
Practical Groovy

Table of Contents
1. Who this book is for. 1

2. First steps . 2

2.1. Installing Groovy . 2

2.2. Groovy as a calculator . 4

3. Working with types . 13

3.1. The joy of strings . 13

3.2. Collections, ranges and maps . 21

3.3. Chapter example. 33

4. Doing odd jobs (scripting) . 36

4.1. Working with the filesystem . 36

4.2. Dates and time . 41

4.3. Closures. 42

4.4. Revisiting earlier examples . 45

Chapter 1. Who this book is for
One of the struggles for any author is identifying who the target audience is. Novice or expert?
Computer literate or not? In the end, a book cannot satisfy everyone and any attempt to do so will
result in failure.

Practical Groovy is designed to be an introduction to the Groovy programming language for anyone
that has prior knowledge of an object-oriented language, such as Java or Python. Familiarity with the
Java platform will certainly help you, but it’s not absolutely necessary. As long as you can install the
Java Development Kit, you’re good to go.

I envisage two main classes of existing developer using this book:

1. Dynamic language programmers that want to migrate to the Java platform while continuing to use
features that they’re used to.

2. Java developers that want some of the productivity promised by Groovy while staying on a familiar
platform (including the core class library).

The book will take you through lots of practical examples so that you get a good understanding of how
Groovy differs from other languages and how you might solve particular problems. It’s best read while
you are working on a computer so that you can try the examples out as you come across them. It also
gives you the opportunity to experiment.

1

Chapter 2. First steps
In the tech world, it’s fairly common to hear the phrase "yak shaving". This represents the kind of
situation in which you end up doing a lot of setup work in order to achieve what you originally
intended. In the case of Groovy, it normally entails installing the Java Development Kit if you haven’t
already done so, followed by Groovy itself. Fortunately, you can bypass all that by using the Groovy
Web Console, which is a browser-based application for executing Groovy scripts.

You can find the app at the address http://groovyconsole.appspot.com/. You should see the page shown
in figure 1.1.

The text editor component allows you to write Groovy that you can then execute. Try it now by
entering the code

12 + 5

and clicking on the Execute script link. You’ll see the result "17" displayed in the Result tab.

Let’s now try the classic Hello World example:

println "Hello world!"

Now when you execute the script you’ll see the "Hello world!" text displayed in the Output tab. What’s
the difference between the two tabs? The Result tab displays the value of the last expression in the
script, whereas the Output tab displays anything that would normally go to the terminal or command
prompt (stdout in C parlance). You can test this out by adding the "12 + 5" line to the end of the Hello
World script: you should see something in both the Result tab and the Output tab.

At this point, you have two choices:

1. Continue with the Groovy Web Console for now and skip to section TODO

2. Read the next section on installing Groovy on your own computer

You will want to install Groovy at some point and it’s usually a straightforward process. On the other
hand, it is an extra step that you may not need just to get started with the language. If you want to be
able to work offline or run scripts locally, then you should definitely install Groovy now. Otherwise
either option is fine.

2.1. Installing Groovy
Before I explain how to install and set up Groovy, consider this: why would you need to install
anything? This is an important question as you don’t necessarily need a Groovy installation in order to
develop with Groovy. Build tools and IDEs can quite happily compile Groovy source files without one.

2

http://groovyconsole.appspot.com/

What you absolutely must have, though, is a Java runtime installed.

The Java platform comes in several forms, but for the sake of simplicity I want to focus on two of them:
the Java Runtime Environment (JRE) and the Java Development Kit (JDK). The first of these allows you
to run Java applications and applets (those things that run in a browser and require the Java plugin).
The JDK allows you to build Java applications, as well as run them, and it’s the best option for a Groovy
developer.

To get hold of the JDK, head to the download page on Oracle’s website and follow the links. Remember,
you only need the basic JDK for your platform. Once you have downloaded the package and installed
the JDK (I recommend using an installation path without spaces), you just need to set up an
environment variable:

JAVA_HOME=<path to JDK>

If you’re unsure how to do this, a simple web search for "setting environment variable" combined with
your platform will produce plenty of links to help out.

That’s all you need as far as the Java side goes. So what about Groovy? You’ll need to install it for the
purposes of this book because you will need access to the associated tools, in particular the Groovy
console. You also need a Groovy installation if you want to run standalone scripts, which comes in very
handy.

You can install Groovy in a number of ways:

• On Windows, download and run the installer.

• On Mac OS X, you can use Homebrew or MacPorts: brew install groovy or sudo port install
groovy.

• On all platforms that have Bash, including Cygwin, you can use the Groovy Environment Manager
(GVM), which allows you to install multiple versions of Groovy as well as other tools such as Grails
and Gradle.

• Alternatively, download the platform-agnostic binary distribution, unpack it, and manually set up
the necessary environment variables.

My preferred option is GVM as it makes installing Groovy trivially easy and new versions of Groovy
(including beta and other milestone releases) become available through it promptly. The fact you can
have different versions of Groovy active in different terminals is an added bonus.

Whichever approach you take, you will end up with a GROOVY_HOME environment variable containing the
location of the current Groovy installation. Your PATH environment variable will also include the path
to the Groovy installation’s 'bin' directory, since that’s where all the useful tools are. You can verify the
installation by running

3

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://groovy-lang.org/download.html
http://gvmtool.net/
http://gvmtool.net/

groovy -e "println 'Hello'"

in a terminal. If everything is working, this will println the line "Hello" to the terminal. If you instead
get an error message about the groovy command not being found, then check your PATH environment
variable as it’s probably not initialized properly.

So what does a Groovy installation give you? The main tools of interest are:

1. groovy - allows you to run Groovy scripts from the command line.

2. groovysh - starts an interactive shell for executing Groovy statements.

3. groovyConsole - starts a desktop version of the Groovy Web Console, with syntax highlighting in the
editor pane.

You will start with the Groovy console as it’s the easiest way to learn Groovy through practice. Just start
it up with the command

groovyConsole

and you’ll then see the window shown in figure 1.3 TODO.

The Groovy console has several options available, including loading and saving scripts as well as the
standard cut, copy and paste. The most important options are

• View > Clear Output - clears the output pane of any existing text from previous script executions.

• View > Show Script in Ouput - enabled by default, you should uncheck this so that the output pane
isn’t polluted with the text of the script itself.

• Script > Run - executes the script.

I recommend you remember the keyboard shortcuts for clearing the output pane and executing the
script as you’ll be using them a lot.

You’re now all set to start coding.

2.2. Groovy as a calculator
I’m sure your OS has a calculator app, as do most smartphones. Still, using Groovy as a calculator is a
gentle way to introduce some of the basic syntax and semantics of the language. You already saw a
simple addition. What happens if you now try

13 + 3 / 4

4

? In most programming languages you would end up with the result 13.75 (although Java would give
you 13), and that’s exactly what you get with Groovy. In other words, the division has occurred first. To
do the sum first, use parentheses to control the order in which the operators are evaluated:

(13 + 3) / 4

The above results in 4. Groovy supports all the usual suspects when it comes to arithmetic operators,
such as - (subtract), * (multiply), and % (modulo). Unlike Java, it also supports an exponentiation
operator:

2 ** 8

This gives the result of two to the power of 8. If, like me, you’ve spent too much time in the past using
Visual Basic, note that ^ does not perform an exponentiation. It’s the XOR bitwise operator. You can see
a complete list of operators in appendix A.

Let’s now introduce some verification into the calculations. First, here is a simple equality comparison:

8 + 4 == 12

The result now is a word: true. This is a literal boolean value whose counterpart, as you’d expect, is
false.

To verify that the expression does indeed result in true, you can prefix it with the keyword assert:

assert 8 + 4 == 12

When you run this, nothing different appears to happen. But what if the expression doesn’t evaluate to
true? Try

assert 8 + 4 == 11

The expression is obviously now false and this time you see an error message:

Assertion failed:

assert 8 + 4 == 11
 | |
 12 false

5

at ConsoleScript6.run(ConsoleScript6:1)

What’s interesting about this error is that it shows the values of all parts of the expression, including
both the left hand and right hand sides. As you might imagine, this makes it relatively easy to diagnose
problems in your code. Assertions are particularly useful in unit tests and other verification-based
scenarios.

Let’s now try out the Pythagorean Theorem. You do remember that from school, don’t you? In case it’s
been too long, it states that the square of the hypotenuse of a right-angled triangle is equal to the sum
of the squares of the other two sides. In code:

def a = 3
def b = 4
def result = Math.sqrt(a ** 2 + b ** 2)

assert result == 5
println result

This little example introduces some new concepts and syntax. First, it declares and uses a few local
variables using the keyword def. Variables declared in this way can contain values of any type, not just
numbers. In other words, the variables are untyped.

The second item of interest is the sqrt() method call. The syntax is absolutely identical to Java’s and in
this case you’re seeing a static method. This is called on the class itself (lava.lang.Math) rather than on
an instance of that class.

Last, but not least, the assertion fails to throw an error despite result being a floating point number.
Groovy’s == operator is largely value based so that 5 and 5.0 are considered the same despite being
different types. This particular behavior is quite different to that of Java, which is very strict on
equality.

Here’s another example with some more method calls. It takes a hexidecimal string, converts it to an
integer, divides that value by 2 (using integer division) and then prints out the hexidecimal
representation of the result:

def n = Integer.parseInt("ED59", 16)
n = n.intdiv(2)
println Integer.toHexString(n)

The output is simply the string "76ac". Hexidecimal representations are fairly common in our line of
work, so it’s useful to know that you can easily transform them to and from integers.

