PREPRINT: To be presented at ICFP *14, September 1-6, 2014, Gothenburg, Sweden.

Practical and Effective Higher-Order Optimizations

Lars Bergstrom

Mozilla Research *
larsberg@mozilla.com

Abstract

Inlining is an optimization that replaces a call to a function with that
function’s body. This optimization not only reduces the overhead
of a function call, but can expose additional optimization oppor-
tunities to the compiler, such as removing redundant operations or
unused conditional branches. Another optimization, copy propaga-
tion, replaces a redundant copy of a still-live variable with the origi-
nal. Copy propagation can reduce the total number of live variables,
reducing register pressure and memory usage, and possibly elimi-
nating redundant memory-to-memory copies. In practice, both of
these optimizations are implemented in nearly every modern com-
piler.

These two optimizations are practical to implement and effec-
tive in first-order languages, but in languages with lexically-scoped
first-class functions (aka, closures), these optimizations are not
available to code programmed in a higher-order style. With higher-
order functions, the analysis challenge has been that the environ-
ment at the call site must be the same as at the closure capture
location, up to the free variables, or the meaning of the program
may change. Olin Shivers’ 1991 dissertation called this family of
optimizations Super-# and he proposed one analysis technique,
called reflow, to support these optimizations. Unfortunately, reflow
has proven too expensive to implement in practice. Because these
higher-order optimizations are not available in functional-language
compilers, programmers studiously avoid uses of higher-order val-
ues that cannot be optimized (particularly in compiler benchmarks).

This paper provides the first practical and effective technique
for Super-g (higher-order) inlining and copy propagation, which
we call unchanged variable analysis. We show that this technique
is practical by implementing it in the context of a real compiler
for an ML-family language and showing that the required analy-
ses have costs below 3% of the total compilation time. This tech-
nique’s effectiveness is shown through a set of benchmarks and ex-
ample programs, where this analysis exposes additional potential
optimization sites.

* Portions of this work were performed while the author was at the Univer-
sity of Chicago.

[Copyright notice will appear here once ’preprint’ option is removed.]

Matthew Fluet
Matthew Le

Rochester Institute of Technology
{mtf,ml9951}@cs.rit.edu

John Reppy
Nora Sandler

University of Chicago
{jhr,nIsandler}@cs.uchicago.edu

Categories and Subject Descriptors D.3.0 [Programming Lan-
guages]: General; D.3.2 [Programming Languages]: Language
Classifications—Applicative (functional) languages; D.3.4 [Pro-
gramming Languages]: Processors—Optimization

Keywords control-flow analysis, inlining, optimization

1. Introduction

All high level programming languages rely on compiler optimiza-
tions to transform a language that is convenient for software devel-
opers into one that runs efficiently on target hardware. Two such
common compiler optimizations are copy propagation and func-
tion inlining. Copy propagation in a language like ML is a simple
substitution. Given a program of the form:
let val x =y
in

x*2+y
end

We want to propagate the definition of x to its uses, resulting in
let val x =y
in
y*2+y
end

At this point, we can eliminate the now unused x, resulting in
y*2+y

This optimization can reduce the resource requirements (i.e., reg-
ister pressure) of a program, and it may open the possibility for
further simplifications in later optimization phases.

Inlining replaces a lexically inferior application of a function
with the body of that function by performing straightforward /-
substitution. For example, given the program
let fun f x = 2*x
in

£ 3
end

inlining £ and removing the unused definition results in

2%3

This optimization removes the cost of the function call and opens
the possibility of further optimizations, such as constant folding.
Inlining does require some care, however, since it can increase the
program size, which can negatively affect the instruction cache per-
formance, negating the benefits of eliminating call overhead. The
importance of inlining for functional languages and techniques for
providing predictable performance are well-covered in the context
of GHC by Peyton Jones and Marlow [PMO2].

Both copy propagation and function inlining have been well-
studied and are widely implemented in modern compilers for both
first-order and higher-order programming languages. In this paper,

we are interested in the higher-order version of these optimizations,
which are not used in practice because of the cost of the supporting
analysis.

For example, consider the following iterative program:

let
fun emit x = print (Int.toString x)
fun fact i m k =
if i=0 then k m
else fact (i-1) (mxi) k
in
fact 6 1 emit
end

Higher-order copy propagation would allow the compiler to prop-
agate the function emit into the body of fact, resulting in the
following program:

let
fun emit x = print (Int.toString x)
fun fact i m k =
if i=0 then emit m
else fact (i-1) (mxi) emit
in
fact 6 1 emit
end

This transformation has replaced an indirect call to emit (via the
variable k) with a direct call. Direct calls are typically faster than
indirect calls,1 and are amenable to function inlining. Furthermore,
the parameter k can be eliminated using useless variable elimina-
tion [Shi9l], which results in a smaller program that uses fewer
resources:

let
fun emit x = print (Int.toString x)
fun fact i m =
if i=0 then emit m
else fact (i-1) (m*1i)
in
fact 6 1
end

Function inlining also has a similar higher-order counterpart
(what Shivers calls Super-$). For example, in the following pro-
gram, we can inline the body of pr at the call site inside fact,
despite the fact that pr is not in scope in fact:

let
val two = 2
fun fact i m k =
if i=0
then k m
else fact (i-1) (mxi) k
fun pr x = print (Int.toString (xxtwo)
in
fact 6 1 pr
end

Inlining pr produces

let
val two = 2
fun fact i m k =
if i=0
then print (Int.toString (mxtwo)
else fact (i-1) (mxi) k
fun pr x = print (Int.toString (x*two)
in
fact 6 1 pr
end

This resulting program is now eligible for constant propagation and
useless variable elimination.

I Direct calls to known functions can use specialized calling conven-
tions that are more efficient and provide more predictability to hardware
instruction-prefetch mechanisms.

Practical and Effective Higher-Order Optimizations

While some compilers can reproduce similar results on trivial
examples such as these, implementing either of these optimizations
in their full generality requires an environment-aware analysis to
prove their safety. In the case of copy propagation, we need to
ensure that the variable being substituted has the same value at the
point that it is being substituted as it did when it was passed in.
Similarly, if we want to substitute the body of a function at its call
site, we need to ensure that all of the free variables have the same
values at the call site as they did at the point where the function
was defined. Today, developers using higher-order languages often
avoid writing programs that have non-trivial environment usage
within code that is run in a loop unless they have special knowledge
of either the compiler or additional annotations on library functions
(e.g., map) that will enable extra optimization.

This paper presents a new approach to control-flow analysis
(CFA) that supports more optimization opportunities for higher-
order programs than are possible in either type-directed optimiz-
ers, heuristics-based approaches, or by using library-method anno-
tations. We use the example of transducers [SMO06], a higher-order
and compositional programming style, to further motivate these op-
timizations and to explain our novel analysis.

Our contributions are:

¢ A novel, practical environment analysis (Section 5) that pro-
vides a conservative approximation of when two occurrences
of a variable will have the same binding.

e Timing results (Section 9) for the implementation of this analy-
sis and related optimizations, showing that it requires less than
3% of overall compilation time.

e Performance results for several benchmarks, showing that even
highly tuned programs still contain higher-order optimization
opportunities.

