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Power Spectral Density for Continuous-Phase
Frequency Shift Keying (FSK)

The power spectral density for continuous-phase frequency shift keying (FSK) is derived
in this document. The words “power spectrum” will be used instead of “power spectral
density” sometimes for brevity. Actually, the spectrum for the complex envelope of the FSK
signal is derived. The first section shows how the actual FSK spectrum can be easily found
by simply translating the spectrum of the complex envelope by the carrier frequency. As an
example, the spectrum for M-ary FSK is presented.

1 Finding the Spectrum of a Frequency Modulated
Signal from the Spectrum of its Complex Envelope

Suppose the input to a frequency modulator is the baseband message m(t) and the carrier
frequency is w.. The transmitted FM signal is

s(t) = cos (wct + / T)dT + (90> (1)

where 6 is a random initial phase uniformly distributed over [0,27). In terms of complex
notation, this signal is

s(t) = Re {ej[wct+ Jy m(rydr-+60 } = Re {ej(“CtJreO)ej Iy m(T)dT} (2)
The complex envelope of the FM signal is
2(t) = el Jo m)dr (3)
Using the fact that the real part of a complex number z is (z + z)/2 it follows that
s(t) = ;x(t)ej(wctwo) + ; me—j(wctwo) (4)

The power spectral density for s(t) is the Fourier transform of its autocorrelation function
Rss(7) which is defined as

Ru(r) = Efs(t+7)s()}
= ié’ H (t+ T)ej[wc(t-i—T)-&-Go] + me g[wc(t+7)+90q
[ e —jwet+60] + x(t)eg[wctwo]n (5)

where & signifies statistical expectation. Assuming that 6y and x(t) are statistically inde-
pendent, (5) can be expressed as

AR (r) = E{eI@ettuen 2L g (ot + )2 (1)}
+ eTIwlE {x(t + T)x(t)} + eIt {m(t + T):E(t)}

+ g{ —j 2wct+wcr+2eo)} E {m 0 (6)
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The first and last lines on the right of (6) are zero because 6, is uniformly distributed over
0,27) and
1

£ {ejzao} = — /027r e dx =0 (7)

™

The autocorrelation function for the complex envelope is R, (7) = E{x(t + 7)z(t)} and its
power spectral density is the Fourier transform of R,,(7) which is

Spe(w) = /Oo Rayo(T)e 79T dr (8)
Therefore,
1 B PR
Rss(T> = Zsz(T)e]wCT + Z R:m:(T)e e
1 jWeT
=5 Re {Rm(T)ej } (9)
Lemma 1 S,,(w) is real.
Proof:
Ren(r) = E{a®)a(t+7)} = Rua(—7) (10)
Therefore
Spe(w) = / Rayo(T)e7 dr = / Royo(—7)e?7 dr = / Ruo(T)e 9T dr = Spp(w)  (11)

A complex number must be real if it is equal to its complex conjugate.
[ |

Taking the Fourier transform of (9) and using the frequency translation and complex
conjugate theorems for Fourier transforms, the power spectral density for the FM signal is

found to be ) .
Sss(w) = 1 Spe(w — we) + 1 Spe(—w — we) (12)
Thus the power spectral density of the complex envelope completely determines the power
spectral density of the FM signal. The first term on the right side of (12) is a translation of
the scaled power spectrum of the complex envelope up to the carrier frequency w. and the

second term is the translation of the power spectrum of the complex envelope down to —w..

2 Definition of the Continuous-Phase Frequency Shift
Keyed (FSK) Signal

A sequence of binary bits arriving at the rate of R bits per second is to be transmitted. The
transmitter segments the received bits into successive blocks of K bits. Thus the blocks are
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formed at the rate of fj, blocks per second and each block occupies T = 1/ f, seconds. The
block frequency f;, is called the baud or symbol rate. A block of K bits can have M = 2K
possible values. In continuous-phase frequency shift keying each block selects one of M
instantaneous frequency functions to be transmitted by a frequency modulator during that
baud. The special case where the possible frequencies are equally spaced and remain constant
during the baud is presented in Section 4. Lucky, Salz, and Weldon! present a more general
situation where the data block for a baud selects the instantaneous frequency from a set of
M signals {ay(t), as(t),...,an(t)}. Each of these signals is zero except for 0 < ¢ < T Let
the block at time nT" have the decimal value k,,. Then the instantaneous frequency function
selected for the baud starting at time nT is ay, (t — nT') and the instantaneous frequency of
the complete transmitted signal assuming transmission is started at ¢ = 0 is

m(t) = iakn(t —nT) (13)