The above example looks unassuming, but it highlights a common struggle with Groovy: where do

6

these methods come from? And where are they documented? To answer those questions, you first
need to know what type you’re dealing with. With static methods that’s straightforward as you can see
the type directly (Integer in the above example, which is short for java.lang.Integer - the fully
qualified class name). It’s not much harder for instance methods as you can always see the type of an
object by calling the method getClass():

println 10.getClass()
println 1.2.getClass()
println "Hello".getClass()

Executing this simple script results in the following output:

class java.lang.Integer
class java.math.BigDecimal
class java.lang.String

All three types are part of the core Java class library, which is fantastic if you already know Java. (And
if you already know Java, you might be surprised at the floating point type - I’ll talk about that soon
TODO). What this means for you is that you’ll need to bookmark the Java API documentation when
coding in Groovy. You’ll find the parseInt() and toHexString() methods described under
java.lang.Integer. What you won’t find is the intdiv() method.

What? Where does that come from then? One thing you have to remember is that one of Groovy’s aims
is to be as close to Java as possible while providing user-friendly features. What this means in practice
is that Groovy extends the core Java class library with methods and properties that it thinks are
particularly useful. intdiv() is one of those methods and you can find it nestled away in the Groovy
JDK documentation.

The Groovy JDK is the name given to all the extra properties and methods that Groovy adds to the core
Java classes. The layout of the documentation is similar to that of the Java API docs, and so you just
need to select the Java class you’re interested in to see what Groovy adds. Look under java.lang.Number
(the super class of Integer) and you’ll find intdiv(). Unfortunately it’s not always obvious which type to
look at for any given property or method, but it becomes easier as you get to know both Groovy and
the Java class library.

There may be something nagging you by this point. All the method calls, such as getClass() and sqrt(),
have parentheses. So what about println()? Isn’t that a method call too? If so, where are the
parentheses?

println() is indeed a method call, equivalent to System.out.println() in Java. Unlike any other method,
though, it can be called as if it were a global function. It doesn’t need to be called on an object or class
like all other methods. As for the lack of parentheses, Groovy doesn’t require them in certain
circumstances. It’s too early in your Groovy career to discuss exactly what those circumstances are, so
for the moment, use parentheses for all method calls and only leave them out for println() calls.

7

https://docs.oracle.com/javase/8/docs/api/
http://docs.groovy-lang.org/docs/next/html/groovy-jdk/
http://docs.groovy-lang.org/docs/next/html/groovy-jdk/
http://docs.groovy-lang.org/docs/next/html/groovy-jdk/?java/lang/Number.html

One important point to be aware of is that the parentheses are required if you don’t pass any
arguments to println():

println "Hello"
println()
println "Goodbye"

What happens if you don’t have parentheses? Try it out:

println "Hello"
println
println "Goodbye"

You will now see an error message rather than the "Goodbye" text:

groovy.lang.MissingPropertyException: No such property: println for class: hello-goodbye

Note the class name of the exception: MissingPropertyException. Groovy is looking for a property called
println, not a method. I’ll come to properties soon, but for completeness, try this example where the
parentheses are included but the method name is incorrect:

println "Hello"
print1n()
println "Goodbye"

This time, you will see a different error:

groovy.lang.MissingMethodException: No signature of method: hello-goodbye.print1n()
➥ is applicable for argument types: () values: []
Possible solutions: println(), println(), println(java.lang.Object),
➥ println(java.lang.Object), println(java.io.PrintWriter), print(java.lang.Object)
 at hello-goodbye.run(hello-goodbye.groovy:2)

Note how Groovy is stating that it can’t find a method this time. It also rather handily displays a list of
known methods that are a close match to the unknown method name just in case you have a simple
typo or can’t remember the correct name properly. You should always read the exception messages
carefully as they are tremendously useful in determining why something isn’t working.

Another interesting facet of the language is that you’re seeing runtime errors for unknown methods
and properties. This is because Groovy resolves properties and methods at runtime by default rather
than at compile time. This can be changed, as you’ll see in chapter TODO. You can also make use of this

8

runtime resolution to do interesting things such as creating builders (chapter TODO) or mock objects
(chapter TODO).

Let’s return to the world of numbers and look at some more examples. In the following script, I
perform a floating-point multiplication repeatedly and time how long it takes:

def start = System.currentTimeMillis() ①
def n = 100.0
for (i in 0..<100000) { ②
 n = n * 0.95
}

println "n = ${n}" ③
println "Time taken: ${(System.currentTimeMillis() - start)}ms"

① Gets the current number of milliseconds since the Unix epoch (1st Jan 1970)

② Iterates over the integers 0 to 100,000

③ Displays the value of n within this string

Ignore the for loop and println() statements for the moment and just focus on the results of executing
the script. First, the number it displays is ridiculously long. When you run it, you’ll see what I mean.
Second, it takes a while to finish - around 2.5 seconds on my laptop. Now add a D suffix to the literal
100.0 and run the script again:

...
def n = 100.0D
...

This time the number is significantly shorter and, more to the point, different. The script also finishes
much faster - 33ms for me. What’s going on? It all boils down to the number types being used. When
you look at the classes behind the two number literals:

println 100.0.getClass()
println 100.0D.getClass()

you will see that the first value is of type java.math.BigDecimal, while the second one is a
java.lang.Double. Double allows for fast calculations at the cost of accuracy, while BigDecimal is accurate
at the cost of speed. In fact, Double cannot represent the final result because it’s too small.

As you can guess from running these scripts, Groovy defaults to BigDecimal for floating point literals,
which ensures accuracy. This behavior may bother some of you, but it’s not a big deal. As you can see,
it’s easy to turn floating point literals into Doubles through a simple suffix if you have the need for
speed.

9

Integer numbers also show some interesting effects. Consider this example for calculating factorials:

def factorial(n) { ①
 return n == 1 ? 1 : n * factorial(n - 1) ②
}

println factorial(10)

① Declares a new function called "factorial"

② Uses the ternary operator ('<condition> ? <value1> : <value2>') for a conditional result

A quick work on the implementation before we look at the behavior of this script. The easiest way to
implement the factorial algorithm is via recursion, and for that you need functions. As you can see
from the example, Groovy allows you to define functions in a script using the syntax

<return type> <method name>(<type> <arg>[, <type> <arg>,...]) {
 <method body>
}

This is also the basic syntax for defining methods within classes, as you’ll see later. As with the local
variables earlier, the factorial() function doesn’t specify an explicit type for its return value, using def
instead. Once defined, you can then call the function from anywhere inside the script.

You might notice that factorial() doesn’t specify a type for its argument. Nor does it use def. That’s
because method arguments are a special case that don’t require def if they are untyped. If you forget
this, don’t worry: Groovy happily accepts def in front of method arguments. It’s just unusual amongst
more experienced Groovy developers.

Executing the factorial script behaves as you’d expect, displaying the value 3628800 (everyone knows
the factorial of 10, right?). But what if I pass a floating point number to the factorial() function
instead?

...
println factorial(10.5)

Ouch! Now when you run this you’ll see an ugly StackOverflowError. That’s because the recursion only
stops when n becomes 1, which never happens if the initial argument is not an integer. So if the
function only works with integers, can we specify that as a constraint? Indeed we can. Change the
signature of the method to

10

def factorial(int n) {
 ...
}
...

The argument is now typed. If you attempt to call the factorial() method with an argument of 10.5
now, you’ll get a MissingMethodException because Groovy can’t find a method whose signature accepts
floating point numbers. You’re still seeing a runtime error though, as Groovy doesn’t perform a
compile-time check even though we have specified the types.

Primitive vs object types

I guess now is as good a time as any to explain why int rather than Integer. Java has the concept
of primitive types and object types. Primitive types, such as int, double, etc., are not objects and
so you can’t call methods on them. Nor can they have a value of null. On the plus side, they allow
for faster calculations.

Groovy has inherited primitive types from Java, but it treats them differently. In fact, the only
difference between the primitive and object types is that the former can’t be null. You can access
properties and methods on primitive types just as you can on object types. Because of that, I tend
to use the primitive types. It’s more habit than anything else. That said, it makes sense for
factorial() to use the primitive type as the algorithm can’t handle null values anyway.

Are you happy with the implementation of factorial() as it stands? I’m not. To understand why, try
using a value of 17:

...
println factorial(17)

Were you expecting a negative number? Whether you were or not, that’s what happens and it’s
certainly not correct. The reason for this is that int and Integer can only store integers up to a size of
231. If your value goes beyond that, then you end up with something called integer overflow.

You can force Groovy to use a wider integer type by changing the specified type. Long integers are 64
bit, so that will allow us to calculate larger factorials:

def factorial(long n) {
 ...
}
...

Unfortunately, it’s not long before you hit integer overflows again. Just try using a value of 21! The

11

result is negative yet again. This is one occasion where the java.math.BigInteger type is particularly
useful. It can handle integers of almost any size. As with BigDecimal, it’s not as fast as using the core
types, but it’s speedy enough for many cases:

def factorial(BigInteger n) {
 return n == 1 ? 1 : n * factorial(n - 1)
}

println factorial(234)

You can declare types for local variables and method return values, not just method arguments.
Groovy will automatically coerce values to the required type. If a particular coercion isn’t supported,
then you get a runtime error. Type coercion has a lot of subtleties to it, so there’s a dedicated section
for it in chapter TODO.

12

Chapter 3. Working with types
Numbers are an important part of programming. Ultimately, computers only deal with numbers. As
humans, though, we prefer some higher level types such as strings. In this chapter, I’ll show you how
to use and interact with strings, collections, and maps. I’ll also introduce some other concepts such as
fields and properties.

3.1. The joy of strings
History has been recorded in the form of text for thousands of years - in stone, on paper, and now
electronically. In that time, words have lost none of their power or usefulness. That’s why a basic type
representing text is such a fundamental part of any programming language. And of course that type
should be able to handle any language.

Groovy uses Java’s java.lang.String class which is able to represent text in any written language
supported by Unicode, or more specifically the 16-bit Unicode Transformation Format (UTF-16). If
you’re interested, you can find a full list of supported scripts/alphabets on the Unicode website. I’ll be
using the latin alphabet almost exclusively in this book, but you can try this short script in the Groovy
console to confirm support for other languages:

println "I live in London"
println "我住在北京"
println "ฉันอาศัยอยู่ในกรุงเทพฯ"
println "Ζω στην Αθήνα"

The above consists of English, Chinese (Simplified), Thai, and Greek (using Google Translate of course -
I only wish I could write in so many diverse languages!). Just bear in mind that you need a text editor
or IDE that supports UTF-8 if you want to use non-Latin characters in Groovy source code. This is
because the Groovy compiler assumes UTF-8 by default.

