
Practical LPIC-1
Linux Certification
Study Guide

—
David Clinton

 Practical LPIC-1
Linux Certification

Study Guide

David Clinton

Practical LPIC-1 Linux Certification Study Guide

David Clinton
Toronto, Canada

ISBN-13 (pbk): 978-1-4842-2357-4 ISBN-13 (electronic): 978-1-4842-2358-1
DOI 10.1007/978-1-4842-2358-1

Library of Congress Control Number: 2016959279

Copyright © 2016 by David Clinton

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are
brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for
the purpose of being entered and executed on a computer system, for exclusive use by the purchaser
of the work. Duplication of this publication or parts thereof is permitted only under the provisions
of the Copyright Law of the Publisher’s location, in its current version, and permission for use must
always be obtained from Springer. Permissions for use may be obtained through RightsLink at the
Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol
with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of
the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Managing Director: Welmoed Spahr
Acquisitions Editor: Louise Corrigan
Development Editor: James Markham
Editorial Board: Steve Anglin, Pramila Balen, Laura Berendson, Aaron Black, Louise Corrigan,

Jonathan Gennick, Todd Green, Celestin Suresh John, Nikhil Karkal, Robert Hutchinson,
James Markham, Matthew Moodie, Natalie Pao, Gwenan Spearing

Coordinating Editor: Nancy Chen
Copy Editor: Mary Bearden
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global, Image courtesy of Freepik.

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring
Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
 orders-ny@springer-sbm.com , or visit www.springer.com . Apress Media, LLC is a California LLC and
the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM
Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com , or visit www.apress.com .

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional
use. eBook versions and licenses are also available for most titles. For more information, reference our
Special Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales .

 Any source code or other supplementary materials referenced by the author in this text is available
to readers at www.apress.com . For detailed information about how to locate your book’s source code,
go to www.apress.com/source-code/ .

Printed on acid-free paper

mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
http://www.apress.com
http://www.apress.com/source-code/

iii

Contents at a Glance

About the Author .. xi

Introduction .. xiii

 ■Chapter 1: Topic 101: System Architecture 1

 ■ Chapter 2: Topic 102: Linux Installation and
Package Management .. 17

 ■Chapter 3: Topic 103: Gnu and Unix Commands 31

 ■ Chapter 4: Topic 104: Devices, Linux Filesystems, and
the Filesystem Hierarchy Standard .. 53

 ■Chapter 5: Topic 105: Shells, Scripting, and Databases 73

 ■Chapter 6: Topic 106: User Interfaces and Desktops 87

 ■Chapter 7: Topic 107: Administrative Tasks 99

 ■Chapter 8: Topic 108: Essential System Services 111

 ■Chapter 9: Topic 109: Networking Fundamentals 125

 ■Chapter 10: Topic 110: Security ... 141

 ■Appendix: LPIC-1 Exam Objectives ... 159

Index .. 183

v

Contents

About the Author .. xi

Introduction .. xiii

 ■Chapter 1: Topic 101: System Architecture 1

Device Management: The Linux Boot Process... 1

Troubleshooting ... 5

Run Levels ... 7

Pseudo Filesystems... 10

Device Management.. 11

Now Try This .. 13

Test Yourself .. 13

Answer Key ... 15

 ■ Chapter 2: Topic 102: Linux Installation and
Package Management .. 17

Disk Partitioning .. 17

Install and Confi gure a Boot Manager ... 21

Shared Libraries .. 21

Package Managers .. 23

Local: dpkg ... 23

Repositories: APT .. 24

Local: RPM .. 27

Repositories: yum ... 27

vi

■ CONTENTS

Now Try This .. 28

Test Yourself .. 28

Answer Key ... 30

 ■Chapter 3: Topic 103: Gnu and Unix Commands 31

The Bash Shell .. 31

Processing Text Streams ... 33

File Management ... 37

File Archives ... 40

Streams, Pipes, and Redirects .. 41

Managing Processes ... 42

Monitoring Processes ... 42

Managing Background Processes .. 43

Killing Processes .. 45

Execution Priorities ... 45

Using Regular Expressions (REGEX) .. 46

Using vi .. 48

Now Try This .. 49

Test Yourself .. 49

Answer Key ... 52

 ■ Chapter 4: Topic 104: Devices, Linux Filesystems, and the
Filesystem Hierarchy Standard .. 53

Create Partitions and Filesystems ... 53

Maintain the Integrity of Filesystems .. 56

Monitoring .. 56

Preventive Maintenance ... 57

Repair ... 57

vii

■ CONTENTS

Control Mounting and Unmounting of Filesystems 59

Manage Disk Quotas ... 61

Manage File Permissions and Ownership ... 62

Letters .. 62

Numbers (octal) .. 64

Umask ... 64

Using suid, sgid, and the Sticky Bit .. 65

Create and Change Hard and Symbolic Links 66

Find System Files and Place Files in the Correct Location 68

Filesystem Hierarchy Standard ... 68

Search Tools ... 69

Now Try This .. 70

Test Yourself .. 70

Answer Key ... 72

 ■Chapter 5: Topic 105: Shells, Scripting, and Databases 73

Customize and Use the Shell Environment.. 73

Customize and Write Simple Scripts ... 75

User Inputs ... 76

Testing Values ... 77

Loops .. 78

SQL Data Management .. 80

Now Try This .. 84

Test Yourself .. 85

Answer Key ... 86

 ■Chapter 6: Topic 106: User Interfaces and Desktops 87

Install and Confi gure X11 .. 87

Set Up a Display Manager ... 90

viii

■ CONTENTS

Accessibility .. 94

Now Try This .. 96

Test Yourself .. 96

Answer Key ... 97

 ■Chapter 7: Topic 107: Administrative Tasks 99

Manage User and Group Accounts .. 99

Users... 99

Groups .. 102

Automate System Administration Tasks .. 103

Using cron .. 103

Using anacron ... 104

Using at... 105

Localization and Internationalization... 106

Now Try This .. 109

Test Yourself .. 109

Answer Key ... 110

 ■Chapter 8: Topic 108: Essential System Services 111

Maintain System Time ... 111

The Hardware Clock ... 111

Network Time Protocol (NTP) .. 112

System Logging ... 114

Using syslogd ... 114

Using journald... 116

Using logger ... 116

Using logrotate ... 117

Mail Transfer Agent Basics .. 118

Manage Printers and Printing .. 120

ix

■ CONTENTS

Now Try This .. 122

Test Yourself .. 122

Answer Key ... 123

 ■Chapter 9: Topic 109: Networking Fundamentals 125

Fundamentals of Internet Protocols .. 125

Transmission Protocols ... 125

Network Addressing ... 125

IPv4 ... 126

Network Address Translation (NAT) .. 127

IPv6 ... 128

Service Ports .. 129

Basic Network Confi guration ... 131

Basic Network Troubleshooting ... 133

Confi gure Client Side DNS ... 136

Now Try This .. 138

Test Yourself .. 138

Answer Key ... 140

 ■Chapter 10: Topic 110: Security ... 141

System Security .. 141

Host Security ... 146

Encryption: Securing Data in Transit ... 148

OpenSSH ... 149

Passwordless Access ... 150

Using ssh-agent .. 151

X11 Tunnels .. 152

GnuPG Confi g .. 152

x

■ CONTENTS

Now Try This .. 155

Test Yourself .. 155

Answer Key ... 157

 ■Appendix: LPIC-1 Exam Objectives ... 159

LPIC-1 Exam 101 ... 159

Topic 101: System Architecture .. 159

Topic 102: Linux Installation and Package Management 161

Topic 103: GNU and Unix Commands .. 163

Topic 104: Devices, Linux Filesystems, Filesystem Hierarchy Standard 167

LPIC-1 Exam 102 ... 170

Topic 105: Shells, Scripting and Data Management ... 170

Topic 106: User Interfaces and Desktops ... 172

Topic 107: Administrative Tasks .. 173

Topic 108: Essential System Services .. 175

Topic 109: Networking Fundamentals .. 177

Topic 110: Security ... 179

Index .. 183

xi

 About the Author

 David Clinton is an experienced teacher, writer, and Linux system administrator.
Besides this book, he is also the author of a book on the LPIC-3 304 certification (Linux
Virtualization and High Availability) and of a number of Linux-based video courses
available at Pluralsight (http://app.pluralsight.com/author/david-clinton).

http://app.pluralsight.com/author/david-clinton

xiii

 Introduction

 First of all, welcome.
 Whether you’re reading this book because you’ve decided to earn the Linux

Professional Institute’s Server Professional Certification or because you simply want to
learn more about Linux administration, you’ve made a great choice. Right now, for a
thousand reasons, Linux administration skills are opening doors to some of the hottest
job markets on earth. And with the ongoing explosive growth of the cloud computing
world—the vast majority of it being built with Linux—the opportunities will only get
richer.

 Now, about this book. I chose to have the chapters closely follow the LPIC exam
topics. Not only will this make it much easier for you to study for each of the two exams
required for the LPIC-1 certification, but I believe that the exam objectives are actually
nicely aligned with the tools you’ll need in the real world. Whether or not you end up
taking the exam, if you manage to learn this material, you’ll have done yourself a real favor.

 By far the most important element of your success, however, will have very little to do
with this or any other book. No matter how much time you spend studying a book, very
little of the information you read will magically translate into knowledge and skills, unless
you put it to work.

 If you want to really “get” this stuff, you’ll have to roll up your sleeves, open up a
terminal, and do it . As soon as you finish a chapter or a section, try out what you’ve
learned on a real living, breathing Linux system. Even better, take on your own projects.
Be ambitious. Be adventurous. Take (managed) risks.

 To this end, I include suggestions for practical exercises at the end of each chapter
(right before the Test Yourself quizzes). Be prepared to spend longer than you expected
on some of those tasks, sometimes longer than it took you to read the chapters they’re
based on. Also, accept that you will probably make some mistakes that will require even
more time to fix. This is all as it should be. Remember: you learn more from experience
than anything else.

 You will notice that I used the words “complete” and “quick” to describe this book.
Let me explain what I meant. The book is complete in the sense that every concept,
principle, process, and resource that might make an appearance on the exam is fully
represented (even a few that are now quite obsolete and/or useless: I’m looking at you,
X Font server).

 However, your journey through this book may also be relatively quick, since I’ve tried
to be as selective as possible about what I included. As you will see soon enough, I didn’t
even try to include every single option for every single utility, which would have been
highly impractical. But it would also have been largely useless, because I don’t believe
any normal human being could possibly absorb page after page after page of that kind of
dry, abstract information.

xiv

■ INTRODUCTION

 If you want to see the full, formal documentation for a particular Linux utility,
simply consult the man pages that came preinstalled with your Linux distribution. As an
example, from the command line, you can type:

 man cp

 Besides including only the more common command options, I also tried to avoid
discussing more general IT issues that don’t relate directly to the LPIC exam. It’s not that
they’re not important, but I figured that they may only interest a relatively small number
of my readers and, importantly, they’re all easily accessible on the Internet. I’d like to
introduce you to one of my best friends: the Internet search engine.

 So if you’re curious about something that isn’t discussed in these pages or if a project
you’re working on needs greater detail, then by all means, dive in deep. But because I
know that the Internet has answers to just about any question you’re likely to have, I’m
able to focus this book more narrowly on the curriculum that interests everyone.

 Having said that, please visit our web site, bootstrap-it.com. We’ll try to make your
visit worthwhile and, more importantly, provide you all with the opportunity to talk to
us—and to each other. Let us know how you’re doing and what you think.

 About Linux
 There’s so much I could say about Linux:

• It’s the operating system used by more than 95% of the world’s
supercomputers.

• Google, Netflix, and Facebook? Linux, Linux, and Linux.

• The vast majority of virtual machines fired up on the leading
cloud computing platforms (like Amazon’s AWS) are running
Linux, and that includes Microsoft’s Azure!

• There’s a very good chance that the software powering your
car, television, smartphone, air traffic control system, and even
neighborhood traffic lights is one flavor or another of Linux.

 If there’s innovation in the worlds of science, finance, communications,
entertainment, and connectivity, it’s almost certainly being driven by Linux. And if there
are dozens of attractive, virus-free, secure, and reliable desktop and mobile operating
systems freely available to fill all kinds of roles, those too are driven by Linux.

 ■ Note By they way, you may be interested to know that this book was produced in its
entirety on Linux, using only open source software. The whole thing: research, testing, and
image processing.

xv

■ INTRODUCTION

 The Linux Foundation recently (September 2015) estimated that, over just the past
few years, collaborative projects under their umbrella have produced an estimated $5
billion in economic value. This was, again according to the Foundation, “work that would
take 1,356 developers more than 30 years to replicate.”

