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Abstract

The integration of information of different kinds, suchspatial and alphanumeric at different levels
of detall, is a challenge. While a solution is not reaciteid widely recognized that the need to integrate
information is so pressing that it does not matter ifid&tdost, as long as integration is achieved. This
paper shows the potential for information retrieval #erknt levels of granularity inside the framework of
information systems based on ontologies. Ontologies are ¢sdtat use a specific vocabulary to describe
entities, classes, properties and functions relateddertain view of the world. The use of an ontology,
translated into an active information system componeats to Ontology-Driven Information Systems and,
in the specific case of GIS, leads to what we catioldgy-Driven Geographic Information Systems.
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1. Introduction

The availability of information about the Earth has beemeasing steadily through the last years.
Contemporary information systems are distributed and dggeeous, which leads to a number of
interesting research challenges. One of them is aboutdhmtegrate information of different kinds, such as
spatial and alphanumeric, at different levels of dlefaients that happen over a large area, such as the wild
fires in and around Los Alamos, New Mexico, in 2000, neg@ dynamic integration of geographic
information. Many times these requirements are so deman@ihg tloes not matter if detail is lost, as long
as integration is achieved. Frequently, the informmaérists, but integration is very difficult to achieveain
meaningful way because the available information wasatetleby different agents and also with diverse
purposes.

The effective integration of multiple resources and dosas known asinteroperation Efforts
towards geographic information systems (GIS) [41] intetfajpmn are well documented [47, 48, 67, 25]. In
the past, exchanging geographic information was as simplnésg paper maps or raw data tapes through
the mail. Today, computers throughout the world are conneotétha use of GIS has become widespread.
The scope of interoperability has changed from stadia éxchange using flat files to global systems,
interconnected using sophisticated protocols to exchangemafian on-line. In the future, computers are
expected to be able to share not only information but laisavledge [55]. Although spatial information
systems have been characterized as an integration @8l interoperability is far from being fully
operational [68].

In this paper we are address the semantic aspects ofaghiginformation integration. In this
context, semantic aspects are related to the meanihg ehtities that compose the ontologies representing
concepts of the real world or, more specifically, of gemgraphic world. Our concern is with semantic
granularity rather than with spatial granularity. Setiwagranularity addresses the different levels of
specification of an entity in the real world, while splagi@anularity deals with the different levels of spatial
resolution or representation at different scales. Foamegt inside a community of biology scholars, a
specific body of water in the state of New Mexico cambleke that serves as the habitat for a specific
species and, therefore, there can be a special conasptnerto be referred to. Nevertheless, it is still aybod
of water, and when a biologist is working at a more gémevael it is considered as a body of water and not
as a lake. At this higher level it is more likely that tomcepts biologists have about this real world entity
"body of water" will match concepts held by another comiityu Therefore, in this more general level of
detail, the biologists and the members of another communityekahange information about bodies of
water. The information will be more general than whenliody of water is seen as the habitat of a specific
fish species.

In GIS, the focus is changing from format integrationémantic interoperability. The first attempts
to obtain GIS interoperability involved the direct transiaiof geographic data from one vendor format into
another. A variation of this practice is the use of axdged file format. These formats can lead to
information loss, as is often the case with the popDkD-based format DXF. Alternatives that avoid this
problem are usually more complex, such as the Spatial Datesfér Standard (SDTS) [66] and the Spatial
Archive and Interchange Format (SAIF) [58]. An argumenttemting that a common format was not
enough to transfer data along with semantics washiimight forth in Mark [42]. Since then, semantics has
been treated as more and more important in geograploicriafion integration [37, 5, 29, 43, 22, 33, 53,
55]. This paper focuses on finding innovative ways to integradgraphic information. The starting point of
the integration of geographic information is the physicavensie. This approach differs from usual ones,
that start from the implementation and representationgointiew. Our approach enables the integration of
information based on its semantic content instead of dealingaply with data formats and geometric
representations. The next generation of information systbmsld be able to solve semantic heterogeneity
to make use of the amount of information available wite &rrival of the Internet and distributed
computing. An information system that intends to solve s#@manteroperability should be able to
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understand the user model of the world and its meanings, tostemtkrthe semantics of the information
sources, and to use mediation to satisfy the informaéiquest regarding the above mentioned sources and
users [55].

Ontologies play a key role in enabling semantic interdplna[70]. Ontology for a philosopher is
the science of beings, of what is, i.e., a particulatesy of categories that reflects a specific view of the
world. For the Artificial Intelligence (Al) communitygntology is an engineering artifact that describes a
certain reality with a certain vocabulary, using a seasgumptions regarding the intended meaning of the
vocabulary words. Gruber [26] defines an ontology as an expjiettification of a conceptualization, from
which Guarino [28] makes a refined distinction between an ontalndya conceptualization: an ontology is
a logical theory accounting for the intended meaning of randb vocabulary (i.e., its ontological
commitment to a particular conceptualization of the world)engas a conceptualization is the formal
structure of reality as perceived and organized bygamtaindependently of the vocabulary used or the
actual occurrence of a specific situation. The intended Isiaafea logical language that use such a
vocabulary are constrained by its ontological commitment.s Ttommitment and the underlying
conceptualization are reflected in the ontology by the appréximaf these intended models.

