
Appears in KDD 2007.

© ACM, 2007. This is the author's version of the work. It is posted at http://exp-platform.com/hippo.aspx by permission of ACM for your

personal use. Not for redistribution. The definitive version is published in KDD 2007 (http://www.kdd2007.com/)

Practical Guide to Controlled Experiments on the Web:
Listen to Your Customers not to the HiPPO

Ron Kohavi
Microsoft

One Microsoft Way
Redmond, WA 98052

ronnyk@microsoft.com

Randal M. Henne

Microsoft
One Microsoft Way

Redmond, WA 98052

rhenne@microsoft.com

Dan Sommerfield

Microsoft
One Microsoft Way

Redmond, WA 98052

dans@microsoft.com

ABSTRACT

The web provides an unprecedented opportunity to evaluate ideas

quickly using controlled experiments, also called randomized

experiments (single-factor or factorial designs), A/B tests (and

their generalizations), split tests, Control/Treatment tests, and

parallel flights. Controlled experiments embody the best

scientific design for establishing a causal relationship between

changes and their influence on user-observable behavior. We

provide a practical guide to conducting online experiments, where

end-users can help guide the development of features. Our

experience indicates that significant learning and return-on-

investment (ROI) are seen when development teams listen to their

customers, not to the Highest Paid Person’s Opinion (HiPPO). We

provide several examples of controlled experiments with

surprising results. We review the important ingredients of

running controlled experiments, and discuss their limitations (both

technical and organizational). We focus on several areas that are

critical to experimentation, including statistical power, sample

size, and techniques for variance reduction. We describe

common architectures for experimentation systems and analyze

their advantages and disadvantages. We evaluate randomization

and hashing techniques, which we show are not as simple in

practice as is often assumed. Controlled experiments typically

generate large amounts of data, which can be analyzed using data

mining techniques to gain deeper understanding of the factors

influencing the outcome of interest, leading to new hypotheses

and creating a virtuous cycle of improvements. Organizations that

embrace controlled experiments with clear evaluation criteria can

evolve their systems with automated optimizations and real-time

analyses. Based on our extensive practical experience with

multiple systems and organizations, we share key lessons that will

help practitioners in running trustworthy controlled experiments.

Categories and Subject Descriptors

G.3 Probability and Statistics/Experimental Design: controlled
experiments, randomized experiments, A/B testing.

I.2.6 Learning: real-time, automation, causality.

General Terms
Management, Measurement, Design, Experimentation, Human Factors.

Keywords
Controlled experiments, A/B testing, e-commerce.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,

or republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee.
KDD’07, August 12–15, 2007, San Jose, California, USA.

Copyright 2007 ACM 978-1-59593-609-7/07/0008...$5.00.

1. INTRODUCTION
One accurate measurement is worth more

 than a thousand expert opinions

 — Admiral Grace Hopper

In the 1700s, a British ship’s captain observed the lack of scurvy

among sailors serving on the naval ships of Mediterranean

countries, where citrus fruit was part of their rations. He then

gave half his crew limes (the Treatment group) while the other

half (the Control group) continued with their regular diet. Despite

much grumbling among the crew in the Treatment group, the

experiment was a success, showing that consuming limes

prevented scurvy. While the captain did not realize that scurvy is

a consequence of vitamin C deficiency, and that limes are rich in

vitamin C, the intervention worked. British sailors eventually

were compelled to consume citrus fruit regularly, a practice that

gave rise to the still-popular label limeys (1).

Some 300 years later, Greg Linden at Amazon created a prototype

to show personalized recommendations based on items in the

shopping cart (2). You add an item, recommendations show up;

add another item, different recommendations show up. Linden

notes that while the prototype looked promising, ―a marketing

senior vice-president was dead set against it,‖ claiming it will

distract people from checking out. Greg was ―forbidden to work

on this any further.‖ Nonetheless, Greg ran a controlled

experiment, and the ―feature won by such a wide margin that not

having it live was costing Amazon a noticeable chunk of change.

With new urgency, shopping cart recommendations launched.‖

Since then, multiple sites have copied cart recommendations.

The authors of this paper were involved in many experiments at

Amazon, Microsoft, Dupont, and NASA. The culture of

experimentation at Amazon, where data trumps intuition (3), and

a system that made running experiments easy, allowed Amazon to

innovate quickly and effectively. At Microsoft, there are multiple

systems for running controlled experiments. We describe several

architectures in this paper with their advantages and

disadvantages. A unifying theme is that controlled experiments

have great return-on-investment (ROI) and that building the

appropriate infrastructure can accelerate innovation. Stefan

Thomke’s book title is well suited here: Experimentation

Matters (4).

The web provides an unprecedented opportunity to evaluate ideas

quickly using controlled experiments, also called randomized

experiments (single-factor or factorial designs), A/B tests (and

their generalizations), split tests, Control/Treatment, and parallel

flights. In the simplest manifestation of such experiments, live

mailto:ronnyk@microsoft.com
mailto:rhenne@microsoft.com
mailto:dans@microsoft.com

http://exp-platform.com/hippo.aspx Page 2

users are randomly assigned to one of two variants: (i) the

Control, which is commonly the ―existing‖ version, and (ii) the

Treatment, which is usually a new version being evaluated.

Metrics of interest, ranging from runtime performance to implicit

and explicit user behaviors and survey data, are collected.

Statistical tests are then conducted on the collected data to

evaluate whether there is a statistically significant difference

between the two variants on metrics of interest, thus permitting us

to retain or reject the (null) hypothesis that there is no difference

between the versions. In many cases, drilling down to segments

of users using manual (e.g., OLAP) or machine learning and data

mining techniques, allows us to understand which subpopulations

show significant differences, thus helping improve our

understanding and progress forward with an idea.