 But where did all this innovation, productivity, and value come from? Who actually
makes it all happen? It seems that the little operating system built a couple of decades ago
by Linus Torvalds and then donated to the world, is maintained by an army of thousands
of developers. According to the Linux Foundation, through 2015, 7.71 changes were
accepted into the Linux kernel each HOUR and those contributions were the work of,
besides Torvalds himself, more than 4,000 developers scattered around the world, many
of whom, it must be noted, are sponsored by the companies they work for.

 That’s the power of open source. “Open source?” I hear you ask. “But who will
support us when things go wrong?”

 That’s the beauty of open source. Because when I can’t figure out how to do
something or when I discover a bug in some open source software, I can usually quickly
find the answer through an Internet search or, if not, there are knowledgeable and helpful
folks online just waiting to help me. Try it out. You might, as I have from time to time,
quickly find yourself in direct contact with the project developers themselves.

 Some years ago, I wrote a white paper arguing the business case for transitioning
small and medium-sized businesses from proprietary office productivity software
suites (Microsoft Office) to open source alternatives (LibreOffice). When I compared
the response/resolution times delivered by Microsoft with the average times seen on
volunteer-staffed online OpenOffice and LibreOffice help forums, the latter would
consistently produce a quicker turnaround.

 Now it’s your turn. All that innovation is going to need administrators to apply it
to the real world. After all, we system administrators know just how little developers
would get done without us. As the IT world grows and changes, you will be on the
cutting edge.

 Or will you? Let me tell you a story about an old friend of mine who, 25 years ago,
had a great job as a Unix admin. As he tells it, the problem was that Unix (which, for the
purpose of this discussion, is effectively synonymous with Linux) was getting so good at
automating processes and system audits that all kinds of midlevel admins simply became
unnecessary. My friend lost his job.

 Could this happen to you? Absolutely. Unless, that is, you make an effort to keep up
with technology as it evolves. There will be new areas to keep your eyes on (embedded
tech, container virtualization, and others not yet imagined). It’s the 21st century: you’re
never finished learning.

 Nevertheless, I predict that 95% of the basic Linux skills you will learn here will
probably still be in use ten and even 20 years from now. This is solid, foundational
material.

xvi

■ INTRODUCTION

 About the LPIC-1 Exams
 The two exams you’ll need to pass to earn your Server Professional Certification
(LPIC-1 101 and 102) are also known as CompTIA Linux+ LX0-103 and LX0-104. Until a
few years ago, CompTIA offered a Linux certification that was so similar to the LPIC that
the two eventually merged. All you have to know is that, whatever they’re called, they
work the same way and will get you to the same place.

 That is not true of LPI’s Linux Essentials (LPI-010) exam, which is a single,
introductory exam that’s meant for individuals with far less experience and knowledge
than a candidate for the Server Professional would have. Besides those, the LPI offers two
other sets of exams designed to demonstrate added skills and experience beyond those
of the LPIC-1: the LPIC-2 (Linux Network Professional Certification) and LPIC-3 (Mixed
Environments, Security, or Virtualization and High Availability).

 This book is based on the April 2015 edition of the exams (Version 4.0). The people
who maintain the certification and exams are, by design, very conservative in the way
they adopt major changes, so you can be confident that the key exam topics won’t be
changing dramatically any time soon. Still, you should make sure that the training
material on which you’re relying does match the current version of the exam.

 The Linux Professional Institute is vendor neutral, meaning that no one mainstream
Linux distribution or software stack is favored over any other. You will therefore need
to become familiar with a range of technologies. So, for example, expect to see both the
Systemd and Upstart process managers, or both the apt and yum package managers.
And that’s a really good thing, because all of those systems are widely used (for now, at
least) and all have unique valuable features. You can only gain from understanding how
they all work. Success with the LPIC-1 will also automatically earn you the SUSE CLA
certification.

 Each exam is made up of 60 multiple choice and fill in the blank questions which
must be completed within 90 minutes. To pass an exam, you will need to score 500 marks
out of a total of 800. Since the questions are weighted by topic, there is no guarantee
that one question will be worth the same number of marks as another. You can book an
exam through the web site of either the Pearson VUE or Prometric test administration
companies.

 As with most technical certification exams, you will need to present the exam
provider with two forms of identification, one of them a government-issued photo ID. You
will also be expected to surrender any electronic devices or notebooks. (If you’re very nice
to the proctors, they might give them back to you once you’re done.)

 More than most certifications, the LPI has done a great job communicating exactly
what you will need to know. You should spend some time carefully reading through the
two exam objectives pages from their web site (lpi.org/study-resources/lpic-1-101-exam-
objectives and lpi.org/study-resources/lpic-1-102-exam-objectives) before you begin this
study and then go through them again at the end of the process to make sure you haven’t
missed anything. For your convenience, I’ve included the objectives in an appendix at the
end of this book.

 You will notice that each topic is given a weight between one and five. Those indicate
the relative importance of a topic in terms of how large a role it will play in the exam.
Table 1 is a simple chart that adds up the weights by topic to illustrate the importance of
each.

xvii

■ INTRODUCTION

 Table 1. Topics and Their Weighting

 Topic Weight

 101 8 System Architecture

 102 11 Linux Installation and Package Management

 103 26 GNU and Unix Commands

 104 15 Devices, Filesystems, Filesystem Hierarchy Standard

 Total: 60

 105 10 Shells, Scripting and Data Management

 106 4 User Interfaces and Desktops

 107 12 Administrative Tasks

 108 11 Essential System Services

 109 14 Networking Fundamentals

 110 9 Security

 Total: 60

 Exam Tips
 Try to arrive at the exam center as relaxed and well rested as possible. Carefully and
slowly read each question and each possible response. Look for important details and
for details that are only there to distract you. If you’re not absolutely sure which answer
is correct, try to narrow down the field a bit by eliminating answers that are obviously
incorrect. You can always skip hard questions and return to them later when you’ve
completed the rest.

 Finally, remember that more people fail this exam on their first try than pass: it’s
designed to inspire your best effort. So don’t give up.

 Linux Survival Skills
 Why only a single section—isn’t this whole book about Linux survival skills? Well yes, but
how are you going to survive between now and the time you finish reading it? Just to get
you started, it might be useful to pick up a few super-critical, can’t-live-without-me tools.

 First, nearly everything in Linux administration will happen through the terminal.
But I know that at least some of you are sitting in front of a shiny new Linux GUI interface
right now and wondering where the #$%@! the terminal is (if you’ll excuse my language).
The answer is: that depends. Ubuntu, for instance, changes their menu design with just
about every distribution, so exactly where terminal will appear on your desktop is hard to
predict. In some ways, things just got more complicated with some more recent desktop
manager versions, which got rid of menus altogether.

xviii

■ INTRODUCTION

 If you’re not interested in poking around looking for it, you can try hitting the Alt+f2
combination and then typing terminal (or gnome-terminal) into the dialog box. Or, on
some systems, Ctrl+Alt+t will get you there directly.

 Once you’re in the terminal, try running a command. Type:

 pwd

 which stands for present work directory. This is the folder (something that’s almost
always called a directory in Linuxland, by the way) you’re currently in. You can list the
files and subdirectories in your current directory with ls:

 ls -l

 Adding the -l argument gives you a longer, more detailed list displaying file
attributes. If it’s already installed (and it usually will be), you can use the nano text editor
to, in this case, create and edit a new text file:

 nano myfile.txt

 Go ahead and type a few words and then hit Ctrl+x to save and exit. You can now
quickly view your literary creation using cat:

 cat myfile.txt

 Try that again, but this time, type only cat my without the rest of the file name.
Instead, hit the Tab key and Linux Command Completion should figure out what you’re
after and finish the command for you. Just hit Enter to accept the suggestion. Trust me:
this one can save you a great many keystrokes and a whole lot of time over the coming
years.

 Let’s create a new directory:

 mkdir newplace

 and change directory into newplace and then run pwd once again:

 cd newplace
 pwd

xix

■ INTRODUCTION

 Perhaps you’d like to copy the file you just created into this directory. To do this,
you’ll need to keep in mind where the personal “home” directory exists in the larger
Linux filesystem. Let’s assume that the account is called bootstrap-it, which is therefore
the name of the home directory:

 cp /home/bootstrap-it/myfile.txt .

 The /home/bootstrap-it/myfile.txt section identifies the file you want to copy, and
the dot (.) tells the cp command to copy it to the current directory. Run ls to confirm that
a copy has arrived:

 ls

 You can change a file’s name or move it using mv:

 mv myfile.txt mynewfile.txt
 ls

 And you can permanently delete the file using rm:

 rm mynewfile.txt

 To help you experiment with Linux skills without having to worry about making a
mess of your important stuff, you might try working with disposable systems. One way
to do that is by loading a Linux image on to a USB stick, and then booting your computer
to a live Linux session. Unless you mount and play around with your existing hard drive,
nothing you do will have any permanent impact on your “real” data or system settings,
and nothing you do to the live filesystem will survive a reboot. This has the added
potential advantage of exposing you to a wide range of Linux distributions beyond the
one that you’ve chosen for your main work.

 Of course, installing the VirtualBox package on your system will let you load virtual
operating systems of nearly any flavor within your desktop environment to get a good
taste of how things work in other Linux distributions.

 LXC Containers
 You can also create virtual machines within a working installation using LXC. An LXC
container (as its called) is a fully functioning, persistent virtual “machine” that likes to
imagine that it lives all by itself on your hardware (see Figure 1). You can play around in
this sandbox-like environment to your heart’s content and, when you break something
(as you probably will), you can just destroy it and start again with a new one. I highly
recommend using LXCs for exploration and experimentation. I use them myself all the
time and they’ve saved me untold hours of heartache.

■ INTRODUCTION

xx

 Here are the simple steps you’ll need to get started with LXC (none of this is included
among the LPIC-1 exam expectations). This assumes that you’re using an Ubuntu
machine; some commands may be a bit different for other distributions. First, make sure
that openssh is installed on your host machine (I’ll talk a lot more about what that is later
in the book):

 sudo apt-get update
 sudo apt-get install openssh-server

 Now install lxc:

 sudo apt-get install lxc

 Then create a new container called newcon using the ubuntu template:

 sudo lxc-create -t ubuntu -n newcon

 Figure 1. LXC container architectural design

xxi

■ INTRODUCTION

 Once that’s done (and it should only take a minute or two), boot the new container:

 sudo lxc-start -d -n newcon

 The -d tells lxc to detach from the container, to allow it to survive your exit from the
shell. Now let’s list all the existing containers (it might take a short while before newcon is
listed as fully up):

 sudo lxc-ls --fancy

 Assuming that the IP address for newcon (listed by our previous command) is
10.0.3.120, let’s ssh into the container:

 ssh ubuntu@10.0.3.120

 And voila! A brand new computer playground, waiting for us to come and play! Now
you’ve got no excuses: get to work.

1© David Clinton 2016
D. Clinton, Practical LPIC-1 Linux Certification Study Guide,
DOI 10.1007/978-1-4842-2358-1_1

 CHAPTER 1

 Topic 101: System
Architecture

 Device Management: The Linux Boot Process
 Unless you end up working exclusively with virtual machines or on a cloud platform like
Amazon Web Service, you’ll need to know how to do techie things like putting together
real machines and swapping out failed drives. However, since those skills aren’t part of
the Linux Professional Institute Certification (LPIC) exam curriculum, I won’t focus on
them in this book. Instead, I’ll begin with booting a working computer.

 Whether you’re reading this book because you want to learn more about Linux or
because you want to pass the LPIC-1 exam, you will need to know what happens when a
machine is powered on and how the operating system wakes itself up and readies itself
for a day of work. Depending on your particular hardware and the way it’s configured, the
firmware that gets things going will be either some flavor of BIOS (Basic Input/Output
System) or UEFI (Intel’s Unified Extended Firmware Interface).

 As illustrated in Figure 1-1 , the firmware will take an inventory of the hardware
environment in which it finds itself and search for a drive that has a Master Boot Record
(MBR) living within the first 512 (or, in some cases, 4096) bytes. The MBR should contain
partition and filesystem information, telling BIOS that this is a boot drive and where it can
find a mountable filesystem.

CHAPTER 1 ■ TOPIC 101: SYSTEM ARCHITECTURE

2

 On most modern Linux systems, the MBR is actually made up of nothing but a 512
byte file called boot.img. This file, known as GRUB Stage 1 (GRUB stands for GRand
Unified Bootloader), really does nothing more than read and load into RAM (random
access memory) the first sector of a larger image called core.img. Core.img, also known as
GRUB Stage 1.5, will start executing the kernel and filesystem, which is normally found in
the /boot/grub directory.

 The images that launch from /boot/grub are known as GRUB Stage 2. In older
versions , the system would use the initrd (init ramdisk) image to build a temporary
filesystem on a block device created especially for it. More recently, a temporary
filesystem (tmpfs) is mounted directly into memory—without the need of a block
device—and an image called initramfs is extracted into it. Both methods are commonly
known as initrd.

