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Power Spectral Density for Continuous-Phase

Frequency Shift Keying (FSK)
The power spectral density for continuous-phase frequency shift keying (FSK) is derived

in this document. The words “power spectrum” will be used instead of “power spectral
density” sometimes for brevity. Actually, the spectrum for the complex envelope of the FSK
signal is derived. The first section shows how the actual FSK spectrum can be easily found
by simply translating the spectrum of the complex envelope by the carrier frequency. As an
example, the spectrum for M-ary FSK is presented.

1 Finding the Spectrum of a Frequency Modulated

Signal from the Spectrum of its Complex Envelope

Suppose the input to a frequency modulator is the baseband message m(t) and the carrier
frequency is ωc. The transmitted FM signal is

s(t) = cos
(

ωct+
∫ t

0
m(τ)dτ + θ0

)

(1)

where θ0 is a random initial phase uniformly distributed over [0, 2π). In terms of complex
notation, this signal is

s(t) = ℜe
{

ej[ωct+
∫

t

0
m(τ)dτ+θ0]

}

= ℜe
{

ej(ωct+θ0)ej
∫

t

0
m(τ)dτ

}

(2)

The complex envelope of the FM signal is

x(t) = ej
∫

t

0
m(τ)dτ (3)

Using the fact that the real part of a complex number z is (z + z̄)/2 it follows that

s(t) =
1

2
x(t)ej(ωct+θ0) +

1

2
x(t)e−j(ωct+θ0) (4)

The power spectral density for s(t) is the Fourier transform of its autocorrelation function
Rss(τ) which is defined as

Rss(τ) = E{s(t+ τ)s(t)}

=
1

4
E
{[

x(t+ τ)ej[ωc(t+τ)+θ0] + x(t+ τ)e−j[ωc(t+τ)+θ0]
]

×
[

x(t)e−j[ωct+θ0] + x(t)ej[ωct+θ0]
]}

(5)

where E signifies statistical expectation. Assuming that θ0 and x(t) are statistically inde-
pendent, (5) can be expressed as

4Rss(τ) = E
{

ej(2ωct+ωcτ+2θ0)
}

E {x(t+ τ)x(t)}

+ e−jωctE
{

x(t+ τ)x(t)
}

+ ejωctE
{

x(t+ τ)x(t)
}

+ E
{

e−j(2ωct+ωcτ+2θ0)
}

E
{

x(t+ τ) x(t)
}

(6)
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The first and last lines on the right of (6) are zero because θ0 is uniformly distributed over
[0, 2π) and

E
{

ej2θ0
}

=
1

2π

∫ 2π

0
ej2x dx = 0 (7)

The autocorrelation function for the complex envelope is Rxx(τ) = E{x(t + τ)x(t)} and its
power spectral density is the Fourier transform of Rxx(τ) which is

Sxx(ω) =
∫ ∞

−∞

Rxx(τ)e
−jωτ dτ (8)

Therefore,

Rss(τ) =
1

4
Rxx(τ)e

jωcτ +
1

4
Rxx(τ)e

−jωcτ

=
1

2
ℜe

{

Rxx(τ)e
jωcτ

}

(9)

Lemma 1 Sxx(ω) is real.

Proof:
Rxx(τ) = E

{

x(t)x(t+ τ)
}

= Rxx(−τ) (10)

Therefore

Sxx(ω) =

∞
∫

−∞

Rxx(τ)e
jωτ dτ =

∞
∫

−∞

Rxx(−τ)ejωτ dτ =

∞
∫

−∞

Rxx(τ)e
−jωτ dτ = Sxx(ω) (11)

A complex number must be real if it is equal to its complex conjugate.

Taking the Fourier transform of (9) and using the frequency translation and complex
conjugate theorems for Fourier transforms, the power spectral density for the FM signal is
found to be

Sss(ω) =
1

4
Sxx(ω − ωc) +

1

4
Sxx(−ω − ωc) (12)

Thus the power spectral density of the complex envelope completely determines the power
spectral density of the FM signal. The first term on the right side of (12) is a translation of
the scaled power spectrum of the complex envelope up to the carrier frequency ωc and the
second term is the translation of the power spectrum of the complex envelope down to −ωc.