The phase of the transmitted frequency modulated (FM) signal is the integral of the instan-
taneous frequency up to the current time, so the complex envelope of the transmitted signal
normalized to amplitude 1 is

[L’(t) _ ejfotm( - 6]«[0 e Oakn T—nT)dr _ 6jzzo:0f;akn(7*nT)dT (14)

Suppose that the current time ¢ satisfies LT < ¢t < (L + 1)T for some integer L. In
words, the interval [0,¢) includes L complete bauds for the interval [0, LT) and a fraction
of a baud for LT <t < (L + 1)T. The frequency pulse a, (7 — nT') is nonzero only for
nT <71 < (n+1)T. Then

ot L=1 i(nt+1)T t
0(t) = Z/ ar, (1 —nT)dr = Z/n ap, (1 —nT)dr+ | ap, (7 — LT)dr

= Int LT
t—LT
= Z/ ag, (T d7'+/ ag, (7)dr for LT <t < (L+1)T (15)

Each integral in (15)is the phase change caused by the selected instantaneous frequency pulse
for that baud. The phase change from the beginning of the baud starting at time nT is

t/
b(t') = /O ap, (1) dr for t' =t —nT (16)

The total phase change over baud n is b,(7"). With this definition, (15) can be written as
Z/ an, (T — nT) dr = Zb )+ bo(t — LT) for LT <t <(L+ 1T  (17)

The complex envelope can then be expressed as
L—-1

w(t) = o e ML O—LT)] _ (ibr(t=LT) i 3320 for [T <t < (L+1)T  (18)

'R.W. Lucky, J. Salz, and E.J. Weldon, Principles of Data Communication, McGraw-Hill, 1968, pp.
202-207 and 242-245.




3 Derivation of the Power Spectral Density for the
FSK Signal

Lucky, Salz, and Weldon contains a derivation of the power spectral density of z(¢) but many
details are not included. This section includes all the details. The power spectral density
can be defined as

Sea(w = lim < e{w )1°} (19)
where \
Xa(w) = / (t)e 7t dt (20)
0
Thus N
Xi\(w) :/0 el Jo 2onzo ain (r=nT) dr o—jut gy (21)

The derivation can be somewhat simplified by letting the interval [0, \) cover a complete
number of bauds. So, for an integer N, let A = NT'. The limit will now be taken for N — oo
and

NT |t —oo .
Xnr(w) = /0 e? Jo 2onzo ain (r=nT) dr o —jut gy (22)

The integration interval [0, NT') can be partitioned into N intervals of length 7" and the
integral can be computed as the sum of the integrals over the partitions. Thus

N_g (BHDT
XNT Z / e] fo e oakn T—nT)dr —gwt dt (23)
k=0 gr

Replacing the complex envelope by (18) gives

N1 (k+1)T
Xar) = S OTEO [ ke g
k=0 kT
& k_leT‘bt jwt jwkT
— Z eI 2 g bl )/ej HOPSS L P
k=0 0
N-1 )
= Y I LoDy (w)e T (24)
k=0
where
T
F(w) = / IR0 =t gy (25)
0

The function Fj(w) is the Fourier transform of a typical transmitted signal during the baud
starting at time 0.



Using these results, the squared magnitude of the Fourier transform of the signal segment
over the time interval [0, NT') is

Xnr(w)* = Xyr(w)Xyr(w)

N-1 1y .
= { Z €J Zn —ob Fk: _JWkT} { Z 6_] Zn 0 bn( m(UJ) €]me}
k=

0

N—-1N-1 . k 1y m—1

_ Y Y AT e g g et (26)
k=0 m=0

Let the summand in (26) be Dy,,. The sum can be split into three parts as follows:

| Xnr(w Z D+ >, Dim+ Y,  Dim (27)

m=k=0 0<m<k<N-1 0<m<k<N-1

Consider the square lattice of points (k,m) in a k,m planefor0 <k < N—1,0<m < N—1.
The first sum is along the diagonal of the square from (0,0) to (N — 1, N —1). The second
sum is over the points in the square below that diagonal, and the third sum is over the points
above that diagonal. Notice that D,,; = Dj,, so the third sum is the complex conjugate of
the second sum and thus

| Xnr(w))? = il Dkk+2§Re{ > ka}

=k=0 0<m<k<N-1
-1

Ik |+2§R6{ > e—W—m”Fk(w)wéZZ;bn(t)}(%)

k=0 0<m<k<N-1
Let
1
(N) —
Sw) = € {1 Xnr@))
1 N-1

Z efjw(kfm)T

x g{ ) "