 Once Stage 2 is up and running, you will have the operating system core loaded into
RAM, waiting for you to take control.

 Figure 1-1. The six key steps involved in booting a Linux operating system.

CHAPTER 1 ■ TOPIC 101: SYSTEM ARCHITECTURE

3

 ■ Note This is how things work right now. The LPI exam will also expect you to be
familiar with an older legacy version of GRUB, now known as GRUB version 1. That’s GRUB
 version 1, mind you, which is not to be confused with GRUB Stage 1, 1.5, or 2! The GRUB
we’re all using today is known as GRUB version 2. You think that’s confusing? Just be
grateful that they don’t still expect you to know about the LILO bootloader!

 Besides orchestrating the boot process, GRUB will also present you with a startup
menu from which you can control the software your system will load.

 ■ Note In case the menu doesn’t appear for you during the start sequence, you can force
it to display by pressing the right Shift key as the computer boots. This might sometimes be
a bit tricky: I’ve seen PCs configured to boot to solid state drives that load so quickly, there
almost isn’t time to hit Shift before reaching the login screen. Sadly, I face no such problems
on my office workstation.

 As you can see from Figure 1-2 , the GRUB menu allows you to choose between
booting directly into the most recent Ubuntu image currently installed on the system,
running a memory test, or working through some advanced options.

 Figure 1-2. A typical GRUB version 2 boot menu

CHAPTER 1 ■ TOPIC 101: SYSTEM ARCHITECTURE

4

 The Advanced menu (see Figure 1-3) allows you to run in recovery mode or, if there
happens to be any available, to select from older kernel images. This can be really useful if
you’ve recently run an operating system upgrade that broke something important.

 Pressing “e” with a particular image highlighted will let you edit its boot parameters
(see Figure 1-4). I will warn you that spelling—and syntax—really, really count here. No,
really. Making even a tiny mistake with these parameters can leave your PC unbootable,
or even worse, bootable, but profoundly insecure. Of course, these things can always
be fixed by coming back to the GRUB menu and trying again—and I won’t deny the
significant educational opportunities this will provide. But I’ll bet that, given a choice,
you’d probably prefer a quiet, peaceful existence.

 Figure 1-3. A GRUB advanced menu (accessed by selecting “Advanced options” in the
main menu window)

CHAPTER 1 ■ TOPIC 101: SYSTEM ARCHITECTURE

5

 Pressing “c” or Ctrl+c will open a limited command-line session.

 ■ Note You may be interested—or perhaps horrified—to know that adding rw init=/bin/
bash to your boot parameters will open a full root session for anyone who happens to push
the power button on your PC. If you think you might need this kind of access, I would advise
you to create a secure BIOS or GRUB password to protect yourself.

 Troubleshooting
 Linux administrators are seldom needed when everything is chugging along happily.
We normally earn our glory by standing tall when everything around us is falling apart.
So you should definitely expect frantic calls complaining about black screens or strange
flashing dashes instead of the cute kitten videos your user had been expecting.

 Figure 1-4. A GRUB boot parameters page (accessed by hitting “e” while an item is
highlighted in the main menu window)

CHAPTER 1 ■ TOPIC 101: SYSTEM ARCHITECTURE

6

 If a Linux computer fails to boot, your first job is to properly diagnose the problem.
And the first place you should probably look to for help is your system logs. A text record
of just about everything that happens on a Linux system is saved to at least one plain text
log file. The three files you should search for boot-related trouble are dmesg, kern.log,
and boot.log, all of which usually live in the /var/log/ directory (some of these logs may
not exist on distributions running the newer Systemd process manager).

 Since, however, these logs can easily contain thousands of entries each, you may need
some help zeroing in on the information you’re looking for. One useful approach is to quickly
scroll through say, kern.log, watching the time stamps at the beginning of each line. A longer
pause between entries or a full stop might be an indication of something going wrong.

 You might also want to call on some command-line tools for help. Cat will print an
entire file to the screen, but often far too fast for you to read. By piping the output to grep,
you can focus on only the lines that interest you. Here’s an example:

 cat /var/log/dmesg | grep memory

 By the way, the pipe symbol (|) is typed by pressing the Shift+\ key combination.
You’re definitely going to need that later. (I’ll discuss this kind of text manipulation a lot
more in the coming chapters.)

 I’m going to bet that there’s something about this whole discussion that’s been
bothering you: if there’s something preventing Linux from booting properly, how on earth
are you ever going to access the log files in the first place?

 Good question and I’m glad you asked. And here’s my answer. As long as the hard
drive is still spinning properly, you can almost always boot your computer into a live
Linux session from a Linux iso file that’s been written to a USB or CDRom drive, and then
find and mount the drive that’s giving you trouble. From there, you can navigate to the
relevant log files. Here’s how that might work.

 You can search for all attached block devices using the command lsblk (List BLocK
devices):

 lsblk

 Once you find your drive, create a new directory to use as a mount point:

 sudo mkdir /tempdrive

 Next, mount the drive to the directory you created (assuming that lsblk told you that
your drive is called sdb1):

 sudo mount /dev/sdb1 /tempdrive

 Finally, navigate to the log directory on your drive:

 cd /tempdrive/var/log

 Don’t worry, I’m going to talk a lot more about using each of those tools later. For
now, though, I should very briefly introduce you to the way Linux manages system access.

CHAPTER 1 ■ TOPIC 101: SYSTEM ARCHITECTURE

7

 Normal users are, by default, only allowed to edit files that they have created.
System files, like those in the /var or /etc directory hierarchies, are normally accessible
exclusively to the root user, or to users who have been given administrative authority. In
many Linux distributions (like Ubuntu), users who need admin powers are added to the
sudo group, which allows them to preface any command with the word sudo (as in sudo
mkdir /tempdrive).

 Invoking sudo and then entering a password temporarily gives the user full admin
authority. From a security perspective, taking powers only when needed is far preferred
to actually logging in as the root user.

 Run Levels
 There’s more than one way to run a Linux computer. And, coming from the rough and
tumble open source world as Linux does, there’s more than one way to control the
multiple ways you can run a Linux computer. I’ll get back to that in just a minute or two.

 But let’s start at the beginning. One of Linux’s greatest strengths is the ability for
multiple users to log in and work simultaneously on a single server. This permits all
kinds of savings in cost and labor and, to a large degree, is what lies behind the incredible
flexibility of container virtualization.

 However, there may be times when you just want to be alone. Perhaps something’s
gone badly wrong and you have to track it down and fix it before it gets worse. You don’t
need a bunch of your friends splashing around in the same pool while you work. Or
maybe you suspect that your system has been compromised and there are unauthorized
users lurking about. Whatever the case, you might sometimes want to temporarily change
the way Linux behaves.

 Linux run levels allow you to define whether your OS will be available for everyone
or just a single admin user, or whether it will provide network services or graphic desktop
support. Technically speaking, shutting down and rebooting your computer are also done
through their own run levels.

 While you will find minor differences among Linux distributions, here are the
standard run levels and their designated numbers:

 Boot parameter:

 0: Halt

 1: Single user mode

 2: Multi-user, without NFS

 3: Full multi-user mode

 4: Unused

 5: X11

 6: Reboot

 Run levels can be invoked from the command line using either init or telinit. Running

 init 6

CHAPTER 1 ■ TOPIC 101: SYSTEM ARCHITECTURE

8

 for instance, would cause your computer to reboot. On some distributions, you can also
use commands like “shutdown” to—well—shut down. Thus:

 sudo shutdown -h now

 would halt (“h”) a system right away and

 sudo shutdown -h 5

 would shut down the system, but only after 5 minutes, and

 sudo shutdown -r now

 would reboot.
 Incidentally, since there might be other users logged into the system at the time

you decide to change the run level, the shutdown command will automatically send a
message to the terminals of all other logged in users, warning them of the coming change.

 You can also send messages between terminals using the wall command (these
messages will, of course, not reach graphical user interface [GUI] desktop users). So
suppose you’d like all your colleagues to read your important memo about a new policy
governing billing pizza deliveries to the company credit card. You could create a text file
and cat it to the wall command:

 cat pizza.txt | wall

 With this, who needs Facebook?
 So you’ve learned about the various run levels and about how they can be invoked

from the command line. But how are they defined? As you’ve just seen, you control the
way your computer will operate by setting its run level. But, as I hinted earlier, there’s
more than one way to do that.

 Years ago, run levels were controlled by a daemon (that is, a background process)
called init (also known as SysVinit). A computer’s default run level was stored in a text file
called inittab that lived in the /etc directory. The critical line in inittab might have looked
like this:

 id:3: initdefault

 However, these days, if you go looking for the inittab file on your computer, the odds
are that you won’t find it. That’s because, as computers with far greater resources became
available, and as the demands of multitasking environments increased, more efficient
ways of managing complex combinations of processes were needed. Back in 2006, the
Upstart process manager was introduced for Ubuntu Linux and was later adopted by a
number of other distributions, including Google’s Chrome OS.

 Under Upstart, the behavior of the computer under specific run levels is defined by files
kept in directories under /etc with names like rc0.d, rc1.d, and rc2.d. The default run level in
Upstart is set in the /etc/init/rc- sysinit.conf file. Its critical entry would use this syntax:

 env DEFAULT_RUNLEVEL=3

CHAPTER 1 ■ TOPIC 101: SYSTEM ARCHITECTURE

9

 Configuration files representing individual programs that are meant to load
automatically under specified conditions are similarly kept in the /etc/init/ directory.
Here’s part of the ssh.conf file defining the startup and shutdown behavior of the Secure
Shell network connectivity tool :

 start on runlevel [2345]
 stop on runlevel [!2345]
 respawn
 respawn limit 10 5
 umask 022

 Now that you’ve worked so hard to understand how both the init and Upstart systems
worked, you can forget all about them. The Linux world has pretty much moved on to the
systemd process manager. As of version 15.04, even Ubuntu no longer uses Upstart.

 Systemd focuses more on processes than run levels. Nevertheless, you can still
set your default run level by linking the default.target file in the /etc/systemd/system/
directory to the appropriate file in /usr/lib/systemd/system/.

 Here’s the content of default.target from a typical Fedora installation :

 # This file is part of systemd.
 #
 # systemd is free software; you can redistribute it and/or modify it
 # under the terms of the GNU Lesser General Public License as published by
 # the Free Software Foundation; either version 2.1 of the License, or
 # (at your option) any later version.
 [Unit]
 Description=Graphical Interface
 Documentation=man:systemd.special(7)
 Requires=multi-user.target
 After=multi-user.target
 Conflicts=rescue.target
 Wants=display-manager.service
 AllowIsolate= yes

 Notice the multi-user.target values, indicating that this machine will, by default,
boot to a full multi-user session. Much like the /etc/init/ directory in Upstart, /usr/lib/
systemd/ contains configuration files for installed packages on systemd systems.

 In fact, systemd is much more than just a simple process manager: it also includes a
nice bundle of useful tools. For instance, running

 systemctl list-units

 will display all the currently available units and their status. A unit, by the way, is a
resource that can include services, devices, and mounts. If you want to prepare, say, the
Apache web server service—called httpd in Fedora—you would use systemctl and enable:

 systemctl enable httpd.service

CHAPTER 1 ■ TOPIC 101: SYSTEM ARCHITECTURE

10

 To actually start the service, you use:

 systemctl start httpd.service

 Pseudo Filesystems
 In Linux, a filesystem is a way to organize resources—mostly files of one sort or another—
in a way that makes them accessible to users or system resources. In a later chapter, I’ll
discuss the structure of a number of particularly common Linux filesystems (like ext3,
ext4, and reiserFS) and how they can enhance security and reliability. For now, though,
let’s look at a specific class: the pseudo filesystem.

 Since the word pseudo means fake, it’s reasonable to conclude that a pseudo
filesystem is made up of files that don’t actually exist. Instead, the objects within such
a structure simply represent real resources and their attributes. Pseudo filesystems are
generated dynamically when your computer boots.

 The /dev directory contains files representing hardware devices—both real and
virtual. That’s why, as you saw earlier in this chapter, a /dev address (/dev/sdb1) is used
to identify and mount a hard drive. As you’ve also seen, lsblk displays all recognized
physical block drives. Running

 lsblk -a

 however, will also show you all the block devices currently represented in /dev (even
virtual devices).

 The contents of the /sys directory represent the sysfs system and contain links to
devices. The /sys/class/block directory, therefore, would include links to block devices,
while the /sys/class/printer directory would contain links to printers.