Source code for our complete implementation and
all the benchmarks described in this paper is available
at: http://smlnj-gforge.cs.uchicago.edu/
projects/manticore/.

2. Manticore

The techniques described in this paper have been developed as part
of the Manticore project and are implemented in the compiler for
Parallel ML, which is a parallel dialect of Standard ML [FRRS11].
In this section, we give an overview of the host compiler and in-
termediate representation upon which we perform our analysis and
optimizations. The compiler is a whole-program compiler, read-
ing in the files in the source code alongside the sources from
the runtime library. As covered in more detail in an earlier pa-
per [FFRT07], there are six distinct intermediate representations
(IRs) in the Manticore compiler:

1. Parse tree — the product of the parser.

. AST — an explicitly-typed abstract-syntax tree representation.
. BOM — a direct style normalized A-calculus.

. CPS — a continuation-passing style A-calculus.

. CFG — a first-order control-flow graph representation.

[NS N]

. MLTree — the expression tree representation used by the ML-
RISC code generation framework [GGR94].

The work in this paper is performed on the CPS representation.

2.1 CPS

Continuation-passing style (CPS) is the final high-level represen-
tation used in the compiler before closure conversion generates a
first-order representation suitable for code generation. Our CPS

2014/6/17

transformation is performed in the Danvy-Filinski style [DF92].
This representation is a good fit for a simple implementation of
control-flow analysis because it transforms each function return
into a call to another function. The uniformity of treating all
control-flow as function invocations simplifies the implementation.
As a point of contrast, we have also implemented control-flow anal-
ysis on the BOM direct-style representation to support optimiza-
tion of message passing [RX07]. The BOM-based implementation
is almost 10% larger in lines of code, despite lacking the optional
features, user-visible controls, and optimizations described in this
paper.

The primary datatypes and their constructors are shown in Fig-
ure 1. Key features of this representation are:

e Each expression has a program point associated with it, which
serves as a unique label.

e It has been normalized so that every expression is bound to a
variable.

e The rhs datatype, not shown here, contains only immediate
primitive operations. such as arithmetic and allocation of heap
objects.

e The CPS constraint is captured in the IR itself — Apply and
Throw are non-recursive constructors, and there is no way to
sequence an operation after them.

datatype exp = Exp of (ProgPt.ppt * term)
and term
= Let of (var list % rhs * exp)
| Fun of (lambda list * exp)
| Cont of (lambda * exp)
| If of (cond % exp * exp)
| Switch of (var » (tag * exp) list x exp option)
| Apply of (var % var list % var list)
| Throw of (var % var list)
and lambda = FB of {
f : var,
params : var list,
rets : var list,
body : exp
}

and ...

Figure 1. Manticore CPS intermediate representation.

3. Control-Flow Analysis

This section provides a brief background on control-flow analy-
sis (CFA) along with an overview of our specific implementation
techniques to achieve both acceptable scalability and precision.
A more general introduction to control-flow analysis, in particu-
lar the OCFA style that we use, is available in the book by Niel-
son et al. [NNH99]. For a detailed comparison of modern ap-
proaches to control-flow analysis, see Midtgaard’s comprehensive
survey [Mid12].

In brief, while many others have implemented control-flow
analysis in their compilers [Ser95, CIW00, AD98], our analysis is
novel in its tracking of a wider range of values — including boolean
values and tuples — and its lattice coarsening to balance perfor-
mance and precision.

3.1 Overview

A control-flow analysis computes a finite map from all of the
variables in a program to a conservative abstraction of the values
that they can take on during the execution of the code. That is, it
computes a finite map

fi
V:vVarID = value

Practical and Effective Higher-Order Optimizations

datatype value
= TOP
| TUPLE of value list
| LAMBDAS of CPS.Var.Set.set
| BOOL of bool
| BOT

Figure 2. Abstract values.

where the value type is defined as a recursive datatype similar
to that shown in Figure 2. The special T (TOP) and L (BOT)
elements indicate either all possible values or no known values,
respectively. A TUPLE value handles both the cases of tuples and
ML datatype representations, which by this point in the compiler
have been desugared into either raw values or tagged tuples. The
LAMBDAS value is used for a set of variable identifiers, all of which
are guaranteed to be function identifiers. The BOOL value tracks the
flow of literal boolean values through the program.
As an example, consider the following code:

let fun double (x) = x+x
and apply (f, n) = f(n)
in
apply (double, 2)
end

After running CFA on this example, we have

V(£) = LAMBDAS ({double})
V(n) = T
V(ix) = T

These results indicate that the variable £ must be bound to the
function double. This example and the value representation
in Figure 2 do not track numeric values, which is why n and x
are mapped to T. We are planning to track a richer set of values,
including datatype-specific values, in the future in order to enable
optimizations beyond the ones discussed in this paper.

3.2 Implementation

Our CFA implementation is straightforward and similar in spirit
to Serrano’s [Ser95]. We start with an empty map and walk over
the intermediate representation of the program. At each expres-
sion, we update V by merging the value-flow information until we
reach a fixed point where the map no longer changes. The most
interesting difference from Serrano’s implementation is that we
use our tracked boolean values to avoid merging control-flow in-
formation along arms of conditional expressions that can never be
taken. In our experience, the key to reducing the runtime of control-
flow analysis while still maintaining high precision lies in carefully
choosing (and empirically tuning) the tracked abstraction of values.

3.2.1 Tuning the lattice

Each time we evaluate an expression whose result is bound to a
variable, we need to update the map with a new abstract value
that is the result of merging the old abstract value and the new
value given by the analysis. In theory, if all that we care about in
the analysis is the mapping of call sites to function identifiers, we
could use a simple domain for the value map (V) based on just the
powerset of the function identifiers. Unfortunately, this domain is
insufficiently precise in practice because of the presence of tuples
and datatypes. Furthermore, SML treats all functions has having a
single parameter, which means that function arguments are packed
into tuples at call sites and then extracted in the function body.
Thus, the domain of abstract values needs to support tracking of
information as it moves into and out of more complicated data
structures.

2014/6/17

We build a lattice over these abstract values using the T and
1 elements as usual, and treating values of TUPLE and LAMBDAS
type as incomparable. When two LAMBDAS values are compared,
the subset relationship provides an ordering. It is this ordering that
allows us to incrementally merge flow information, up to a finite
limit. The most interesting portion of our implementation is in the
merging of two TUPLE values. In the trivial recursive solution, the
analysis may fail to terminate because of the presence of recursive
datatypes (e.g., on each iteration over a function that calls the cons
function, we will wrap another TUPLE value around the previous
value). In practice for typical Standard ML programs, we have
found that limiting the tracked depth to 5 and then mapping any
further additions to T results in a good balance of performance and
precision.

Note that unlike some other analyses, such as sub-zero
CFA [AD98], we do not limit the maximum number of tracked
functions per variable. Avoiding this restriction allows us to use
the results of our analysis to support optimizations that can still be
performed when multiple functions flow to the same call site (un-
like inlining). Furthermore, we have found that reducing the num-
ber of tracked function variables has no measurable impact on the
runtime of the analysis, but it removes many optimization opportu-
nities (e.g., calling convention optimization across a set of common
functions).