It will be assumed that the input bits are independent and equally likely to be 0 or 1.
Then the blocks of K bits selected by the transmitter are independent and equally likely
and the functions of these blocks in different bauds are independent. Therefore,

= ZE{]Fk }+W§Re

S{Fk(w)Fm(w)Hejb” } E{F(w} € {Fn(w)e ™} H g{eM}  (30)

n=m n=m-+1

for k #m and m < k.
At this point it is convenient to introduce the following functions:
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1. Characteristic Function for b, (t)
Clast) = € {0} (31)

2. Average Fourier Transform of a Baud Signal

Flw) = E{F(w)}=¢& {/ejb"(t)ej‘”t dt}

0

T
- /5 0} ¢mdet g = l/Clt et d (32)
0

T
G(w) = 5{Fn(w) Jbn (T) {/6 Jon(t) vt gt ejbn(T)}
0

T
- /5 [n =001 it gy (33)
0

} (34)

Each of these four functions does not depend on the baud time index n because the signal
probabilities have been assumed to be the same for each baud. With these definitions, (29)
can be written as

4. Average Squared Amplitude Spectrum of a Baud Signal

P(w) = E{|Fuw)’} =€ { [t ar

S (w) = P >+NT%e{ @Gw ¥ ej“’“mTc'fml(l;T)} (3)

0<m<k<N-1

The sum in (35) can be evaluated by summing along the the diagonal lines k — m = n
shown in Figure 1. Along each line the summand is

e—jwnTcn—l (1, T)
and there are N — n points on each line. Therefore,

1 . NlN .
S Z efjw(kfm)Tckfmfl(l; T) _ Z 7]wnTcn71(1; T)

0<m<k<N-1 =
N2N_—pn—-1

— —]wT Z

e TN (1, ) (36)



0 1

Since N .
. —n—
S
it follows that
N-2 N —n— 1 ) n N-2 ] n
: —jwT . _ —jwT .
Jm, 3 T PO = im 3 [ roqs )] (37)
For |C(1;T)] < 1, Equation (37) is the sum of a geometric series and
N2 T n 1
3 —Jw . —
J\PEéo 7;) [e C(l’T)} 1= e WTO(1;T) (38)
Therefore,
Sez(w) = lP( )+g§)? F(w)G(w) e for |C(1;T) <1 (39)
w\ W)= T A\ T T e et | € ’

Under some conditions |C'(1;7)| = 1 and (37) does not converge in the ordinary sense.
However, it will be shown below to converge to a series of Dirac delta functions in the
distribution sense. Since C(q;t) is a characteristic function, its magnitude can never exceed
1. The following lemma shows when it has magnitude equal to 1.

Lemma 2 |C(1;T)| = 1 when b,(T) is a discrete random variable with possible values
2rk +d for k=0,+1,%2, ... with probabilities p, = P {b(nT) = 27k + d}
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Proof:
In this case

C(o; T) Z pretZrhtd) — giad i ppe?™k (40)
k=—o0 k=—00
Since 332 pr =1 and e*™ =1,
C(L;T) = ¢ i pp = ¥4 =T where v =d/T = df, (41)
k=—00
and ’ejd’ =1.
|

This lemma implies that when each elementary frequency pulse ay(t) causes a total phase
change b, (T) over a baud of d radians modulo 27, spectral lines appear. When |C(1;T)| = 1,
consider the finite sum

N-2 N—2 1 — e—ilw—mT(N-1)

Ay =Y leTCT)| = 3 e it = : (42)

_ p—J(w—y)T
n=0 n=0 1 € ( )

The real part of Ay is

1\ 11 N2
%e{AN} = (AN + AN Z [ —j(w—y)Tn 4 ej(w ’Y)Tn} — 5 + 5 Z e*](wf'y)Tn (43)
n=0 n=—(N-2)