 The files within the /proc directory contain runtime system information. That is to
say, a call to files within this hierarchy will return information about a system resource or
process. Applying cat to the cpuinfo file, for instance,

 cat /proc/cpuinfo

 will return a technical description of your computer’s CPU. Note however that poking the
cpuinfo file with the “file” command reveals something interesting:

 file /proc/cpuinfo cpuinfo: empty

 It’s empty!
 You should spend some time exploring these directories. You might be surprised

what you uncover.
 You can quickly access subsets of the information held by these filesystems through

a number of terminal commands: lspci will output data on all the PCI and PCI Express
devices attached to your system. Adding the -xvvv argument:

 lspci -xvvv

CHAPTER 1 ■ TOPIC 101: SYSTEM ARCHITECTURE

11

 will display more verbose information; lsusb will give you similar information for
USB devices; and lshw (list hardware) will—especially when run as the root—display
information on your entire hardware profile.

 Even though it doesn’t contain pseudo files, I should also mention the /run directory
hierarchy, since its contents are volatile, meaning that they are deleted each time you
shut down or reboot your PC. So /run is therefore a great place for processes to save files
that don’t need to hang around indefinitely.

 Device Management
 Up to this point, you’ve seen how Linux learns enough about its hardware neighborhood
to successfully boot itself, how it knows what kind of working environment to provide,
and how it identifies and organizes hardware devices. Now let’s find out how to manage
these resources.

 First, I should explain the role played by kernel modules in all this. Part of the
genius of Linux is that its kernel—the software core that drives the whole thing—permits
real-time manipulation of some of its functionality through modules. If you plug in a
USB drive or printer, for instance, the odds are that Linux will recognize it and make it
instantly available to you. This might seem obvious, but getting it right in a complicated
world with thousands of devices in use is no simple thing.

 Hotplug devices—like USB drives and cameras —can be safely added to a computer
while it’s actually running (or “hot”). Invoking udev, using communication provided by
the D-Bus system, should recognize the device and automatically load a kernel module to
manage it (see Figure 1-5).

 Figure 1-5. Linux kernel modules interpreting device activity for the Linux kernel

CHAPTER 1 ■ TOPIC 101: SYSTEM ARCHITECTURE

12

 By and large, if you’ve got to open your computer’s case to add a device, it’s going
to be of the coldplug variety: meaning, you shouldn’t try to insert your device with the
computer running. While I’m on that topic, it can’t hurt to remind you that you should
never touch exposed circuit boards without fully grounding yourself first. I’ve seen very
expensive devices destroyed by static charges too small to be felt by humans.

 Either way, once your device is happily plugged in, the appropriate kernel module
should do its job connecting what needs connecting. But there will be times when you’ll
need to control modules yourself. To define device naming and behavior, you can edit its
udev rules.d file. If there isn’t already a .rules file specific to your device, you can create
one in any one of these directories:

 /etc/udev/rules.d/
 /run/udev/rules.d/
 /usr/lib/udev/rules.d/

 If there are overlapping .rules files in more than one of those locations, udev will read
and execute the first one it finds using the above order.

 Even if a kernel module is not actually loaded into memory, it might well be
installed. You can list all currently installed modules using this rather complex
application of the find tool:

 find /lib/modules/$(uname -r) -type f -iname "*.ko"

 where uname -r will return the name of the kernel image that’s currently running (to
point “find” to the correct directory), the object type is “ file ” and the file extension is .ko .

 Running lsmod will list only those modules that are actually loaded. To load an
installed module, you can use modprobe:

 sudo modprobe lp

 which will load the printer driver, while:

 sudo modprobe -r lp

 will remove the module.
 Don’t think that manually managing kernel modules is something only veteran

 administrators and developers need to do. In just the past month, I’ve had to get my
hands dirty with this task not once, but twice, and to solve problems on simple PCs, not
rack-mounted servers!

 The first time occurred when I logged into a laptop and noticed that there was no Wi-
Fi. The usual troubleshooting got me nowhere, so I used lshw:

 sudo lshw -C network

 to see what the system had to say about the Wi-Fi interface. The phrase “network
UNCLAIMED” showed up next to the entry for the adapter. Because it wasn’t “claimed,”
the adapter had never been assigned an interface name (like wlan0) and it was, of course,
unusable. I now suspect that the module was somehow knocked out by a recent software
update.

CHAPTER 1 ■ TOPIC 101: SYSTEM ARCHITECTURE

13

 The solution was simple. With some help from a quick Google search built around
the name of this particular Wi-Fi model, I realized that I would have to manually add the
ath9k module. I did that using:

 sudo modprobe ath9k

 and it’s been living happily every after.
 The second surprise happened when I couldn’t get a browser-based web

conferencing tool to recognize my webcam. Again, all the usual tricks produced nothing,
but Internet searches revealed that I wasn’t the first user to experience this kind of
problem. Something was causing the video camera module to crash, and I needed a quick
way to get it back on its feet again without having to reboot my computer. I first needed to
unload the existing module:

 sudo rmmod uvcvideo

 Then it was simply a matter of loading it again, and we were off to the races:

 sudo modprobe uvcvideo

 Now Try This
 Let’s imagine that you recently added a PCI Express network interface card (NIC) to your
system. Because it’s new, udev assigned it the name em1 rather than em0 (the name used
by your existing integrated NIC). The problem is that you’ve hard coded em0 into various
scripts and programs, so they all expect to find a working interface with that name. But
as you want to connect your network cable to the new interface, em0 will no longer work.
Since you’re far too lazy to update all your scripts, how can you edit a file in the /etc/
udev/rules.d/ directory to give your new NIC the name em0?

 ■ Note I would strongly advise you to create a backup copy of any file you plan to edit,
and then make sure you restore your original settings once you’re done!

 Test Yourself
 1. Pressing Ctrl+c in the GRUB menu will:

 a. Allow you to edit a particular image

 b. Open a command line session

 c. Initiate a memory test

 d. Launch a session in recovery mode

CHAPTER 1 ■ TOPIC 101: SYSTEM ARCHITECTURE

14

 2. Adding rw init=/bin/bash to your boot parameters in GRUB
will:

 a. Allow root access on booting

 b. Launch a session in recovery mode

 c. Display the most recent contents of the /var/log/dmesg
file

 d. Allow logged messages to be edited

 3. sudo is:

 a. Another name for the Linux root user

 b. The command that mounts devices in the root
directory

 c. The most direct tool for changing system run levels

 d. A system group whose members can access admin
permissions

 4. On most Linux systems, run level 1 invokes:

 a. Single user mode

 b. X11 (graphic mode)

 c. Reboot

 d. Full multi-user mode

 5. On Linux systems running systemd, the default run level can
be found in:

 a. /etc/systemd/system/inittab

 b. /lib/systemd/system/default.target

 c. /etc/systemd/system/default.target

 d. /etc/init/rc-sysinit.conf

 6. You can find links to physical devices in:

 a. /dev

 b. /etc/dev

 c. /sys/lib

 d. / proc

CHAPTER 1 ■ TOPIC 101: SYSTEM ARCHITECTURE

15

 7. Which is the quickest way to display details on your network
device?

 a. lsblk

 b. lspci

 c. cat /proc/cpuinfo

 d. lshw

 8. Which tools are used to watch for new plug-in devices?

 a. udev and modprobe

 b. rmmod and udev

 c. modprobe, uname, and D-Bus

 d. udev and D- Bus

 9. The correct order udev will use to read rules files is:

 a. /etc/udev/rules.d/ /usr/lib/udev/rules.d/ /run/udev/
rules.d/

 b. /usr/lib/udev/rules.d/ /run/udev/rules.d/ /etc/udev/
rules.d/

 c. /etc/udev/rules.d/ /run/udev/rules.d/ /usr/lib/udev/
rules.d/

 d. /etc/udev/rules.d/ /run/udev/rules.d/

 10. You can load a kernel module called lp using:

 a. sudo modprobe lp

 b. sudo modprobe load lp

 c. sudo modprobe -l lp

 d. sudo rmmod lp

 Answer Key
 1. b, 2. a, 3. d, 4. a, 5. c, 6. a, 7. b, 8. d, 9. c, 10. a

17© David Clinton 2016
D. Clinton, Practical LPIC-1 Linux Certification Study Guide,
DOI 10.1007/978-1-4842-2358-1_2

 CHAPTER 2

 Topic 102: Linux Installation
and Package Management

 I’m not sure there’s all that much tying the various expectations of LPIC-1 exam topic 102
together into any kind of cohesive whole. It is true that they all address concerns shared
by Linux administrators and, broadly speaking, concerns related to prepare stable and
productive compute environments. So there’s that.

 Either way, this chapter will discuss partitioning your storage space and controlling
the boot process through a boot manager, working with the software libraries shared
by individual software packages, and the critical task of acquiring and managing the
fantastic collections of free software provided by various online Linux repositories.

 Disk Partitioning
 The way you organize the drive or drives that will host your operating system and all
your data can have a significant impact on both the performance and security of your
entire operation. A successful installation design will carefully balance two sometimes
conflicting objectives: accessibility and separation. You want your users to have access to
all the resources and tools they’ll need to get their work done, but you also want to protect
sensitive or private data from unnecessary exposure.

 Intelligent partitioning can take you a long way toward achieving those goals. A disk
partition effectively divides a single physical disk into smaller logical parts. Such divisions
make it easy to isolate resources, limiting access to only those users and processes that
need it.

 A common default partition scheme would create three partitions: one for the root
filesystem (designated with a single forward slash [/]), one for the boot directory, and the
third for the system swap file. A swap file , by the way, is a section of your drive that is set
aside to emulate system memory (RAM) for times when demand exceeds the limits of
your actual RAM. It is a widespread practice to set your swap file to the same size as your
real RAM.

CHAPTER 2 ■ TOPIC 102: LINUX INSTALLATION AND PACKAGE MANAGEMENT

18

 $ df Filesystem
 /dev/sdb2

 1K-blocks
 472675276

 Used
Available
Use%
123047744
325593964

 Mounted on
28% / none

 4 0 4 0%

 /sys/fs/cgroup

 udev 3628000 4
3627996
1%

 /dev

 tmpfs 727808 1896
725912
1%

 /run

 none 5120 0
5120
0%

 /run/lock

 none 3639036 50072
3588964
2%

 /run/shm

 none 102400 56
102344
1%

 /run/user

 /dev/sdb1 499008 3456
495552
1%

 /boot/efi

 In the above example, running df against my system shows partitions for both root
and boot, but also virtual partitions for the pseudo filesystems /sys and /dev, and four
others related to the nonpersistent /run directory. This is all standard stuff.

 You, however, might prefer to create separate partitions for the directories under,
say, /etc or /lib. In Figure 2-1 (a screenshot taken from the Ubuntu server installation
process), besides having separate partitions for root (/) and /home, the /var directory
hierarchy is kept on its own, perhaps to ensure that logs and other automatically
generated data files aren’t able to grow so large that they swallow the entire drive. Don’t
think that can’t happen: I’ve seen log files grow to more than 100GB when they’re not
properly rotated.

CHAPTER 2 ■ TOPIC 102: LINUX INSTALLATION AND PACKAGE MANAGEMENT

19

 Disk partitioning is normally done on a new or repurposed drive as part of the
installation process. Resizing and adding partitions on an existing production drive can
be done, but it’s risky. Even if you carefully and correctly work through all the steps, there
is a chance that some or all of your data could be permanently lost. Having said that,
editing partitions can be done, and if you’re ready to accept the risk, I would recommend
using the GUI GParted tool (see Figure 2-2) to do it.

 Figure 2-1. Partition configuration during an Ubuntu installation process

CHAPTER 2 ■ TOPIC 102: LINUX INSTALLATION AND PACKAGE MANAGEMENT

20

 Disk partitioning is good for making a single disk appear as multiple drives, but there
may be times when you want to make multiple disks appear as one. Suppose you’ve got
important data stored across a number of drives, but you’d like your users to have easy
and intuitive access to everything as though it’s all on a single disk. Or perhaps you’re not
sure exactly how much space you might require for a particular partition a few months
down the line and need an easy way to change things later. Working with the Logical
Volume Manager (LVM) is one possible solution.

 ■ Note Besides LVM, you can also use “add mount points” to your /etc/fstab file to make
specified resources appear as though they are somewhere else. I’ll talk more about fstab in
a later chapter.

 For the LPIC-1 exam, you are expected to be familiar with no more than the basic
features of LVM. To that end, I will illustrate only three basic commands that can be used
on a system with LVM enabled.

 First, though, you should be aware that LVM uses the acronym PV to represent a
physical volume, VG for volume groups (collections of one or more physical volumes),
and LV for logical volumes.