Research in the next generation of information systemddlacus on a specific kind, such as GIS,
before more general architectures can be developed [S5]n&Ww generation of systems is characterized by
the use of multiple ontologies and contexts to achieve semateroperability. Since Aristotle’s theory of
substances (objects, things, and persons) and accideatgiés, events, and processes), ontology has been
used as the foundation for theories and models of thelwsirice Hayes [34] introduced the use of ontology
in Al, current research on ontology use can be foundiffirout the computer science community in areas
such as computational linguistics and database theory. fEas @hat are being researched range from
knowledge engineering, information integration, and objectntede analysis to applications in medicine,
mechanical engineering, and geographic information systentelo@y has been proposed to play a central
role in driving all aspects and components of an infolwnadiystem, leading to ontology-driven information
systems [28], and in the specific case of GIS, leads hat we call Ontology-Driven Geographic
Information Systems (ODGIS). The use of explicit ontolsgwll contribute to improve information
systems. Since every information system is based amplicit ontology, when we make the ontology
explicit we avoid conflicts between the common-sense onfaddghe user and the mathematical concepts
in the software, and conflicts between the ontological queand the implementation [20].

This paper describes a framework for integrating geograpfdrmation based on ontologies. The use
of different levels of ontologies leads to the integratbmlifferent levels of geographic information from
the semantic point of view. The remainder of this pap@rganized as follows. Section 2 introduces the
abstract paradigm to understand ODGIS, discusses the obgof orientation in ontology representation,
and show the different levels of ontologies. Section 3 intres the basic framework for ontology-driven
geographic information systems. Section 4 shows the sengmspective of information granularity in the
ODGIS framework. In section 5 we present the guidelin@s ifmplementation. Section 6 presents
conclusions and future work.

2. A Foundation for Ontology-Driven GIS

In order to understand how people see the world and howatéiynthe mental conceptualizations of
the apprehended geographic features are represented in a conjptder, sve must develop abstraction
paradigms. The result of the abstraction process is aajenew of the process that goes from the real
object to its computer representation. The use of diffdexels of abstraction allows the development of
specific tools for the different types of problems athekwel. For instance, Frank [21] considers that an
ontology constructed from tiers can integrate differenblogical approaches in a unified system. He
suggests five tiersiuman-independent realjtgbservation of physical worl@bjects with propertiesocial
reality, and subjective knowledgeéNe introduce thdive-universes paradigimwhich builds on the four-
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universes paradigm [23, 9], by adding new components and explainingo$tingeconcepts from the point
of view of the geographic world.

The development of computational representations of the geagnapHd has been the subject of
much study in the last decade [17]. In assembling our vieWweotvbrld we build on previous explanations
on how people see and mentally represent the world [14, 23, 24E&Gh of the five levels in our
abstraction model deals with conceptual characteristics @ebgraphic phenomena of the real world. The
first two levels, the physical level and the cognitive leved anly briefly described here. This work is
concerned mainly with the last three levels, the logical |etleé representation level, and the
implementation level. Once a level is understood, we are@lidee the problems of the next level.

The five universes are thphysical universethe cognitive universethe logical universe the
representation universeand theimplementation universé-igure 1). A geographic phenomenon in the
physical world is captured by the cognitive system of agoeend is classified and stored in the human
mind. The representation of the real world object in thedn cognitive system is done within the cognitive
universe. The formalization of the conceptualizations of thddwia the human mind gives us explicit
formal structures, the ontologies that are part of the dbginiverse. When we take into account the
peculiarities of the spatial world—for instance, referesystems and conceptualizations such as fields and
objects—we are dealing with the representation univéise.shift to the implementation universe is made
through the translation of the components of the representatiwverse into computer language
constructions and data structures.



Fonseca, F., Egenhofer, M., Davis, C., and Camara, G. (2002) Semantic Granularity in Ontology-Driven G  eographic Information
Systems. AMAI Annals of Mathematics and Artificial Intelligence - Special Issue on Spatial and Tempora | Granularity 36(1-2):
pp. 121-151.

Implementation

Java

——\{ Classes
Translation }

Representation

Objects Fields

Logical Cognitive
% % Mediation

Low-level
< Formalization
High-level —IAgreement N\
—\/ Lake
Physical

Figure 1 The five-universe-paradigm.

Our abstraction levels are based on the realistic vietleofvorld, which considers that the physical
world exists independently of our perception. Vegetationssjvend mountains are part of the real-world
phenomena in which we are interested. In the realist @eigp, the process of representation of
geographical reality involves the assignment of concepts toeatsnof the physical world, by virtue of
collective agreement of a community that shares commoreesas [54]. This process of collective
agreement enables the connection between the physical uriweldbe cognitive universe. Through this
process, concepts that correspond to real world objest®@med within a community of experts. But these
concepts are not merely stored in the mind in a haphazydthey are organized in a logical framework
[7]. When this framework is made explicit using logical methage obtain ontologies [30], which are the
formal representations of the logical schemes of the humachand belong to the logical universe.

The logical universe contains two types of ontologies. Higk! ontologies contain the more general
theories of the world, such as the general concepts ofoaytbé natural geography. Low-level ontologies
are specializations of more general ontologies. They caletaded descriptions of specific domains and of
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the tasks that deal with these domains. The logical unii@rmsennected to the representation universe by
semantic mediators

The representation universe is where a finite symbolic ¢oriof the elements in the logical
universe is made so that we can apply operations on thera.thierontologies of objects and fields are
defined as the basic conceptualizations of the geographic wdslal.here is the place to deal with all the
concerns related to how these concepts are captured fromalhearld and how they are measured. The
ontologies present at the representation level and atotlieal level can be translated into computer
languages, generating classes that belong to the implemaniatverse.

The implementation universe includes computational elemanth, a&s algorithms, vector and raster
data structures, and classes in object-oriented languéagéehis work we deal only with classes that are
derived from entities in the ontologies.