It’s quite possible to write a book about character encodings and internationalization, but it’s out of
scope for a Groovy language introduction. So from here on in, I’ll be sticking to examples based on
English. That will certainly make life easy for the next example which will involve some text analysis.

3.1.1. Strings are sequences

What is text? It’s inherently a sequence of characters, which means you can evaluate its length,
reorder it, extract substrings and count the number of vowels or consonants in it. It also means you
can iterate over the characters.

Let’s see how this works in Groovy. We start with a piece of text (a string), evaluate the properties we
just described (length, etc.) and then print that information out:

13

https://docs.oracle.com/javase/8/docs/api/?java/lang/String.html
http://www.unicode.org/standard/supported.html

def text = "Jack Rabbit Slims Twist Contest"
println "Text length: " + text.size() ①
println "First character: " + text[0] ②
println "Last character: " + text[-1]

final vowels = "aeiou" ③
def vowelCount = 0
for (ch in text) { ④
 if (vowels.contains(ch.toLowerCase())) {
 vowelCount++
 }
}

println "Number of vowels: " + vowelCount

① Concatenate strings with the + operator

② Access individual characters

③ Declare a constant using final

④ Iterate over the characters of the string

This example introduces several properties of strings:

• Concatenation with +

You can build up strings this way with any values, including numbers, lists and so on. The only
requirement is that the concatenation starts with a string.

• Text length with size()

Java is annoying because you need to use different fields or methods to get the lengths of arrays,
lists, and strings. In Groovy, you can just use the size() method for all types of sequence. You can
find this method documented in the Groovy JDK entry for String.

• Array indexing to extract characters

You can use the syntax of [index] on any type of sequence to pick out a particular element. The first
element of a sequence is at index 0. If you want to index from the end of a sequence, use a negative
number. So -1 represents the last element, -2 the second to last, and so on.

One thing to note is that the array index operator returns a single character string in this case,
rather than a java.lang.Character. You can verify this by adding a line println text[0].getClass()
to the script. I’ll discuss the Character type shortly as Groovy is noticeably different from Java on
this score.

• Looping with for

14

http://docs.groovy-lang.org/docs/next/html/groovy-jdk/?java/lang/String.html

The standard Groovy for loop works on any type of sequence, just like the array index operator.
And similarly, each iteration gives you a single character string to work with instead of a Character.
If you want to be more explicit you can include the type:

for (String ch in text) {
 ...
}

This does of course raise the question of when to explicitly specify the type of the iteration variable.
It’s a question that always crops up with Groovy because of its optional typing, hence why I discuss
it more thoroughly in chapter [TODO] once you know most of the basics. In this particular case, it’s
easy to infer the type of ch and so the type isn’t necessary. But some people may be more
comfortable with it being explicit, and that’s fine too.

I just want to finish off this section by identifying the source of the string methods used in the example.
I’ve already mentioned that size() is provided by the Groovy JDK, but so is toLowerCase(), which
returns a new string with all letters lower-cased. The contains() method is different because it is
provided by the JDK itself.

This sort of thing can be frustrating: how are you supposed to know where to find these methods in the
API docs? The best advice is to stay calm and just look at both the Java API and Groovy JDK docs when
searching for a method. Alternatively, use an IDE that will give you auto completion: Eclipse, IntelliJ
and NetBeans all have great Groovy integration. As you become more familiar with the APIs, you’ll
learn where the various methods come from.

Before moving on, there is one improvement I’d like to make to the script. I like things to be formatted
so that they are more readable. The summary of the text analysis just doesn’t cut it at the moment as
the values are misaligned. We can easily remedy that in Groovy using one of its methods related to
padding. In this case, we want to pad the labels so that the values all appear left-aligned:

def text = "Jack Rabbit Slims Twist Contest"
final padding = 20
println "Text length: ".padRight(padding) + text.size()
println "First character: ".padRight(padding) + text[0]
println "Last character: ".padRight(padding) + text[-1]
...

You could also try right-aligning the labels by using the padLeft() method instead.

3.1.2. String expansion

As you’ve just seen, string concatenation works just fine. That said, it does add noise to your code,
particularly when there is more text than expressions. An alternative approach in Groovy is to use
string expansion, by embedding expressions inside ${} place holders:

15

...
println "I found ${vowelCount} vowels in the text"

I consider this to be more readable than

...
println "I found " + vowelCount + " vowels in the text"

It’s also easier to keep track of the spaces you need. Did I remember to include the space after 'found'
and the one before 'vowels'? It’s not so clear with string concatenation.

You will often see an alternative form (without the curly braces) for embedding variables:

println "I found $vowelCount vowels in the text"

It’s a little less noisy, but the expression doesn’t stand out so well. I tend to recommend to newcomers
that they only use the former syntax (with curly braces) for consistency and to avoid some confusing
edge cases with the latter approach. Ultimately it’s a style thing and up to you or your team.

So what happens when you want to include an actual dollar symbol in the string? Try this code snippet
in the Groovy console:

println "I sent them a $1000 check by post"

I see an error message:

illegal string body character after dollar sign;
 solution: either escape a literal dollar sign "\$5" or
 bracket the value expression "${5}" at line: 1, column: 1

It’s pretty clear that Groovy’s not happy about that $ in the string. One solution is to escape it using a
backslash:

println "I sent them a \$1000 check by post"

It works, but isn’t pretty. Also imagine if you have a much larger string with lots of $ symbols. What are
the chances that you’re going to remember to escape all of them? In such cases, I prefer an alternative
string literal using single quotes:

16

println 'I sent them a $1000 check by post'

The only difference between the single-quote and double-quote versions is that the latter supports
embedded expressions. It’s also important to understand that there is no memory or performance
difference between the two. A double-quote string without any embedded expressions is still a plain
java.lang.String. The decision to use one over the other then becomes one of personal preference. I
prefer to use double quotes in most cases because I can easily insert an embedded expression at a later
date without also changing the quotes. Others like the extra information tied to using single quotes, i.e.
it is just a plain string.

3.1.3. Multi-line strings

This is the kind of thing that people have long discussions and arguments over, so let’s move swiftly on
before we end up in the same boat. Imagine you want to include a block of text in your code - perhaps
it’s an email template or long, formatted message you want to display to users. The easiest way to do
this in Groovy is with a multi-line string literal:

Listing 2.1

def sayHello(name) {
 println """Dear ${name},

Thank you for signing up to our product. We hope you enjoy!

Kind regards,

Customer Services
"""
}

sayHello("Peter")

So simply by using three quotes at the beginning and end, you’re allowed to put line breaks in the text.
This is much nicer than using the \n new line character. Also notice how the above example includes
an embedded expression: that’s because it uses double quotes. You can also use three single quotes (
''') instead, in which case the expression doesn’t get evaluated.

So far, so simple. But what if you don’t like aligning the text in the first column of the source file?
Perhaps you’d prefer to indent it like so:

17

def sayHello(name) {
 println """Dear ${name},

 Thank you for signing up to our product. We hope you enjoy!

 Kind regards,

 Customer Services
 """
}

sayHello("Peter")

Unfortunately, the spaces at the beginning of each line will end up in the output because they are part
of the text. All is not lost, though! The Groovy JDK provides some extra methods that are ideal for such
scenarios: stripIndent() and stripMargin().

The first of these remove any leading whitespace that is common to all lines. The second,
stripMargin(), removes all leading characters up to a specific character (| by default). We’re going to
use stripIndent() here, but there is one thing we need to be wary of: every line has to have the leading
whitespace for it to be removed. And the code as it stands doesn’t have leading whitespace for the first
line!

To solve that, we’re going to use a line continuation:

def sayHello(name) {
 println """\ ①
 Dear ${name}, ②

 Thank you for signing up to our product. We hope you enjoy!

 Kind regards,

 Customer Services
 """.stripIndent() ③
}

sayHello("Peter")

① \ followed by a new line cancels the line break

② The first line of text now has leading whitespace

③ Removes the leading whitespace from each line

I almost always use a line continuation for the first line of multi-line strings, just to ensure nice

18

alignment. The main issue that typically arises from this technique is the presence of spaces or tabs
after the backslash. For line continuations to work, the backslash must be the last character of that
source code line.

3.1.4. Characters and type coercion

As you’ve seen, Groovy treats strings as if they are sequences of single-character strings. This seems a
little strange as the Java class library does have a specific type representing a single character:
java.lang.Character. Does this mean that you shouldn’t use Character from Groovy?

The simple fact is that it would be hard not to use Character when so many Java APIs that you might
want to use rely on them. For example, if you want to check whether a character is an alphabetic letter,
you can use the static Character.isLetter() method. It takes a Character as its argument. To understand
the problem better, consider this example:

def text = "Jack Rabbit Slims Twist Contest"
if (Character.isUpperCase(text[0])) {
 println "The text starts with a capital letter!"
}

Running this results in another one of those pesky missing-something exceptions:

groovy.lang.MissingMethodException: No signature of method: static
java.lang.Character.isUpperCase() is applicable for argument types: (java.lang.String)
values: [J]
Possible solutions: isUpperCase(), isUpperCase(char), isUpperCase(int), toUpperCase(),
toUpperCase(char), toUpperCase(int)
 at ConsoleScript27.run(ConsoleScript27:2)

As the exception says, there is no isUpperCase() method that takes a string. So how do you get a
Character in Groovy? The solution lies in a multi-purpose conversion mechanism.