 To create a new volume group, you use the vgcreate command and specify the name
you’d like to give your group and the physical partitions you want to include:

 sudo vgcreate my-new-vg /dev/sdb2 /dev/sdb3

 Once you have a volume group, you can use it as part of a new logical volume:

 Figure 2-2. The GParted partition management tool in action

CHAPTER 2 ■ TOPIC 102: LINUX INSTALLATION AND PACKAGE MANAGEMENT

21

 sudo lvcreate -n my-new-lv my-new-vg

 Finally, you can scan for all logical volumes on your system using lvscan:

 sudo lvscan

 Install and Configure a Boot Manager
 It may not be immediately obvious why you would ever want to create or edit GRUB on a
running Linux system. After all, it’s running already: what needs fixing?

 Well, suppose your GRUB configuration has been corrupted by an unsuccessful
attempt to install a second OS on your drive. You could easily be left with a computer that
doesn’t boot. You might also simply want to manually edit the choices and basic settings
that are included in the GRUB menu. Either way, these are important tools.

 Assuming that the drive on which you want to install GRUB is called sdb, installing
the software is as simple as:

 sudo grub-install /dev/sdb

 or, on Fedora machines:

 sudo grub2-install /dev/sdb

 What will actually appear in your GRUB menu is controlled by settings kept in the
/etc/default/grub file and templates in the /etc/grub.d/ directory. When you’re done
editing your settings, you must run either grub-mkconfig (grub2-mkconfig for Fedora) or
update-grub. These will update a script: either /boot/grub/grub.cfg or /boot/grub/menu.
lst, depending on your particular distribution. When those scripts are actually run the
next time you start up, your new GRUB configuration will be active.

 While it is important for you to be aware of all that, in the real world you might prefer
to use a really handy tool called Boot-Repair. I don’t normally recommend GUI tools—
after all, real admins don’t use mice—but this one can save you so much time and trouble
that it’s just too good to ignore. You can find everything you’ll need to run Boot-Repair
here: https://help.ubuntu.com/community/Boot-Repair

 Shared Libraries
 Linux libraries, which allow software packages to properly interact with their local
environment, are another part of the incredible success of Linux. The fact that
programmers can configure their software to load libraries with all the environment data
it will need means that there’s no need for them to spend time reinventing the wheel, and
that they can compile much smaller packages. Developers are also freed to focus on the
core functionality of their specific packages.

 Linux libraries come in two flavors: static (whose contents are incorporated by
a program into its own code at installation time) and dynamic (whose contents are
accessed whenever a program needs information).

https://help.ubuntu.com/community/Boot-Repair

CHAPTER 2 ■ TOPIC 102: LINUX INSTALLATION AND PACKAGE MANAGEMENT

22

 Let’s take a look at the naming convention used by library files. As you might expect,
one great place to find shared libraries would be in the /lib directory. Here’s an example:

 libip6tc.so.0.1.0

 In this name “ lib ” tells us that this file is a library, “ ip6tc ” would be the package
name, “so” identifies it as a dynamic library (“so” stands for shared object), and 0.1.0 is
the package version. If this were a static library, there would be an “ a ” instead of the “so.”

 A single package can be dependent on dozens of libraries. Normally, Linux package
managers take care of handling dependencies for you (as you’ll see in just a few minutes).
But being aware of how it works can be helpful for troubleshooting when things go wrong
or for when you need to build your own libraries.

 You can use ldd to display the libraries that a particular package depends on. As you
can see, the VLC multimedia player requires quite a collection:

 $ ldd /usr/bin/vlc
 linux-vdso.so.1 => (0x00007ffc4fbc8000)
 libvlc.so.5 => /usr/lib/libvlc.so.5 (0x00007fc5ba898000)
 libpthread.so.0 => /lib/x86_64-linux-gnu/libpthread.so.0
(0x00007fc5ba678000)
 libdl.so.2 => /lib/x86_64-linux-gnu/libdl.so.2 (0x00007fc5ba470000)
 libc.so.6 => (0x00007fc5ba0a8000) /lib/x86_64-linux-gnu/libc.so.6
 libvlccore.so.7 (0x00007fc5b9dc0000) => /usr/lib/libvlccore.so.7
 /lib64/ld-linux-x86-64.so.2 (0x00007fc5baab8000)
 librt.so.1 => /lib/x86_64-linux-gnu/librt.so.1 (0x00007fc5b9bb8000)
 libidn.so.11 => /usr/lib/x86_64-linux-gnu/libidn.so.11 (0x00007fc5b9980000)
 libm.so.6 => /lib/x86_64-linux-gnu/libm.so.6 (0x00007fc5b9678000)
 libdbus-1.so.3 => /lib/x86_64-linux-gnu/libdbus-1.so.3 (0x00007fc5b9430000)

 If you want to list all the libraries stored in the current cache, use:

 ldconfig -p

 Since that will be a very long list (nearly 1,800 lines in my case), you might like to
narrow down the search just a bit. By piping the output to grep, you can filter by a search
string. This example will display only those libraries whose names include the phrase “usb”:

 ldconfig -p | grep usb

 Like just about everything else you will see in this book, you should take a moment,
open up a terminal, and try this for yourself. Don’t worry, I’ll still be here when you get
back.

 Library data are actually stored in the /etc/ld.so.cache file. The cache gets its
information through links in the /etc/ld.so.conf file.

 If you have created your own library, you’ll need to let Linux in on the good news.
You do that by creating a plain text file in the /etc/ld.so.conf.d/ directory that contains
nothing but the absolute path to the new library (i.e., /home/myname/libraries). You
will name the file something like: my_lib_name.conf. On some distributions at least, the
contents of /etc/ld.so.cache are exported to the LD_LIBRARY_PATH variable.

 In any case, to apply the new links, you’ll have to run ldconfig.

CHAPTER 2 ■ TOPIC 102: LINUX INSTALLATION AND PACKAGE MANAGEMENT

23

 Package Managers
 Giving a piece of software all the tender loving care it needs to function effectively can
sometimes be a challenge. A program will need enough memory to go about its business,
and often some space where it can save records of what it’s been doing. And as you’ve just
learned, it also needs to know how to access local resources and will therefore rely rather
heavily on the active presence of system libraries .

 If you had to arrange for all that yourself, downloading and installing new software
would require that you track down the appropriate package on the Internet, do the
necessary research to confirm that there are no conflicts with other software or with
your hardware profile, and manually install all the needed libraries. And that’s besides
confirming that the package itself isn’t actually malware and then keeping up with
security patches and upgrades through the life cycle of the product.

 All that can be done, but most of us would probably do a lot less of it if it were only
our choice.

 Fortunately, Linux package managers were designed to reliably take care of all those
details without your help. The two dominant curated repositories I’ll discuss here—the
 APT system for Debian/Ubuntu and the YUM manager for Red Hat/CentOS/Fedora—will
deliver secure, provisioned, and highly functional software with literally nothing more
than a single mouse click (or, better yet, with a one-line terminal command).

 Each of these two systems is actually part of a two-tier infrastructure: one tier for
managing packages locally and the other as an interface with online, managed software
repositories. Let’s start with the Debian/Ubuntu world.

 Local: dpkg
 If you’ve already downloaded or created your own .deb package file, you can manage it
locally through dpkg. The dpkg environment settings are configured through the /etc/
dpkg/dpkg.cfg file. Debian package files will look something like this:

 my_package_2.4.1-1_amd64.deb

 The package name is my_package, 2.4.1-1 is the version number, amd64 is the
architecture it’s built for (i.e., 64 bit; 32 bit packages would use i386), and .deb tells us that
it’s built as a Debian package.

 To directly install your package, use:

 sudo dpkg -i my_package_2.4.1-1_amd64.deb

 You can unpack the package without installing it by adding the --unpack argument:

 sudo dpkg --unpack my_package_2.4.1-1_amd64.deb

 You can remove, purge, and reconfigure packages using, respectively, -r, -P, and
dpkg-reconfigure. Note that you only need the package name for these operations:

 sudo dpkg -r my_package

CHAPTER 2 ■ TOPIC 102: LINUX INSTALLATION AND PACKAGE MANAGEMENT

24

 sudo dpkg -P my_package
 sudo dpkg-reconfigure my_package

 You can list all currently installed packages (including those from the repositories)
using:

 dpkg -l

 or, if you need simpler output as part of some larger operation:

 dpkg --get-selections

 Using dpkg -s will display details of the specified package:

 dpkg -s zip

 Repositories: APT
 Most of your work with packages will be performed through the online repositories. On
Debian and Ubuntu computers (among others) that, happily, means APT. The /etc/apt/
sources.list contains a list of registered repositories. The sources.list file was populated
during installation, but you can edit it by hand when necessary. Here are a few lines from
my sources file:

 deb http://ca.archive.ubuntu.com/ubuntu/ trusty main restricted
 deb-src http://ca.archive.ubuntu.com/ubuntu/ trusty main restricted
 deb http://security.ubuntu.com/ubuntu trusty-security universe
 deb-src http://security.ubuntu.com/ubuntu trusty-security universe
 deb http://security.ubuntu.com/ubuntu trusty-security multiverse
 deb-src http://security.ubuntu.com/ubuntu trusty-security multiverse

 You will notice that each line includes an Internet URL—the target address of a
particular repository. The field that follows is comprised of the name of the repo’s specific
release, in this case, it’s “trusty main” or “trusty-security”. Trusty is the codename for
Ubuntu 14.04. The final field contains the repository component (restricted, universe, etc.).

 Once APT is configured to meet your needs, it’s time to put it to work. You should
be careful to update apt-get to make sure that your local system’s record of available
packages is in sync with the upstream repos:

 sudo apt-get update

 You’re now ready to download software. If you don’t know the name of the package
you’re after, you might like to search through the thousands of available titles using the
GUI tool, Synaptic (see Figure 2-3).

CHAPTER 2 ■ TOPIC 102: LINUX INSTALLATION AND PACKAGE MANAGEMENT

25

 You won’t need to know anything about Synaptic for the LPIC exam, but that doesn’t
make it any less of a handy resource. On the other hand, you will need to be familiar with
Aptitude. You launch Aptitude from the command line:

 sudo aptitude

 It took me a long time to figure out what value Aptitude (see Figure 2-4) actually
had. It’s not a true GUI application, so if you’re one of those who doesn’t like using the
command line (not that I would suggest even for a second that you’re one of those), you’d
be better off with Synaptic. But it’s not really a command-line tool either. So who needs it?

 Figure 2-3. The Synaptic package manager . Note the “search by category” choices on the
left.

CHAPTER 2 ■ TOPIC 102: LINUX INSTALLATION AND PACKAGE MANAGEMENT

26

 Well, I can now give you a pretty good answer. Take a look at the screenshot in
Figure 2-4 . Notice how the menu groups packages by various categories. Now that
“Obsolete and Locally Created Packages” is highlighted, I only need to click Enter and
I’ll be taken to a new menu that lists all 18 of them. I could then use the arrow keys to
move up and down the list, and click Enter again to be shown the full profile and status of
whichever package I’m after. I think you can see the value in that.

 Still, let’s go back to the command line and get some real work done. To install a new
program, let’s say VLC, you use apt-get install:

 sudo apt-get install vlc

 The command apt-get install -s will display package dependencies without
installing. You can remove a package using apt-get remove:

 sudo apt-get remove vlc

 Like apt-get upgrade, apt-get dist-upgrade will install the newest versions of all
installed packages. But it will also make “intelligent” decisions about package conflicts
and remove any unnecessary dependencies.

 Besides apt-get, the APT system also provides the apt-cache family of commands:

 apt-cache showpkg vlc

 This will display statistics on the specified package. The command apt-cache depends
returns package dependencies and apt-cache unmet will report any unmet dependencies.

 Figure 2-4. The semigraphic Aptitude package manager

CHAPTER 2 ■ TOPIC 102: LINUX INSTALLATION AND PACKAGE MANAGEMENT

27

 Local: RPM
 The RPM package manager is used by a large number of important Linux distributions,
including Red Hat Enterprise Linux , CentOS, and Fedora. Broadly speaking, it works
in much the same way as APT, although from a parallel repository system. Like dpkg,
rpm is meant to manage local software packages, while yum—much like APT—handles
upstream, curated repositories. Let’s begin with a look at an rpm file:

 apacheds-2.0.0-M20-x86_64.rpm

 Here, apacheds is the name of the package, 2.0.0-M20 is the version number, x86_64
is the architecture, and .rpm indicates that the file is an rpm archive; rpm -i will install a
package:

 rpm -i apacheds-2.0.0-M20-x86_64.rpm

 You can verify the integrity of a file by using rpm –V:

 rpm -V apacheds-2.0.0-M20-x86_64.rpm

 And rpm -vK will return the file’s checksum:

 rpm -vK apacheds-2.0.0-M20-x86_64.rpm

 Using rpm -i --test (followed by the file name) will check for dependencies, rpm -U
will upgrade a file to the latest version, rpm -q httpd will display the current installed
version number of, in this case, the Apache web server package, and rpm -e httpd will
remove the package (note that you don’t need to include the full package name for those
last two commands).