4. The Environment Problem

All but the most trivial optimizations require program analysis to
determine when they are safe to apply. Many optimizations that
only require basic data-flow analysis when applied to first-order
languages are not safe for higher-order languages when based on
a typical CFA such as that described in Section 3. In that version
of CFA, the abstraction of the environment is a single, global map
that maps each variable to a single abstract value from the lattice.
This restriction means that the CFA results alone do not allow us
to reason separately about bindings to the same variable that occur
along different control-flow paths of the program.

For example, this restriction impedes higher-order inlining.
First-order inlining of functions (simple (3-reduction) is always a
semantically safe operation. But, in a higher-order language, in-
lining a call through a closure that encapsulates a function and its
environment is only safe when the free variables are guaranteed to
have the same bound value at the capture location and the inlin-
ing location, a property that Shivers called environmental conso-
nance [Shi91]. For example, in the following code, if CFA deter-
mines that the function g is the only one ever bound to the param-
eter £, then the body of g may be inlined at the call site labeled 1.

val x = 3
fun g 1 = 1 + x
fun map £ 1 =
case 1
of h::t => (f h)':: (map f t)
=1

val res = map g [1,2,3]

While some compilers handle this particular special-case, in
which all the free variables of the function are bound at the top
level, the resulting optimizers are fragile and even small changes
to the program can hinder optimization, as shown in the following
code:

fun wrapper x = let
fun g 1 = 1 + x
fun map £ 1 =
case 1
of h::t => (f h)I::(map f t)
I _=> 1]

in

Practical and Effective Higher-Order Optimizations

map g [1,2,3]

end
val resl = wrapper 1
val res2 = wrapper 2

Performing the inlining operation is again safe, but the analysis
required to guarantee that the value of x is always the same at both
the body of the function wrapper and in the call location inside
of map is beyond simple heuristics.

Copy propagation Higher-order copy propagation suffers from
the same problem. In this case, instead of inlining the body of
the function (e.g., because it is too large), we are attempting to
remove the creation of a closure by turning an indirect call through
a variable into a direct call to a known function. In the following
code, the function g is passed as an argument to map and called in
its body.
fun map £ 1 =

case 1

of h::t => (f h)::(map f t)

= 1]

val res = map g [1,2,3]

When g is in scope at the call site inside map and either g has
no free variables or we know that those free variables will always
have the same values at both the capture point (when it is passed
as an argument to map) and inlining location, we can substitute
g, potentially removing a closure and enabling the compiler to
optimize the call into a direct jump instead of an indirect jump
through the function pointer stored in the closure record.

Interactions These optimizations are not only important because
they remove indirect calls. Applying them can also enable unused
and useless variable elimination, as illustrated in the code resulting
from the removal of the useless variable £:

fun map 1 =
case 1

val res = map [1,2,3]

4.1 A Challenging Example

While most of the higher-order examples to this point could have
been handled by more simple lexical heuristics and careful ordering
of compiler optimization passes, those heuristics must be careful
not to optimize in unsafe locations. The following example illus-
trates the importance of reasoning about environments when per-
forming higher-order inlining on functions with free variables. The
function mk takes an integer and returns a pair of a function of
type (int -> int) * int -> int and a function of type
int -> int;note that both of the returned functions capture the
variable i, the argument to mk.

fun mk i =
let
fun g j = j + 1
fun £ (h : int -> int, k)=

(h (x = i)t
in

(£, 9)
end
val (fl, gl) = mk 1
val (f2, g2) = mk 2
val res = fl1 (g2, 3)

First, the function mk is called with 1, in order to capture the
variable i in the closures of £1 and gl. Next, the function mk is
called with 2, again capturing the variable i (but with a different
value) in the closures of £2 and g2. Finally, we call £1 with the
pair (g2, 3).

2014/6/17

At the call site labeled 1, a simple OCFA can determine that
only the function g will ever be called. Unfortunately, if we inline
the body of g at that location, as shown in the example code below,
the result value res will change from 5 to 4. The problem is that
the binding of the variable 1 is not the same at the potential inline
location as it was at its original capture location.

fun mk i =
let
fun g j = j + 1
fun £ (h : int -> int, k) =

((k = 1) + 1)
in

(£, 9)
end
val (fl, gl) = mk 1
val (f2, g2) = mk 2
val res = fl1 (g2, 3)

While this example is obviously contrived, this situation occurs
regularly in idiomatic higher-order programs and the inability to
handle the environment problem in general is a limit in most com-
pilers, leading developers to avoid higher-order language features
in performance-critical code.

This final example shows a slightly more complicated program
that defeats simple heuristics but in which the techniques presented
in this work can determine that inlining is safe.

let
val vy = m ()
fun £ _ =y
fun g h = (h ()"
in
g f
end

At the call site labeled 1, it is clearly safe to inline the body of
the function £, since y has the same binding at the inline location
as the capture location. Since it is not a trivial idiomatic example,
however, it is not commonly handled even by compilers that per-
form CFA-based optimizations.

4.2 Reflow Analysis

A theoretical solution to this environment problem that enables a
suite of additional optimizations is reflow analysis [Shi91]. This
analysis requires re-running control-flow analysis from the poten-
tial inlining point and seeing if the variable bindings for all relevant
free variables are uniquely bound with respect to that sub-flow. Un-
fortunately, this operation is potentially quite expensive (up to the
same complexity as the original CFA, at each potential inlining site)
and no compiler performs it in practice.

5. Unchanged Variable Analysis

The major contribution of this work is an unchanged variable anal-
ysis. Instead of performing reflow at each call site, we use a novel
analysis that builds upon the approximate control-flow graph of the
program given by a control-flow analysis to enable us to perform an
inexpensive test at each call site. The optimizations from Section 4
are safe when the free variables of the target function are guaran-
teed to be the same at its closure creation point and at the target call
site. In Shivers’ reflow analysis [Shi91], this question was answered
by checking whether a binding for a variable had changed between
those two locations via a re-execution of control-flow analysis. Our
analysis instead turns that question into one of graph reachability:
in the approximate control-flow graph corresponding to the possi-
ble executions of this program, is there a path between those two
locations through a rebinding of any of the free variables?

Practical and Effective Higher-Order Optimizations

5.1 Building the approximate control-flow graph

The approximate control-flow graph is built in two steps. First,
build a static control-flow graph for each function, ignoring func-
tion calls through variables, with vertices annotated with variable
bindings and rebindings. Then, augment those individual function
control-flow graphs with edges from the call sites through variables
to the potential target functions, as determined by the control-flow
analysis. Though we only discuss our implementation of OCFA in
this work, this alternative to reflow analysis also works with other
control-flow analyses.

The variable bindings and rebindings in a program written in the
continuation-passing style (CPS) representation defined in Figure 1
happen in two cases:

e At the definition of the variable, which is either a 1et-binding
or as a parameter of a function.

¢ In the case when a free variable of a function was captured in a
closure and this captured value is restored for the execution of
that function.

We capture both of these conditions through labeled vertices in
the graph for each function. One vertex is labeled with all of the
free variables of the function, since those are the ones that will be
rebound when the function is called through a closure. A second
vertex is labeled with all of the parameters to the function, since
they will also be bound when the function is called. Finally, any
vertex corresponding to a let-binding in the control-flow graph
will be labeled with the variable being bound.