Controlled experiments provide a methodology to reliably

evaluate ideas. Unlike other methodologies, such as post-hoc

analysis or interrupted time series (quasi experimentation) (5), this

experimental design methodology tests for causal relationships (6

pp. 5-6). Most organizations have many ideas, but the return-on-

investment (ROI) for many may be unclear and the evaluation

itself may be expensive. As shown in the next section, even

minor changes can make a big difference, and often in unexpected

ways. A live experiment goes a long way in providing guidance

as to the value of the idea. Our contributions include the

following.

 In Section 3 we review controlled experiments in a web

environment and provide a rich set of references, including an

important review of statistical power and sample size, which

are often missing in primers. We then look at techniques for

reducing variance that we found useful in practice. We also

discuss extensions and limitations so that practitioners can

avoid pitfalls.

 In Section 4 we present generalized architectures that unify

multiple experimentation systems we have seen, and we discuss

their pros and cons. We show that some randomization and

hashing schemes fail conditional independence tests required

for statistical validity.

 In Section 5 we provide important practical lessons.

When a company builds a system for experimentation, the cost of

testing and experimental failure becomes small, thus encouraging

innovation through experimentation. Failing fast and knowing

that an idea is not as great as was previously thought helps

provide necessary course adjustments so that other more

successful ideas can be proposed and implemented.

2. MOTIVATING EXAMPLES
The fewer the facts, the stronger the opinion

— Arnold Glasow

The following two examples show how small differences in UI

can result in significant differences to the metric of interest.

2.1 Checkout Page at Doctor FootCare
The conversion rate of an e-commerce site is the percentage of

visits to the website that include a purchase. The following

example comes from Bryan Eisenberg’s articles (7; 8).

There are nine differences between the two variants of the Doctor

FootCare checkout page shown in Figure 1. If a designer showed

you these and asked which one should be deployed, could you tell

which one results in a higher conversion rate? Could you estimate

what the difference is between the conversion rates and whether

that difference is significant?

We will share the results at the end of the section, but we

encourage the readers to think about it before reading the answer.

2.2 Ratings of Microsoft Office Help Articles
Users of Microsoft Office who request help from Office or

through the website are given an opportunity to rate the article.

The initial implementation presented users with a Yes/No widget.

The team then modified the widget and offered a 5-star ratings.

The motivations for the change were the following:

1. The 5-star widget provides finer-grained feedback, which

might help better evaluate content writers.

2. The 5-star widget improves usability by exposing users to a

single feedback box as opposed to two separate pop-ups (one

for Yes/No and another for Why).

We encourage you, the reader, to think about whether the new

model can meet the stated goals.

Figure 1: Variant A on left, Variant B on right.

Can you guess which one has a higher conversion rate and whether the difference is significant?

http://exp-platform.com/hippo.aspx Page 3

2.3 Results and ROI
For the Doctor FootCare checkout page, variant A in Figure 1

outperformed variant B by an order of magnitude. In reality, the

site ―upgraded‖ from the A to B and lost 90% of their revenue.

Most of the changes in the upgrade were positive, but the coupon

code was the critical one: people started to think twice about

whether they were paying too much because there are discount

coupons out there that they do not have. By removing the

discount code from the new version (B), conversion-rate increased

6.5% relative to the old version (A).

For Microsoft’s Office Help articles, the number of ratings

plummeted by an order of magnitude, thus significantly missing

on goal #2 above. Based on additional tests, it turned out that the

two-stage model actually helps in increasing the response rate.

Even goal #1 was somewhat of a disappointment as most people

chose the extremes (one or five stars). When faced with a

problem for which you need help, the article either helps you

solve the problem or it does not!

While these are extreme examples that are surprising in the

magnitude of the difference, they show how hard it is to predict

the success of new designs. Both of these are user-interface

examples, but controlled experiments can be used heavily in back-

end algorithms (e.g., recommendations, search relevance, etc).

Great examples of experiments are available at Marketing

Experiments journal (9), Design Choices Can Cripple a Website

(10), Call to Action (11), and Which Sells Best (12). Forrester’s

Primer on A/B Testing (13) mentions a few good examples of

positive ROI. In shop.com’s The State of Retailing (14), the

authors wrote that in their survey of 137 US retailers ―100% of the

retailers that employed usability testing and A/B testing of offers

and promotions rank these tactics as effective or very effective.‖

3. CONTROLLED EXPERIMENTS
Enlightened trial and error outperforms

 the planning of flawless execution

— David Kelly, founder of Ideo

In the simplest controlled experiment, often referred to as an A/B

test, users are randomly exposed to one of two variants: control

(A), or treatment (B) as shown in Figure 2 (15; 16; 6).

The key here is ―random.‖ Users cannot be distributed ―any old

which way‖ (17); no factor can influence the decision. Based on

observations collected, an Overall Evaluation Criterion (OEC) is

derived for each variant (18).

For example, in Checkout Example (Section 2.1), the OEC can

be the conversion rate, units purchased, revenue, profit, expected

lifetime value, or some weighted combination of these. Analysis

is then done to determine if the difference in the OEC for the

variants is statistically significant.

If the experiment was designed and executed properly, the only

thing consistently different between the two variants is the change

between the Control and Treatment, so any differences in the

OEC are inevitably the result of this assignment, establishing

causality (17 p. 215).

There are several primers on running controlled experiments on

the web (19 pp. 76-78; 11 pp. 283-286; 13; 20; 21; 22; 23; 24),

(25; 26 pp. 248-253; 27 pp. 213-219; 28 pp. 116-119).

While the concept is easy to understand and basic ideas echo

through many references, there are important lessons that we

share here that are rarely discussed. These will help

experimenters understand the applicability, limitations, and how

to avoid mistakes that invalidate the results.

Figure 2

3.1 Terminology
The terminology for controlled experiments varies widely in the

literature. Below we define key terms used in this paper and note

alternative terms that are commonly used.