Lemma 3 Let w, = 2n/T. Then

Wpy Z dw — nwy) = Z e Jwtn (44)

n=—oo n=—oo

Proof:
The function of w on the left side is periodic in w with period wy, and can be represented
by a Fourier series > >° cpe 79T The Fourier coefficients are

n=—oo

wy/2

1
Cp = — / wpd(w) dw =1 (45)
Wh
—wp /2
[ |
Using this lemma it follows that
hm %e{AN} = = + — Z d(w —y — nwy) (46)
The imaginary part of Ay times 27 is
1 = e dlwT(N-1) 1 _ gilw—)T(N-1)
. _ T B
2jSmidn} = Ay =A== ooy 1— ei@=T
1 1 —j(w=7)T(N-1) Jj(w=y)T(N-1)
- A SR B + (47)
1 —edlwNT 1 _—eilw—nNT 1 — e~ dlw—7T ei(w=—7T
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The second term on the right of (47) in rectangular brackets converges to zero with N in the
distribution sense as a result of the Riemann-Lebesgue lemma. The first term can be put in
a simpler form as follows:

1 1 el (w="T/2 e—J(w=7)T/2

e i@ T ] _ eile T T2 — o@D o il T]2 — gilo)T/2
(ej(w—v)T/2 + e—j(w—v)T/2> /2
(@@ T — o i@ T72) [(27)
= Zjeotlw— )T/ (15)

Therefore,
: L w & J
A}lgéoAN: §+? > (5(w—7—nwb)—icot[(w—v)T/Q] (49)

n=—oo

When |C(1;T)| =1, G(w) defined in (50) is
Gw) = & {mejb"(T)} =& {Fn(w)ej(%k”ﬂﬂ}
= e {Fw)} =" Fw) (50)

since /2™ = 1,
Combining (35 — 37) and (48 — 50) yields

TSpa(w) = Pw)+[F(w)?Re{e 7“1 — jcot((w — 7)T/2)]
+ e I@T, i: dw—y— nwb)} (51)

The real part of the first product in the braces can be reduced to just —1. To simplify the
formulas, let © = (w —7)7T. Then

Re {e7(1 = jeot(x/2))} = Re{(cosz — jsinz)(1— jcot(x/2))}

. cos(z/2)
= cosr —sinzr———=
sin(z/2)
= (cos2(x/2) - sinz(a:/Z)) — (2sin(z/2) cos(x/2))M
sin(x/2)
= cos?(z/2) — sin*(x/2) — 2 cos*(x/2)
= = —cos*(z/2) — sin®(z/2) = —1 (52)
The impulses in the second term in (51) pop up when w — v = nwy so that
e—j(w—'y)T — eI T _ —in2r _
The (51) simplifies to
1 1 s
Spz(w) = TP(W) + le(w)]2 14w, > 6(w—7y—nw) (53)

n=—oo
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3.1 Summary of the Formulas for the Power Spectral Density of
Continuous-Phase FSK

The formulas for the power spectral density for the complex envelope of the general form of
frequency shift keying (FSK) defined in this report are summarized here.

Definition of functions used in the power spectral density formulas:

1. Phase change caused by a frequency pulse over one baud
t
blt) = / an(T)dr for 0<t<T (54)
0

2. Fourier transform of the FSK signal over baud 0

T . )
F,(w) :/ eItnWe=iwt gy (55)
0
3. A special characteristic function value
C(1;7) = & {e M} (56)
4. )
v = TargC’(l;T) (57)
5. Expected value of the transforms of the signals transmitted over baud 0
Fw) = E{F,(w)} (58)
6. '
G(w) = £ {F,(w) M} (59)
7. Expected value of the squared magnitude of the signals transmitted in baud 0

P(w) = € {|Fu(w)]*} (60)
The power spectral density for the complex envelope

t
jfo:o ag,, (T—nT) dr
0

o) = e (61)

is when |C(1;7)] < 1
Spnlw) = ;P(w) + ;ERe {F(w)G(w)l _ C?l?;)e—jw} (62)
(63)
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and is when |C(1;7)| =1

Sulw) = ZPw) = ZIF@I+

Wh

2 S P+ na)Pw -y —nwy)  (64)

n=—oo

The power spectral density for the transmitted signal

s(t) = Re {x(t)ej(“’ctwe} (65)
Ses(w) = leSm(w —we) + leSm(—w - we) (66)

4 Power Spectral Density for Constant Frequency Dur-
ing a Baud and Equally Spaced Frequencies

In many actual FSK transmitters the frequency during a baud remains constant and the
possible transmitted frequencies are are equally spaced. Each input bit block of K bits is
used to select one of M = 2% radian frequencies from the set