ODGIS are built using software components derived from vaoausogies. The ontologies and the
software components are based on object orientation teasitn the next section we describe some basic
concepts in object orientation and their relationship td#sec components of the ODGIS framework.

2.1 Object Orientation inside the ODGIS Framework

The use of the object data model as the basic conceptualizdtspace has been discussed before in
the literature. The issue of defining the geographic spaaetislly the issue of defining and studying the
geographic objects, their attributes, and relationships [4@].0bject view of the spatial world [16] avoids
problems such as the horizontal and vertical partitioningatd {88], although objects can provide both, if
necessary. Furthermore, an object representation of theagdagworld offers many views of a geographic
entity. Objects are also useful in zooming operationsaus® when we get closer to a scene, instead of
seeing enlarged objects we see different kinds of ob[68(s65, 69]. These operations are performed
through aggregation as in the case of a house congdtibytevalls and a roof, or a block formed by land
parcels [38].

We model geographic phenomena using an object-oriented appidastapproach should not be
mistaken with the conceptualization for the representaifothe geographic world. The most accepted
models for this representation are tigectandfield models [14, 24]. Thebject modetepresents the world
as a surface occupied by discrete, identifiable entwigls a geometrical representation and descriptive
attributes. These objects are not necessarily relatadspecific geographic phenomenon and they usually
correspond to constructed features, such as roads anagsildi hdield modelviews geographic reality as
a set of spatial distributions over geographic space. @imatl vegetation cover are typical examples of
geographic phenomena modeled as fields. Although this dichotomyelkassubject to criticism [8], it has
proven to be a useful frame of reference and has ldmpienl, with some variations, in the design of the
current generation of GIS technology [10]. We accept this maddl use it for the representation of
geographic entities.

A classis an extension of the concept of an abstract typeuatste that represents a single entity,
describing both its information content and its behaviorcldss defines the structure and the set of
operations that are common to a group of objects [45]in&tance,or object represents an individual
occurrence of a certain class. While the class is ype tefinition, an instance is the data structure
represented in the memory of a computer and manipulated doftware system. In this work, the terms
objectandinstanceare used interchangeably. An object functions as a comptexstfucture that is capable
of storing all of its data, along with information abobe tnecessary procedures to create, destroy, and
manipulate itself. In an object-oriented GIS, for ins& the separation of spatial and non-spatial attributes
is avoided because everything is stored in the same sguctur

The ability to hide from the user the internal structure@mfobject is calleegencapsulation With
encapsulation it is possible to manipulate the object’s aladiaby using a set of predefined functions. This
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approach ensures data independence: the internal datargsussed by the object can change without
influencing the user's perception of them.

Inheritanceis a classification mechanism in which a class camhbesubclass of another (i.e., it
incorporates the other’s features in addition to its oweptures can be attributes, functions or rules. A
subclass is called a descendant. A superclass is anytl@ass higher than the given class in the hierarchy.
When a given class descends directly from only one superitigssalledsingle inheritancewhen a class
descends from more than one immediate superclass, itlled caultiple inheritance[11]. Multiple
inheritance has benefits and drawbacks. For instancesyatgm that uses multiple inheritance must provide
an adequate solution to problems such as name clashewlfea. features inherited from different classes
have the same name). Although the implementation and uselopleminheritance is non-trivial [64], its
use in geographic data modeling is essential [16]. In oodavdid the problems of multiple inheritance and
at the same time represent the diverse character ofdgeagic entities, we introduce the concepiobés

An object is something—it has an identity [35]-but it cary pléferent roles. Usually the notion of
role is linked with change in time. An object is only onmghbut it can play different roles during its
lifetime. The use of roles in object orientation is eswed in detail by Pernici [50], Albarei al.[1], Wong
et al.[71], and Steimann [59]. The use of roles in the spedifinadf ontologies is discussed in Guarino
[30]. The concept of role as interfaces as we use in tpkimentation of this work is reviewed in Steimann
[60].

One of the most common uses of roles is to represent changasoinject during its lifetime. The
typical example is of a person that plays the rolesstfident, a parent, and a member of a club. In this work
roles help to express different points of view of the satmenomenon. One community may see a certain
phenomenoiX and consider that is a occurrence of an entidy Another community may classify the same
phenomenoiX as being. For this second communiti,may also play a role .

The main objective of using roles in this work is to emplogm as a tool to connect different
ontologies. Therefore we use here a more unrestrained agfioitiroles than other authors [30] who argue
that roles should have their own hierarchy and can only suhsurbe subsumed by another role. Some
authors consider that an object can play a role onlgeifrole is a subtype [6] or a supertype [32] of the
object. This point of view is not adopted here, becauseda role is an entity in another ontology. Each
community has a right to its own point of view and inforioratmust be integrated on that basis, hence the
use of a flexible specification of role. A more rigicesfication would require, for instance, a habitat t@be
subclass of a geographical region. As a consequence,iglogist’'s ontology, a habitat would not be an
entity but only a role. Using a more flexible specifioatof role we can allow a habitat to be an entity. In
this specific point of view, a habitat has an iderdityl all the attributes that characterize an entity agybe
distinct from other entities. In our framework every rigl@an entity. An entity plays roles that are eesitin
other ontologies. We consider roles and the entities thgttipdam to be parts of separate and independent
hierarchies.