Overall Evaluation Criterion (OEC) (18). A quantitative

measure of the experiment’s objective. In statistics this is often

called the Response or Dependent Variable (15; 16); other

synonyms include Outcome, Evaluation metric, Performance

metric, or Fitness Function (22). Experiments may have

multiple objectives and a scorecard approach might be taken (29),

although selecting a single metric, possibly as a weighted

combination of such objectives is highly desired and

recommended (18 p. 50). A single metric forces tradeoffs to be

made once for multiple experiments and aligns the organization

behind a clear objective. A good OEC should not be short-term

focused (e.g., clicks); to the contrary, it should include factors that

predict long-term goals, such as predicted lifetime value and

repeat visits. Ulwick describes some ways to measure what

customers want (although not specifically for the web) (30).

Factor. A controllable experimental variable that is thought to

influence the OEC. Factors are assigned Values, sometimes

called Levels or Versions. Factors are sometimes called

Variables. In simple A/B tests, there is a single factor with two

values: A and B.

Variant. A user experience being tested by assigning levels to

the factors; it is either the Control or one of the Treatments.

Sometimes referred to as Treatment, although we prefer to

specifically differentiate between the Control, which is a special

variant that designates the existing version being compared

against and the new Treatments being tried. In case of a bug, for

example, the experiment is aborted and all users should see the

Control variant.

Experimentation Unit. The entity on which observations are

made. Sometimes called an item. The units are assumed to be

http://exp-platform.com/hippo.aspx Page 4

independent. On the web, the user is the most common

experimentation unit, although some experiments may be done on

sessions or page views. For the rest of the paper, we will assume

that the experimentation unit is a user. It is important that the user

receive a consistent experience throughout the experiment, and

this is commonly achieved through cookies.

Null Hypothesis. The hypothesis, often referred to as H0, that the

OECs for the variants are not different and that any observed

differences during the experiment are due to random fluctuations.

Confidence level. The probability of failing to reject (i.e.,

retaining) the null hypothesis when it is true.

Power. The probability of correctly rejecting the null hypothesis,

H0, when it is false. Power measures our ability to detect a

difference when it indeed exists.

A/A Test. Sometimes called a Null Test (19). Instead of an A/B

test, you exercise the experimentation system, assigning users to

one of two groups, but expose them to exactly the same

experience. An A/A test can be used to (i) collect data and assess

its variability for power calculations, and (ii) test the

experimentation system (the Null hypothesis should be rejected

about 5% of the time when a 95% confidence level is used).

Standard Deviation (Std-Dev). A measure of variability,

typically denoted by 𝜎.

Standard Error (Std-Err). For a statistic, it is the standard

deviation of the sampling distribution of the sample statistic (15).

For a mean of 𝑛 independent observations, it is 𝜎 / 𝑛 where 𝜎 is

the estimated standard deviation.

3.2 Hypothesis Testing and Sample Size
To evaluate whether one of the treatments is different than the

Control, a statistical test can be done. We accept a Treatment as

being statistically significantly different if the test rejects the null

hypothesis, which is that the OECs are not different.

We will not review the details of the statistical tests, as they are

described very well in many statistical books (15; 16; 6).

What is important is to review the factors that impact the test:

1. Confidence level. Commonly set to 95%, this level implies

that 5% of the time we will incorrectly conclude that there is a

difference when there is none (Type I error). All else being

equal, increasing this level reduces our power (below).

2. Power. Commonly desired to be around 80-95%, although not

directly controlled. If the Null Hypothesis is false, i.e., there is

a difference in the OECs, the power is the probability of

determining that the difference is statistically significant. (A

Type II error is one where we retain the Null Hypothesis when

it is false.)

3. Standard Error. The smaller the Std-Err, the more powerful

the test. There are three useful ways to reduce the Std-Err:

a. The estimated OEC is typically a mean of large samples. As

shown in Section 3.1, the Std-Err of a mean decreases

proportionally to the square root of the sample size, so

increasing the sample size, which usually implies running the

experiment longer, reduces the Std-Err and hence increases

the power.

b. Use OEC components that have inherently lower variability,

i.e., the Std-Dev, 𝜎, is smaller. For example, conversion

probability (0-100%) typically has lower Std-Dev than

number of purchase units (typically small integers), which in

turn has a lower Std-Dev than revenue (real-valued).

c. Lower the variability of the OEC by filtering out users who

were not exposed to the variants, yet were still included in

the OEC. For example, if you make a change to the checkout

page, analyze only users who got to the page, as everyone

else adds noise, increasing the variability.

4. The effect, or the difference in OECs for the variants. Larger

differences are easier to detect, so great ideas will unlikely be

missed. Conversely, if Type I or Type II errors are made, they

are more likely when the effects are small.

The following formula approximates the desired sample size,

assuming the desired confidence level is 95% and the desired

power is 90% (31):

𝑛 = (4𝑟𝜎/Δ)^2

where 𝑛 is the sample size, 𝑟 is the number of variants (assumed

to be approximately equal in size), 𝜎 is the std-dev of the OEC,

and Δ is the minimum difference between the OECs. The factor

of 4 may overestimate by 25% for large 𝑛 (32; 33), but the

approximation suffices for the example below.

Suppose you have an e-commerce site and 5% of users who visit

during the experiment period end up purchasing. Those

purchasing spend about $75. The average user therefore spends

$3.75 (95% spend $0). Assume the standard deviation is $30. If

you are running an A/B test and want to detect a 5% change to

revenue, you will need over 1.6 million users to achieve the

desired 90% power, based on the above formula:

 4 ∙ 2 ⋅ 30 / (3.75 ⋅ 0.05) 2.