2 Definition of the Continuous-Phase Frequency Shift

Keyed (FSK) Signal

A sequence of binary bits arriving at the rate of R bits per second is to be transmitted. The
transmitter segments the received bits into successive blocks of K bits. Thus the blocks are
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formed at the rate of fb blocks per second and each block occupies T = 1/fb seconds. The
block frequency fb is called the baud or symbol rate. A block of K bits can have M = 2K

possible values. In continuous-phase frequency shift keying each block selects one of M
instantaneous frequency functions to be transmitted by a frequency modulator during that
baud. The special case where the possible frequencies are equally spaced and remain constant
during the baud is presented in Section 4. Lucky, Salz, and Weldon1 present a more general
situation where the data block for a baud selects the instantaneous frequency from a set of
M signals {a1(t), a2(t), . . . , aM(t)}. Each of these signals is zero except for 0 ≤ t < T . Let
the block at time nT have the decimal value kn. Then the instantaneous frequency function
selected for the baud starting at time nT is akn(t− nT ) and the instantaneous frequency of
the complete transmitted signal assuming transmission is started at t = 0 is

m(t) =
∞
∑

n=0

akn(t− nT ) (13)

The phase of the transmitted frequency modulated (FM) signal is the integral of the instan-
taneous frequency up to the current time, so the complex envelope of the transmitted signal
normalized to amplitude 1 is

x(t) = ej
∫

t

0
m(τ) dτ = ej

∫

t

0

∑

∞

n=0
akn (τ−nT ) dτ = ej

∑

∞

n=0

∫

t

0
akn (τ−nT ) dτ (14)

Suppose that the current time t satisfies LT ≤ t < (L + 1)T for some integer L. In
words, the interval [0, t) includes L complete bauds for the interval [0, LT ) and a fraction
of a baud for LT ≤ t < (L + 1)T . The frequency pulse akn(τ − nT ) is nonzero only for
nT ≤ τ < (n+ 1)T . Then

θ(t) =
∞
∑

n=0

∫ t

0
akn(τ − nT ) dτ =

L−1
∑

n=0

∫ (n+1)T

nT
akn(τ − nT ) dτ +

∫ t

LT
akL(τ − LT ) dτ

=
L−1
∑

n=0

∫ T

0
akn(τ) dτ +

∫ t−LT

0
akL(τ) dτ for LT ≤ t < (L+ 1)T (15)

Each integral in (15)is the phase change caused by the selected instantaneous frequency pulse
for that baud. The phase change from the beginning of the baud starting at time nT is

bn(t
′) =

∫ t′

0
akn(τ) dτ for t′ = t− nT (16)

The total phase change over baud n is bn(T ). With this definition, (15) can be written as

θ(t) =
∞
∑

n=0

∫ t

0
akn(τ − nT ) dτ =

L−1
∑

n=0

bn(T ) + bL(t− LT ) for LT ≤ t < (L+ 1)T (17)

The complex envelope can then be expressed as

x(t) = ej[
∑

L−1

n=0
bn(T )+bL(t−LT )] = ejbL(t−LT )ej

∑

L−1

n=0
bn(T ) for LT ≤ t < (L+ 1)T (18)

1R.W. Lucky, J. Salz, and E.J. Weldon, Principles of Data Communication, McGraw-Hill, 1968, pp.
202-207 and 242-245.
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3 Derivation of the Power Spectral Density for the

FSK Signal

Lucky, Salz, and Weldon contains a derivation of the power spectral density of x(t) but many
details are not included. This section includes all the details. The power spectral density
can be defined as

Sxx(ω = lim
λ→∞

1

λ
E
{

|Xλ(ω)|
2
}

(19)

where

Xλ(ω) =
∫ λ

0
x(t)e−jωt dt (20)

Thus

Xλ(ω) =
∫ λ

0
ej

∫

t

0

∑

∞

n=0
akn (τ−nT ) dτe−jωt dt (21)