Call sites are augmented using the results of the control-flow
analysis described in Section 3. In the intermediate representation,
all targets of call sites are variables. In the trivial case, that variable
is the name of a function identifier, and we can simply add an
edge from the call site to that function’s entry point. Otherwise,
that variable is of function type but can be bound to many possible
functions. In that case, the control-flow analysis will provide one
of three results:

e The value L, indicating that the call site can never be reached
in any program execution. No changes are made to the program
graph in this case.

e The value T, indicating that any call site may be reached. In
this case, we add an edge to a special vertex that represents any
call site, whose optimization is discussed in Section 5.4.

e A set of function identifiers. Here, we add one edge from the
call site per function, to that function’s entry point.

At this point, the graph is complete and enables us to reformu-
late the safety property. We can now simply ask: does there exist
a path between the closure capture location and the target call site
in the graph that passes through a (re)binding location for any of
the free variables of the function that we want to inline? If such a
path exists, then any optimization that relies on the free variables
maintaining their bindings between those locations may be unsafe.

For a program of size n (with O(n) functions and O(n) call
sites), the approximate control-flow graph has O(n) vertices and
O(n?) edges. The worst-case quadratic number of edges corre-
sponds to the situation where the control-flow analysis determines
that every function in the program could be called from every call-
site in the program. In practice, though, we expect the number of
edges to be closer to linear in the size of the program, due to the fact
that the utility of control-flow analysis is the ability to determine
that only a small number of functions are called from each call-
site. Hence, we will express the subsequent graph-algorithm com-
plexities in terms of the number of vertices |V| and the number of
edges | E| in the approximate control-flow graph. With the standard
O(n®) OCFA algorithm, constructing the approximate control-flow

2014/6/17

graph is O(n?) + O(|V| + |E|) = O(n®). Note that running the
control-flow analysis is required in order to both build the approx-
imate control-flow graph and to identify candidate inlining oppor-
tunities.

5.2 Computing graph reachability quickly

This question about the existence of paths between vertices in the
graph is a reachability problem. There are off-the-shelf O(|V|?) al-
gorithms such as Warshall’s algorithm for computing graph reacha-
bility [War62], but those are far too slow for practical use. On even
small graphs of thousands of vertices, they take seconds to run.

Therefore, we use an approach that collapses the graph quickly
into a map we can use for logarithmic-time queries of the reach-
ability between two vertices. Our approach performs two steps.
First, we take the potentially cyclic graph and reduce it into a set
of strongly-connected components. Then, we use a bottom-up ap-
proach to compute reachability in the resulting DAG. All queries
are then performed against the resulting map from source compo-
nent to set of reachable components.

Strongly-connected components We use Tarjan’s O(|V| + | E|)
algorithm for computing the strongly-connected compo-
nents [Tar72], as implemented in Standard ML of New Jersey by
Matthias Blume.? This produces a directed acyclic graph (DAG),
with O(|V|) vertices (each corresponding to a strongly-connected
component) and O(|E|) edges (each corresponding one or more
edges between vertices in the approximate control-flow graph that
belong to distinct strongly-connected components); the collection
of strongly-connected components are produced in topological
sorted order. It also produces a map from each vertex in the
approximate control-flow graph to its strongly-connected compo-
nent in the DAG. There are two interesting types of components
for this algorithm: those that correspond to exactly one vertex
(program point) in the approximate control-flow graph and those
that correspond to more than one vertex (program point). In the
single vertex case, control-flow from that program point cannot
reach itself. In the multiple vertex case, control-flow from each
program point can reach itself. This distinction is crucial when
initializing the reachability map.

Reachability in a DAG We compute a map from each strongly-
connected component to its set of reachable components by pro-
cessing the DAG in reverse topological sorted order. For each
strongly-connected component, we initialize the reachability map
for that component according to its size and then we add each suc-
cessor component and everything that the successor component can
reach. A more detailed description is shown in Algorithm 1.

Algorithm 1 Compute DAG reachability for a graph DAG

for n € Vertices(DAG) in reverse topological sorted order do
if SCCSize(n) = 1 then
R(n) «+ {} > Program point in n cannot reach itself
else
R(n) < {n} > Each program point in n can reach itself
end if
for s € Succs(n) do
R(n) < R(n) U {s} UR(s)
end for
end for

We use a red-black tree to represent the set of reachable compo-
nents, where the ordering of two strongly-connected components

2 This implementation uses a red-black tree to maintain per-vertex infor-
mation and so incurs a cost of O(log |V]) to access the successor vertex’s
information when handling an edge, leading to an overall running time of
O(IV] + |E[log [V]).

Practical and Effective Higher-Order Optimizations

is given by the ordering of their “root” (i.e., representative) ver-
tices. Furthermore, the implementation provides an O(|s1| + |s2])
union operation [?], better than a naive O(|s1|log |s2|) union op-
eration via singleton inserts. Thus, the above is an O(|E| * |V])
algorithm, dominated by the R(n) U {s} U R(s) that is executed
once per edge.

5.3 Performing the safety check

Having built the approximate control-flow graph and computed the
strongly-connected components and reachability map, we can ef-
ficiently check the safety of a candidate inlining opportunity. We
maintain a map from each variable to its set of (re)binding loca-
tions (vertices in the approximate control-flow graph). Given a can-
didate inlining opportunity, with a function-binding location and a
call-site location, we check whether there exists a path from the
function-binding location to a (re)binding location of a free variable
and from the re(binding) location to the call-site location. Each of
these path-existence checks is an O(log |E|) operation, performed
by an O(1) map from the source and destination locations (vertices
in the approximate control-flow graph) to their strongly-connected
components and an O(log | E|) query of the destination component
in the set of components reachable from the source component. In
practice, each candidate inlining opportunity has a small number
of free variables that are (re)bound at a small number of locations,
leading to analysis times that are less than 3% of total compilation
time (Section 9.3).

5.4 Handling imprecision

In a practical implementation, we also need to handle a variety of
sources of imprecision. C foreign function calls, the entry and exit
point of the generated binary itself (i.e., the main function), and the
limited lattice size all contribute to situations where a call site may
be through a variable whose target is T, or unknown. The obvious
way to handle this situation when creating the graph is to add an
edge from any call site labeled T to every possible function entry
point. Unfortunately, that approach frequently connects the entire
graph, preventing the compiler from proving that any variables
remain unchanged through any non-trivial portions of the graph.

Instead, we take advantage of the fact that a call to an unknown
function is really only a call to one of the functions that has un-
known callers. We therefore add an edge from any call site labeled
T to any function whose callers are not all known. These func-
tions are identified during control-flow analysis, which in addition
to computing the potential values that a variable can take on also
tracks when a function is passed into a portion of the program that
we cannot precisely analyze. Fortunately, that set of functions is
small even for large programs, so the graph remains useful.