If, however, you were only looking for a 5% change in conversion

rate (not revenue), a lower variability OEC based on point 3.b can

be used. Purchase, a conversion event, is modeled as a Bernoulli

trial with p=0.05 being the probability of a purchase. The Std-Err

of a Bernoulli is 𝑝(1 − 𝑝) and thus you will need less than

500,000 users to achieve the desired power based on

 4 ∙ 2 ⋅ 0.05 ⋅ (1 − 0.05) / (0.05 ⋅ 0.05)
2
.

Because of the square factor, if the goal is relaxed so that you

want to detect a 20% change in conversion (a factor of 4), the

number of users needed drops by a factor of 16 to 30,400.

If you made a change to the checkout process, you should only

analyze users who started the checkout process (point 3.c), as

others could not see any difference and therefore just add noise.

Assume that 10% of users initiate checkout and that 50% of those

users complete it. This user segment is more homogenous and

hence the OEC has lower variability. Using the same numbers as

before, the average conversion rate is 0.5, the std-dev is 0.5, and

thus you will need 25,600 users going through checkout to detect

a 5% change based on 4 ∙ 2 ⋅ 0.5 ⋅ (1 − 0.5) / (0.5 ⋅ 0.05)
2
.

Since we excluded the 90% who do not initiate, the total number

of users to the website should be 256,000, which is almost half the

previous result, thus the experiment could run for half the time

and yield the same power.

When running experiments, it is important to decide in advance

on the OEC (a planned comparison); otherwise, there is an

increased risk of finding what appear to be significant results by

chance (familywise type I error) (6). Several adjustments have

been proposed in the literature (e.g., Fisher’s least-significant-

difference, Bonferroni adjustment, Duncan’s test, Scheffé’s test,

http://exp-platform.com/hippo.aspx Page 5

Tukey’s test, and Dunnett’s test), but they basically equate to

increasing the 95% confidence level and thus reducing the

statistical power (15; 16; 6).

3.3 Extensions for Online Settings
Several extensions to basic controlled experiments are possible in

an online setting (e.g., on the web).

3.3.1 Treatment Ramp-up
An experiment can be initiated with a small percentage of users

assigned to the treatment(s), and then that percentage can be

gradually increased. For example, if you plan to run an A/B test

at 50%/50%, you might start with a 99.9%/0.1% split, then

rampup the Treatment from 0.1% to 0.5% to 2.5% to 10% to 50%.

At each step, which could run for, say, a couple of hours, you can

analyze the data to make sure there are no egregious problems

with the Treatment before exposing it to more users. The square

factor in the power formula implies that such errors could be

caught quickly on small populations and the experiment can be

aborted before many users are exposed to the bad treatment.

3.3.2 Automation
Once an organization has a clear OEC, it can run experiments to

optimize certain areas amenable to automated search. For

example, the slots on the home page at Amazon are automatically

optimized (3). If decisions have to be made quickly (e.g.,

headline optimizations for portal sites), these could be made with

lower confidence levels because the cost of mistakes is lower.

Multi-armed bandit algorithms and Hoeffding Races can be used

for such optimizations.

3.3.3 Software Migrations
Experiments can be used to help with software migration. If a

feature or a system is being migrated to a new backend, new

database, or a new language, but is not expected to change user-

visible features, an A/B test can be executed with the goal of

retaining the Null Hypothesis, which is that the variants are not

different. We have seen several such migrations, where the

migration was declared complete, but an A/B test showed

significant differences in key metrics, helping identify bugs in the

port. Because the goal here is to retain the Null Hypothesis, it is

crucial to make sure the experiment has enough statistical power

to actually reject the Null Hypothesis if it false.

3.4 Limitations
Despite significant advantages that controlled experiments

provide in terms of causality, they do have limitations that need to

be understood. Some, which are noted in the Psychology

literature are not relevant to the web (1 pp. 252-262; 17), but some

limitations we encountered are certainly worth noting.

1. Quantitative Metrics, but No Explanations. It is possible to

know which variant is better, and by how much, but not ―why.‖

In user studies, for example, behavior is often augmented with

users’ comments, and hence usability labs can be used to

augment and complement controlled experiments (34).

2. Short term vs. Long Term Effects. Controlled experiments

measure the effect on the OEC during the experimentation

period, typically a few weeks. While some authors have

criticized that focusing on a metric implies short-term focus

(22) (34), we disagree. Long-term goals should be part of the

OEC. Let us take search ads as an example. If your OEC is

revenue, you might plaster ads over a page, but we know that

many ads hurt the user experience, so a good OEC should

include a penalty term of usage of real-estate for ads that are

not clicked, and/or should directly measure repeat visits and

abandonment. Likewise, it is wise to look at delayed conversion

metrics, where there is a lag from the time a user is exposed to

something and take action. These are sometimes called latent

conversions (24; 22). Coming up with good OECs is hard, but

what is the alternative? The key point here is to recognize this

limitation, but avoid throwing the baby out with the bathwater.

3. Primacy and Newness Effects. These are opposite effects

that need to be recognized. If you change the navigation on a

web site, experienced users may be less efficient until they get

used to the new navigation, thus giving an inherent advantage

to the Control. Conversely, when a new design or feature is

introduced, some users will investigate it, click everywhere,

and thus introduce a ―newness‖ bias. This bias is sometimes

associated with the Hawthorne Effect (35). Both primacy and

newness concerns imply that some experiments need to be run

for multiple weeks. One analysis that can be done is to

compute the OEC only for new users on the different variants,

since they are not affected by either factor.

4. Features Must be Implemented. A live controlled experiment

needs to expose some users to a Treatment different than the

current site (Control). The feature may be a prototype that is

being tested against a small portion, or may not cover all edge

cases (e.g., the experiment may intentionally exclude 20% of

browser types that would require significant testing).

Nonetheless, the feature must be implemented and be of

sufficient quality to expose users to it. Jacob Nielsen (34)

correctly points out that paper prototyping can be used for

qualitative feedback and quick refinements of designs in early

stages. We agree and recommend that such techniques

complement controlled experiments.