The derivation can be somewhat simplified by letting the interval [0, λ) cover a complete
number of bauds. So, for an integer N , let λ = NT . The limit will now be taken for N → ∞
and

XNT (ω) =
∫ NT

0
ej

∫

t

0

∑

∞

n=0
akn (τ−nT ) dτe−jωt dt (22)

The integration interval [0, NT ) can be partitioned into N intervals of length T and the
integral can be computed as the sum of the integrals over the partitions. Thus

XNT (ω) =
N−1
∑

k=0

(k+1)T
∫

kT

ej
∫

t

0

∑

∞

n=0
akn (τ−nT ) dτe−jωt dt (23)

Replacing the complex envelope by (18) gives

XNT (ω) =
N−1
∑

k=0

ej
∑

k−1

n=0
bn(T )

(k+1)T
∫

kT

ejbk(t−kT )e−jωt dt

=
N−1
∑

k=0

ej
∑

k−1

n=0
bn(T )

T
∫

0

ejbk(t)e−jωt dt e−jωkT

=
N−1
∑

k=0

ej
∑

k−1

n=0
bn(T )Fk(ω)e

−jωkT (24)

where

Fk(ω) =

T
∫

0

ejbk(t)e−jωt dt (25)

The function Fk(ω) is the Fourier transform of a typical transmitted signal during the baud
starting at time 0.
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Using these results, the squared magnitude of the Fourier transform of the signal segment
over the time interval [0, NT ) is

|XNT (ω)|
2 = XNT (ω)XNT (ω)

=

{

N−1
∑

k=0

ej
∑

k−1

n=0
bn(T )Fk(ω)e

−jωkT

}{

N−1
∑

m=0

e−j
∑

m−1

n=0
bn(T ) Fm(ω) e

jωmT

}

=
N−1
∑

k=0

N−1
∑

m=0

e
j

[

∑

k−1

n=0
bn(T )−

∑

m−1

n=0
bn(T )

]

Fk(ω)Fm(ω) e
−jω(k−m)T (26)

Let the summand in (26) be Dkm. The sum can be split into three parts as follows:

|XNT (ω)|
2 =

N−1
∑

m=k=0

Dkk +
∑

0≤m<k≤N−1

Dkm +
∑

0≤m<k≤N−1

Dkm (27)

Consider the square lattice of points (k,m) in a k,m plane for 0 ≤ k ≤ N−1, 0 ≤ m ≤ N−1.
The first sum is along the diagonal of the square from (0, 0) to (N − 1, N − 1). The second
sum is over the points in the square below that diagonal, and the third sum is over the points
above that diagonal. Notice that Dmk = Dkm so the third sum is the complex conjugate of
the second sum and thus

|XNT (ω)|
2 =

N−1
∑

m=k=0

Dkk + 2ℜe







∑

0≤m<k≤N−1

Dkm







=
N−1
∑

k=0

|Fk(ω)|
2 + 2ℜe







∑

0≤m<k≤N−1

e−jω(k−m)TFk(ω)Fm(ω)e
j
∑

k−1

n=m
bn(t)







(28)

Let

S(N)
xx (ω) =

1

NT
E
{

|XNT (ω)|
2
}

=
1

NT

N−1
∑

k=0

E
{

|Fk(ω)|
2
}

+
2

NT
ℜe





∑

0≤m<k≤N−1

e−jω(k−m)T

× E

{

Fk(ω)Fm(ω)
k−1
∏

n=m

ejbn(T )

}]

(29)

It will be assumed that the input bits are independent and equally likely to be 0 or 1.
Then the blocks of K bits selected by the transmitter are independent and equally likely
and the functions of these blocks in different bauds are independent. Therefore,

E

{

Fk(ω)Fm(ω)
k−1
∏

n=m

ejbn(T )

}

= E {Fk(ω} E
{

Fm(ω)e
jbm(T )

}

k−1
∏

n=m+1

E
{

ejbn(T )
}

(30)

for k 6= m and m < k.
At this point it is convenient to introduce the following functions:
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1. Characteristic Function for bn(t)

C(α; t) = E
{

ejαbn(t)
}

(31)

2. Average Fourier Transform of a Baud Signal

F (ω) = E {Fn(ω)} = E







T
∫

0

ejbn(t)e−jωt dt







=

T
∫

0

E
{

ejbn(t)
}

e−jωt dt =

T
∫

0

C(1; t)e−jωt dt (32)

3.