As an example, for a biologist a habitat can play the rotelake or the role of woods near the lake.
Some authors would argue that habitat is only a role anddshe always played by a geographic location.
We do not agree with this argument. In our framewoHakitat is an entity in a biologist’'s ontology. The
biologists work with the entity habitat having all the @wteristics of a lake. They can also use a role of
lake. The lake entity can be reused while avoiding the iretlen of all its properties. Using lake as a role
instead of as a superclass gives the biologist more fligxiiihey can also define that habitat inherits from
a more related entity in the biological sense, thus awpiditoo strong dependence on the geographic point
of view. Another reason for using lake as a role is tkemtieasier to obtain metadata and data from other
sources.

A role can be viewed in different ways [59]. Firstpkeris viewed as a named relationship. This point
of view stresses that roles exist only within some pagiccontext. Second, a role can be viewed as a
specialization or a generalization. The problem with thistpafiview is that it contradicts Guarino’s [27]
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and mixes the dynamic nature of the role concept with tiek pigperties of a type hierarchy. Finally, roles

can be represented as adjunct instances. Accordingstpdhit of view, roles are considered to be totally
dependent on the instances that play them and do not carrpwheidentity. The object and its roles form

an aggregate.

The extraction of roles and the resulting generation ofwaingtance of a class can be classified by
what is called in the literature abject migrationor dynamic reclassificatiofd4, 62]. The term migration is
used to model the change from one role to another in systembich class membership is the main
mechanism for assigning roles. Dynamic reclassificatign rble-based systems enable objects to
dynamically change their membership in types and clasdes.cbncept can be extended imtmltiple
classification (allowing an object to be an instance of multiple s#a3,dynamic reclassificatign(allowing
an object to gain and lose class memberships throughewbject’s lifetime), andynamic restructuring
(allowing an object’s structure to change dynamically thhowt the object’s lifetime) [39].

2.2 Ontology Levels

There is a distinction between coarse and fine-grainéalogiies. A coarse ontology consists of a
minimal number of axioms and is intended to be shared by tis#ralready agree on a conceptualization of
the world. A fine-grained ontology needs a very expressive lgegaad has a large number of axioms.
Coarse ontologies are more likely to be shareable anddsihaulused on-line to support the system’s
functionality. On the other hand, fine-grained ontologies shbalused off-line, because they are accessed
eventually for reference purposes [28]. Our solution allowsislee to incrementally go from coarse to fine-
grained ontologies on-line, thus eliminating the division batvaeline and off-line ontologies.

In this work we use the termow-level ontologies for fine ontologies that represent very detailed
information anchigh-levelontologies for coarse ontologies that represent more genfmahation. Thus, if
a user is browsing high-level ontologies he or she should expduididess detailed information. We
propose that the creation of more detailed ontologies sheubd$&ed on high-level ontologies, so that each
new ontology level incorporates the knowledge present in the iratedtdgher level. These new ontologies
are more detailed, because they refine general descripfitres level from which they inherit.

Ontologies are classified in four groups, according to thegpendence on a specific task or point of
view [29].

* Top-level ontologieslescribe very general concepts. In ODGIS a top-level ontaleggribes a
general concept of space. For instance, a theory describitgy & wholes [12], and their
relation to topology, called mereotopology [56], is at lbiel.

« Domain ontologieslescribe the vocabulary related to a generic domain, iuhi€DGIS can be
remote sensing or the urban environment.

e Task ontologiedescribe a task or activity, such as image interpoetadr noise pollution
assessment in ODGIS.

» Application ontologieslescribe concepts that depend on both a particular domeia task, and
are usually a specialization of them. In ODGIS these ogtes are created from the combination
of high-level ontologies. They represent the user needs regardpecific application, such as an
assessment of lobster abundance in the Gulf of Maine.

Representing geographic entities—either constructed featuneatural differentiations on the surface
of the earth—is a complex task. They are not merelytddda space, they are intrinsically tied to space [57].
For instance, boundaries that seem simple can irb&agery complex. An example is the contrast between
soil boundaries, which are fuzzy, and land parcels, whagedaries are crisp. Users who are developing an
application can use the accumulated knowledge of experthakatspecified an ontology of boundaries
instead of dealing with these complex issues by themséltessame is true for ontologies that deal with
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geometric representations, land parcels, and environmentiiest Users should be able to create new
ontologies building on existing ontologies whenever possible. Ampgbeaof abackbone taxonomyvhich
represents the most important properties in a high-letelagy is given in Figure 2 [31].

Entity
Group
Amount . . |
Location of P:gselg? l Ig;::g . Group
matter J g Social of
entity
people
Geographical
region .
9 Fruit
Animal Country Organization
Apple
Lepidopteran Vertebrate
Caterpillar Butterfly Person

Figure 2 A basic taxonomy, from Guarino and Welty [31].
If a local government is starting a GIS project based on ontojJogésan use a basic urban ontology
such as [36]:
» The geographic coverage of the local government area;
* The people within the area,;
e The buildings and facilities;
e The business activities;

e The land itself.

Instead of defining these five main branches in detadl,uders could use the backbone taxonomy
introduced above and, from it, start their own ontologyafle result can be seen in Figure 3 where the
classPeopleis derived from the clag2erson Businesss derived fromOrganization andLand is derived
from Geographical regionAt the same time, if the urban ontology is general enoughnitbe used as the
foundation for other local government projects.
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Location of : ) . Group
object being Social
matter . of
entity
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Caterpillar Butterfly Person
People

Figure 3 Deriving new classes from a high-level ontology.

