	O	2	Parameter Name \& Description	Values		\%
	$\begin{gathered} \frac{n}{2} \\ \frac{0}{5} \\ \frac{8}{6} \\ \frac{6}{4} \end{gathered}$	$\begin{gathered} 320 \\ 0 \end{gathered}$	[Anlg In Config] Selects the mode for the analog inputs.			322 325 323 326
1 5 0 0 0 0 0 0 3		$\begin{array}{\|l\|l} 322 \\ 325 \end{array}$	[Analog In 1 Hi] [Analog In 2 Hi] Sets the highest input value to the analog input x scaling block. [Anlg In Config], parameter 320 defines if this input will be -/+10V or 4-20 mA.	Default: Min/Max: Units:	10.000 Volt 10.000 Volt $4.000 / 20.000 \mathrm{~mA}$ -+10.000 V $0.000 / 10.000 \mathrm{~V}$ 0.001 mA 0.001 Volt	$\begin{aligned} & 091 \\ & 092 \end{aligned}$
		$\begin{aligned} & 323 \\ & 326 \end{aligned}$	[Analog In 1 Lo] [Analog In 2 Lo] Sets the lowest input value to the analog input x scaling block. [Anlg In Config], parameter 320 defines if this input will be $-/+10 \mathrm{~V}$ or $4-20 \mathrm{~mA}$.	Default: Min/Max: Units:	0.000 Volt 0.000 Volt $4.000 / 20.000 \mathrm{~mA}$ -+10.000 V $0.000 / 10.000 \mathrm{~V}$ 0.001 mA 0.001 Volt	$\begin{aligned} & 091 \\ & 092 \end{aligned}$

Troubleshooting - Abbreviated Fault \& Alarm Listing

For a complete listing of Faults and Alarms, refer to the PowerFlex 700 User Manual.

Fault	2		Description	Action
Auxiliary Input	2	(1)	Auxiliary input interlock is open.	Check remote wiring.
Motor Overload	7	$\begin{aligned} & 1 \\ & (3) \\ & \hline \end{aligned}$	Internal electronic overload trip. Enable/Disable with [Fault Config 1].	An excessive motor load exists. Reduce load so drive output current does not exceed the current set by [Motor NP FLA].
OverSpeed Limit	25	(1)	Functions such as Slip Compensation or Bus Regulation have attempted to add an output frequency adjustment greater than that programmed in [Overspeed Limit].	Remove excessive load or overhauling conditions or increase [Overspeed Limit].
SW OverCurrent	36	(1)	Drive output current has exceeded the 1 ms current rating. This rating is greater than the 3 second current rating and less than the hardware overcurrent fault level. It is typically 200$250 \%$ of the drive continuous rating	Check for excess load, improper DC boost setting. DC brake volts set too high.
DB Resistance	69		Resistance of the internal DB resistor is out of range.	Replace resistor.
IR Volts Range	77		"Calculate" is the autotune default and the value determined by the autotune procedure for IR Drop Volts is not in the range of acceptable values.	Re-enter motor nameplate data.
FluxAmpsRef Rang	78		The value for flux amps determined by the Autotune procedure exceeds the programmed [Motor NP FLA].	1. Reprogram [Motor NP FLA] with the correct motor nameplate value. 2. Repeat Autotune.

${ }^{(1)}$ See the User Manual for a description of fault types.