G(ω) = E
{

Fn(ω)e
jbn(T )

}

= E







T
∫

0

e−jbn(t)ejωt dt ejbn(T )







=

T
∫

0

E
{

ej[bn(T )−bn(t)]
}

ejωt dt (33)

4. Average Squared Amplitude Spectrum of a Baud Signal

P (ω) = E
{

|Fn(ω)|
2
}

= E











∣

∣

∣

∣

∣

∣

T
∫

0

ejbn(t)e−jωt dt

∣

∣

∣

∣

∣

∣

2










(34)

Each of these four functions does not depend on the baud time index n because the signal
probabilities have been assumed to be the same for each baud. With these definitions, (29)
can be written as

S(N)
xx (ω) =

1

T
P (ω) +

2

NT
ℜe







F (ω)G(ω)
∑

0≤m<k≤N−1

e−jω(k−m)TCk−m−1(1;T )







(35)

The sum in (35) can be evaluated by summing along the the diagonal lines k −m = n
shown in Figure 1. Along each line the summand is

e−jωnTCn−1(1;T )

and there are N − n points on each line. Therefore,

1

N

∑

0≤m<k≤N−1

e−jω(k−m)TCk−m−1(1;T ) =
N−1
∑

n=1

N − n

N
e−jωnTCn−1(1;T )

= e−jωT
N−2
∑

n=0

N − n− 1

N
e−jωnTCn(1;T ) (36)
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N−1 k

m

0

0

1 n

N−1

k−m = N−2

k−m = n

k−m = 1

N−2

Figure 1: Paths for Evaluating the Sum in Equation (35)

Since

lim
N→∞

N − n− 1

N
= 1

it follows that

lim
N→∞

N−2
∑

n=0

N − n− 1

N

[

e−jωTC(1;T )
]n

= lim
N→∞

N−2
∑

n=0

[

e−jωTC(1;T )
]n

(37)

For |C(1;T )| < 1, Equation (37) is the sum of a geometric series and

lim
N→∞

N−2
∑

n=0

[

e−jωTC(1;T )
]n

=
1

1− e−jωTC(1;T )
(38)

Therefore,

Sxx(ω) =
1

T
P (ω) +

2

T
ℜe

{

F (ω)G(ω)
e−jωT

1− C(1;T )e−jωT

}

for |C(1;T )| < 1 (39)

Under some conditions |C(1;T )| = 1 and (37) does not converge in the ordinary sense.
However, it will be shown below to converge to a series of Dirac delta functions in the
distribution sense. Since C(α; t) is a characteristic function, its magnitude can never exceed
1. The following lemma shows when it has magnitude equal to 1.

Lemma 2 |C(1;T )| = 1 when bn(T ) is a discrete random variable with possible values

2πk + d for k = 0,±1,±2, . . . with probabilities pk = P {b(nT ) = 2πk + d}
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Proof:
In this case

C(α;T ) =
∞
∑

k=−∞

pke
α(2πk+d) = ejαd

∞
∑

k=−∞

pke
α2πk (40)

Since
∑∞

k=−∞ pk = 1 and e2πk = 1,

C(1;T ) = ejd
∞
∑

k=−∞

pk = ejd = ejγT where γ = d/T = dfb (41)

and
∣

∣

∣ejd
∣

∣

∣ = 1.