5. Consistency. Users may notice they are getting a different

variant than their friends and family. It is also possible that the

same user will see multiple variants when using different

computers (with different cookies). It is relatively rare that

users will notice the difference.

6. Parallel Experiments. Our experience is that strong

interactions are rare in practice (33), and we believe this

concern is overrated. Raising awareness of this concern is

enough for experimenters to avoid tests that can interact.

Pairwise statistical tests can also be done to flag such

interactions automatically.

7. Launch Events and Media Announcements. If there is a big

announcement made about a new feature, such that the feature

is announced to the media, all users need to see it.

4. IMPLEMENTATION ARCHITECTURE
Implementing an experiment on a website involves two

components. The first component is the randomization algorithm,

which is a function that maps users to variants. The second

component is the assignment method, which uses the output of the

randomization algorithm to determine the experience that each

user will see on the website. During the experiment, observations

must be collected, and data needs to be aggregated and analyzed.

4.1 Randomization Algorithm
Finding a good randomization algorithm is critical because the

statistics of controlled experiments assume that each variant of an

experiment has a random sample of users. Specifically, the

http://exp-platform.com/hippo.aspx Page 6

randomization algorithm should have the following four

properties:

1. Users must be equally likely to see each variant of an

experiment (assuming a 50-50 split). There should be no bias

toward any particular variant.

2. Repeat assignments of a single user must be consistent; the user

should be assigned to the same variant on each successive visit

to the site.

3. When multiple experiments are run concurrently, there must be

no correlation between experiments. A user’s assignment to a

variant in one experiment must have no effect on the

probability of being assigned to a variant in any other

experiment.

4. The algorithm should support monotonic ramp-up (see

Section 3.3.1), meaning that the percentage of users who see a

Treatment can be slowly increased without changing the

assignments of users who were already previously assigned to

that Treatment.

In the remainder of this section, we cover two different techniques

that satisfy the above four requirements.

4.1.1 Pseudorandom with caching
A standard pseudorandom number generator can be used as the

randomization algorithm when coupled with a form of caching. A

good pseudorandom number generator will satisfy the first and

third requirements of the randomization algorithm.

We tested several popular random number generators on their

ability to satisfy the first and third requirements. We tested five

simulated experiments against one million sequential user IDs,

running chi-square tests to look for interactions. We found that

the random number generators built into many popular languages

(for example, C#) work well as long as the generator is seeded

only once at server startup. Seeding the random number generator

on each request may cause adjacent requests to use the same seed

(as it did in our tests), which will introduce noticeable correlations

between experiments. In particular, we found that the code for

A/B tests suggested by Eric Peterson using Visual Basic (26)

created strong two-way interactions between experiments.

To satisfy the second requirement, the algorithm must introduce

state: the assignments of users must be cached once they visit the

site. Caching can be accomplished either on the server side (e.g.,

by storing the assignments for users in some form of database), or

on the client side (e.g., by storing a user’s assignment in a cookie).

Both forms of this approach are difficult to scale up to a large

system with a large fleet of servers. The server making the

random assignment must communicate its state to all the other

servers (including those used for backend algorithms) in order to

keep assignments consistent.

The fourth requirement (monotonic ramp-up) is particularly

difficult to implement using this method. Regardless of which

approach is used to maintain state, the system would need to

carefully reassign Control users who visit the site after a ramp-up

to a treatment. We have not seen a system using pseudorandom-

based assignment that supports ramp-up.

4.1.2 Hash and partition
Unlike the pseudorandom approach, this method is completely

stateless. Each user is assigned a unique identifier, which is

maintained either through a database or a cookie. This identifier

is appended onto the name or id of the experiment. A hash

function is applied to this combined identifier to obtain an integer

which is uniformly distributed on a range of values. The range is

then partitioned, with each variant represented by a partition.

This method is very sensitive to the choice of hash function. If

the hash function has any funnels (instances where adjacent keys

map to the same hash code) then the first property (uniform

distribution) will be violated. And if the hash function has

characteristics (instances where a perturbation of the key

produces a predictable perturbation of the hash code), then

correlations may occur between experiments. Few hash functions

are sound enough to be used in this technique.

We tested this technique using several popular hash functions and

a methodology similar to the one we used on the pseudorandom

number generators. While any hash function will satisfy the

second requirement (by definition), satisfying the first and third is

more difficult. We found that only the cryptographic hash

function MD5 generated no correlations between experiments.

SHA256 (another cryptographic hash) came close, requiring a

five-way interaction to produce a correlation. The .NET string

hashing function failed to pass even a two-way interaction test.

4.2 Assignment Method
The assignment method is the piece of software that enables the

experimenting website to execute a different code path for

different users. There are multiple ways to implement an

assignment method, with varying advantages and disadvantages.

Traffic splitting is a method that involves implementing each

variant of an experiment on a different fleet of servers, be it

physical or virtual. The website embeds the randomization

algorithm into a load balancer or proxy server to split traffic

between the variants. Traffic requires no changes to existing code

to implement an experiment. However, the approach necessitates

the setup and configuration of a parallel fleet for each unique

combination of variants across all experiments being run, making

the method the most expensive way to handle assignment.

An alternative method is server-side selection, whereby API calls

embedded into the website’s servers invoke the randomization

algorithm and enable branching logic that produces a different

user experience for each variant. Server-side selection is an

extremely general method that supports multiple experiments on

any aspect of a website, from visual elements to backend

algorithms. However, it requires additional work from a

developer to implement the code changes needed to run

experiments.

A final alternative is client-side selection, whereby JavaScript

calls embedded into each web page contact a remote service for

assignments and dynamically modify the page to produce the

appropriate user experience. Client-side experiments are

generally easier to implement than server-side experiments

because the developer need only embed canned snippets of

JavaScript into each page. However, this method severely limits

the features that may be subject to experimentation; in particular,

experiments on dynamic content or backend features are much

harder to implement.