A = we w2k — (M —1)]
= 2n{fo+ fal2k — (M —1)]} for k=0,1,...,M —1 (67)

The frequency w, = 27 f. is called the carrier frequency. The radian frequencies

O =wq 2k — (M = 1)] =2nfy[2k — (M —1)] for k=0,1,..., M —1 (68)
are the possible frequency deviations from the carrier frequency during each symbol. The
deviations range from —wg(M — 1) to wg(M — 1) in steps of Aw = 2wy. Each selected
frequency is sent for T, = 1/ f, seconds. The modulation index h is defined to be the tone
separation divided by the baud rate, that is,

_ 2wa_ 2fa

h =
Wy fb

(69)
The sinusoid transmitted during a baud is called the FSK symbol or tone specified by the
bit block. Let k, be the decimal value of an input bit block during the symbol period
nT, <t < (n+ 1)T,. The input block selects the frequency deviation

The frequency signal for baud n is €, p(t — nT,) where p(t) is the unit height pulse of
duration T} defined as

p(t) =

{ 1 for 0<t< Ty (71)

0 elsewhere
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The elementary frequency deviation set of signals is
ai(t) = Qep(t) = wq 2k — (M — 1)]p(t) for k=0,1,...,M —1 (72)

Assuming transmission starts at ¢ = 0, the complete frequency signal is the staircase signal

= > Quplt — nTy) (73)

n=0

This baseband signal is applied to an FM modulator with carrier frequency w. and frequency
sensitivity k, = 1 to generate the FSK signal. The complex envelope of the transmitted FM
signal is

2(t) = Ae’ Jo m(m)dr Lido (74)

where ¢ is an arbitrary initial phase.
The functions required to compute the power spectral density assuming the M frequencies
are equally likely are:

1.
t
— / Qup(t)dt = Qut for 0<t<T (75)
0
2.
. (w=Q,)T
T gbn(t) g—jet g T St 2 —j(w—Q,)T/2 76
Fn(w)—/O e e t = =T e (76)
2
3.
‘ M— 9 M/2
C(;T) = & {eﬂ’"(T)} Z glwaTn—(M=1)] _ i > coslwaT'(2n — 1)] (77)
n=0 n=1
_ SiIl(Mﬂ'h) (78)
M sin(mh)

4. When the modulation index h is an integer k

0 for k even
T { wy/2 for k odd (79)
5.
. (w=Q,)T
7 M-1 sin T o
F(w) = i nz::() W=7 e (80)
2
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Z T 2 oJ (@=n)T/2 ,j T (81)

Also, the power spectral density formula requires

(w—Q,)T

( QQ )T od (@=n)T/2 5§ T
W —dip
2
y . (w=Q,)T
1 M-l osin———— .
_ T 2 oI (@=n)T/2 o~ (w—jn)T

(w—Q,)T
2
. (w—=Q,)T
1 M-1 sin EEC '
= T e I IT2 = p(w) (82)

e o1 ML sin
e G(w) = GWMZT

Putting these results together, the power spectral density is

F? 2
P(w) + 2Re [ () ] for h= "% not an integer

1 — 0(1; T)g,ij Wp
TSp(w) = P(w) — |F(w)]? + ws i |F(y 4 nwy)|* 6 (w — v — nwy) i
for h = an integer k:z:—oo
where for k
{2tk &

Comments on the Properties of this Power Spectral Density

F,(w) has its peak magnitude at the tone frequency 2, = wy[2n — (M — 1)] and zeros at
multiples of the symbol rate, w,, away from the tone frequency. This is exactly what would
be expected for a burst of duration T" of a sinusoid at the tone frequency.

Another implementation of an FSK transmitter could use a bank of oscillators at the
tone frequencies and each baud the transmitter could switch to the oscillator specified by
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the input bit block. This approach does not guarantee continuous phase. The term P(w)
is what would result for this switched oscillator case when the phases of the oscillators are
independent random variables uniformly distributed over [0, 27).

The remaining terms account for the continuous phase property and give a narrower
spectrum than if the the phase were discontinuous.

The power spectrum has impulses at the M tone frequencies when A is an integer. How-
ever, the impulses at other frequencies disappear because they are multiplied by the nulls of
F(y + nwy).

2 FSK

4.1 Power Spectral Density Examples for M
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Figure 2: Normalized Power Spectral Densities T'S,,(w) for Continuous Phase and Switched
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