This lemma implies that when each elementary frequency pulse ak(t) causes a total phase
change bn(T ) over a baud of d radians modulo 2π, spectral lines appear. When |C(1;T )| = 1,
consider the finite sum

AN =
N−2
∑

n=0

[

e−jωTC(1;T )
]

=
N−2
∑

n=0

e−j(ω−γ)Tn =
1− e−j(ω−γ)T (N−1)

1− e−j(ω−γ)T
(42)

The real part of AN is

ℜe{AN} =
1

2
(AN + AN) =

1

2

N−2
∑

n=0

[

e−j(ω−γ)Tn + ej(ω−γ)Tn
]

=
1

2
+

1

2

N−2
∑

n=−(N−2)

e−j(ω−γ)Tn (43)

Lemma 3 Let ωb = 2π/T . Then

ωb

∞
∑

n=−∞

δ(ω − nωb) =
∞
∑

n=−∞

e−jωTn (44)

Proof:
The function of ω on the left side is periodic in ω with period ωb and can be represented

by a Fourier series
∑∞

n=−∞ cne
−jωTn. The Fourier coefficients are

cn =
1

ωb

ωb/2
∫

−ωb/2

ωbδ(ω) dω = 1 (45)

Using this lemma it follows that

lim
N→∞

ℜe{AN} =
1

2
+

ωb

2

∞
∑

n=−∞

δ(ω − γ − nωb) (46)

The imaginary part of AN times 2j is

2j ℑm{AN} = AN − An =
1− e−j(ω−γ)T (N−1)

1− e−j(ω−γ)T
−

1− ej(ω−γ)T (N−1)

1− ej(ω−γ)T

=
[

1

1− e−j(ω−γ)T
−

1

1− ej(ω−γ)T

]

−

[

e−j(ω−γ)T (N−1)

1− e−j(ω−γ)T
+

ej(ω−γ)T (N−1)

ej(ω−γ)T

]

(47)
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The second term on the right of (47) in rectangular brackets converges to zero with N in the
distribution sense as a result of the Riemann-Lebesgue lemma. The first term can be put in
a simpler form as follows:

1

1− e−j(ω−γ)T
−

1

1− ej(ω−γ)T
=

ej(ω−γ)T/2

ej(ω−γ)T/2 − e−j(ω−γ)T/2
−

e−j(ω−γ)T/2

e−j(ω−γ)T/2 − ej(ω−γ)T/2

=

(

ej(ω−γ)T/2 + e−j(ω−γ)T/2
)

/2

j (ej(ω−γ)T/2 − e−j(ω−γ)T/2) /(2j)

= −j cot[(ω − γ)T/2] (48)

Therefore,

lim
N→∞

AN =
1

2
+

ωb

2

∞
∑

n=−∞

δ(ω − γ − nωb)−
j

2
cot[(ω − γ)T/2] (49)

When |C(1;T )| = 1, G(ω) defined in (50) is

G(ω) = E
{

Fn(ω)e
jbn(T )

}

= E
{

Fn(ω)e
j(2πkn+γT )

}

= ejγTE
{

Fn(ω)
}

= eγT F (ω) (50)

since ej2πkn = 1.
Combining (35 – 37) and (48 – 50) yields

TSxx(ω) = P (ω) + |F (ω)|2ℜe
{

e−j(ω−γ)T [1− j cot((ω − γ)T/2)]

+ e−j(ω−γ)T ωb

∞
∑

n=−∞

δ(ω − γ − nωb)

}

(51)

The real part of the first product in the braces can be reduced to just −1. To simplify the
formulas, let x = (ω − γ)T . Then

ℜe
{

e−jx(1− j cot(x/2))
}

= ℜe {(cos x− j sin x)(1− j cot(x/2))}

= cosx− sin x
cos(x/2)

sin(x/2)

=
(

cos2(x/2)− sin2(x/2)
)

− (2 sin(x/2) cos(x/2))
cos(x/2)

sin(x/2)

= cos2(x/2)− sin2(x/2)− 2 cos2(x/2)

= = − cos2(x/2)− sin2(x/2) = −1 (52)

The impulses in the second term in (51) pop up when ω − γ = nωb so that

e−j(ω−γ)T = e−jnωbT = e−jn2π = 1

The (51) simplifies to

Sxx(ω) =
1

T
P (ω) +

1

T
|F (ω)|2

[

−1 + ωb

∞
∑

n=−∞

δ(ω − γ − nωb)

]

(53)
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3.1 Summary of the Formulas for the Power Spectral Density of
Continuous-Phase FSK

The formulas for the power spectral density for the complex envelope of the general form of
frequency shift keying (FSK) defined in this report are summarized here.