5. LESSONS LEARNED
The difference between theory and practice

is larger in practice than

the difference between theory and practice in theory

http://exp-platform.com/hippo.aspx Page 7

— Jan L.A. van de Snepscheut

Many theoretical techniques seem well suited for practical use and

yet require significant ingenuity to apply them to messy real world

environments. Controlled experiments are no exception. Having

run a large number of online experiments, we now share several

practical lessons in three areas: (i) analysis; (ii) trust and

execution; and (iii) culture and business.

5.1 Analysis

5.1.1 Mine the Data
A controlled experiment provides more than just a single bit of

information about whether the difference in OECs is statistically

significant. Rich data is typically collected that can be analyzed

using machine learning and data mining techniques. For example,

an experiment showed no significant difference overall, but a

population of users with a specific browser version was

significantly worse for the Treatment. The specific Treatment

feature, which involved JavaScript, was buggy for that browser

version and users abandoned. Excluding the population from the

analysis showed positive results, and once the bug was fixed, the

feature was indeed retested and was positive.

5.1.2 Speed Matters
A Treatment might provide a worse user experience because of its

performance. Greg Linden (36 p. 15) wrote that experiments at

Amazon showed a 1% sales decrease for an additional 100msec,

and that a specific experiments at Google, which increased the

time to display search results by 500 msecs reduced revenues by

20% (based on a talk by Marissa Mayer at Web 2.0). If time is

not directly part of your OEC, make sure that a new feature that is

losing is not losing because it is slower.

5.1.3 Test One Factor at a Time (or Not)
Several authors (19 p. 76; 20) recommend testing one factor at a

time. We believe the advice, interpreted narrowly, is too

restrictive and can lead organizations to focus on small

incremental improvements. Conversely, some companies are

touting their fractional factorial designs and Taguchi methods,

thus introducing complexity where it may not be needed. While it

is clear that factorial designs allow for joint optimization of

factors, and are therefore superior in theory (15; 16) our

experience from running experiments in online web sites is that

interactions are less frequent than people assume (33), and

awareness of the issue is enough that parallel interacting

experiments are avoided. Our recommendations are therefore:

 Conduct single-factor experiments for gaining insights and

when you make incremental changes that could be decoupled.

 Try some bold bets and very different designs. For example, let

two designers come up with two very different designs for a

new feature and try them one against the other. You might

then start to perturb the winning version to improve it further.

For backend algorithms it is even easier to try a completely

different algorithm (e.g., a new recommendation algorithm).

Data mining can help isolate areas where the new algorithm is

significantly better, leading to interesting insights.

 Use factorial designs when several factors are suspected to

interact strongly. Limit the factors and the possible values per

factor because users will be fragmented (reducing power) and

because testing the combinations for launch is hard.

5.2 Trust and Execution

5.2.1 Run Continuous A/A Tests
Run A/A tests (see Section 3.1) and validate the following.

1. Are users split according to the planned percentages?

2. Is the data collected matching the system of record?

3. Are the results showing non-significant results 95% of the

time?

Continuously run A/A tests in parallel with other experiments.

5.2.2 Automate Ramp-up and Abort
As discussed in Section 3.3, we recommend that experiments

ramp-up in the percentages assigned to the Treatment(s). By

doing near-real-time analysis, experiments can be auto-aborted if

a treatment is statistically significantly underperforming relative

to the Control. An auto-abort simply reduces the percentage of

users assigned to a treatment to zero. By reducing the risk in

exposing many users to egregious errors, the organization can

make bold bets and innovate faster. Ramp-up is quite easy to do

in online environments, yet hard to do in offline studies. We have

seen no mention of these practical ideas in the literature, yet they

are extremely useful.

5.2.3 Determine the Minimum Sample Size
Decide on the statistical power, the effect you would like to

detect, and estimate the variability of the OEC through an A/A

test. Based on this data you can compute the minimum sample

size needed for the experiment and hence the running time for

your web site. A common mistake is to run experiments that are

underpowered. Consider the techniques mentioned in Section 3.2

point 3 to reduce the variability of the OEC.

5.2.4 Assign 50% of Users to Treatment
One common practice among novice experimenters is to run new

variants for only a small percentage of users. The logic behind

that decision is that in case of an error only few users will see a

bad treatment, which is why we recommend Treatment ramp-up.

In order to maximize the power of an experiment and minimize

the running time, we recommend that 50% of users see each of the

variants in an A/B test. Assuming all factors are fixed, a good

approximation for the multiplicative increase in running time for

an A/B test relative to 50%/50% is 1/(4𝑝 1 − 𝑝) where the

treatment receives portion 𝑝 of the traffic. For example, if an

experiment is run at 99%/1%, then it will have to run about 25

times longer than if it ran at 50%/50%.

5.2.5 Beware of Day of Week Effects
Even if you have a lot of users visiting the site, implying that you

could run an experiment for only hours or a day, we strongly

recommend running experiments for at least a week or two, then

continuing by multiples of a week so that day-of-week effects can

be analyzed. For many sites the users visiting on the weekend

represent different segments, and analyzing them separately may

lead to interesting insights. This lesson can be generalized to

other time-related events, such as holidays and seasons, and to

different geographies: what works in the US may not work well in

France, Germany, or Japan.

Putting 5.2.3, 5.2.4, and 5.2.5 together, suppose that the power

calculations imply that you need to run an A/B test for a minimum

of 5 days, if the experiment were run at 50%/50%. We would

http://exp-platform.com/hippo.aspx Page 8

then recommend running it for a week to avoid day-of-week

effects and to increase the power over the minimum. However, if

the experiment were run at 95%/5%, the running time would have

to be increased by a factor of 5 to 25 days, in which case we

would recommend running it for four weeks. Such an experiment

should not be run at 99%/1% because it would require over 125

days, a period we consider too long for reliable result; factors,

such as cookie churn, that have secondary impact in experiments

running for a few weeks may start contaminating the data.