Groovy provides two conversion options, one implicit and the other explicit. The implicit version
consists of assigning a value of one type to a local variable declared as another type. Applying this to
the previous example, we get

def text = "Jack Rabbit Slims Twist Contest"
Character ch = text[0] ①
if (Character.isUpperCase(ch)) {
 println "The text starts with a capital letter!"
}

① Explicitly declare the local variable as the required type

19

https://docs.oracle.com/javase/8/docs/api/?java/lang/Character.html

This approach also works for variables declared in for loops:

def text = "Jack Rabbit Slims Twist Contest"

def upperCount = 0
for (Character ch in text) { ①
 if (Character.isUpperCase(ch)) {
 upperCount++
 }
}

println "There are ${upperCount} upper case letters"

① Explicitly declare the type of the loop variable

The second, explicit, approach involves a new operator: as. This is particularly useful when
introducing a new variable just adds noise to the code. The previous example where we introduced a
new local variable would be better coded as

def text = "Jack Rabbit Slims Twist Contest"
if (Character.isUpperCase(text[0] as Character)) { ①
 println "The text starts with a capital letter!"
}

① Use as to coerce a value to a different type

Whichever approach you use, just be aware that it doesn’t just magically convert all types to all other
types. The built-in support has limited knowledge and is mostly used for:

• Converting a single-character string to a Character

• Upgrading numbers, for example from Integer to Long

• Converting a list to an array (I’ll talk about this a little later)

• Creating a set from a list

• Converting pretty much anything to a String, since every type has a toString() method

You can’t, for example, assign a string with more than one character in it to a Character variable. You’ll
get a GroovyCastException. That’s good because automatic coercions are very useful but can cause
productivity-sapping surprises when too prevalent. And remember that coercion does not happen
automatically for method arguments, even if they are explicitly typed.

20

Object vs primitive types

Groovy inherits Java’s type system, which means that you get both primitive and object types.
For example, char and Character. These two types are interchangeable in Groovy as you can call
methods on primitive types. The main difference is that object types can have a null value.

I tend to prefer the primitive types because they are shorter and I rarely want to allow null
values for them. The available primitive types (and corresponding object types) are:

Primitive type Object type

char Character

byte Byte

short Short

int Integer

long Long

float Float

double Double

boolean Boolean

From this point on, I’ll use primitive types unless an object type is required for some reason.

Strings aren’t the only form of sequences. What if you want a shopping list or a simple sequence of
numbers? A list is a more generic form of sequence available in Groovy and we look at that next
alongside other types of collection.

3.2. Collections, ranges and maps
When programming, we often need to deal with collections of objects, not just single instances. That’s
why most languages have built-in support for lists (an ordered collection or sequence) and other types
of collection. As with strings, it’s the Java class library that provides these types in Groovy. That doesn’t
mean that you get the same experience as if you’re developing in Java. In fact, Groovy brings a greater
level of consistency and expressiveness.

We’ll start with ordered collections, which are represented by the java.util.List interface. In the
following example, I create a list of words (strings) and then proceed to iterate over them to calculate
the shortest, longest and average word lengths. Before you critize the implementation (there are better
ways to do this), remember that I’m trying to introduce new concepts and APIs gradually!

21

https://docs.oracle.com/javase/8/docs/api/?java/util/List.html

final words = ["orange", "sit", "test", "flabbergasted", "honorific"] ①

def minWordLength = Integer.MAX_VALUE ②
def maxWordLength = 0
def totalLength = 0
for (w in words) {
 minWordLength = Math.min(minWordLength, w.size())
 maxWordLength = Math.max(maxWordLength, w.size())
 totalLength += w.size()
}

println "Min word length: ${minWordLength}"
println "Max word length: ${maxWordLength}"
println "Avg word length: ${totalLength / words.size()}" ③

① A list literal containing strings

② MAX_VALUE is a static field on java.lang.Integer

③ size() gives the lengths of strings and lists

The first thing that will strike you if you come from Java is how easy it is to create a literal list of
values. It’s simply a list of comma-separated values bounded by square brackets. We can put numbers
in there, dates, or any other type. We’re not even forced to use the same type for each element, so we
can create a list of mixed strings and numbers for example. That said, collections commonly contain
objects of the same type.

The for loop also works exactly the same as for strings. If you’re trying the example out in an IDE, you
might even notice that it’s not worried about the w.size() method (IDEs with Groovy support tend to
underline methods that they can’t be sure exist on a particular object, typically because they can’t be
sure what the type of that object is). That’s because Groovy infers that the list only contains strings, so
therefore w must be a string too! This is just a taster of how Groovy straddles the usual line between
dynamic and static (type-checked) languages. We’ll be delving deeper into that topic later on in chapter
TODO.

The previous example shows you how to iterate over a list, but what if you want to access an element
at a specific index? As with strings, you can use the array index operator:

def words = ["orange", "sit", "test", "flabbergasted", "honorific"]

assert words[0] == "orange"
assert words[-1] == "honorific"
assert words[words.size() - 1] == "honorific" ①

① The array index can be an expression, as long as it evaluates to an integer

At this point, I can almost hear some Java developers drawing breath to point out a flaw in this

22

example. Surely I should be using the equals() method when comparing strings? Fortunately that’s not
the case with Groovy. The == operator performs a value comparison rather than an object identity one.
In other words, it does what any non-developer would expect it to do.

Sometimes a list literal isn’t sufficient and you need to build one dynamically. Consider a method that
creates a list of the powers of two, i.e. f(x) = 2x:

List powersOfTwo(int n) {
 def result = []
 for (i in 0..n) { ①
 result << 2 ** i ②
 }

 return result
}

assert powersOfTwo(2) == [1, 2, 4]
assert powersOfTwo(8) == [1, 2, 4, 8, 16, 32, 64, 128, 256]
println "Done!"

① Iterate over squential integers using a range

② Append a new value to the list

In this example, we start with an empty list and then add the relevant numbers to it via the << (left
shift) operator. Note that we’re modifying the list directly rather than creating a new list with the extra
element. If you’d prefer to use a non-mutating approach, you can use + instead:

...
 for (i in 0..n) {
 result += 2 ** i ①
 }
...

① Shorthand for result = result + (2 ** i)

Yes, this approach has a cost in terms of execution speed and memory usage (you’re creating a new list
and copying the existing elements on each iteration), but in many cases it’s not significant within its
context.

The + operator can also be used to merge lists, similar to the way it’s used to concatenate strings:

23

def l1 = [1, 2, 3]
def l2 = [4, 5, 6]

assert l1 + l2 == [1, 2, 3, 4, 5, 6]
assert l1 == [1, 2, 3]
println "Done!"

The more memory-efficient, mutating approach requires an explicit method call rather than an
operator:

def l1 = [1, 2, 3]
l1.addAll([4, 5, 6])

assert l1 == [1, 2, 3, 4, 5, 6]
println "Done!"

I have noticed that some people try to use the << operator for this, but it doesn’t work. What you end
up with is a 4 element list whose last element is also a list: [1, 2, 3, [4, 5, 6]]. Try it!

You can find the addAll() method and others defined on java.util.List. It’s also worth checking the
java.util.Collection and java.util.Iterable interfaces too, since List inherits from them.

When it comes to sequences, you should always try to use lists where possible as they have the richest
API and widest support. They also enable you to take advantage of the Java 8 stream support.
Unfortunately, you may still come across APIs that use another type of sequence: arrays.

3.2.1. Coping with arrays

Many years ago, before Java reached version 1.2, the only built-in support for sequences (other than
strings) was the array. Some people still use them for reasons of efficiency, although thats not a
common case. The main reason you’ll encounter them is through using some API, often in the Java
class library.

Let’s start with the String.split() method. I frequently use this to convert a string into a sequence of
words, but as you can see from the documentation, it returns an array rather than a list. So what magic
do you need in order to process the array? As you can see from the following example, in some cases
you don’t need to do anything:

24

https://docs.oracle.com/javase/8/docs/api/?java/util/List.html
https://docs.oracle.com/javase/8/docs/api/?java/util/Collection.html
https://docs.oracle.com/javase/8/docs/api/?java/util/Iterable.html
https://docs.oracle.com/javase/8/docs/api/?java/lang/String.html

def words = "Jack Rabbit Slims Twist Contest".split(" ") ①

def minWordLength = Integer.MAX_VALUE
def maxWordLength = 0
def totalLength = 0
for (w in words) {
 minWordLength = Math.min(minWordLength, w.size())
 maxWordLength = Math.max(maxWordLength, w.size())
 totalLength += w.size()
}

println "Min word length: ${minWordLength}"
println "Max word length: ${maxWordLength}"
println "Avg word length: ${totalLength / words.size()} ②

① Returns a String array

② size() method works on arrays

This code looks no different to the example earlier where we started with a literal list of words. Groovy
allows you to treat an array as if it were a list. So you can iterate over it and also use the size()
method. Many other Groovy JDK methods work on both lists and arrays too. Yet there are limits to this
approach that you will become familiar with.

For example, you cannot append to an array. The following will result in a MissingMethodException for
leftShift(), a clear sign that the method only applies to lists, not arrays:

def words = "Jack Rabbit Slims Twist Contest".split(" ")
words << "Test"

That exception is particularly interesting because it hints at how operators such as << are handled in
Groovy. Don’t worry, I’ll be coming back to that a little later.

In fact, the uniformity that Groovy provides across arrays and lists all happens within the Groovy JDK.
Arrays in Java have no methods for you to invoke and they only have one significant field: length. So
the best place to look to find out whether you can use a particular method on an array is the Groovy
JDK doc for http://docs.groovy-lang.org/docs/next/html/groovy-jdk/?java/lang/Object.html[Object[]].

Alternatively, you can banish any doubt or confusion by converting the array to a list as soon as
possible:

def words = "Jack Rabbit Slims Twist Contest".split(" ") as List ①
words << "Test"

① Use as to convert an array to a list

25

http://docs.groovy-lang.org/docs/next/html/groovy-jdk/?java/lang/Object

That as operator is already proving remarkably useful and will continue to do so. And I think this is the
safest approach when dealing with arrays that are returned to you. Even if the API suddenly changes
and returns a list, your code will continue to work (the as operator will just return the value as is).