5.5 Limitations

While safe, this analysis necessarily is more limited than general
formulations of higher-order inlining as shown by Shivers’ kCFA
framework (for £ > 0) or Might’s ACFA approach [Shi91, MS06].
Both of those analyses are able to distinguish environments created
by different control-flow paths through the program. Our analysis
collapses all different control-flow paths to each function, resulting
in a potential loss of precision. For example, in the following
program, our attempt to inline at the call site labeled 1 will fail.

let val y = 2

fun f _ =y
fun confounding _ = raise Fail ""
fun g h = (h o)t

fun callsG b k = if b then g k else 0
val bad = callsG false confounding
in
callsG true f
end

2014/6/17

After the first call to callsG, the function confounding is in
the abstract possible set of functions that can be bound to the pa-
rameter k. Even though in the first call the boolean tracking avoids
analyzing g and adding confounding to the list of possible val-
ues for h, when the second call comes through, the function f is
added to the possible set of values for k and then both of those are
added to the set of values that could be bound to h. Fundamentally,
this problem is the one that stronger forms of control-flow analy-
sis handle, though there are clearly heuristics that could be used to
increase the precision in this specific case.

6. Safe example

In the introduction, we discussed an iterative version of the facto-
rial function and pointed out that we might like to transform the
argument that consumes the result of the computations to be either
a direct call or inlined. A slightly modified version of that example
appears below:

let
fun fact i m k =
if 1 =0
then k m
else fact (i-1) (mxi) k
in
fact 6 1 (fn i => h 1)
end

In this example, the consuming function is an anonymous function
that makes a call to another variable, h, which is free in this block.
We would like to optimize this code by performing a higher-order
inlining of that code to produce the following output:

let
fun fact i m k =
if 1 =0
then h m
else fact (i-1) (mxi) k
in
fact 6 1 (fn i => h 1)
end

In order for that operation to be safe, though, we need to show two
properties:

1. The variable h is in scope at the inlining location.

2. The variable h has the same binding at its inlining point as it
did at the point where the closure would have captured it.

The first property is lexically immediate. In the rest of this section,
we will demonstrate how unchanged variable analysis allows us to
verify the second property.

6.1 Building the control-flow graph

The first step in unchanged variable analysis is construction of a
control-flow graph. In order to make that graph easier to visualize,
we have normalized the source code, broken bindings of arguments
onto separate lines from bindings of function identifiers, and anno-
tated the example with line numbers; the resulting program is given
in Figure 3. The line numbers will be used in the rest of this section
in the graph visualizations.

The static control-flow graph is shown with the solid lines in
Figure 4. Note that this graph separates the actions of binding
a variable of function type (such as fact in line 2) from the
operation of actually running its body, which starts on line 3 of the
listing with the binding of any free variables (in this case, none) and
continues on line 4 with the binding of the parameters to arguments.

Practical and Effective Higher-Order Optimizations

1 let

2 fun fact

3 (+ FV: %)

4 imk =

5 if i =0

6 then let in k m

7 end

8 else let val i’ = i-1
9 val m’ = mxi
10 in fact i’ m’ k
11 end

12 (x fi *)

13 fun clos

14 (# FV: h %)

15 i=

16 let in h i

17 end

18 in fact 6 1 clos

19 end

Figure 3. Normalized source code for a safe example.

After running CFA on the factorial example above, we deter-
mine the following:

V(fact) = {LAMBDAS ({fact})}
V(clos) = {LAMBDAS ({clos})}
V(k) = {vraMBDAS ({clos})}
Vi) = {T}

Vi) = {T}

Vm) = {T}

V) = {T}

Vj; = {1}

= {7}
The only interesting values in this finite map are the binding of
the variable k to the function value clos and the binding of the
variable h to the unknown target T. These binding allow us to
annotate the graph with higher-order control-flow paths from line 6
to line 14 and from line 17 to line 7 (corresponding to the call of
and return from clos at the call site k m on line 6) and from
line 16 to T and from T to line 17 (corresponding to the call of and
return from an unknown function at the call site h i on line 16).
These higher-order control-flow paths are shown with dotted lines
in Figure 4.

Finally, the non-singleton strongly-connected components for
the control-flow graph are show with boxed subgraphs in Figure 4.

6.2 Performing the unchanged variable analysis

Now, we are at a point where we know that clos is the only
function being called at line 6, making it a candidate for inlining.
But, its free variables (h) were captured at line 13, so we now need
to check the graph for the following property:

Does there exist a path starting from vertex 13 and ending at
vertex 6 that passes through any vertex that rebinds variable
h?

In this example, that property trivially holds, as there are no vertices
in this subgraph where h is rebound and so the inlining is safe.

7. Unsafe example

For a negative case, we revisit the unsafe example from Section 4,
repeated here:

fun mk 1 =
let
fun g J = j + 1
fun £ (h : int -> int, k)=
(h (x » in*

in

2014/6/17

60

CFO-OO-E

(92822026540

I

Y

Figure 4. Control-flow graph for safe example.

(£, 9)
end
val (f1l, gl) = mk 1
val (f2, g2) = mk 2
val res = fl1 (g2, 3)

In this example, control-flow analysis will determine that the func-
tion g is the only function that will be called at the call site la-
beled 1, making it a candidate for inlining. But, we need to deter-
mine whether or not it is safe to do so. That is, is i, the free variable
of g, the same when h is invoked as when it was captured by g?
As in the safe example, the first step in our presentation is to
normalize and annotate the example to aid in the visualization of
the control-flow graph; the resulting program is given in Figure 5.

7.1 Building the control-flow graph

As in the previous section, we build a static control-flow graph
(solid lines) and add higher-order control-flow paths (dotted lines)
where control-flow analysis was able to determine the target of the
call through a variable with function type. This graph is shown in
Figure 6.

The interesting parts of the control-flow analysis results map are
the following:

V(£f1) = {LaMBDAS ({f})}
V(gl) = {LAMBDAS ({g})}
V(£2) = {LaMBDAS ({f})}
V(g2) = {LAMBDAS ({g})}

V(h) = {LAMBDAS ({g})}

Practical and Effective Higher-Order Optimizations

1 fun mk

2 (% FV: %)

3 i=

4 let

5 fun g

6 (+ FV: 1 *)

7 j =

8 let val tl1 = j + 1
9 in tl end

10 fun f

11 (x FV: 1 %)

12 (h, k) =

13 let val t2 = k % 1
14 in h t2

15 end

16 in (f, g) end

17 wval (f1, gl) = let in mk 1
18 end

19 wval (f2, g2) = let in mk 2
20 end

21 val res = let in f1l (g2, 3)
22 end

Figure 5. Normalized source code for an unsafe example.

These binding allow us to annotate the graph with higher-order
control-flow paths from line 21 to line 11 and from line 15 to
line 22 (corresponding to the call of and return from £ at the call
site f1 (g2, 3) online 21) and from line 14 to line 6 and from
line 9 to line 15 (corresponding to the call of and return from g at
the call site h t2 on line 14).

7.2 Performing the unchanged variable analysis

Control-flow analysis has informed us that we should be able to
inline the body of function g at line 14. But, we now need to check
the graph for the following property:

Does there exist a path starting from vertex 5 and ending
at vertex 14 that passes through any vertex (in this case,
vertices 3 and 11) that rebinds variable i?

Since there exists such a path in the graph (e.g., 5 — 10 — 16 —
20 — 21 — 11 — 12 — 13 — 14), this inlining is potentially
(and actually!) unsafe, so it is disallowed under the unchanged
variable condition tested in our system.