	2	$\begin{aligned} & \hat{E}_{0} \\ & \hat{D}_{2} \end{aligned}$	Description													
Dig In ConflictA	17	（2）	Digital input functions are in conflict．Combinations marked with a＂．．．＂．will cause an alarm． ＊Jog 1 and Jog 2 with Vector Control Option													
					Acc2／Dec2	Acce		Dece		Jog	Jog	Fwd		Rev		dRev
						嵒		邫								
			Accel 2		．iil．											
			Decel 2		虫											
			Jog＊								！		！	．		
			Jog Fwd							童						4
			Jog Rev							．i．						京．
			Fwd／Rev								4		4	－		
Dig In ConflictB	18	（2）	A digital Start input has been configured without a Stop input or other functions are in conflict．Combinations that conflict are marked with a＂．．．＂ and will cause an alarm． ＊Jog 1 and Jog 2 with Vector Control Option													
				Start	Stop－CF	Run		Fwd		Rev	Jog		Fwd	Jog		$\begin{aligned} & \hline \mathrm{Fwd} / \\ & \mathrm{Rev} \end{aligned}$
			Start			年		虫		言			㔬	尊		
			Stop－CF													
			Run	．				禹		者			莗	4		
			Run Fwd	安		＋					＋					＋
			Run Rev	．		閣					年					閨
			Jog＊					．ini．		ait．						
			Jog Fwd	者		邫										
			Jog Rev	．兩		．it．										
			Fwd／ Rev					\＃．		\％．						
Dig In ConflictC	19	（2）	More than Multiple co Forward／R Speed Sele Speed Sele Run Forward	$\begin{aligned} & \text { In one pl } \\ & \text { configur } \\ & \text { Reverse } \\ & \text { lect } 1 \\ & \text { lect 2 } \\ & \text { lect } 3 \\ & \text { ard } \end{aligned}$		input re not everse Reverse Mode B		been owed Bus P Acc2 Accel Dece	$\begin{aligned} & \text { confil } \\ & \text { for th } \\ & \text { Regul } \\ & \text { zDed } \\ & \text { I2 } \\ & \text { el2 } \end{aligned}$	igure he fo lation c2	d to lowin Mode	$\begin{aligned} & \text { he se } \\ & \text { ng inf } \end{aligned}$	ame out fu			

（1）See User Manual for a description of alarm types．

Manually Clearing Faults

Step

Key（s）

1．Press Esc to acknowledge the fault．The fault information will be removed so that you can use the HIM．
2．Address the condition that caused the fault． The cause must be corrected before the fault can be cleared．
3．After corrective action has been taken，clear the fault by：
－Pressing Stop
－Cycling drive power
－Set parameter 240 ［Fault Clear］to＂1．＂
－＂Clear Faults＂on the HIM Diagnostic menu．

www.rockwellautomation.com

Corporate Headquarters

Rockwell Automation, 777 East Wisconsin Avenue, Suite 1400, Milwaukee, WI, 53202-5302 USA, Tel: (1) 414.212.5200, Fax: (1) 414.212.5201

Headquarters for Allen-Bradley Products, Rockwell Software Products and Global Manufacturing Solutions

Americas: Rockwell Automation, 1201 South Second Street, Milwaukee, WI 53204-2496 USA, Tel: (1) 414.382.2000, Fax: (1) 414.382 .4444
Europe/Middle East/Africa: Rockwell Automation SA/NV, Vorstlaan/Boulevard du Souverain 36, 1170 Brussels, Belgium, Tel: (32) 2663 0600, Fax: (32) 26630640
Asia Pacific: Rockwell Automation, 27/F Citicorp Centre, 18 Whitfield Road, Causeway Bay, Hong Kong, Tel: (852) 2887 4788, Fax: (852) 25081846

Headquarters for Dodge and Reliance Electric Products

Americas: Rockwell Automation, 6040 Ponders Court, Greenville, SC $29615-4617$ USA, Tel: (1) 864.297.4800, Fax: (1) 864.281.2433
Europe/Middle East/Africa: Rockwell Automation, Brühlstraße 22, D-74834 Elztal-Dallau, Germany, Tel: (49) 6261 9410, Fax: (49) 626117741
Asia Pacific: Rockwell Automation, 55 Newton Road, \#11-01/02 Revenue House, Singapore 307987, Tel: (65) 6356-9077, Fax: (65) 6356-9011
U.S. Allen-Bradley Drives Technical Support

Tel: (1) 262.512 .8176 , Fax: (1) 262.512 .2222 , Email: support@drives.ra.rockwell.com, Online: www.ab.com/supportabdrives

[^0]: (1) Contacts in unpowered state. Any relay programmed as Fault or Alarm will energize (pick up) when power is applied to drive and deenergize (drop out) when a fault or alarm exists. Relays selected for other functions will energize only when that condition exists and will deenergize when condition is removed.
 (2) These inputs/outputs are dependant on a number of parameters. See "Related Parameters."
 (3) Differential Isolation - External source must be maintained at less than 160 V with respect to PE. Input provides high common mode immunity.
 (4) Differential Isolation - External source must be less than 10 V with respect to PE .
 (5) 150 mA maximum Load. Not present on 115 V versions.

[^1]: ${ }^{(1)}$ Important: Programming inputs for 2 wire control deactivates all HIM Start buttons.