 You can also query packages using rpm. -q –a, which will list all currently installed
packages:

 rpm -q -a

 Using -qid and the name of a package will display detailed information about it:

 rpm -qid bash

 Repositories: yum
 Installing and maintaining repo-based software in the RHEL family of distributions is
handled by YUM. Repository preferences are configured through files in the /etc/yum.
repos.d/ directory and by the /etc/yum.conf configuration file. Using yum install will,
predictably, install a package:

 sudo yum install httpd

CHAPTER 2 ■ TOPIC 102: LINUX INSTALLATION AND PACKAGE MANAGEMENT

28

 Similarly, yum remove and yum update will do pretty much what their names
suggest. You can search for a package using yum search httpd and list all available
packages with yum list. Using yum list installed will search only through currently
installed packages. You can download a package without installing it using:

 yumdownloader --resolve httpd

 where --resolve adds dependencies to the download.
 You can use yum search to search for packages:

 yum search libreoffice

 Once you’ve found the name of a package you’re interested in, you can use yum info
to display more detailed information:

 yum info libreoffice-writer.i686

 Finally, you should be aware that .rpm files are normally compressed with the cpio
archiver. If you want to access files from the archive, you will use the rpm2cpio tool.
Piping a .rpm package to cpio using the -i (restore the archive) and -d (create leading
directories) arguments will restore the entire archive:

 rpm2cpio apacheds-2.0.0-M20-x86_64.rpm | cpio -id

 Now Try This
 Sometimes the packages included in your distribution’s official software repositories
can fall behind the latest cutting-edge versions available directly from the developers
themselves, but you might sometimes need the latest version. The Calibre e-book reader
is an example of a project that often adds features too quickly for some public repos to
keep up.

 Try adding Calibre’s private repository (PPA; Personal Package Archive) to your
system (either by editing the sources file directly or from the command line) and then
installing it. You will probably need a bit of help from a search engine like Google.

 Test Yourself
 1. Which of these is NOT commonly given its own partition?

 a. SWAP

 b. /etc

 c. /

 d. /dev

CHAPTER 2 ■ TOPIC 102: LINUX INSTALLATION AND PACKAGE MANAGEMENT

29

 2. The primary goal of LVM is to allow you to …

 a. Separate resources into different partitions

 b. Provide common access to shared libraries

 c. Install GRUB on a boot drive

 d. Provide easy access to resources on distributed partitions

 3. Changes to GRUB settings will not take effect until you run …

 a. grub-mkconfig

 b. grub-install /dev/sdb

 c. /etc/default/grub

 d. /etc/grub.d/update.sh

 4. Which of these is incorporated into program code during
installation?

 a. Dynamic libraries

 b. Shared libraries

 c. Static libraries

 d. Lending libraries

 5. Which of these will list all libraries currently stored in cache?

 a. ldd

 b. libip6tc.so.0.1.0

 c. ldconfig -p

 d. ldconfig

 6. When you create your own library, you need to …

 a. Add its name to the /etc/ld.so.cache file

 b. Add a file pointing to its location to the /etc/ld.so.conf.d
directory

 c. Add a file pointing to its location to the /etc/ld.so.conf
directory

 d. Run ldconfig -u

 7. _____ manages online repo-based software for Red Hat Linux:

 a. YUM

 b. APT

 c. dpkg

 d. rpm

CHAPTER 2 ■ TOPIC 102: LINUX INSTALLATION AND PACKAGE MANAGEMENT

30

 8. You can install VLC on a Debian system using:

 a. apt-get install vlc

 b. apt-get -i vlc

 c. yum -i vlc

 d. dpkg install vlc

 9. You can delete VLC from a Debian system using:

 a. apt-get -r vlc

 b. apt-get -delete vlc

 c. dpkg -i vlc

 d. apt-get remove vlc

 10. YUM repository settings are defined by:

 a. /etc/yum.conf.d/

 b. /etc/yum.repos/yum.conf

 c. /yum/repos.d/

 d. /etc/yum.repos.d/

 Answer Key
 1. b, 2. d, 3. a, 4. c, 5. c, 6. b, 7. a, 8. a, 9. d, 10. d

31© David Clinton 2016
D. Clinton, Practical LPIC-1 Linux Certification Study Guide,
DOI 10.1007/978-1-4842-2358-1_3

 CHAPTER 3

 Topic 103: Gnu and Unix
Commands

 If, as is often said, just about everything in Linux is a plain text file, then it stands to reason
that a great deal of Linux administration should depend on intelligently handling plain
text. Through the course of this book, you’ll discover just how true this is and just how
much can be accomplished through manipulating text streams. In this chapter, you’ll
work through the very rich collection of Linux text, file, and process management tools.

 Let’s begin with the Linux shell. Whenever you open a terminal or log in to a non-
GUI environment, you are creating a new shell session. The command prompt you face
is waiting for you to type in commands, but the way it will interpret those commands
depends on which shell interpreter you’re using. The differences between various Linux
shells are subtle and you might actually go some time without even being aware of which
one you’re using. But it is important to know that the LPIC exam is built on the Bash shell.

 One more general point before you get started here. When it comes to working with
Bash, spelling counts a great deal. And so does capitalization. If a file name or command
uses, say, all lowercase letters, then that’s usually the only way that the command
interpreter will recognize it, and changing things around will cause your command to fail.

 The Bash Shell
 Every shell comes with environment variables. Type:

 echo $USER

 for instance, and I bet you’ll see your name, or at least the name of the account you
used to log in. This works because your shell has a built-in variable called USER that is
populated with the value of the account name.

 A particularly useful value you should be aware of is PWD. Type:

 echo $PWD

 What did Bash print? Your current directory, right? (PWD stands for Present Work
Directory.) Now move to a different directory:

CHAPTER 3 ■ TOPIC 103: GNU AND UNIX COMMANDS

32

 cd /etc

 Then run echo $PWD again. The output has changed. You can actually access this
value more quickly by simply typing:

 pwd

 If you’d like to see a list of all the current variables (but not local variables or
functions, things I’ll talk about at length in a later chapter), type:

 env

 The set command, by the way, will display all shell variables, including local
variables and functions.

 You can create a new variable by typing something like this:

 myvariable=hello

 If you want to confirm that it worked, type:

 echo $myvariable

 The word “hello” should appear. If you type echo myvariable without the $, the
string “myvariable” will print to the screen. It’s the dollar sign that tells Bash that you’re
referencing a variable and not just playing with text.

 So now you’re the happy and proud owner of a shiny new shell variable. The
problem is that it will only exist for the shell you’re currently using. If you want it to be
available to new shells that you might launch beneath this one, you’ll have to export it:

 export myvariable

 You can use a close cousin of set to destroy your variable by typing:

 unset myvariable

 Another resource you should know about is uname. Typing it will return the system
(Linux). Typing it with -a, however:

 uname -a

 will display a great deal more about your kernel and installation.
 Here are two or three really useful tips before I move on. You’ll definitely thank me

for them at some point in your careers. Open up a terminal and press the Up arrow. You
should see the most recent command you used appear at the command line, ready to be
used again. Press the Up arrow a few more times and you’ll see all your recent commands
displayed in reverse order. This labor-saving feature is brought to you courtesy of the
.bash_history file.

CHAPTER 3 ■ TOPIC 103: GNU AND UNIX COMMANDS

33

 You’ll use the less text reader program to view the file to see what’s there. First, make
sure that you’re in your home directory:

 cd ~
 less .bash_history

 Feel free to use the Arrow keys to move up and down through the file, and then type
q when you want to exit. As you can see, it’s a list of your last 2,000 commands. You can
quickly access the contents of the file using the history command. And, of course, you can
narrow down your search with grep:

 history | grep .bash_history

 As I mentioned in the introduction to the book, you will also enjoy using the Tab key
for command completion. Start typing a command—say the first four letters of history—
and then press the Tab key. Bash has figured out where you’re going with this and
completes it for you. Keep this one in mind, because there are many cases where it can
easily save you dozens of keystrokes.

 Finally, you won’t survive long in the Linux world without becoming familiar with
its built-in documentation. Type man (short for manual), followed by the name of a
command.

 man cat

 The document that opens will list the basic purpose, function, and command-line
arguments of the program you specified. If you’re not sure of the exact spelling of the
command, you can use apropos:

 apropos zip

 Apropos will return the names of all the man files that seem relevant to your search
string. You can then access the file you’re after using man .

 Processing Text Streams
 I’ll be going through a lot of tools rather quickly now. But before I begin, I should note
that some of them might at first seem a bit unnecessary—almost silly. It’s good to
remember that many of these won’t normally be used directly on the command line the
way you will here. Their true value might only become obvious to you once you deploy
them as part of more complicated scripts designed to automate some system process.

 I’ll try to make things as realistic as possible, but your immediate goal should be to
understand a command’s function, and then store the information away somewhere in
your brain from where it can be retrieved when necessary.

CHAPTER 3 ■ TOPIC 103: GNU AND UNIX COMMANDS

34

 ■ Note With one or two exceptions, these tools, on their own, will have no effect on
the files they access. They will read the text, transform it somehow, and then deploy
it somewhere else. But the source file will usually remain as it was. You’ll only see the
simplest examples of each of these commands: their functionality will invariably extend
much further. As always, don’t forget that you absolutely MUST play with variations of every
example on your own. It’s the only way to learn.

 Let’s go.
 You’ve already used cat to read files. But did you know that adding the -n flag lets you

print to the screen with numbered lines?:

 cat -n /etc/passwd

 The nl command (nl stands for number lines) will produce exactly the same effect as
cat -n.

 Now that you’ve seen what the passwd file looks like when printed, take a good look
at this use of the cut command:

 cut –d: –f1 /etc/passwd

 This reads the passwd file (which contains details of all existing user accounts).
The -d flag sets the delimiter as colon (:), which means that, whenever a colon appears
in the text, cut will think of it as the start of a new text field. The f1 means that you’re
only interested in printing the first field of every line. Try it yourself and note how you’ve
printed just a single column of account names.

 Expand and unexpand will convert tabs contained in text to spaces (expand) or
spaces to tabs (unexpand):

 expand -t 10 filename # convert every tab to ten spaces.
 unexpand -t 3 filename # convert every three spaces to tabs.

 You can use fmt to format the way text is printed to the screen:

 fmt -w 60 filename # start a new line after 60 characters.
 fmt -t filename # indent all but the first line of a paragraph

 Another formatting tool is pr. Try this example:

 pr -d -l 10 filename

 The -d will add a new space in between lines (d = double space), and -l sets the
maximum number of lines to print per screen. In this case, that’s ten.

 To print only a specified number of lines from a file, use head or, predictably, tail.
A “line,” by the way, is all the text to the left of a hard return. This is really meant for data

CHAPTER 3 ■ TOPIC 103: GNU AND UNIX COMMANDS

35

files like logs whose lines are relatively short. If your file is broken down into paragraphs
(like the ones on this page), then each complete paragraph will count as a single line.

 head -10 filename # print only the first ten lines of a file.
 tail -n 3 /etc/passwd # print only the last three lines of the passwd file.

 Tail, with the -f flag, can also be used for ongoing monitoring of log files. In this
example, tail will print any new entries to the syslog log file as they are added:

 tail -f /var/log/syslog

 You can use join to merge data from two files with overlapping columns. Here’s the
content of a file called column1:

 1. New York

 2. Chicago

 3. Miami

 4. Los Angeles

 And here’s the file column2:

 1. New York

 2. Illinois

 3. Florida

 4. California

 Running join against both files like this:

 join column1 column2

 will output this handy list:

 1. New York New York

 2. Chicago Illinois

 3. Miami Florida

 4. Los Angeles California

 If you’d like to create a new file using exactly the output of that join operation, you
simply pipe the stream to the file name of your choice, like this:

 join column1 column2 > newfilename

 Paste is another tool for merging the contents of multiple files. Paste without any
arguments will print two files, side by side:

CHAPTER 3 ■ TOPIC 103: GNU AND UNIX COMMANDS

36

 paste column1 column2

 Paste -s will print them sequentially:

 paste -s column1 column2

 You can rearrange the way lines in a file are displayed using sort . Without any
arguments, sort will display the data in alphabetical sequence. Adding -r will reverse the
order, -n will sort by number, rather than letter, and -nr will display the output in reverse
numeric order:

 sort /etc/passwd
 sort -r /etc/passwd
 sort -n /etc/passwd
 cat -n /etc/passwd | sort -nr

 There are more ways to control the lines that are printed, including uniq, which will
print only lines that are unique to the file. Using uniq without any arguments will print
only the first time a repeated line appears. Running it with the -u argument will only print
lines that are never repeated. Create a file named text.txt with some contents and try it
yourself:

 uniq text.txt uniq -u text.txt

 Using split will divide a single file into multiple files of a specified length. In this case,
new files will actually be created while the original file remains unchanged:

 split -2 filename

 This will split the file into multiple files of two lines each, named xaa, xab, xac, and so
on. Here too, “line” really means “paragraph.”