Definition of functions used in the power spectral density formulas:

1. Phase change caused by a frequency pulse over one baud

bn(t) =
∫ t

0
an(τ) dτ for 0 ≤ t < T (54)

2. Fourier transform of the FSK signal over baud 0

Fn(ω) =
∫ T

0
ejbn(t)e−jωt dt (55)

3. A special characteristic function value

C(1;T ) = E
{

ejbn(T )
}

(56)

4.

γ =
1

T
argC(1;T ) (57)

5. Expected value of the transforms of the signals transmitted over baud 0

F (ω) = E {Fn(ω)} (58)

6.
G(ω) = E

{

Fn(ω) e
jbn(T )

}

(59)

7. Expected value of the squared magnitude of the signals transmitted in baud 0

P (ω) = E
{

|Fn(ω)|
2
}

(60)

The power spectral density for the complex envelope

x(t) = e
j

t
∫

0

∑

∞

n=0
akn (τ−nT ) dτ

(61)

is when |C(1;T )| < 1

Sxx(ω) =
1

T
P (ω) +

2

T
ℜe

{

F (ω)G(ω)
e−jωT

1− C(1;T )e−jωT

}

(62)

(63)

11



and is when |C(1;T )| = 1

Sxx(ω) =
1

T
P (ω)−

1

T
|F (ω)|2 +

ωb

T

∞
∑

n=−∞

|F (γ + nωb)|
2 δ(ω − γ − nωb) (64)

The power spectral density for the transmitted signal

s(t) = ℜe
{

x(t)ej(ωct+θc
}

(65)

is

Sss(ω) =
1

4
Sxx(ω − ωc) +

1

4
Sxx(−ω − ωc) (66)

4 Power Spectral Density for Constant Frequency Dur-

ing a Baud and Equally Spaced Frequencies

In many actual FSK transmitters the frequency during a baud remains constant and the
possible transmitted frequencies are are equally spaced. Each input bit block of K bits is
used to select one of M = 2K radian frequencies from the set

Λk = ωc + ωd[2k − (M − 1)]

= 2π{fc + fd[2k − (M − 1)]} for k = 0, 1, . . . ,M − 1 (67)

The frequency ωc = 2πfc is called the carrier frequency. The radian frequencies

Ωk = ωd [2k − (M − 1)] = 2πfd[2k − (M − 1)] for k = 0, 1, . . . ,M − 1 (68)

are the possible frequency deviations from the carrier frequency during each symbol. The
deviations range from −ωd(M − 1) to ωd(M − 1) in steps of ∆ω = 2ωd. Each selected
frequency is sent for Tb = 1/fb seconds. The modulation index h is defined to be the tone
separation divided by the baud rate, that is,

h =
2ωd

ωb

=
2fd
fb

(69)

The sinusoid transmitted during a baud is called the FSK symbol or tone specified by the
bit block. Let kn be the decimal value of an input bit block during the symbol period
nTb ≤ t < (n+ 1)Tb. The input block selects the frequency deviation

Ωkn = ωd [2kn − (M − 1)] (70)

The frequency signal for baud n is Ωknp(t − nTb) where p(t) is the unit height pulse of
duration Tb defined as

p(t) =

{

1 for 0 ≤ t < Tb

0 elsewhere
(71)
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The elementary frequency deviation set of signals is

ak(t) = Ωkp(t) = ωd [2k − (M − 1)]p(t) for k = 0, 1, . . . ,M − 1 (72)

Assuming transmission starts at t = 0, the complete frequency signal is the staircase signal

m(t) =
∞
∑

n=0

Ωknp(t− nTb) (73)

This baseband signal is applied to an FM modulator with carrier frequency ωc and frequency
sensitivity kω = 1 to generate the FSK signal.The complex envelope of the transmitted FM
signal is

x(t) = Ace
j
∫

t

0
m(τ) dτejφ0 (74)

where φ0 is an arbitrary initial phase.
The functions required to compute the power spectral density assuming theM frequencies

are equally likely are:

1.

bn(t) =
∫ t

0
Ωnp(t) dt = Ωnt for 0 ≤ t < T (75)

2.