8. Example — Transducers

Transducers are program fragments that perform four tasks within
an infinite loop: receive input, compute on that input, output a re-
sult, and loop back around. These fragments can then be composed
together to form pipelined or stream processing programs which are
used extensively in networks, graphics processing, and many other
domains. Writing programs in this style gives developers modu-
larity in the sense that when new functionality needs to be added,
they can simply add a new transducer to the pipeline, eliminating
the need to modify any substantial portion of existing code. Shiv-
ers and Might showed that if these transducers are implemented in
a continuation-passing style, a number of standard optimizations,
along with Super-£ inlining, can effectively merge composed trans-
ducers into one loop that contains all the computation of the entire
pipeline [SMO6]. In this section, we show that unchanged variable
analysis along with higher-order inlining is the first practical com-
piler implementation capable of performing these optimizations on
transducers.

Figure 7 provides a library for building and composing trans-
ducers. Channels are used for passing information between trans-
ducers. Specifically, they are represented as continuations that take
a value of type ’ a and another chan. A dn_chan is used for
outputting information to the next transducer and an up_chan is

2014/6/17

(# Type for channels x)
datatype (’a, ’b) chan

= Chan of ("a » (b, ’'a) chan) cont

(+ Types for the specific kinds of channels x)
type ’a dn_chan ("a, unit) chan
type ’a up_chan (unit, ’a) chan

(* Source/Sink (first/last in the chain)
type ("a, 'r) source "a dn_chan -> 'r
type ("a, 'r) sink ’a up_chan -> 'r

<)

(* transducer (middle in the chain)
type ('a, 'b, ’'r) transducer "a

*)
up_chan % b dn_chan -> ’r

(# change control upstream or downstream x)

fun switch (x : 'a, Chan k : ('a, ’"b) chan) 'b * ("a, "b) chan = callcc (fn k’ => throw k (x, Chan k’))
(* Put value x on down channel dnC #)
fun put (x : "a, dnC ’a dn_chan) ’a dn_chan = (case switch (x, dnC) of ((), dnC’) => dnC’)
(+ Get a value from up channel upC x)
fun get (upC : ’a up_chan) ’a x "a up_chan = (case switch ((), upC) of (x, upC’) => (x, upC’))
(+ Compose sources, transducers, and sinks. *)
fun sourceToTrans (source ("a, ’'r) source, trans ("a, '"b, ’'r) transducer) ("b, 'r) source =
fn (dnC : 'b dn_chan) => callcc (fn k =>
source (case callcc (fn upK => throw k (trans (Chan upK, dnC))) of (_, upC’) => upC’))
fun transToSink (trans ("a, 'b, 'r) transducer, sink : (b, ’'r) sink) ("a, 'r) sink =
fn (upC : ’"a up_chan) => callcc (fn k =>
trans (upC, case callcc (fn upK => throw k (sink (Chan upK))) of ((), dnC’) => dnC’))
fun sourceToSink (source : (’a, ’'r) source, sink : (’a, 'r) sink) 'r =
callcc (fn k => source (case callcc (fn upK => throw k (sink (Chan upK))) of ((), dnC) => dnC))

Figure 7. Transducer library code.

used for receiving information from the previous transducer. The
put function throws to a dn_chan, giving it a value and its cur-
rent continuation wrapped in a chan. When this continuation is
invoked, it will return a new dn_chan. The get function throws
to an up_chan, giving it a unit value and its current continuation
wrapped in a Chan constructor. When this continuation is invoked,
it will return the value being passed down to the transducer as well
as anew up_chan.

8.1 Simple composition

A pipeline is composed of a source at the beginning, zero or
more transducers in the middle, and a sink at the end. The
sourceToTrans function is used to link a source to a transducer,
yielding a new source. Similarly, the t ransToSink function is
used to link a transducer to a sink, yielding a new sink. Linking a
source to a sink with the sourceToSink function executes the
transducer pipeline.

Figure 8 illustrates a simple stream of transducers, where the
source infinitely loops, outputting the value 5 to the sink, which
then prints this value each time. These two functions are then com-
posed using the sourceToSink function. Ideally, we would like
to generate code that merges these transducers together, yielding
one tight loop that simply prints the value five in each iteration,
rather than passing control back and forth between these two co-
routines.

8.2 Optimization

In order to fuse these two co-routines, we need to be able to in-
line the calls to the co-routines, which requires Super-/3 analysis, as
noted by Shivers and Might [SM06]. Running the analysis and in-
lining performed in this paper successfully fuses those co-routines
and removes the creation of the closure across that boundary. For
example, running the transducer shown in Figure 8 for 10,000 steps,

Practical and Effective Higher-Order Optimizations

we reduce the overall memory usage from 4.6M to 3.9M, for a sav-
ings of roughly 15%. The remaining memory usage is almost en-
tirely in internal library calls due to the print function (which is
not well-optimized in Manticore).

9. Evaluation

In this section, we show that this analysis is both practical and
effective. In Section 9.3, we show that the compile-time cost of
adding this analysis is under 3% of the total compilation time.
Section 9.4 provides support that the optimizations provided by
this analysis are both found and typically result in performance
improvements in our benchmarks.

9.1 Experimental method

Our benchmark machine has two 8 core Intel Xeon E5-2687 pro-
cessors running at 3.10 GHz. It has 64 GB of physical mem-
ory. This machine runs x86_64 Ubuntu Linux 12.04.3, kernel ver-
sion 3.2.0-49. We ran each benchmark experiment 30 times, and
speedups are based upon the median runtimes. Times are reported
in seconds.

This work has been implemented, tested, and is part of the
current Manticore compiler’s default optimization suite.

9.2 Benchmarks

For our empirical evaluation, we use seven benchmark programs
from our parallel benchmark suite and one synthetic transducer
benchmark. Each benchmark is written in a pure, functional style.

The Barnes-Hut benchmark [BH86] is a classic N-body prob-
lem solver. Each iteration has two phases. In the first phase, a
quadtree is constructed from a sequence of mass points. The sec-
ond phase then uses this tree to accelerate the computation of the
gravitational force on the bodies in the system. Our benchmark

2014/6/17

0x0a00

000

BO-0B0-000-0000

Figure 6. Control-flow graph for unsafe example.

(* Source %)
fun putFive (dnC : int dn_chan) =
putFive (put (5, dnC))

(* Sink =)
fun printvVal (upC : int up_chan) =
let val (x, upC’) = get upC
val _ = print (Int.toString x)
in printval upC’
end
(# Run #)
val _ = sourceToSink (putFive, printVval)

Figure 8. Transducer example.

Practical and Effective Higher-Order Optimizations

runs 20 iterations over 400,000 particles generated in a random
Plummer distribution. Our version is a translation of a Haskell pro-
gram [GHC].

The DMM benchmark performs dense-matrix by dense-matrix
multiplication in which each matrix is 600 x 600.

The Raytracer benchmark renders a 2048 x 2048 image as
a two-dimensional sequence, which is then written to a file. The
original program was written in ID [Nik91] and is a simple ray
tracer that does not use any acceleration data structures.

The Mandelbrot benchmark computes the Mandelbrot set, writ-
ing its output to an image file of size 4096 x 4096.

The Quickhull benchmark determines the convex hull of
12,000,000 points in the plane. Our code is based on the algorithm
by Barber et al. [BDH96].