I’ve covered the case of a method returning an array, but there is still the question of how to handle
methods that require an array as an argument. The solution is simple and relies on a technique I’ve
alread shown you. Do you remember how we got a Character from a String? You can either declare a
local variable with the required type or use the as operator. Here’s an example using as:

def proc = Runtime.getRuntime().exec(["java", "-version"] as String[])
def out = new StringWriter()
def err = new StringWriter()
proc.waitForProcessOutput(out, err)

println err

As you’ve probably worked out, the array type is the one with the [] suffix. So you can have int[],
Object[], and so on. One thing you can’t do is initialize an array using the Java syntax:

String[] words = new String[] { "orange", "sit", "test", "flabbergasted", "honorific" }
println words

You’ll get a compilation error if you try. In fact, this is one of the rare cases where standard Java syntax
is not valid Groovy.

That’s pretty much all you really need to know about arrays. I’d like to finish here with just a brief look
at the MissingMethodException I mentioned earlier. The full message looks like this:

groovy.lang.MissingMethodException: No signature of method:
[Ljava.lang.String;.leftShift()
is applicable for argument types: (java.lang.String) values: [Test]
 at ConsoleScript9.run(ConsoleScript9:2)

Look carefully at the method signature. What type does it think leftShift() is being invoked on? Yes,
it’s [Ljava.lang.String;. That looks a bit weird, right? This is the stringified form of the associated
array class. You can easily identify arrays by that leading [. The L and trailing ; represent an object
type. Here are some more examples:

int[] => [I
Integer[] => [Ljava.lang.Integer;

I bring this up because it’s important to recognise what types are involved when you’re trying to

26

diagnose problems in your code, and Java doesn’t make it too easy when it comes to arrays!

Although sequences are common, they aren’t the only form of data structure. Sometimes you don’t
care about order but do want to ensure that you don’t have duplicate elements. That’s when a set
comes in handy. Or you may want a list that is cheap to add elements to. It’s useful to know how to
work with other collection types.

3.2.2. Collection types

I’ve already mentioned that lists in Groovy implement java.util.List. That’s an interface, so what type
of list are you actually getting when you use the list literal? It’s easy to find out in the Groovy console
using the following:

println([].getClass())

Hopefully you’ll see class java.util.ArrayList in the output pane. This is possibly the most commonly
used list implementation in Java as it’s cheap to access elements at an arbitrary index (otherwise
known as random access). You can find out more about its characteristics in the Java API docs.

Before I talk about other list implementations, I’d like to point out a common gotcha with the previous
example. In its case, the parentheses for println() are required. Otherwise you get a
MissingPropertyException for println. Why? Because Groovy interprets the square brackets in this:

println [].getClass()

as the array index operator, not a list literal. As in people[0].getClass(). If you get into this kind of
situation, make sure you fully digest the exception message. It often reveals the source of the problem
right away. In this case, the exception makes it clear that Groovy thinks that println is a property, not a
method. The quick insertion of parentheses will quickly resolve such cases.

Back to list types. Given that there are different implementations, the key question is this: how do you
use an alternative implementation to java.util.ArrayList? The answer depends on whether you’re
starting with an existing list or not. Let’s go back to our list of words, but this time make it a linked list:

def words = ["orange", "sit", "test", "flabbergasted", "honorific"] as LinkedList

println words.getClass()

Once again, it’s the as operator that comes to our rescue. You can of course explicitly declare a local
variable as type LinkedList for the same effect.

Array lists and linked lists are the two main types of list provided by the core Java class library. You
might notice a couple of other implementations lurking in the java.util package too: Vector and Stack.

27

https://docs.oracle.com/javase/8/docs/api/?java/util/ArrayList.html

They’re pretty much legacy, superseded by ArrayList and queues, and you can safely ignore them. If
you have specialist requirements, consider third-party libraries, such as Google’s Guava, that provide
alternative list implementations.

Java does provided greater variety when it comes to java.util.Queue and java.util.Deque (double-
ended queues) implementations, although Groovy defaults to LinkedList if you coerce a list to Queue. A
more distinct collection type is the set:

def uniqueNumbers = [3, 3, 1, 1, 2, 2] as Set

assert uniqueNumbers.size() == 3
println uniqueNumbers
println uniqueNumbers.getClass()

As you can see, a java.util.Set doesn’t allow duplicate elements. They typically don’t care about order
either. However, Groovy’s default implementation (java.util.LinkedHashSet) will reliably print the
numbers in the same order as they are declared in the list literal. That’s because it retains insertion
order, so when you iterate over the set, it does it in the order that elements were added to the
collection.

A more common requirement, especially for numbers and strings, is to use the elements' natural sort
order. You can easily create such a set by coercing to the java.util.SortedSet interface:

def uniqueNumbers = [3, 3, 1, 1, 2, 2] as SortedSet

println uniqueNumbers
println uniqueNumbers.getClass()

You will now see the set printed out as [1, 2, 3] with a class of java.util.TreeSet.

This isn’t the only way to get the collection type you want, particularly if you want to start with an
empty one. Since the collections are normal Java classes, you can instantiate them directly using the
new keyword:

def uniqueNumbers = new HashSet()
uniqueNumbers.addAll([1, 1, 2, -1, 1])

println uniqueNumbers

Interestingly, when I run this script I see the numbers printed in numeric order: -1, 1, 2. Trust me,
that’s a coincidence. The HashSet implementation gives no guarantees as to its iteration order.

There’s just one more type connected with collections that I want to cover: the map, also known as an
associative array.

28

https://github.com/google/guava
https://docs.oracle.com/javase/8/docs/api/?java/util/Queue.html
https://docs.oracle.com/javase/8/docs/api/?java/util/Deque.html
https://docs.oracle.com/javase/8/docs/api/?java/util/Set.html

3.2.3. Maps

I remember my early C++ days when it was hard to find an existing hash map implementation. I even
remember trying to write my own. So it was with some relief that I saw Java came with its own map
classes, which I could use with abandon. I haven’t looked back.

Perhaps surprisingly, the java.util.Map interface doesn’t extend java.util.Collection, even though you
can think of it as a collection of key-value pairs. For example, consider this script which prints the keys
and value of all the entries in a map:

def epics = [VMW: "VMware", MSFT: "Microsoft", AAPL: "Apple"]

for (e in epics) {
 println "${e.key}: ${e.value}"
}

A map literal looks a lot like a list literal, with the square brackets and comma-separated elements. The
key difference is that you have a colon between each key and its value. When you then iterate over a
map, each element is an instance of java.util.Map.Entry. Note that Entry is defined within the Map
interface, making it a nested interface.

A closer look at the Entry class shows that there are no key or value fields there, so why does e.key
work? The answer lies in Groovy’s concept of properties. Don’t worry, I’ll explain these as soon as I’ve
finished with maps.

Iterating over a map is all very well, but one of the main reasons to use such a data structure is so that
you can quickly look up the value for a given key. Groovy allows you to do this through the array index
operator, using a key instead of an integer. You use the same operator to add or overwrite individual
entries:

def epics = [VMW: "VMware", MSFT: "Microsoft", AAPL: "Apple"]
def searchKey = "MSFT"

println epics[searchKey] ①

epics[searchKey] = "Micro$oft"
epics["GOOG"] = "Google" ②

println epics

① Fetches the value for a given value (returns null if the key doesn’t exist)

② Adds another map entry

Note how I need to use string literals with the array index operator but not in the map literal. That’s
because the literal is a special case in which the key is assumed to be a string literal by default. The

29

https://docs.oracle.com/javase/8/docs/api/?java/util/Map
https://docs.oracle.com/javase/8/docs/api/?java/util/Map.Entry.html

example will work just the same if you put quotes around the keys like so:

def epics = ["VMW": "VMware", "MSFT": "Microsoft", "AAPL": "Apple"]
println epics

It’s really just a convenience because string keys are so common in map literals. Of course, not all maps
use strings for their keys. What happens if you want your keys to be numbers? That’s easy because
number literals (integers and floating point) work as is:

def numberWords = [1: "One", 2: "Two", 3: "Three"]
println numberWords[2]

The downside comes when you want to use a variable (or more specifically its value) as a key. This is a
surprisingly rare scenario, but as an example, imagine we have a method that takes a string as an
argument and returns a map with that string as a key and its length as the value:

def stringAttributes(String str) {
 return [(str): str.size()] ①
}

println stringAttributes("Hello world!")

① Use the string value as the key, not the literal "str"

When you run the script you should see the output

[Hello world!:12]

These basics will get you through the examples in rest of the book, so I want to go back to the question
of why e.key works when there is no field on the Map.Entry class with that name. It’s time to talk about
one of the most important concepts in Groovy: properties.

3.2.4. Properties

In object-oriented languages, objects can have both state and behavior. That means fields and methods
if you’re writing Java. The trouble with fields is that you can’t override them, for example to evaluate
their values on demand. So Groovy introduces an additional form of state: the property. The basic idea
is that properties are accessed through two methods whose signatures follow a specific convention:

<property type> get<PropertyName>()
void set<PropertyName>(<property type> val)

30

These are known as the getter and setter methods, or simply getters and setters. So in the case of the
Map.Entry class, you have a getKey() method that corresponds to a property named key, and getValue()
and setValue() methods that represent a value property.

So how do you map the method names to the equivalent property names? The rules are based on the
JavaBeans specification, but it’s probably easiest to understand through some examples. Here’s a table
mapping method names to property names:

Method Property name

getKey() key

getFullName() fullName

getLine1Address() line1Address

isHidden() hidden (only valid for boolean properties)

getURLScheme() URLScheme

As you can see, the basic rule is to remove the leading "get" and then lower case the first letter of
what’s left. The only case in which this rule doesn’t hold is when the first two letters of what’s left are
both upper case. The property name is the samme as the method name in this situation (minus the
"get"). It’s also worth pointing out that boolean properties can use a getter or an is<PropertyName>()
method.