5.3 Culture and Business

5.3.1 Agree on the OEC Upfront
One of the powers of controlled experiments is that it can

objectively measure the value of new features for the business.

However, it best serves this purpose when the interested parties

have agreed on how an experiment is to be evaluated before the

experiment is run.

While this advice may sound obvious, it is infrequently applied

because the evaluation of many online features is subject to

several, often competing objectives. OECs can be combined

measures, which transform multiple objectives, in the form of

experimental observations, into a single metric. In formulating an

OEC, an organization is forced to weigh the value of various

inputs and decide their relative importance. A good technique is

to assess the lifetime value of users and their actions. For

example, a search from a new user may be worth more than an

additional search from an existing user. Although a single metric

is not required for running experiments, this hard up-front work

can align the organization and clarify goals.

5.3.2 Beware of Launching Features that ―Do Not

Hurt‖ Users
When an experiment yields no statistically significant difference

between variants, this may mean that there truly is no difference

between the variants or that the experiment did not have sufficient

power to detect the change. In the face of a ―no significant

difference‖ result, sometimes the decision is made to launch the

change anyway ―because it does not hurt anything.‖ It is possible

that the experiment is negative but underpowered.

5.3.3 Weigh the Feature Maintenance Costs
An experiment may show a statistically significant difference

between variants, but choosing to launch the new variant may still

be unjustified because of maintenance costs. A small increase in

the OEC may not outweigh the cost of maintaining the feature.

5.3.4 Change to a Data-Driven Culture
Running a few online experiments can provide great insights into

how customers are using a feature. Running frequent experiments

and using experimental results as major input to company

decisions and product planning can have a dramatic impact on

company culture. Software organizations shipping classical

software developed a culture where features are completely

designed prior to implementation. In a web world, we can

integrate customer feedback directly through prototypes and

experimentation. If an organization has done the hard work to

agree on an OEC and vetted an experimentation system,

experimentation can provide real data and move the culture

towards attaining shared goals rather than battle over opinions.

6. SUMMARY
Almost any question can be answered cheaply, quickly and

 finally, by a test campaign. And that's the way

 to answer them – not by arguments around a table.

 Go to the court of last resort – buyers of your products.

— Claude Hopkins, Scientific Advertising, 1922

Classical knowledge discovery and data mining provide insight,

but the patterns discovered are correlational and therefore pose

challenges in separating useful actionable patterns from those

caused by ―leaks‖ (37). Controlled experiments neutralize

confounding variables by distributing them equally over all values

through random assignment (6), thus establishing a causal

relationship between the changes made in the different variants

and the measure(s) of interest, including the Overall Evaluation

Criterion (OEC). Using data mining techniques in this setting can

thus provide extremely valuable insights, such as the

identification of segments that benefit from a feature introduce in

a controlled experiment, leading to a virtuous cycle of

improvements in features and better personalization.

The basic ideas in running controlled experiments are easy to

understand, but a comprehensive overview for the web was not

previously available. In addition, there are important new lessons

and insights that we shared throughout the paper, including

generalized architectures, ramp-up and aborts, the practical

problems with randomization and hashing techniques, and

organizational issues, especially as they relate to OEC.

Many organizations have strong managers who have strong

opinions, but lack data, so we started to use the term HiPPO,

which stands for Highest Paid Person’s Opinion, as a way to

remind everyone that success really depends on the users’

perceptions. Some authors have called experimentation the ―New

Imperative for Innovation‖ (38) and point out that ―new

technologies are making it easier than ever to conduct complex

experiments quickly and cheaply.‖ We agree and believe that

companies can accelerate innovation through experimentation

because it is the customers’ experience that ultimately matters.

ACKNOWLEDGMENTS
We would like to thank members of the Experimentation Platform

team at Microsoft. The first author wishes to thank Avinash

Kaushik for a great conversation on A/B testing, where he used

the term ―HiPO‖ for Highest Paid Opinion; this evolved into

HiPPO (picture included) in our presentations. We thank Fritz

Behr, Keith Butler, Rod Deyo, Danyel Fisher, James Hamilton,

Ronit HaNegby, Greg Linden, Roger Longbotham, Foster

Provost, Saharon Rosset, and Zijian Zheng for their feedback.

7. REFERENCES
1. Rossi, Peter H, Lipsey, Mark W and Freeman, Howard E.

Evaluation: A Systematic Approach. 7th. s.l. : Sage Publications,

Inc, 2003. 0-7619-0894-3.

2. Linden, Greg. Early Amazon: Shopping cart

recommendations. Geeking with Greg. [Online] April 25, 2006.

http://glinden.blogspot.com/2006/04/early-amazon-shopping-

cart.html.

3. Kohavi, Ron and Round, Matt. Front Line Internet Analytics

at Amazon.com. [ed.] Jim Sterne. Santa Barbara, CA : s.n., 2004.

http://ai.stanford.edu/~ronnyk/emetricsAmazon.pdf.

http://exp-platform.com/hippo.aspx Page 9

4. Thomke, Stefan H. Experimentation Matters: Unlocking the

Potential of New Technologies for Innovation. s.l. : Harvard

Business School Press, 2003. 1578517508.

5. Charles, Reichardt S and Melvin, Mark M. Quasi

Experimentation. [book auth.] Joseph S Wholey, Harry P Hatry

and Kathryn E Newcomer. Handbook of Practical Program

Evaluation. 2nd. s.l. : Jossey-Bass, 2004.

6. Keppel, Geoffrey, Saufley, William H and Tokunaga,

Howard. Introduction to Design and Analysis. 2nd. s.l. : W.H.

Freeman and Company, 1992.