An application developer can combine classes from diverse orgslagid create new classes that
represent user needs. In this way, a class that re@&dlding in the urban ontology can be built from
Physical objectin the basic taxonomy. At the same tirBelilding can be seen as a location and can also
hold a social entity or an organization. Th&siilding can play the roles dfocation and Organization
extracted from the urban ontology. Thus the real claBsiiigling, but it plays many roles (Figure 4) that,
together, give the class its unique characteristics.
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Figure 4 A class can play many roles.

3. Ontology-Driven Geographic Information Systems

In this section we introduce the multiple-ontology approach datology-driven geographic
information systems. This approach enables the reudenafledge and a better understanding of the
geographic phenomena. Two kinds of ontologies for the geographid a#lintroduced. One is called
Phenomenological Domain Ontology and aims at capturing the difféerensions and internal properties
of the geographic phenomena. The other type is concernetheittescription of specific subjects and tasks
and is called the Application Domain Ontology. The multi-arggl approach leads to bi-directional
integration of geographic information.

3.1 A Multiple-Ontology Approach

Ontologies for the geographic world, or geo-ontologies, eaditided in two types. One type is the
Phenomenological Domain Ontolo@l DO). This ontology captures the different dimensions atetnal
properties of the geographic phenomena. This specific ontologytiisctiand independent from the other
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type, theApplication Domain OntologfADO). This ontology is concerned with description of specif
subjects and tasks that the GI scientists use as eesafunformation.

Since the PDO is concerned with how the geographic phenomenon captbe=d and represented
by computer systems, it is located in the representatiorense. The ADO is part of the logical universe
because it deals with the description of the phenomenon iwgedfe it fits in the world, and how it can be
best described. The connection between PDO and ADO is boyastamantic mediators (Figure 5).

Representation Logical
Universe Universe
Phenomenological Application
Domain Domain
Ontology Ontology
Method Subject
Ontology Ontology
Semantic
Mediator
Measurement Task
Ontology Ontology

Figure 5 Phenomenological and application ontologies

One of the objectives of separating geo-ontologies in PDOA®@I is to emphasize the detection of
spatio-temporal configurationsf geographic phenomena. In a single time instance, tteé settchings of a
concept from the application domain ontology to an instance afigept on the phenomenological ontology
is called aspatial configuration Given a temporal sequence of geographic phenomena, tloé settial
configurations is called a spatio-temporal configuratiohisTidea is consistent with the identity-based
modeling of change [35], where object identity is proposedcaitral notion for modeling spatial-temporal
change. The framework allows an object, identified as gfathe user ontology, to be related to different
descriptions in the PDO, because of changes in the objecgdartime series. Consider, for example,
mapping urban sprawl for a city by analyzing a 20-year tienees of LANDSAT images. The geometries
that describe the evolution of the urban boundaries of theltdyge continually, are recorded annually, and
yet the identity of the object remains the same.

Another objective is to be able to reuse elements of the satology in different applications. With
this separation we make clear what are the specifibhodstand what are the more general ones. The
specific methods can be reused for similar phenomena, thikilgeneral ones have a broader use. A simple
example is the case of detecting or extracting line segnimmsa series of imagetine segments a
concept that is part of the structural ontology of the imadedtclearly defined geometric properties. These
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lines can take different roles in domain ontologies of diffevser communities. Another example is that all
the methods for spatial analysis over polygons available dpRi@eside can be reused for every application
on the ADO side.

Each geographic object is unique as a concept in the loginedrse and above. Although we choose
different conceptualizations to represenblijects and fields-its nature does not change. For instance, a
reservoir is a reservoir, regardless of whether it is repted by an aerial photograph, a polygon, or a
digital terrain model. Figure 6 shows a reservoir repredenttree different ways.

Representation Logical
Universe Universe

Ontology

Semantic
Mediator
Task
Ontology

Figure 6 Three different representations of reservoir.

The representations are located in the representatimers®, while the concept and its formal
description are located in the logical universe. The concsptvar is described only once in a high-level
ontology, such as a natural-geography ontology, but it can belliokenore than one element in the PDO,
(i.e., one for each of the different representationstioesd above).

3.2 Bi-Directional Integration

One of the main objectives of this work is to integ@agegraphic information from different sources.
The various geospatial information communities have difteveews of the world. These views can be
formalized in different ontologies. Therefore, it is neaegdo accommodate multiple ontologies, which in
our model lie inside both the logical universe and insidegpeesentation universe.
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We introduce here two different ways to integrate agias. The first is the integration inside a
subject, and is calledertical integration The other kind of integration is callédrizontal integrationand
involves integrating ontologies of different subjects (FigQte

Phenomenological Domain Ontologies Application Domain Ontologies
Classification Transportation
LANDSAT Geology
GPS Hidrology
o Vertical Verticgl

Integration Integration
Horizontal (| ) Horizontal
Integration Integration

Figure 7 Horizontal and vertical integration.

When a new ontology is specified, it is necessary to haset af operations that allow the reuse of
previous ontologies or parts of them. In an ODGIS environtieae operations are availabieheritance
inclusion androles Inheritance is used for vertical integration and ralesused for horizontal integration.
Inclusion can be used for both integrations.

Classes in ODGIS are defined hierarchically, taking atdge ofinheritance It is possible to define
more general classes, containing the structure of a gepeeiof object, and then specialize these classes by
creating subclasses. The subclasses inherit all propefties parent class and add some more of their own.
Rolesare used to get around problems with multiple inheritance. ulipte inheritance for instance, a
geographic feature can be at the same time a lake andst &dtraction. In ODGIS we represent this entity
as a lake that plays the role of a tourist attractioterLan, the lake can be perceived as an environmentally
protected area, that is, it can take on yet another Tblus, in ODGIS an entity can have many roles.