The Map.Entry example raises another question. What happens when there is a getter but no setter, as
is the case with Entry.getKey()? To demonstrate, I’m going to bring in the File class and try to change
the name of the file:

def f = new File("test.txt")
println f.name

f.name = "new.txt"
println f.name

Running this will print out "test.txt" as expected, but you’ll see an exception following on swiftly:

groovy.lang.ReadOnlyPropertyException: Cannot set readonly property: name for class:
java.io.File
 at ConsoleScript9.run(ConsoleScript9:4)

So if you have a getter without a corresponding setter, you end up with a read-only property. This can
be particularly useful for properties that are calculated on demand and have no corresponding field to
store the state.

You can of course still access the methods as methods. You don’t have to use property syntax. The

31

http://www.oracle.com/technetwork/java/javase/documentation/spec-136004.html

above example then becomes

def f = new File("test.txt")
println f.getName()

f.setName("new.txt")
println f.getName()

This time, though, you’ll get a MissingMethodException. Otherwise the script behaves as before.

I generally prefer property syntax over using the methods directly because the code looks cleaner and
more readable, which I find very valuable. One of the few time I prefer using a getter method explicitly
is with the ubiquitous getClass(), which tells you the type of an object. The reason for that is because
of what happens when you use property syntax on a map:

def map = [:] ①
println map.class
println map.getClass()

① This is an empty map. The colon distinguishes it from an empty list.

You’ll see that the script first prints null before then displaying the full type of the map on the next
line. That’s because Groovy adds special behavior to Map that overrides the default property access. So
the second line of the script looks for a key named "class", doesn’t find it, and returns null. I’ve been
caught out by this more times than I can recount, so I just use getClass() explicitly.

Speaking of property syntax and maps, let’s take a look at a previous map example, replacing the array
index operator with property access:

def epics = [VMW: "VMware", MSFT: "Microsoft", AAPL: "Apple"]
println epics.MSFT

epics.GOOG = "Google"
println epics

Whether you use the array index operator or property syntax depends on your own preferences. I
typically use the former if I know that I’m dealing with a map. However, property syntax can be useful
if the target object could be a map or another type entirely. I’ll explain how this works when I dive into
the dynamic nature of standard Groovy. Other developers prefer the property syntax because it’s less
noisy and easier to type (my little finger certainly struggles with the square brackets on a US
keyboard).

You’ve now been introduced to the core types in Groovy, which will set you in good stead for future
examples. It’s hard to code without strings, collections, or maps! I just want to finish off this chapter

32

with a more complete example that you can play with, based on Pig Latin.

3.3. Chapter example
If you’re not familiar with Pig Latin, it’s a technique for obfuscating English words so that they aren’t
instantly recognisable. The rules I’ll follow are fairly straightforward:

• If a word begins with a consonant, I move the starting consonants to the end of the word and then
add an "ay" suffix.

For example, "happy" becomes _appyhay_ and "glove" becomes _oveglay_.

• If a word begins with a vowel or a silent letter, then I simply add "way" as a suffix.

For example, "egg" becomes _eggway_ and "eight" becomes _eightway_.

You can find out more information about Pig Latin on Wikipedia. It’s mostly just a game that people
play. So how do we go about implementing such a thing?

Let’s start with a script that has a method for doing the conversion plus a bunch of assertions to verify
that it works correctly:

String pigLatinize(String text) {
 return ""
}

assert pigLatinize("happy") == "appyhay"
assert pigLatinize("egg") == "eggway"
assert pigLatinize("hello earth") == "ellohay earthway"

As it stands, running this script will result in an assertion error. It’s kind of obvious because the
method always returns an empty string. I’m just trying to take the Test Driven Development (TDD)
approach!

The logic for the conversion is deceptively simple (if we ignore the hard cases):

• Split the text into individual words

• Convert each word

◦ If the word starts with a series of consonants, place them at the end

◦ Add an 'ay' suffix

• Recombine the words into a single string

33

http://en.wikipedia.org/wiki/Pig_Latin

Before we start, though, consider how we are going to do the split and merge. We ideally want to retain
all the characters between words and make sure that they get merged back in at the right places.
Another thing to consider is whether we want to handle hyphens or other characters that can occur in
words. Dealing with strings is rarely easy.

Let’s take a quick and dirty approach: split the text on word boundaries using a regular expression.
That will at least retain the characters between words, ensuring that they appear in the result. We may
still have trouble with some bits of text, but t will work as a simple demonstration. You can experiment
with other approaches as you see fit! Here’s my suggested implementation:

String pigLatinize(String text) {
 def wordsAndSeparators = text.split(/\b/) ①
 def pigLatinWords = []
 for (str in wordsAndSeparators) {
 if (Character.isLetter(str[0] as char)) { ②
 pigLatinWords << pigLatinizeWord(str)
 }
 else {
 pigLatinWords << str
 }
 }
 return pigLatinWords.join("") ③
}

String pigLatinizeWord(String word) {
 def leadingConsonants = leadingConsonants(word)
 return (word - leadingConsonants) + (leadingConsonants ?: 'w') + "ay"
}

String leadingConsonants(String word) {
 def vowels = ["a", "e", "i", "o", "u"] as Set
 def firstVowelIndex = 0
 for (ch in word) {
 if (ch in vowels) {
 break ④
 }
 firstVowelIndex++
 }

 return word.substring(0, firstVowelIndex)
}

assert pigLatinize("happy") == "appyhay"
assert pigLatinize("egg") == "eggway"
assert pigLatinize("hello earth") == "ellohay earthway"
println "Done!"

34

① Breaks text into a list of words using the JDK method String.split()

② Only pig latinize words that start with a letter

③ Merge the list of words into a single string

④ Break out of the loop once we hit a vowel

Have fun with the example! The only features that I haven’t covered so far are:

• break can be used to prematurely stop a for loop.

• ?: is a special operator which uses the value on the left hand side if it’s not null or an empty string.
Otherwise you get the right hand side instead. It’s useful for default values: if this expression is
already a valid value, use that, otherwise use this default value. It’s often referred to as the Elvis
operator.

• /…/ is a special string delimiter like '…' and "…". It’s behavior is identical to double-quoted
strings except you don’t need to escape the "\" character. It’s particularly useful with regular
expressions.

In the next chapter, I want to take the foundations set out in the first two chapters and use them to
start doing some practical work with scripts, making use of other Java types and libraries.

35

Chapter 4. Doing odd jobs (scripting)
As software developers, we typically build applications and systems. And yet we often find ourselves
doing miscellaneous other tasks that involve processing text files, fixing databases, generating reports,
etc. Those tasks may even need to be repeated in the future. Such tasks can be laborious and error
prone when performed manually, so I like to write scripts to handle them.

In the past, I’d break out Sed and Awk for text processing and Ruby/Python for anything more
involved. But these are not tools that I use day to day and I’d end up spending a lot of time trying to
remember their syntaxes and (in the case of Ruby & Python) their class libraries. That’s not helpful
when you’re trying to save yourself time.

Groovy’s an ideal scripting language for Java developers because it makes many of the things you need
to do in scripts easy compared to Java, while using the same class library and a very similar syntax.
You don’t have a big context switch going between Groovy and Java. Even if you’re an avid fan of a
different scripting language, Groovy’s worth considering simply due to the JVM’s cross-platform
support, which is handy in multi-platform environments.

In this chapter, I’ll show some common use cases for Groovy scripting that will also help you to become
familiar with more of the standard API. I’ll also stop along the way to discuss any language structures
that appear, with a particular focus on an important feature called closures.

4.1. Working with the filesystem
A lot of scripting needs involve files: finding them, parsing them, creating them, moving them around,
and so on. Java’s API has been traditionally weak in this area, which is why you’ll find libraries like
Commons IO that provide a lot of extra utility and convenience. That changed with Java 8, which
introduced some significant enhancements to the file APIs. Not everyone will be able to use Java 8
though, so I will give examples for both Java 6 and Java 8. Even if you’re able to use the latter, you will
certainly find it useful to learn the old API because so many Groovy projects use them and will
probably continue to use them.

Let’s start with the basic mechanism of reading and writing files. Imagine you have a comma-
separated values (CSV) file containing the first and last names of authors along with the country and
date of birth. Your first job is to print out all the names of the authors sorted alphabetically by their
surnames (or family names). Here’s a quick script to do that using Java 8, which you can run in the
Groovy console:

36

http://commons.apache.org/proper/commons-io/

import java.nio.charset.Charset ①
import java.nio.file.Files
import java.nio.file.FileSystems

def lines = Files.readAllLines(
 FileSystems.default.getPath("authors.csv"), ②
 Charset.forName("UTF-8"))

def authorNames = []
for (l in lines) {
 def authorDetails = l.split(/\s*,\s*/)
 authorNames << "${authorDetails[1]}, ${authorDetails[0]}"
}

authorNames = authorNames.sort()
for (name in authorNames) {
 println name
}

① Most classes need importing before you can reference them

② Create a file path representing the location of the CSV file

There’s much to talk about here, starting with the core classes we’re using to work with the filesystem.
The FileSystems class provides access to the default FileSystem of the current platform (Windows, Mac
OS X, Linux, etc.), which in turn allows you to construct file paths represented by the
java.nio.file.Path interface - a contract of behavior without an implementation. Those file paths are
then used by the methods of the Files class to perform file operations, such as copying, reading, and
listing directories. Charset is simply a representation of a character encoding such as ISO-8859-1 and
UTF-8.

Why do we import these classes? It’s to help avoid name clashes. Classes have a name and a package,
also known as a namespace in other languages. This means you can have classes with the same name
as long as they are in different packages. The result is that you have to tell Groovy (and Java) which
class you are referring to in your code, and that’s what the import statement does.

The readAllLines() method assumes that the target file is text with line breaks in it and produces a list
of the lines of text. One interesting aspect of this particular method call is that I explicitly specify a
character encoding. If you don’t provide one, the method assumes the text is encoded using the default
platform encoding, which varies between Windows, Mac OS X and Linux. I like to use UTF-8
everywhere, but that may not be appropriate for you. It largely depends on who creates the files in the
first place. Yes it’s a headache if you’re dealing with any non-ASCII characters, but you need to factor it
in to your coding right from the start.