7. Eisenberg, Bryan. How to Decrease Sales by 90 Percent.

ClickZ. [Online] Feb 21, 2003.

http://www.clickz.com/showPage.html?page=1588161.

8. —. How to Increase Conversion Rate 1,000 Percent. ClickZ.

[Online] Feb 28, 2003.

http://www.clickz.com/showPage.html?page=1756031.

9. McGlaughlin, Flint, et al. The Power of Small Changes Tested

. Marketing Experiments Journal. [Online] March 21, 2006.

http://www.marketingexperiments.com/improving-website-

conversion/power-small-change.html.

10. Usborne, Nick. Design Choices Can Cripple a Website. A List

Apart. [Online] Nov 8, 2005.

http://alistapart.com/articles/designcancripple.

11. Eisenberg, Bryan and Eisenberg, Jeffrey. Call to Action,

Secret formulas to improve online results. Austin, Texas : Wizard

Academy Press, 2005. Making the Dial Move by Testing,

Introducing A/B Testing.

12. Eisenberg, Bryan; Garcia, Anthony;. Which Sells Best: A

Quick Start Guide to Testing for Retailers. Future Now's

Publications. [Online] 2006. http://futurenowinc.com/shop/.

13. Chatham, Bob, Temkin, Bruce D and Amato, Michelle. A

Primer on A/B Testing. s.l. : Forrester Research, 2004.

14. Forrester Research. The State of Retailing Online. s.l. :

Shop.org, 2005.

15. Mason, Robert L, Gunst, Richard F and Hess, James L.

Statistical Design and Analysis of Experiments With Applications

to Engineering and Science. s.l. : John Wiley & Sons, 1989.

047185364X .

16. Box, George E.P., Hunter, J Stuart and Hunter, William

G. Statistics for Experimenters: Design, Innovation, and

Discovery. 2nd. s.l. : John Wiley & Sons, Inc, 2005. 0471718130.

17. Weiss, Carol H. Evaluation: Methods for Studying Programs

and Policies. 2nd. s.l. : Prentice Hall, 1997. 0-13-309725-0.

18. Roy, Ranjit K. Design of Experiments using the Taguchi

Approach : 16 Steps to Product and Process Improvement. s.l. :

John Wiley & Sons, Inc, 2001. 0-471-36101-1.

19. Peterson, Eric T. Web Analytics Demystified: A Marketer's

Guide to Understanding How Your Web Site Affects Your

Business. s.l. : Celilo Group Media and CafePress, 2004.

0974358428.

20. Eisenberg, Bryan. How to Improve A/B Testing. ClickZ

Network. [Online] April 29, 2005.

http://www.clickz.com/showPage.html?page=3500811.

21. —. A/B Testing for the Mathematically Disinclined. ClickZ.

[Online] May 7, 2004.

http://www.clickz.com/showPage.html?page=3349901.

22. Quarto-vonTivadar, John. AB Testing: Too Little, Too

Soon. Future Now. [Online] 2006.

http://www.futurenowinc.com/abtesting.pdf.

23. Miller, Scott. How to Design a Split Test. Web Marketing

Today, Conversion/Testing. [Online] Jan 18, 2007.

http://www.wilsonweb.com/conversion/.

24. —. The ConversionLab.com: How to Experiment Your Way to

Increased Web Sales Using Split Testing and Taguchi

Optimization. 2006. http://www.conversionlab.com/.

25. Kaushik, Avinash. Experimentation and Testing: A Primer.

Occam’s Razor by Avinash Kaushik. [Online] May 22, 2006.

http://www.kaushik.net/avinash/2006/05/experimentation-and-

testing-a-primer.html.

26. Peterson, Eric T. Web Site Measurement Hacks. s.l. :

O'Reilly Media, 2005. 0596009887.

27. Tyler, Mary E and Ledford, Jerri. Google Analytics. s.l. :

Wiley Publishing, Inc, 2006. 0470053852.

28. Sterne, Jim. Web Metrics: Proven Methods for Measuring

Web Site Success. s.l. : John Wiley & Sons, Inc, 2002. 0-471-

22072-8.

29. Kaplan, Robert S and Norton, David P. The Balanced

Scorecard: Translating Strategy into Action. s.l. : Harvard

Business School Press, 1996. 0875846513.

30. Ulwick, Anthony. What Customers Want: Using Outcome-

Driven Innovation to Create Breakthrough Products and Services.

s.l. : McGraw-Hill, 2005. 0071408673.

31. Portable Power. Wheeler, Robert E. 1974, Technometrics,

Vol. 16.

http://www.bobwheeler.com/stat/Papers/PortablePower.PDF.

32. The Validity of Portable Power. Wheeler, Robert E. 2, May

1975, Technometrics, Vol. 17, pp. 177-179.

33. van Belle, Gerald. Statistical Rules of Thumb. s.l. : Wiley-

Interscience, 2002. 0471402273.

34. Nielsen, Jakob. Putting A/B Testing in Its Place. Useit.com

Alertbox. [Online] Aug 15, 2005.

http://www.useit.com/alertbox/20050815.html.

35. Hawthorne effect. Wikipedia. [Online] 2007.

http://en.wikipedia.org/wiki/Hawthorne_experiments.

36. Linden, Greg. Make Data Useful. [Online] Dec 2006.

http://home.blarg.net/~glinden/StanfordDataMining.2006-11-

29.ppt.

37. Lessons and Challenges from Mining Retail E-Commerce

Data. Kohavi, Ron, et al. 1-2, s.l. : Kluwer Academic Publishers,

2004, Machine Learning, Vol. 57, pp. 83-113.

http://ai.stanford.edu/~ronnyk/lessonsInDM.pdf.

38. Enlightened Experimentation: The New Imperative for

Innovation. Thomke, Stefan. Feb 2001, Harvard Business

Review . R0102D.