Inclusionis an operation in which an entity of an ontology is usespecify any part of an entity in a
new ontology. For instance, an ontology that deals with septations of spatial objects will include many
parts from a geometry ontology.

The integration operations are used in different stagfethe ontology specification process. This
separation happens because the levels of detail aresdifferthe many stages of ontology specification. We
suggest the use of inheritance in the high-level ontology irttegrand inheritance and roles at the low-
level integration. Inclusion is used in every levelrdegration.

The multi-level ontology approach generates a very flexible mbderder to exploit this flexibility,
we need a specific model for navigation among the diversigeentWe choose to develop the navigation
model in the implementation universe. Since the classeacead from the ontologies are in this level, the
navigation model is based on the change of classes.

4. Change of Granularity in ODGIS



Fonseca, F., Egenhofer, M., Davis, C., and Camara, G. (2002) Semantic Granularity in Ontology-Driven G eographic Information
Systems. AMAI Annals of Mathematics and Artificial Intelligence - Special Issue on Spatial and Tempora | Granularity 36(1-2):
pp. 121-151.

The ODGIS framework can be presented based on two asgactsknowledge generatioand
knowledge useThe knowledge-generation phase comprises the specificatidre adntologies using an
ontology editor, the generation of new ontologies from existimgs, and the translation of the ontologies
into software components.

The knowledge-use phase of an ODGIS relies on products dedelopiee previous phase: a set of
ontologies specified in a formal language and a set of claBsesntologies are available to be browsed by
the end user, and they provide metadata on the availabtenatfon. A set of classes that contains data and
operations constitutes the system’s functionality. Tloésgses are linked to geographic information sources
through the use of mediators. In this section we will udiscthe operations of generalization and
specification over the instances of the classes. Thaimes described here are applied over instances of
the classes, the real objects with data and operations

Information in ODGIS is treated as instances ofsdasThe classes are modeled from ontologies. The
instances are created by mediators that extract datadatabases and shape it according to the model of
classes defined in the ontologies. In ODGIS, we observegelsaof granularity in the model in which the
ontologies are represented, and in the use of the systenfdaonation retrieval when we are dealing with
the instances of the classes. In this section we revieletail what was suggested for change of granularity
of instances in Fonsee al. [19].

There are two types of changes of classes in ODGISfirEh¢ype occurs when an instance of a class
immediately above or immediately below is generated fromvangclass. We call this transformation
vertical navigation The second type occurs when one of the roles played byjiw © extracted from one
instance. This way a new instance is generated produaiegvabject that belongs to the class of the role.
We call this transformatiohorizontal navigatior(Figure 8).

Body of
Water
Lake Reservoir
Role:Protected Area
Vertical Horizontal
Navigation Navigation

Body of
Water

Protected
Area

Role:Protected
Area

Lake

Figure 8 Vertical and horizontal navigation in an atology of bodies of water.
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Vertical navigation implies a change of level of detaitehese it produces a new instance with more
detail or one with less detail than the original instaktm@izontal navigation does not imply a change of the
level of detail. The new class generated by horizontal atwig can be at any level in the hierarchy of
classes.

4.1.1 Semantic Granularity in ODGIS

The abstraction of concepts and notions about real-wor&ttshis an important part of the creation of
information systems. In the abstraction process, cectairacteristics of the objects are identified and coded
in a model in such a way that the set of charactesissi representative of the much more complex real-
world objects. Depending on the user’s interest, however,stti of characteristics can be defined to be
more or less detailed.

Some authors considgranularity in a spatial database to be the same as resolutioniniplisng
that granularity is related to the level of distinctmetween elements of a phenomenon that is represented by
the dataset [61]. Hornsby [35] points out the difference letwesolution and granularity. Resolution refers
to the amount of detail in a representation, while graitylaefers to the cognitive aspects involved in
selection of features. This kind of granularity is chlsmantic granularity The notion of granularity
applied to GIS leads to studies of the variation in tipeesentation of geographic objects and phenomena
across a wide range of scales. Certain phenomena aredspaledent, (i.e., their representation varies
across the scales). For instance, if an urban setileimi@erceived at a small scale, the level of detail is
usually small enough for an entire city with all its complaernal structure to be represented as a point or
as a simple polygon on a map. If the same city is perceivedlatger scale it becomes necessary to
represent its internal structure with more detail, ifigtance depicting blocks, squares, major streets, and
buildings. Considering a geographic database where two rafaees of the same phenomenon have to
coexist, Beard [2] shows how it could be possible to mairgad update only the most detailed version of
the objects and then to filter out unwanted detail to prothedess-detailed version. Here we work with a
higher level of abstraction dealing with information systénstead of databases. In an ODGIS, a concept
can have more than one representation. For instanagsulaéconcepts about a river are independent of how
it is represented, whether as a network for transpontati as an important element of the environment of a
region. In an ontology, a river is defined first by its geher@aning. More specialized ontologies deal with
representation issues later.

In the ODGIS framework there are different levels obtogies. Accordingly, there are also different
levels of information detail. Low-level ontologies correspoodrery detailed information, and high-level
ontologies correspond to more general information. Thusp&es is browsing high-level ontologies he or
she should expect to find less detailed information. Wpqa® that the creation of more detailed ontologies
should be based on the high-level ontologies, such that eacbmelogy level incorporates the knowledge
present in the previous level. These new ontologies are moafledetbecause they refine general
descriptions of the level from which they inherit. We follow Hdoyis [35] approach because we consider
that the level of semantic granularity is relatedhte kevel of ontology used. Ontologies can be used to
specify how high-level abstractions relate to concepts awarllevel by establishing methods that help to
implement rules and constraints.