 An octal dump (od) will print text in various formats. Using od with no arguments:

 od filename

 will print the text in the octal data format (which will prove most exciting for our
computers, but rather less so for us poor, illiterate humans). od -a filename will (among
other things) substitute “ht” for tabs and “sp” for spaces. od -c filename will display tabs as
\t and new lines (i.e., paragraphs) as \n.

 You can transform text using tr. This command will convert all lowercase letters to
uppercase:

 cat /etc/passwd | tr "a-z" "A-Z"

 If you need access to some basic document statistics, wc will output the total number
of lines, words, and bytes in a specified text stream or file:

 wc /etc/passwd

CHAPTER 3 ■ TOPIC 103: GNU AND UNIX COMMANDS

37

 Finally, the LPI expects you to understand sed. The fact is, that sed—the Unix stream
editor—is a science and an art wrapped up in a scripting tool. Very beautiful and complex
things can be done with sed, and it would take far more space than I have available for you
to appreciate that. Still, one simple example will have to do for our purposes right now.

 The strength of sed is its ability to “filter text in a pipeline.” This example takes input
from a stream (via cat) and substitutes the word goodbye for the first occurrence on a line
of hello:

 cat text.txt | sed s/hello/"goodbye"/

 Adding “g” (global) at the end will cause sed to replace every occurrence of hello on
a line:

 cat text.txt | sed s/hello/"goodbye"/g

 File Management
 For those of you who are used to managing your files and directories through colorful GUI
programs that provide drag-and-drop edits and context-sensitive information with every
right-click, the command line will, at first, seem a bit awkward. But once you’ve had some
experience with a small handful of tools, you’ll probably never want to go back. The speed
and pinpoint accurately with which you can work with either entire filesystems or individual
files through the command line—and the ability to do it on remote systems as easily as you
would on your own PC—make this the first choice for just about anyone with the skills.

 I will note one very big difference: when you delete a file using a GUI interface, the
file is usually sent off to a trash can somewhere from which it can be restored. There are
generally no second chances on the command line. Once it’s gone, it’s gone for good.

 All set? Great. Let’s get moving. You can copy files using cp:

 cp myfile /home/myname/Desktop/

 This will copy the file named myfile to the Desktop directory belonging to the
myname user. If you’re copying to a file that’s outside your own account, you’ll need to
have root access:

 sudo cp myfile /home/anothername/Desktop/

 By adding the -r (recursive) argument, you can also copy subdirectories and their
contents:

 sudo cp -r /home/myname/mydirectory/ /usr/share/place/

 This will copy everything that lives in or beneath the /mydirectory/ directory.
 You create new directories with mkdir. Remember, creating directories outside your

account requires root privileges. If you want to move the directory to within your current
location, you can use a relative address:

CHAPTER 3 ■ TOPIC 103: GNU AND UNIX COMMANDS

38

 mkdir newdir

 If, on the other hand, the new directory will be somewhere else, you’ll need to use its
absolute address:

 sudo mkdir /etc/newdir

 If you need a nested hierarchy of directories, you add the -p (parents) flag and all the
necessary directories will automatically be created:

 sudo mkdir -p /etc/path/to/mydirectory/

 This will create the /path/to/mydirectory/ directories (if necessary).
 Copying files leaves the original source file where it was and creates a copy in a new

location (or in the same directory but with a new name). Moving files deletes the source
and re-creates it in a new location or with a new name:

 mv myfile newname
 mv myfile /home/myaccount/Desktop/

 If you can copy and move files and directories, you should probably be able to delete
them, too. In fact, rm will do just that:

 rm myfile

 Using rm -r newplace will remove the directory newplace (assuming that it’s within
your current directory location) and all the files it contains. Adding the -i argument makes
the process interactive, meaning that you will be asked to confirm that this is what you
actually want to do.

 Besides rm -r, you can also delete empty directories using rmdir. Naturally, you can
perform all of these operations on more than one file at a time using file name expansion
(also known as globbing). Using the asterisk (*), for instance, will act on all the files in a
directory:

 rm -r *

 Be very careful with that one: it will delete all files in this directory, along with all the
subdirectories and their files that live beneath it!

 Similarly:

 rm file?

 will delete all the files in the current directory with file names that include the word file
and any single additional character. This would delete files named file1, file2, and files,
but not file10. But typing:

 rm file*

CHAPTER 3 ■ TOPIC 103: GNU AND UNIX COMMANDS

39

 on the other hand, will delete files with file and any number of additional characters.
This would, therefore, include file10.

 You can list the contents of a directory using ls. And using ls -l will list the files and
subdirectories in long form, displaying their file attributes and permissions. Using ls -a
will display all files, even those classified as hidden, which are identified by a dot in front
of their names. Using ls -lh will print file attributes, but with the file sizes displayed in
human-friendly form, rather than in bytes.

 Using touch will create a new, empty file:

 touch newfile

 Applying touch will also update the access-time metadata associated with a file.
 Running the file command against a file will display file details:

 file myfile

 If you’re into file management on an industrial scale, you’ll need a tool that’s
everything cp and mv is, but much more. Does Linux have anything to offer? You betcha.
It’s called dd.

 Now don’t be frightened off by the fact that many admins believe dd stands for Disk
Destroyer. Or, perhaps you should be frightened, because the tinniest of syntax errors in a
dd operation can, indeed, result in the permanent loss of entire partitions’ worth of data.
So be frightened, but also, be prepared.

 What makes dd different is that it sort of ignores your filesystem rules and limitations
and makes perfect, exact copies of whatever you tell it to. The benefit of this is that you
can ghost an entire disk, copy it to a completely new disk on a different computer, boot it,
and it will run like it was born there.

 ■ Note This obviously won’t work for Windows disks because Microsoft, for all intents and
purposes, chains their operating systems to the hardware they were originally installed on.

 To copy a partition called sdb1 to a USB drive called partitionbackup, run this:

 dd if=/dev/sdb1 of=/media/usb/partitionbackup

 To copy an entire drive (called, say, sdb) to a backup drive called drivebackup that’s
mounted at /mnt/drive/ run:

 dd if=/dev/sdb of=/mnt/drive/drivebackup

 And don’t forget to double and triple check your syntax and then offer a short prayer
before hitting the Enter key.

CHAPTER 3 ■ TOPIC 103: GNU AND UNIX COMMANDS

40

 File Archives
 Whether it’s automating backups, compressing files to save space, or transferring data
between machines, at some point, you’ll need to work with archive and compression
software. The LPI expects you to be at least familiar with gzip and gunzip (which use
the .gz extension), bzip2 (.bz2), and xz (.xz). Each of these offers some unique
compression algorithm or feature not found in the others, but that’s beyond the scope
of this book. I will, however, discuss tar and cpio.

 Normally, file names with the .tar extension (which, at one point at least, stood
for Tape ARchive) are archives. That means there are at least two source files bundled
together into a single archive file. If there’s also a .gz extension (i.e., filename.tar.gz), then
the archive is probably compressed. You don’t have to use these extensions, but there are
plenty of good reasons to stick to the accepted naming convention.

 To create a tar archive of all the files in a particular directory, you use the c, v, and f
command-line arguments:

 tar cvf archivename.tar /home/myname/mydirectory/*

 The first argument, c, means create, v tells tar to be verbose and print any necessary
updates to the screen, and f points to the file you are creating. The f must always be the
last argument and must be immediately followed by the name of the archive. The asterisk
(*) after the source directory address tells tar to compress all files and subdirectories it
finds in that directory.

 If you also want to compress the archive, then you should add the letter z as an
argument, and, if you decide to follow naming conventions, the .gz extension:

 tar czvf archivename.tar.gz /home/myname/mydirectory/*

 To decompress and extract the files of an archive into the current working directory,
you use the x (extract) argument rather than c:

 tar xzvf archivename.tar.gz

 You can put tar to work on a data stream. This example (executed from the root
directory) will use find to search down through four directory levels (-maxdepth 4) for
files with names (-name) that include a .txt extension, and then pipe the file names
through xargs (which allows command execution on streaming data) so that tar can
create a new archive:

 sudo find . -maxdepth 4 -name "*.txt" | xargs tar cvf textarch.tar

 This is an excellent example of the way you can combine multiple Linux commands
into a single line to generate, filter, and then act on data streams.

 The cpio archive tool works primarily through piped data. So, for instance, you can
feed it the output of an ls (list directory contents) command, and use that to create an
archive (called myarchivename) of the files that are named:

 ls | cpio -o > myarchivename.cpio

CHAPTER 3 ■ TOPIC 103: GNU AND UNIX COMMANDS

41

 You can add compression via gzip:

 ls | cpio -o | gzip > myarchivename.cpio.gz

 Finally, this is how you would use cpio to create the same archive you built earlier
using tar:

 sudo find ./ -maxdepth 4 -name "*.txt" | cpio -o >
 /home/ubuntu/archivename.cpio

 Streams, Pipes, and Redirects
 All Linux commands have three streams opened for them: stdin (Standard Input, which
is identified numerically by a 0), stdout (Standard Output, 1), and stderr (Standard
Error, 2). You can often access or redirect those streams by referencing their numeric
representation. Here’s a simple example:

 tail -f /var/log/syslog 1> log-data.txt

 This example will print all new entries to the syslog log file and pipe the standard
output (1) to a file called log-data.txt. In truth, however, the default behavior of the > pipe
is standard output, so the result would have been the same if you had used this syntax:

 tail -f /var/log/syslog > log-data.txt

 It’s important to remember that using the > pipe will overwrite all data in the target
file. In other words, had there already been a file called log-data.txt in that directory, all
of its existing data would have been destroyed and replaced with whatever syslog sent its
way. If you had wanted to append the new data (i.e., to add it to the end of the existing
file), you would have used a double >> like this:

 tail -f /var/log/syslog >> log-data.txt

 You definitely don’t want to forget this detail!
 You can also redirect error messages. I’ll give you a great example of why this might

be useful in just a moment, but first, here’s a simple illustration:

 cat filename 2> errors.txt

 This will stream the contents of the file called filename and, because I’ve used 2>, write
any error messages (but NOT the file contents) to a file called errors.txt. If there is a file called
filename, then errors.txt will be empty because there was no error to report. But if there is NO
filename file, then error.txt. will contain a message that looks something like this:

 cat: filename: No such file or directory

CHAPTER 3 ■ TOPIC 103: GNU AND UNIX COMMANDS

42

 Now, why might you want to use this? Suppose you’re using tar to compress and
back up a drive with 50GB of data. This is going to take some time and will process
thousands of individual files. You don’t really want to have to sit staring at your screen
watching for error messages, do you?

 That’s what I thought. Wouldn’t it be nice if, instead, you could automatically redirect
any error messages to a text file that you could read later at your leisure? Here’s how that
might look:

 tar cvf newarchive.tar /dev/sdb1 2> error.txt

 Don’t think, by the way, that you’re forced to choose only one place for your
command output to go. Linux, caring for your overall happiness as deeply as it does, lets
you have your cake and eat it too. By using tee , you can send streams to multiple targets.
In this example, the ls -l output (stdout) will print to the screen as it normally would,
while also populating a new file called lists.txt:

 ls -l | tee list.txt

 You can also make a second command conditional on the success of the first. This
sequence will copy a file between remote locations and then delete the original copy
 only if the copy operation was successful:

 scp filename myname@domain.com:/home/myname/ && rm filename

 Running the same sequence with a semicolon (;) rather than double ampersands
(&&) will delete the file regardless of the outcome of the first command.

 scp filename myname@domain.com:/home/myname/ ; rm filename

 Using a double pipe (||) will run either the first or the second command, but not
both. In this (rather silly) case, only if the copy was unsuccessful , will the original file be
removed:

 scp filename myname@domain.com:/home/myname/ || rm filename

 Managing Processes
 If you want to manage the processes running on your system, you’ll first have to figure out
exactly what they are. Worry not! Linux has you really well covered on that.

 Monitoring Processes
 Let’s start with top:

 top

CHAPTER 3 ■ TOPIC 103: GNU AND UNIX COMMANDS

43

 Top launches an automatically updating table that displays a screen of information
about the processes currently using the most system resources. This can be especially
useful if you’ve noticed things slowing down and you want to find out what’s behind it.

 Top also allows you to see who is behind a particular process. This can be useful
when choosing an appropriate course of action: you don’t want to shut down the boss’s
Facebook session, do you?

 You might also like to know how much of your RAM is in use and how much is still
available. Running free will do that:

 free

 Adding the -h argument will display the result in easier-to-read megabytes or
gigabytes.