The Quicksort benchmark sorts a sequence of 10,000,000 in-
tegers in parallel. This code is based on the NESL version of the
algorithm [Sca].

The SMVM benchmark performs a sparse-matrix by dense-
vector multiplication. The matrix contains 3,005,788 elements,
and the vector contains 10,000, and the multiplication is iterated
75 times.

In addition to the parallel benchmarks, the transducer bench-
mark is the sequential benchmark described in Section 8. For
benchmarking purposes, we simulate running the transducer
through 2,000,000 iterations.

9.3 Compilation performance

In Table 1, we have broken down the compilation time of the
larger parallel benchmarks. While we have included the number
of lines of code of the benchmarks, Manticore is a whole-program
compiler, including the entire basis library. Therefore, in addition to
the lines of code, we have also reported the number of expressions,
where an expression is an individual term from the intermediate
representation shown in Figure 1. By that stage in the compilation
process, all unreferenced and dead code has been removed from the
program.
The most important results are:

e Control-flow analysis is basically free.

e The unchanged variable analysis presented in this work (which
represents the majority of the time spent in both the copy prop-
agation and inlining passes) generally makes up 1-2% of the
overall compilation time.

e Time spent in the C compiler, GCC, generating final object code
is the longest single stage in our compiler.

9.4 Benchmark performance

Across our already tuned benchmark suite, we see several improve-
ments and only one statistically significant slowdown, as shown in
Table 2. It might seem strange that the number of inlinings is differ-
ent for the sequential and parallel implementations of each bench-
mark, but this is due to the fact that the parallel implementations
use more sophisticated runtime library functions, exposing more
opportunities for optimization. The largest challenge with analyz-
ing the results of this work is that for any tuned benchmark suite,
the implementers will have already analyzed and removed most op-
portunities for improvement. When we investigated the usefulness
of these optimizations on some programs we ported from a very
highly tuned benchmark suite, the Computer Language Benchmark
Game [CLB13], we could find zero opportunities for further opti-
mization. So, the primary result that we have to show in this section
for existing benchmarks is that this optimization, even performed
using only a simple size-based heuristic, does not harm our tuned
performance by more than 0.5% in the worst case (and within one
standard deviation of the performance) and in some cases results in

2014/6/17

Copy H-O

Benchmark || Lines | Expressions | Total (s) | CFA (s) | Prop. (s) | Inline (s) | GCC (s)
Barnes-hut 334 17,400 8.79 0.042 0.175 0.198 2.56
Raytracer 501 12,800 6.54 0.019 0.112 0.124 2.64
Mandelbrot 85 9,900 5.06 0.013 0.091 0.098 1.70
Quickhull 196 15,200 7.67 0.039 0.182 0.177 2.05
Quicksort 74 11,900 5.49 0.022 0.111 0.122 1.11
SMVM 106 13,900 7.25 0.033 0.131 0.123 2.52

Table 1. Benchmark program sizes, both in source lines and total number of expressions in our whole-program compilation. Costs of the

analyses and optimizations are also provided, in seconds.

gains of around 1%. This optimization can result in slowdowns, due
to increasing the live range of variables and the resulting increase
in register pressure.

In the one example program that has not already been tuned so
far that there are no higher-order optimization opportunities within
hot code — the transducer benchmark described in Section 8 —
we see a speedup of 4.7% due to removing the need for a closure
within an inner loop.

10. Related Work

The problem of detecting when two environments are the same
with respect to some variables is not new. It was first given the
name environment consonance in Shivers’ Ph.D. thesis [Shi91].
He proposed checking this property by re-running control-flow
analysis (CFA) incrementally — at cost polynomial in the program
size — at each inlining point.

Might revisited the problem in the context of his Ph.D. thesis,
and showed another form of analysis, ACFA, which more explic-
itly tracks environment representations and can check for safety
without re-running the analysis at each inlining point [MS06]. Un-
fortunately, this approach also only works in theory — while its
runtime is faster in practice than a full 1CFA (which is exponen-
tial), it is not scalable to large program intermediate representa-
tions. Might also worked on anodization, which is a more recent
technique that identifies when a binding will only take on a single
value, opening up the possibility of several optimizations similar to
this one [Mig10].

Reps, Horowitz, and Sagiv were among the first to apply graph
reachability to program analysis [RHS95], focusing on dataflow
and spawning an entire field of program analyses for a variety of
problems, such as pointer analysis and security. While they also
present an algorithm for faster graph reachability, theirs is still
polynomial time, which is far too slow for the number of vertices
in our graphs. A different algorithm for graph reachability that
has even better asymptotic performance than the one we present
in Section 5.2 is also available [Nuu94], computing reachability at
the same time that it computes the strongly-connected components.
However, it relies on fast language implementation support for mu-
tation, which is not the case in our compiler’s host implementation
system, Standard ML of New Jersey [AM91], so we use an algo-
rithm that better supports the use of functional data structures.

Serrano’s use of OCFA in the Bigloo compiler is the most simi-
lar to our work here [Ser95]. It is not discussed in this paper, but we
similarly use the results of CFA to optimize our closure generation.
In that paper, he does not discuss the need to track function iden-
tifiers within data types (e.g., lists in Scheme) or limit the depth of
that tracking, both of which we have found crucial in ML programs
where functions often are at least in tuples, due to the default call-
ing convention. Bigloo does not perform inlining of functions with
free variables.

Practical and Effective Higher-Order Optimizations

Waddell and Dybvig use a significantly more interesting inlin-
ing heuristic in Chez Scheme, taking into account the potential im-
pact of other optimizations to reduce the size of the resulting code,
rather than just using a fixed threshold, as we do [WD97]. While
they also will inline functions with free variables, they will only
do so when either those variables can be eliminated or they know
the binding at analysis time. Our approach differs from theirs in that
we do not need to know the binding at analysis time and we support
whole-program analysis, including all referenced library functions.

The Glasgow Haskell Compiler has an extremely sophisticated
inliner that has been tuned for many years, using a variety of type-,
annotation-, and heuristic-based techniques for improving the per-
formance of programs through effective inlining [PM02]. However,
even after inlining and final simplification, this compiler cannot in-
line the straightforward higher-order example in Section 6.

11.

In this work, we have demonstrated the first practical and gen-
eral approach to higher-order inlining and copy propagation. We
hope that this work ushers in new interest and experimentation in
environment-aware optimizations for higher-order languages.

Conclusion

11.1 Limitations

As with all optimizations, this analysis and optimization are fragile
with respect to changes to the code being optimized. Making things
even more unpredictable for the developer, the output of control-
flow analysis can also be affected by non-local changes if those
changes cause the analysis to hit performance cutoffs and default
to conservative worst-case partial results. We believe that adopting
monomorphization, as used in the MLton compiler [Wee06], would
both increase the precision of the analysis’ results and remove the
largest sources of imprecision in control-flow analysis — large
numbers of polymorphic uses of common combinators such as map
and fold.

11.2 Future work

This work identifies opportunities for performing optimizations,
but does not investigate the space of heuristics for when they are
beneficial. We currently perform the copy propagation uncondition-
ally and perform the higher-order inlining using the same simple
code-growth metric that we use for standard inlining. But, these
optimizations could introduce other negative impacts on some pro-
grams, as it might increase the live range of variables. Identification
of these negative impacts and heuristics for avoiding them is left to
future work.