4.1.2 The Mechanism for Changes of Granularity

There are two operations for changes in the level of dejanleralization and specialization. In
generalization a class with a certain level of detail ggasra new class with less detail. For instance, using
Guarino’s ontology (Figure 2), &eogr aphi cal Regi on can be generalized into laocat i on.
Specialization is the inverse operation, in which a monermge class is converted into a more specific class.
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In ODGIS every class inherits from a basic class cdlledect . This specific class has two basic
methods to be used in changes of granularity. One methmdsto generalize new classes and it is called
Up, and the other is used to specialize classes andatle&iCr eat e_From

For example, if a user is dealing with instances of thest ake and of the classeser voi r, the
user can see and manipulate the instances of those dgdotstances diody of wat er. This way the
user is able to obtain better results in queries, retriemiage objects than if he had used ohbke or
reservoir.

In specialization we can consider the same example tautlifierent order. The user has an instance
of | ake but he/she is interested in using some methods only avditalilee class eser voi r or the user
wants to combine in a detailed fashion the data availdioletdahe class ake with the data available about
the class eser voi r. The solution presented here allows the user to genera$izénk instances dfake
intobody of wat er, and then from this new set of instances, specialize thimeser voi r .

4.1.3 Generalization and Specialization

The generalization operation implies generating a newnostaf a class with less detail and less
knowledge than the original instance. To perform this oerat is necessary to have knowledge about
which data are going to be discarded and which data are tgobegkept, or transformed. The best place to
do this is inside the instance that has all the datheobbject that is going to be generalized. The operation
that performs the generalization is callggl and it implies changes not only to non-graphic data but also
changes in representation formats. Generalizations afgeptation formats have been discussed elsewhere
[3, 15, 49]. What is presented here is the framework intwithits kind of operation can happen. ODGIS is a
framework that enables the integration of existing knowledmher at the logical level or at the
representation level.

The specialization operation implies generating a newvamcst of a class with more detail and,
therefore, with more knowledge embedded in it. In ordectoraplish specialization we choose to place the
method for specialization in the class that will recdive result of the operation. This choice was made
because the know-how to perform this operation resides in thelass: Therefore, the class provides the
methods and the rules for creating a new instanceelif fitem a more generic instance.

For example, if an instance oéser voi r is going to be created, only theser voi r class knows
all the details necessary to create an instanceaf. ifgo create a class ofeservoi r froml ake itis
necessary that (1) an instancd eke creates an instancelobdy of water; (2) anempty instance
of reservoi r is created; and (3) the instance efser voi r populates itself with data from the instance
of body of water. The resultis anincomplete but working version of araimst ofr eser voi r.

To make the instance afeservoir complete, the mediators have to look into the source of
reservoir and then use similarity matching techniques [52] to trymaich the new instance with
available data. The result of this operation is a ntoreplete instance. From the point of view ake, this
new instance is richer, because it has all the infoomahat it had before dsake, plus the information
retrieved by the mediator from the source eker voi r.

4.1.4 Role Extraction

In an ODGIS, an object can play many roles. The olggahot change its own class without losing its
identity, but it can play different roles depending on théexdnIn order to provide the user with the ability
to work with these different roles we introduced the conoégtorizontal navigation The result is the
creation of a new instance of the class of the role playezh object. One of the roles played by the object
is extracted, i.e., one new instance is available fouslee.
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This kind of operation is not a specialization or generdinasince a role can be seen as being at the
same level of the classes that contain it, insteadinflze the level of their superclasses or subclasses. For
instance, d ake can play the role of ki nk in a transportation network. The ontology of bodies dewa
and the ontology of transportation can be at the same level.

Lake Transportation
link
Transportation link /
role 2
role 3

Figure 9 Role extraction.

The slots for roles are defined in the general adigsect . The rules and methods for generating an
instance of a role should be provided in this class.riégod for extracting a role is calledt r act . For
instance, the syntax to extract the rold nk from | ake is: new object link =
| ake. extract (link).

5. Guidelines for Implementation

In this section we analyze the options for implementadioiine main components of an ODGIS. We
are suggesting here specific tools for implementationkidésv that these tools are not the only solutions,
but the evolution of ontology-driven information systems \aid to the use of similar tools, or to an
evolution of these tools.

An ontology-driven information system deals with instanafeslasses called objects. These objects
are extracted from geographic databases and carry mthtaparations. One of the most suitable options for
implementing interoperable objects [4] or components tlead o share both code and data across a
heterogeneous network is the use the programming language Java [13¢ctRise compiled Java code
(bytecode) can be executed by Java interpreters avatmbl@ost computers. Furthermore, the object-
oriented structure of Java offers many features fomtipeementation of distributed objects.

5.1 The Ontology Editor

The ontology editor allows users to work on the specificaboontologies. After the ontology is
specified, the user may query and update the ontologies esimge applications on the Internet.