The rest of the script uses features I introduced in the previous chapter. It simply breaks each line of
text into its component parts, removing the commas in the process. The first name and last name for

37

each entry are then combined into a single author name string, with the last name first. That means we
can perform a natural order sort on the resulting list to get the names in last name order before then
printing them all.

Hopefully that’s all straightforward for you, even though the code for reading the file seems more
verbose than is perhaps necessary. So what happens if you don’t have access to a Java 8 or newer JVM?
In that case, you can use the old java.io.File class instead:

def lines = new File("authors.csv").readLines("UTF-8")

def authorNames = []
...

I’ve only shown the file reading code because that’s the only difference from the previous example.
What’s striking is that I’ve somehow managed to replace 4 lines of code with just one. A big reason for
this is the lack of imports, since I’m only using a single class this time, File, and Groovy doesn’t require
you to import it. In fact, there are several core packages that don’t need to be imported because they’re
so commonly used. Here’s a short list of those exceptions:

• java.lang.*

• java.io.*

• java.net.*

• java.util.*

• java.math.BigDecimal

• java.math.BigInteger

• groovy.lang.*

• groovy.util.*

These packages cover such classes as File, String, List, and URL, which means that your scripts become
a lot cleaner without those import statements. One thing that newcomers may find confusing is how
sub-packages are treated. Consider the classes associated with regular expressions, which I’ll talk more
about later in this chapter. They reside in the package java.util.regex, which looks like a sub-package
of java.util. In fact, packages aren’t hierarchical except in the way we developers interpret them. The
concrete result is that you have to explicitly import a class like java.util.regex.Pattern because its not
covered by the java.util.* auto import.

Another factor in the reduced amount of code is that File is a simpler API. And that’s one reason why
you will continue to see it, even with code that exclusively runs on Java 8 or above. One thing to bear
in mind is that in this case, the readLines() method is provided by the Groovy JDK extensions rather
than Java. I recommend that you peruse the Groovy JDK documentation for File because you’ll find
plenty of useful methods to try out.

This all raises an obvious yet important question: Which API should you use? I would argue that you
should move over to the new NIO classes as soon as you can. Although File is generally simpler and

38

http://docs.groovy-lang.org/docs/next/html/groovy-jdk/?java/io/File.html

less verbose, which is fine for scripts with simple needs, the NIO API has several advantages. First, it’s
easier to unit test as Path is an interface and you can implement your own mock FileSystem (or you can
use an existing one such as JIMFS). Second, it integrates with Java 8 streams, allowing you to do things
like lazily walk a directory tree.

One way to reduce the clutter in the Java 8 version of the CSV script is to make use of some special
import features. You can both alias a class, giving it a shorter name, and explicitly import static
methods, meaning you don’t have to qualify them with the class name. Here’s a modified version of the
script using these techniques:

import static java.nio.file.Files.readAllLines ①

import java.nio.charset.Charset as Ch ②
import java.nio.file.FileSystems as FS

def lines = readAllLines(FS.default.getPath("authors.csv"), Ch.forName("UTF-8"))

def authorNames = []
...

① Allows us to call readAllLines() without qualifying with the class name

② Aliases the class name to something shorter

As you can see, the code for reading the lines of text from the file is now more readable, which is
always good for aiding comprehension of your code. You’ll find static imports in Java as well, but the
aliasing is specific to Groovy.

I now want to move away from the kinds of scripts that you can run in the Groovy console to
something a bit more useful: command line scripts. You can still write them in the Groovy console, but
you must first save them to a file before you can run them from the command line.

The first example harks back to the days of Apache Ant, a venerable build tool from the Java world. I
often used its Filter task as a simple template engine, replacing occurrences of @TOKEN@ with whatever
parameter values I needed. It’s not hard to reproduce this behavior in a Groovy script, as you’ll see
from the following example:

39

https://github.com/google/jimfs

import java.nio.file.FileSystems as FS

if (args.size() != 1) {
 println "Incorrect number of arguments."
 println ""
 println "USAGE: processTemplates TMPL_PATH"
 System.exit(1)
}

final tokens = [①
 NAME: "Whizzbang",
 CURRENT_DATE: new Date()]
final templatePath = FS.default.getPath(args[0])
final sourceText = templatePath.getText("UTF-8")

def processedText = sourceText
for (entry in tokens) {
 processedText = processedText.replace(②
 "@${entry.key}@",
 entry.value.toString())
}

final outFile = FS.default.getPath("processed.txt")
outFile.setText(processedText, "UTF-8") ③

① Hard code the replacement tokens

② Perform the token substitution using a standard JDK method

③ Write the resulting text to a new (hard-coded) file

You should by now be familiar with most of the code in the script. The key new feature is the setText()
method, which allows you to easily write text to a file. If the file doesn’t exist, it gets created.
Otherwise, its content is overwritten by the string you provide. The method also closes the file
automatically, so you don’t have to worry about leaving file handles open.

This works well for simple cases, but you often want to write to a file in chunks. Imagine you want to
read records from a database table, perhaps process them, and then generate a CSV file containing one
line per record. You could create the CSV in memory as a string and then write it out using setText(),
but this is an inefficient use of memory and could take noticeably longer than writing each line to the
file as you go. It depends on how many records you have.

Fortunately, Groovy provides several convenience methods for writing to a file on an as-you-go basis.
I’m using withPrintWriter() in the next example to do exactly that, while also ensuring that the
underlying file is closed regardless of whether my code throws an exception or not. The script takes a
path to a directory and then generates a CSV file containing the filename, file size, and creation date
for each file in that directory.

40

import static java.time.format.DateTimeFormatter.ISO_OFFSET_DATE_TIME

import java.nio.file.Files
import java.nio.file.FileSystems as FS
import java.nio.file.Path
import java.time.ZoneId ①

if (args.size() != 1) {
 println "Incorrect number of arguments."
 println ""
 println "USAGE: filesReport DIR_PATH"
 System.exit(1)
}

final dirPath = FS.default.getPath(args[0])
final files = Files.list(dirPath)

final outFile = FS.default.getPath("files.csv")
outFile.withPrintWriter("UTF-8") { writer -> ②
 for (path in files) {
 writer.println("${path.fileName}, ${Files.size(path)}, ${getCreationDate(path)}")
 }
}

println "Written report to ${outFile}"

String getCreationDate(Path path) {
 final creationInstant = Files.getAttribute(path, "creationTime").toInstant()
 return ISO_OFFSET_DATE_TIME.format(creationInstant.atZone(ZoneId.systemDefault()))
}

① Use the Java 8+ Date & Time API

② Generate the CSV file, with one line per source file

This example doesn’t have many lines, but it does introduce two important features:

1. The Java 8+ Date and Time API

2. Closures

Let’s start with the new API.

4.2. Dates and time
Before Java 8, developers either got by with the java.util.Date and java.util.Calendar classes, or they
used a third-party library called Joda Time. The latter was often the only choice for even moderately

41

complex date and time work because the core JDK classes were awkward to use and underpowered.

The Date and Time API brings coherence to working with dates in Java. Simple things are often easier
to accomplish than with the old Date class, while you also gain greater control with more complex
requirements. Still, the Date class should work just fine for the file creation dates in our example. So
why use the java.time.* classes? For two reasons. First, the file NIO API gives us a java.time.Instant
value rather than a java.util.Date. Second, I think you should prioritize the Date and Time API over
java.util.Date for your own code because it’s a significant improvement over the older API. For
example, the core classes are immutable and thread safe, unlike Date and Calendar.

Figure xxx shows you the most relevant classes of the Date and Time API for right now. The Instant
class represents a fixed point in time, independent of calendars and dates. If people around the globe
retrieved the current time as an Instant at the same time, they should all get the same value, Of course,
this is unlikely as there will almost certainly be variations between the system clocks on their
computers. But that’s the ideal.

The java.time.LocalDateTime class is different in that it represents a (Gregorian) calendar date and
time, such as New Year’s Day (1st January for any given year). This is not a fixed point in time because
it depends on the time zone you’re interested in. New Year’s Day hits Australia well before the west
coast of America. To correlate a date and time to an Instant, you need to use either
java.time.ZonedDateTime or java.time.OffsetTimeZone, both of which incorporate the time zone
information.

It’s often hard work dealing with calendars and keeping track of time zones, but we’re fortunate that
the API makes life easy for our simple use case. The idea is to store the file creation date in the CSV file
as an ISO 8601 date rather than an instant. To do that, we want to format the Instant we get from the
Files class. The date formatters require dates rather than instants, though, so we use the
Instant.atZone() method to perform the conversion using the system’s current time zone. We could
also perform the conversion using the UTC time zone if we wanted. It all depends on whether we’re
interested in which time zone the file was created in. For server-side work, I’d recommend almost
always using UTC.

The Date and Time API brings more to the table than just these classes. Durations and periods allow
you to readily calculate deadlines and reminders among other things. Overall, it’s a richer API than we
had previously in the JDK without it being laboriously hard to work with.

I now want to go onto the second feature the script introduces: closures.

4.3. Closures
Developers start using Groovy for a variety of reasons. I started because it was the language of the
Grails web framework. But if we could narrow down why people then stayed with Groovy to a single
language feature, I’m convinced it would be closures. It’s fairly easy these days to explain the basics of
them because most of the popular languages have comparable features:

• Ruby code blocks

42

• Javascript functions

• Java 8 lambdas

• Python functions and lambdas

• C# lambda expressions and anonymous functions

• Scala functions

These aren’t all exactly the same feature, but they do allow for higher-order functions. If you’re not
familiar with this term, it means that functions can themselves be arguments to other functions.
Consider the example of filtering a list of words. You might want all the words that start with the letter
'p'. You might instead be interested words longer than 5 letters. Or perhaps you just want to remove all
swear words using a dictionary. The only difference between each of these requirements is the filter
constraint. Does the word start with a particular letter? Is it longer than a particular value? The
algorithm for filtering the list is always the same, it’s only the constraint that changes.