We have also provided an implementation of an analysis that
shows when free variables are unchanged along a control-flow path,
but we have not generated a formal proof that these optimizations
are correct.

Further, we have not investigated other optimizations, such as
rematerialization, that were presented in some of Might’s recent

2014/6/17

Sequential 16 Processors
Copy Copy

Benchmark || Speedup | Prop. | Inlined || Speedup | Prop. | Inlined
Barnes-hut 1.2% 12 11 0% 15 17
DMM 0.3% 3 11 0.8% 6 17
Mandelbrot -0.3% 0 3 0.3% 3 9
Quickhull 0.3% 12 11 0.3% 15 17
Quicksort 1.5% 2 4 0% 5 9
Raytracer -0.3% 0 3 -0.2% 3 9
SMVM 0.4% 2 14 -0.5% 5 21
Transducer 4.7% 1 3 N/A N/A N/A

Table 2. Performance results from copy propagation and higher-order inlining optimizations.

work on anodization [Migl0] and might have an analog in our
framework.

Finally, our control-flow analysis needs further optimizations,
both to improve its runtime and its precision. We have previously
investigated Hudak’s work on abstract reference counting [Hud86],
which resulted in improvements in both runtime and precision,® but
that implementation is not yet mature [Ber09].

Acknowledgments

David MacQueen, Matt Might, and David Van Horn all spent many
hours discussing this problem with us, and without their valuable
insights this work would likely have languished. One anonymous
reviewer commented extensively on an earlier draft of this work,
substantially improving its presentation.

This material is based upon work supported by the National Sci-
ence Foundation under Grants CCF-0811389 and CCF-1010568,
and upon work performed in part while John Reppy was serving at
the National Science Foundation. The views and conclusions con-
tained herein are those of the authors and should not be interpreted
as necessarily representing the official policies or endorsements, ei-
ther expressed or implied, of these organizations or the U.S. Gov-
ernment.

References

[AD98] Ashley, J. M. and R. K. Dybvig. A practical and flexible flow
analysis for higher-order languages. ACM TOPLAS, 20(4), July
1998, pp. 845-868.

[AMO1] Appel, A. W. and D. B. MacQueen. Standard ML of New Jersey.
In PLIP ’91, vol. 528 of LNCS. Springer-Verlag, New York, NY,
August 1991, pp. 1-26.

[BDH96] Barber, C. B., D. P. Dobkin, and H. Huhdanpaa. The quickhull
algorithm for convex hulls. ACM TOMS, 22(4), 1996, pp. 469—

483.
[Ber09] Bergstrom, L. Arity raising and control-flow analysis in
Manticore. Master’s dissertation, University of Chicago,

November 2009. Available from http://manticore.cs.
uchicago.edu.

[BH86] Barnes, J. and P. Hut. A hierarchical O (N log N) force calcula-
tion algorithm. Nature, 324, December 1986, pp. 446—449.

[CIWO00] Cejtin, H., S. Jagannathan, and S. Weeks. Flow-directed closure
conversion for typed languages. In ESOP ’00. Springer-Verlag,
2000, pp. 56-71.

[CLB13] CLBG. The computer language benchmarks game, 2013. Avail-
able from http://benchmarksgame.alioth.debian.
org/.

[DF92] Danvy, O. and A. Filinski. Representing control: A study of the
CPS transformation. MSCS, 2(4), 1992, pp. 361-391.

3 Best results were achieved when using a maxrc of 1.

Practical and Effective Higher-Order Optimizations

[FFR107] Fluet, M., N. Ford, M. Rainey, J. Reppy, A. Shaw, and Y. Xiao.
Status Report: The Manticore Project. In ML '07. ACM, October
2007, pp. 15-24.

[FRRS11] Fluet, M., M. Rainey, J. Reppy, and A. Shaw. Implicitly-
threaded parallelism in Manticore. JFP, 20(5-6), 2011, pp. 537—
576.

[GGRY94] George, L., F. Guillame, and J. Reppy. A portable and optimizing
back end for the SML/NJ compiler. In CC ’94, April 1994, pp.
83-97.

[GHC] GHC. Barnes Hut benchmark written in Haskell. Available
from http://darcs.haskell.org/packages/ndp/
examples/barnesHut/.

[Hud86] Hudak, P. A semantic model of reference counting and its abstrac-
tion (detailed summary). In LFP ’86, Cambridge, Massachusetts,
USA, 1986. ACM, pp. 351-363.

[Mid12] Midtgaard, J. Control-flow analysis of functional programs. ACM
Comp. Surveys, 44(3), June 2012, pp. 10:1-10:33.

[Mig10] Might, M. Shape analysis in the absence of pointers and structure.
In VMCAI ’10, Madrid, Spain, 2010. Springer-Verlag, pp. 263—
278.

[MS06] Might, M. and O. Shivers. Environment analysis via ACFA. In
POPL 06, Charleston, South Carolina, USA, 2006. ACM, pp.
127-140.

[Nik91] Nikhil, R. S. ID Language Reference Manual. Laboratory for
Computer Science, MIT, Cambridge, MA, July 1991.
[NNH99] Nielson, F., H. R. Nielson, and C. Hankin. Principles of Program
Analysis. Springer-Verlag, New York, NY, 1999.
[Nuu94] Nuutila, E. An efficient transitive closure algorithm for cyclic
digraphs. IPL, 52, 1994.
[PMO02] Peyton Jones, S. and S. Marlow. Secrets of the Glasgow Haskell
Compiler inliner. JFP, 12(5), July 2002.
[RHS95] Reps, T., S. Horwitz, and M. Sagiv.
dataflow analysis via graph reachability.
Francisco, 1995. ACM.
[RXO07] Reppy, J. and Y. Xiao. Specialization of CML message-passing
primitives. In POPL "07. ACM, January 2007, pp. 315-326.
[Sca] Scandal Project. A library of parallel algorithms writ-
ten NESL. Available from http://www.cs.cmu.edu/
~scandal/nesl/algorithms.html.

Precise interprocedural
In POPL ’95, San

[Ser95] Serrano, M. Control flow analysis: a functional languages compi-
lation paradigm. In SAC ’95, Nashville, Tennessee, United States,
1995. ACM, pp. 118-122.

[Shi91] Shivers, O. Control-flow analysis of higher-order languages.
Ph.D. dissertation, School of C.S., CMU, Pittsburgh, PA, May
1991.

[SMO6] Shivers, O. and M. Might. Continuations and transducer compo-
sition. In PLDI 06, Ottawa, Ontario, Canada, 2006. ACM, pp.
295-307.

[Tar72] Tarjan, R. Depth-first search and linear graph algorithms. SIAM
JC, 1(2), 1972, pp. 146-160.

12 2014/6/17

[War62] Warshall, S. A theorem on boolean matrices. JACM, 9(1), January
1962.

[WD97] Waddell, O. and R. K. Dybvig. Fast and effective procedure
inlining. In SAS ’97, LNCS. Springer-Verlag, 1997, pp. 35-52.

[Wee06] Weeks, S. Whole program compilation in MLton. Invited talk at
ML *06 Workshop, September 2006.

Practical and Effective Higher-Order Optimizations 13 2014/6/17