The set of ontologies is represented in a hierarchy. cbngponents of the hierarchy are classes
modeled by their distinguishing featurpsrts functions and attributes (Figure 10). This structure for
representing ontologies is extended from Rodriguez [52] withddé&ion ofroles Roles allow for a richer
representation of geographic entities and avoid the proldémsiltiple inheritance.
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Once the ontology is specified, the ontology editor hadities for translating ontologies from
repositories into application environments. We use Javahasimplementation language. The basic
mechanism for inheritance in Java is through the use deyweordextendsThis mechanism allows a new
class to inherit from only one parent class. The entitiése ontologies are translated into Java interfakes.
Java interface describes the set of public methods tblaisa that implements the interface must support,
and also their calling conventions. But a Java interface doeimplement those methods. Each descendant

Figure 10 Basic structure on an ontology class.

class has to provide the code for each existing interfeatbod (Figure 11).
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Figure 11 A Java interface forl ake.
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5.2 The Ontology Browser

In the ODGIS approach, the application program relies orsedaderived from ontologies. These
classes can be as simple as one entity or as compé&eypas of an ontology. The application developer is
able to browse the ontology that is the origin of these clag$esontology browser has two important
functions. First, it can be used during ontology specibecally users who wish to collaborate in composing
a shared ontology. Second, once the ontology has been spdtifidiiowser is used to show the available
geographic entities to the users. Mediators connect entit@#ologies to features in spatial databases.
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Figure 12 Browsing a top-level ontology.

For instance, a user wants to retrieve information ebodies of water of a determined region. First,
the user browses the ontology server looking for the relateseslasfter that, the ontology server starts the
mediators that look for the information and return a setb@écts of the specified class. The results can be
displayed (Figure 13) or can undergo any valid operatioh, asistatistical analysis.
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Figure 13 Schema for a query processing with an ODIS.

5.3 Querying the System

The framework allows the user to browse at different sewélinformation. Ontologies are structured
in a hierarchical way. This kind of organization le&d queries by level.

The entities chosen to be queriedlaoely of wat er,| ake, andr eser voi r (Figure 14).
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Figure 14 Query by level.

The user has to find the concepts in the ontology treequibees forl ake presented the following
result: 79 objects found (Figure 15). The queryrfeser voi r is similar to the previous query. The result
forr eser voi r was: 91 objects found (Figure 16).
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Figure 15 Query forl ake.
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Figure 16 Query forr eser voi r.

When browsing the ontology of bodies of water, the user may eltoagiery fobody of water.
This entity is located one level higher thHaake andr eservoi r, that is, it is necessary to explore the
concept obody of wat er, finding that it includes both the conceptd ake andr eser voi r, thereby
selecting both during the query. As a result, the query performed at a high semantic level. The result of
the query fobody of wat er was: 176 objects found (Figure 17).
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Figure 17 Query forbody of water.

The results of the query using the semantic querpdaly of wat er can be compared against the
results of the first two queries and against the regulie sum of these first two queries.

The query fobody of water returned more objects (176) than the query ke (79) and more
than the query for eser voi r (91). This result was expected and shows that with theustc search
broadened more adequate results are produced. These resekp@ud more closely to the user’s notions
about bodies of water, assuming that the concepts the user withksre adequately laid out as an
ontology.

The expected results of a query foody of water could be the sum of theake and
reservoi r, but we obtained a higher number (176) than that sum (17i3)rddult has two explanations.
Both show the strength of the semantic approach for geogragbtimation integration.

First, one reason for retrieving 176 objects instead of 1Ti@aissince we are in a high level in the
hierarchy, other classes beyohdke andreservoir can be retrieved and classified lasdy of
wat er , thus producing a broader result.

The second reason implies that, among the informatidersgsintegrated in this particular scenario
of ODGIS, some of them can have information classifiegt ahhigh conceptual levels, for instanbedy
of wat er. The are two reasons for this more generic classiditéo happen.

e Unclassified information collected from other sources.

e The source does not disclose the classification at a lagél lof detail. It only releases
information at the lower semantic levels, because afrggceasons or commercial purposes.

6. Conclusions

This work investigated new ways to integrate geographicrimation at different levels of detail. We
chose to use ontologies as the foundation of the integrdteémause ontologies can represent real world
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entities using a sophisticated structure with componentsasuidefinitions, parts, functions, attributes, and
rules of relationship. Furthermore, ontologies capture the smsaf information, can be represented in a
formal language, and can be used to store related neet#diatologies can be used to establish agreements
about diverse views of the world and consequently carrynganing of the original ideas that are embedded
in the representation of geographic phenomena in the hunmaeh Tiie ontologies are linked to information
sources through semantic mediators, therefore, theratimg of ontologies leads to integration of
information.

Our approach for integration of geographic informationtstafrom entities of the physical universe.
This approach differs from usual approaches that start filwenimplementation and representation
universes. Our approach enables the integration of infamétsed on its semantics content instead of
dealing primarily with data formats and geometric repreg®mns. In order to integrate information it was
necessary to integrate first ontologies

The problem of the different levels of detail was appnedcby the introduction of a navigation
mechanism that allows an object (i.e., the implemematioan ontology entity) to change its class by
generalization or specialization. In a generalization, eerapecific object drops some pieces of information
and turns itself into a more general instance. In a almiion, a more general object gathers more
information and becomes a more specific object. Weiatsoduced the operation called role extraction, in
which a role played by an object can be extracted andftramed into a new instance. This new instance
acts as an independent object. Therefore, the new instancee matched with an object associated with
another entity in a different ontology.

We proposed the use of a special parent class thatsaflawigation from application ontologies to
top-level ontologies, passing through domain and task ontsloglgs navigation capability shortens the
gap between generic and specialized ontologies, enablingshitieng of software components and
information. ODGIS employs user classes that are dethwedigh inheritance from various ontologies to
approach heterogeneity issues.

An ontology editor and an embedded translator from entietasses were developed to support the
knowledge-generation phase of the architecture. For the knowlsg#gphase, a user interface to browse
ontologies was also developed, and the container of geogragkaisotvas extended from Fonseca and
Davis [18].
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