That constraint can be implemented as a standalone predicate function, i.e. a function that returns true
or false. Let’s see what this looks like in Groovy code:

final swearWords = ["flabbergasted"] as Set
final words = ["orange", "sit", "profit", "test", "flabbergasted",
 "honorific", "proposal"]

println words.findAll({ word -> word.startsWith("p") })
println words.findAll({ word -> word.size() > 5 })
println words.findAll({ word -> !swearWords.contains(word) })

The findAll() method is a Groovy JDK extension that performs collection filtering. In each of the above
calls, it effectively applies the given predicate function (in this case a closure) to each word in the list
and only retains the word if the function returns true. You can run the example to see the result.

The basic form of a closure is the following:

{ <args> -> <function body> }

So the curly braces delimit the closure literal, similar to the way square brackets delimit lists and maps.
This can be a bit confusing because methods, loops, and conditions use curly braces as well. I generally
ask myself this: are the curly braces part of an assignment or a method call? If so, then I have a closure.
Assignments are easy to pick out:

def predicateFn = { word -> word.startsWith("p") }

Method calls tend to be harder to identify because Groovy supports several syntaxes. I’ll explain

43

shortly, but first, one question you may be asking yourself is where the word argument comes from.
How does it work? It’s important to understand that a closure’s argument list behaves just the same as
a method’s. In other words, word only exists within the context of the closure itself. It’s the
responsibility of the findAll() method to pass each word as the argument when calling the closure.

To see what I mean, you can try invoking the closure yourself:

def predicateFn = { word -> word.startsWith("p") }
predicateFn.call("petals")

Executing this in the Groovy console will show a result of true, because "petal" starts with a 'p'. What
happens if you try to call the closure with more than one argument? The following results in a
MissingMethodException for call() because the number of arguments don’t match:

def predicateFn = { word -> word.startsWith("p") }
predicateFn.call("petals", "badarg")

If it’s easy to identify a closure that’s assigned to a variable, why is it harder when the closure is an
argument of a method call? Let’s look at the first findAll() call from the list filtering example:

words.findAll({ word -> word.startsWith("p") })

It’s clear that findAll() is a method call because of the parentheses and the closure is defined within
the parentheses. This makes the closure definition relatively obvious. But this is an uncommon syntax.
The following are all more common alternatives:

words.findAll() { word -> word.startsWith("p") }
words.findAll { word -> word.startsWith("p") }
words.findAll { word ->
 word.startsWith("p")
}

Of these, the second is probably the most common and it doesn’t even have any parentheses at all!
What’s going on? This is simply syntax sugar for a very specific case. If the closure is the last (or only)
argument of a method, it can be defined after the parentheses. If it’s the only argument, it’s common to
dispense with the parentheses entirely.

Given this information about closures, can you identify the one in the earlier example where we
created a CSV file from a directory listing? If you remember, the script writes the lines of text to the file
using the withPrintWriter() method:

44

...
final outFile = FS.default.getPath("files.csv")
outFile.withPrintWriter("UTF-8") { writer ->
 for (path in files) {
 writer.println("${path.fileName}, ${Files.size(path)}, ${getCreationDate(path)}")
 }
}
...

The closure begins with { writer → …. Under the hood, withPrintWriter() creates or opens the target
file and creates a java.io.PrintWriter for it using the character encoding specified by the first
argument. It then calls the second argument - the closure - passing the newly created writer as it’s
argument. When the closure returns or throws an exception, withPrintWriter() closes the file. For Java
developers, it’s worth noting that this is the Groovy alternative to Java’s try-with-resources statement,
as that syntax isn’t supported by Groovy.

A good way to learn and understand something is through plenty of examples. Two (filtering and
writing to a file) aren’t really sufficient. To rectify that, I’m going to revisit some examples from earlier
chapters and try to rewrite them using closures where appropriate. This should give you an idea of an
alternate approach to thinking about coding problems and how to solve them.

4.4. Revisiting earlier examples
A lot of the examples you saw in the previous chapter have more concise and readable
implementations once you start thinking in terms of higher order functions. Take the example for
counting the number of vowels in a string. Instead of reaching immediately for a loop to solve the
problem, think about what we want to achieve: counting characters. Which characters? Vowels. This is
a similar problem to filtering a word list, except this time the algorithm is counting. The predicate
simply determines whether a particular character should be counted or not. Is there a method
available to do this?

If you check out the Groovy JDK documentation, you’ll find a count() method for CharSequence. The
problem is that it only counts occurences of a specified string. What we need is the
Iterable.count(Closure) method (the groovy.lang.Closure type is one way to identify a method that
accepts closure arguments). Since CharSequence is not an Iterable, we first have to convert it to one
using iterator(). We can then perform the count, as demonstrated here:

def text = "Jack Rabbit Slims Twist Contest"

final vowels = "aeiou"
final vowelCount = text.iterator().count { vowels.contains(it.toLowerCase()) }

println "Number of vowels: " + vowelCount

45

What was originally 5 lines of a loop is now a single line. The example is also easier to reason about
because the code is no longer cluttered with the mechanics of how to count the vowels. The focus here
is what we want to achieve, not how.

Implicit closure argument

One new element introduced by the previous example is the lack of an explicit argument for the
count() closure. There’s no → that separates the argument list from the closure body. This is a
special syntax that’s useful for very short closure implementations, typically one-liners. If you
don’t specify an argument list, an implicit argument called it becomes available.

The implicit variable form only makes sense for methods that pass a single argument to the
closure, such as each(), collect(), and count(). It also works with methods that pass no
arguments at all, but then it will be null.

One thing you’ll quickly realise is how useful closures are in the world of collections. Consider the first
example of section 3.2 [xcheck] calculates some statistics about a list of words using a loop. Although
the implementation is efficient in terms of there only being a single loop, it’s not obvious at first glance
what it’s trying to achieve.

A better approach in terms of code comprehension is to use some Groovy JDK extension methods for
calculating the maximum, minimum and sum of values in a collection. The key point is that we’re not
after the maximum word in this case - you could interpret this as the last word alphabetically perhaps -
but the longest word. That’s where closures come in, as you can see from this alternate
implementation of that example:

final words = ["orange", "sit", "test", "flabbergasted", "honorific"]

println "Min word length: ${words.min { it.size() }.size()}" ①
println "Max word length: ${words.max { it.size() }.size()}"
println "Avg word length: ${words.sum { it.size() } / words.size()}"

① min() and max() return the relevant collection element, i.e. a word in this case, so we need to call
size() again to get its length

In other words, we can specify exactly what property of the values in the collection we’re interested in
by passing a closure to min(), max(), and sum() that extracts the relevant information. If we were
interested in the number of vowels in the words instead, we could implement a vowelCount() method
and use that from the closure:

...
println words.sum { vowelCount(it) }

46

The last example I want to revisit is the method for calculating the power of twos. I originally showed
you an example based on a for loop, but let’s now take a different tack. Consider what result we want:
a list of elements of the form 2x, where x is a range of numbers 0 to n. Given a sequence of numbers
(0..n), applying the function 2x to each of the numbers in that sequence will generate a new sequence
containing the required powers of two.

In code form, this looks like

List powersOfTwo(int n) {
 return (0..n).collect { 2 ** it }
}

The collect() method is a general way of mapping the elements in one sequence to a new sequence.
For example a list of words to a list of their lengths. Or sequence of integers to a sequence of their
doubles. The actual mapping is defined by the closure, which acts as the mapping function.

If you’re new to this style of programming, you may wonder how useful such a method could be in
your day-to-day development. I think you’ll find you use it regularly, along with many of the other
closure-based extensions to the JDK. That’s certainly been my experience, particularly as we often
work a lot with collections.

There is one complication to this whole area of Groovy. Java originally had nothing like the collect()
method prior to Java 8, but that all changed with the introduction of lambda functions and the Streams
API. You now have an alternative. Here’s a Groovy version of the powers of two method using that API:

import java.util.stream.Collectors

List powersOfTwo(int n) {
 return (0..n).stream().map { 2 ** it }.collect(Collectors.toList())
}

There are several important differences between this example and the previous one:

• You have to convert a collection to a stream before you can use the functional methods

• Java’s map() method is equivalent to Groovy’s collect()

• Use Java’s collect() method to convert a stream back to a collection

• Java’s streams are lazy (unlike collections), so you can use them to work with infinite sequences

• You can use a Groovy closure wherever Java 8 allows a lambda function

So which API should you use? The Groovy Collections extensions or Java 8’s Streams API? If you have
the option, I think the Streams API is more flexible and has more standard names for many of its
methods (map() vs collect(), filter() vs findAll(), etc.). They are also type safe, which can be very
useful if you like to use the @TypeChecked or @CompileStatic annotations that I discuss later [xcheck] or

47

like your IDE to know what the types of the closure arguments are without explicitly declaring them.
The main cost is the small additional complexity of converting to and fro between collections and
streams.

Ultimately, both APIs provide an extra avenue of expressiveness for your code. If both satisfy a set of
given requirements, just use the one that you’re most comfortable with.

I hope I’ve given you a good idea of just what you can achieve with Groovy when it comes to scripting,
and how easy it can be. I’ve touched on the filesystem and date APIs and explored collections a bit
further with closures. All that’s left for you to do is explore the API documentation yourself now that
you have the information you need to navigate those waters. I’m also hoping that you are at least
starting to get a grasp of what closures are and how they can help. You will find extensive use of them
throughout this book and in most Groovy code you’ll come across, so it’s an important topic.

In the next chapter I want to move beyond simple scripting and see how you can incorporate Groovy
into a project, such as an command line or web application.

48

	Practical Groovy
	Table of Contents
	Chapter 1. Who this book is for
	Chapter 2. First steps
	2.1. Installing Groovy
	2.2. Groovy as a calculator

	Chapter 3. Working with types
	3.1. The joy of strings
	3.2. Collections, ranges and maps
	3.3. Chapter example

	Chapter 4. Doing odd jobs (scripting)
	4.1. Working with the filesystem
	4.2. Dates and time
	4.3. Closures
	4.4. Revisiting earlier examples