Fn(ω) =
∫ T

0
ejbn(t)e−jωt dt = T

sin
(ω − Ωn)T

2
(ω − Ωn)T

2

e−j(ω−Ωn)T/2 (76)

3.

C(1;T ) = E
{

ejbn(T )
}

=
1

M

M−1
∑

n=0

ejωdT [2n−(M−1)] =
2

M

M/2
∑

n=1

cos[ωdT (2n− 1)] (77)

=
sin(Mπh)

M sin(πh)
(78)

4. When the modulation index h is an integer k

γ =

{

0 for k even
ωb/2 for k odd

(79)

5.

F (ω) =
T

M

M−1
∑

n=0

sin
(ω − Ωn)T

2
(ω − Ωn)T

2

e−j(ω−Ωn)T/2 (80)
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6.

G(ω) = E
{

Fn(ω) e
jbn(T )

}

=
1

M

M−1
∑

n=0

T
sin

(ω − Ωn)T

2
(ω − Ωn)T

2

ej(ω−Ωn)T/2ejΩnT (81)

Also, the power spectral density formula requires

e−jωTG(ω) = e−jωT 1

M

M−1
∑

n=0

T
sin

(ω − Ωn)T

2
(ω − Ωn)T

2

ej(ω−Ωn)T/2ejΩnT

=
1

M

M−1
∑

n=0

T
sin

(ω − Ωn)T

2
(ω − Ωn)T

2

ej(ω−Ωn)T/2e−(ω−jΩn)T

=
1

M

M−1
∑

n=0

T
sin

(ω − Ωn)T

2
(ω − Ωn)T

2

e−j(ω−Ωn)T/2 = F (ω) (82)

7.

P (ω) =
T 2

M

M−1
∑

n=0











sin
(ω − Ωn)T

2
(ω − Ωn)T

2











2

(83)

Putting these results together, the power spectral density is

TSxx(ω) =



































P (ω) + 2ℜe

[

F 2(ω)

1− C(1;T )e−jωT

]

for h =
2ωd

ωb

not an integer

P (ω)− |F (ω)|2 + ωb

∞
∑

n=−∞

|F (γ + nωb)|
2 δ (ω − γ − nωb)

for h = an integer k

(84)

where

γ =

{

0 for k even
ωb/2 for k odd

(85)

Comments on the Properties of this Power Spectral Density

Fn(ω) has its peak magnitude at the tone frequency Ωn = ωd[2n − (M − 1)] and zeros at
multiples of the symbol rate, ωb, away from the tone frequency. This is exactly what would
be expected for a burst of duration T of a sinusoid at the tone frequency.

Another implementation of an FSK transmitter could use a bank of oscillators at the
tone frequencies and each baud the transmitter could switch to the oscillator specified by

14



the input bit block. This approach does not guarantee continuous phase. The term P (ω)
is what would result for this switched oscillator case when the phases of the oscillators are
independent random variables uniformly distributed over [0, 2π).

The remaining terms account for the continuous phase property and give a narrower
spectrum than if the the phase were discontinuous.

The power spectrum has impulses at the M tone frequencies when h is an integer. How-
ever, the impulses at other frequencies disappear because they are multiplied by the nulls of
F (γ + nωb).

4.1 Power Spectral Density Examples for M = 2 FSK
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(a) M = 2, h = 0.5
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(b) M = 2, h = 0.63
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(c) M = 2, h = 1
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Figure 2: Normalized Power Spectral Densities TSxx(ω) for Continuous Phase and Switched
Oscillator Binary FSK for Several Values of h
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