 To print a list of all processes to the screen, run the ps command:

 ps

 If you just tried this out for yourself (and I sincerely hope you did), you will probably
be a bit disappointed. Your output will probably look something like this:

 PID TTY TIME CMD
 9455 pts/7 00:00:00 bash
 9861 pts/7 00:00:00 ps

 If these are all the current processes, then it doesn’t look like there’s all that much
happening right now, especially since the second entry is the ps command you just executed.

 Let me clear something up. When I wrote that ps will display all processes, I meant
all the processes being used by the current shell . But, in my example at least, the current
shell has a PID (process ID) of 9455, meaning that there are as many as 9454 running
processes higher up the chain that weren’t displayed.

 So what magic incantations will be needed before you’re shown the whole
collection? You could use either ps -e (using standard syntax) or ps aux (BSD syntax). Try
both out to see the difference.

 As mentioned earlier, you can always use grep to filter the output to a more
manageable level:

 ps aux | grep gnome-terminal

 You can use pgrep to search for a PID by filtering by user or process name. This
example will search for any instance of the sshd process being run by the root user:

 pgrep -u root sshd

 Managing Background Processes
 One of the more obvious advantages of a GUI desktop experience is the ability to easily
switch between programs. It’s easy for newcomers to the terminal interface to feel
imprisoned within their single terminal window. Once they launch a longer process—say,

CHAPTER 3 ■ TOPIC 103: GNU AND UNIX COMMANDS

44

copying a very large file from one drive to another—there doesn’t seem to be a way to get
other work done until the copy operation is complete.

 But it turns out that the restrictions are mostly imaginary. Let’s experiment with an
operation that will take some time. Let’s say you want to copy a large video file. Starting
the process normally will indeed keep control of your terminal:

 cp filename.mp4 filename2.mp4

 However, running the same command with an ampersand character added to the
end will launch the process in the background:

 cp filename.mp4 filename2.mp4 &

 Now, while this is still running, type ps and see what you get:

 PID TTY TIME CMD
 8750 pts/1 00:00:00 bash
 11598 pts/1 00:00:00 cp
 11599 pts/1 00:00:00 ps

 You can see that the ps command took PID 11599 and the copy operation is 11598.
Type jobs if you want to list all the processes currently running in the background of this
shell. Note that this command will give you a different PID: this time it’s the job number
in relation to specifically this shell, which explains why you probably got the ID number
of 1, rather than something in the high thousands. This is the ID you’ll use to edit the job
status. To bring this copy job back to the foreground, type:

 fg 1

 where fg stands for foreground, and 1 is the job number you got through jobs . To suspend
the job, hit Ctrl+z. From there you can, if you like, restart the job and send it back to the
background to complete, using:

 bg 1

 If you want to make sure that your background job finishes even if you should exit
this shell, append nohup to the initial commands.

 There’s another way to juggle multiple processes in a terminal: GNU screen. Screen
lets you multiplex terminal windows, effectively running more than one process out
of a single terminal. You can even split a single screen into two windows. Screen is not
installed by default in every Linux distribution, so you might have to get it:

 sudo apt-get install screen

 To launch the service, simply type screen from the command line. You’ll be shown
a page of introductory text, and then find yourself back at what looks like a regular
command prompt. You can continue working as normal if you like, but you can also use
various screen tools to orient yourself within the system and to move around. You use
Ctrl+a key combinations for most functionality in screen:

CHAPTER 3 ■ TOPIC 103: GNU AND UNIX COMMANDS

45

 CTRL+a w

 which will print your current shell at the bottom of the screen. Using:

 screen -ls

 will list all currently open screens. You use screen -x and the PID from the list to rejoin a
screen from your shell:

 screen -x 12482

 Assuming that 12482 is the PID of a valid screen, I will be returned to that shell. You
can create and join a new window using Ctrl+a c. Ctrl+a S will split the screen horizontally
to give you two shells in one terminal window. You can move between the shells using
Ctrl+a tab. You can exit a screen using Ctrl+a \.

 Killing Processes
 So far you’ve learned how to monitor and manage processes. Now you’ll have to see how
to knock ’em off when they’re no longer needed. But how do you know when they’re no
longer needed? One good indication is that they’ve stopped properly responding, but are
still taking up system resources and are generally slowing everything else down.

 If you know the PID of the offending process (perhaps by running top), you can use it
with kill to bring it down:

 kill 2934

 If you know the name of the process, you can use killall:

 killall process-name

 If the process is owned by the system or even by the account belonging to a different
user, you will need admin powers (sudo) to kill it.

 By default, kill and killall will send sigterm (terminate signal), which is represented
by the numeric value of 15. For a list of all signals and their values, type:

 kill -l

 Common signal codes you should be aware of include 1 (sighup—parent shell
is closing), 2 sigint (interrupt—the same as Ctrl-c), 9 (shut down), and 15. The signal
pkill works much like killall, but has the additional—and rather alarming—feature of
attempting to silently guess at what you really meant with a misspelling.

 Execution Priorities
 Of all the colorful and sometimes downright fun names given to Linux processes, I’d vote
for nice as the one that best illustrates what it does.

CHAPTER 3 ■ TOPIC 103: GNU AND UNIX COMMANDS

46

 If your system hosts hundreds of resource-hungry programs all competing for the
same memory or CPU cycles, you’ll need a police officer on duty to make sure no one gets
more than their fair share. On Linux, that police officer is called nice.

 You can assign each process with its own nice value between 19 and -20, where 19 is
very nice, and -20 is just plain nasty. A process with a nice value of 19 is so nice, that it will
yield its rights to a finite resource to just about any other process asking for it. If, on the
other hand, it’s set to -20, a process will grab as much of the resource pie as it can, giving
itself top priority. By default, most processes start with a neutral value of 0.

 You can set a nondefault nice value by launching a program this way:

 nice -10 apt-get install apache2

 This will set the nice value to 10 (not negative 10), meaning it will, when possible,
run when resource demand is generally low. A negative value is set this way:

 nice --10 apt-get install apache2

 If you know its PID, you can use renice to change the nice value of a process even
once it’s already running:

 renice -10 -p 3745

 With the -u argument, you can apply renice to all the processes associated with the
named user:

 renice 10 -u tony

 Finally, you can also set the value for all processes owned by particular group:

 renice 10 -g audio

 Using Regular Expressions (REGEX)
 You’ve already had a number of opportunities to see grep at work filtering text streams by
specified strings. Now let’s spend a bit of time on just how it interprets metacharacters.
Despite your suspicion that grep got its name from the noise made by a strange swamp
creature that lived in some Unix developer’s backyard, it actually stands for Global
Regular Expression Print. Which begs the question: just what is a Regular Expression (or
REGEX)? For grep, all characters are REGEX except for those listed in Table 3-1 .

CHAPTER 3 ■ TOPIC 103: GNU AND UNIX COMMANDS

47

 What this means in practical terms is that you shouldn’t expect grep to interpret
any one of those special characters as part of your plain-text string. Rather, each will be
understood as a metacharacter. If you want grep to read any of these characters as regular
text, you’ll need to add a backslash to the left of the character to escape the metareading.
Let’s illustrate that. Suppose you had a file whose name, for some odd reason, was
read(this)andthat. If you used grep to search your directory for all file names that include
the string “(this”:

 ls | grep (this

 you’d get an error:

 bash: syntax error near unexpected token '('

 That’s because grep expected the (character to work according to its metameaning.
However, if you would escape the (character in your search, like this:

 ls | grep \(this

 grep will successfully find the file for you. You can also enclose the entire string in
quotation marks to get the same result:

 ls | grep "(this"

 While grep uses REGEX, its two cousins—egrep and fgrep—take different
approaches: egrep (Extended grep, which should now be used as grep -E) has a larger
list of characters it reads as metacharacters, while fgrep (grep -F) treats all characters as
strictly literal and will often work more quickly as a result.

 Table 3-1. Non-REGEX (Regular Expression) Characters

 Backslash \

 Caret ̂

 Dollar sign $

 Dot .

 Pipe symbol |

 Question mark ?

 Asterisk *

 Plus sign +

 Parentheses ()

 Square brackets []

 Curly braces {}

CHAPTER 3 ■ TOPIC 103: GNU AND UNIX COMMANDS

48

 Using vi
 The fact is that many admins go long periods of time between sessions with any one of
the various flavors of the vi editor. I’m not exactly recommending that for you, but you
should be aware of the alternatives and focus on whichever tool will best fit your needs.

 Having said that, it would be hard to imagine a text processing tool that could come
close to the efficiency and speed of vi in the hands of a master. Built at a time when
the range of characters supported by many keyboards was far narrower than today, vi
allowed you to do just about everything with the relatively small number of keys you
had. Practically speaking, once you get used to this kind of focus, you can work very
productively without ever having to move your fingers far. And don’t even think about
using a mouse.

 So why would someone NOT want to use vi (or its more modern version: Vim)?
For some, the time it takes to get used to the sometimes unintuitive controls makes Vim
appear to be an expensive luxury. Those admins prefer to use more intuitive editing tools
like Nano, or even a GUI editor like gedit. Whatever you use, just make sure that it saves
your files as plain text. Never use a word processor like LibreOffice for administration
tasks, as it will automatically add all kinds of invisible formatting.

 In any case, vi is the text editor required by the LPIC exam, so here we go.
 I’ll discuss the more modern Vim version. Vim works in three different modes. When

you first launch it (using either the vi or vim commands), you will find yourself in Normal
(or Command) mode. By pressing the colon (:) key, you can switch to command-line
mode to perform some basic file management operations. Table 3-2 lists the basic options
when in command-line (or last line mode) mode.

 Typing the letter “i” in Normal mode will take you to the third mode: Insert. While
in Insert mode, you can use the Arrow keys to move your cursor through your document,
and the alphanumeric keys to insert text wherever your cursor happens to be. For most of
us, this mode is the most familiar of the three, but it’s not where Vim experts get most of
their work done.

 That, believe it or not, is back in Normal mode (which you can reach from
Insert mode by hitting the Esc key). Table 3-3 contains a summary of the keystroke
combinations.

 Table 3-2. Command-line Options in vi (or Vim)

 :w Save the current file to disk (you will be prompted for the file name).

 :w! Overwrite the current file.

 :exit Write the current file and then close Vim.

 :wq Same as :exit.

 :q Close Vim without saving the current file.

 :q! If file has been changed but you don’t want to save it, then

 :e! Walk back changes since last write.

CHAPTER 3 ■ TOPIC 103: GNU AND UNIX COMMANDS

49

 Of course, none of this will be of much use to you if you don’t open up a terminal,
run Vim, and try it out. Perhaps you could open a (nonessential!) file that already has a
few paragraphs of text that you can use to experiment.

 Now Try This
 Using only the command line, create a compressed archive (.tar.gz) of all the files and
subdirectories in a busy directory on your computer, copy the archive to a different
partition (perhaps to a USB drive), and extract it in its new home.

 Extra credit if, using scp, you can copy the archive over a network to a remote computer.
 Extra extra credit if you can also (very carefully) do it using dd.

 Test Yourself
 1. What can the uname command display?

 a. Your login name

 b. Your most recent command

 c. The name of your OS

 d. The most recent variable you created

 Table 3-3. Vim Keystroke Commands in Normal Mode

 h Moves the cursor left one character.

 j Moves the cursor down one line.

 k Moves the cursor up one line.

 l Moves the cursor right one character.

 0 Moves the cursor to the start of the current line.

 dw Deletes the word that comes immediately after the cursor.

 d$ Deletes from the insertion point to the end of the line.

 dd Deletes the entire current line.

 D Deletes the rest of the current line from the cursor position.

 p Inserts the text deleted in the last deletion operation after current cursor
location

 u Undoes the last action.

 yy Copies the line in which the cursor is located to the buffer.

 ZZ Saves the current file and ends vi.

 / Search (for the term you enter)

CHAPTER 3 ■ TOPIC 103: GNU AND UNIX COMMANDS

50

 2. The .bash_history file contains:

 a. Your most recent commands

 b. The most recent variables you have used

 c. The most recent directories you have visited

 d. Documentation for the most recent program you used

 3. Which of these will NOT change the number of characters
displayed?

 a. cut -d: -f3 filename

 b. unexpand -t 5 filename

 c. head -10 filename

 d. fmt -w 60 filename

 4. Which of these will create at least one new file?

 a. split -3 filename

 b. od filename

 c. join filename1 filename2

 d. wc /var/log/syslog

 5. Which of these commands will copy subdirectories?

 a. cp -s /etc /dev/sdb1

 b. cp -r /etc /dev/sdb1

 c. cp -lh /etc /dev/sdb1

 d. cp -a /etc /dev/sdb1

 6. Which of these will copy your root filesystem to a backup
drive?

 a. dd if=/media/usb/backup/

 b. dd if=/root/ of=/media/usb/backup

 c. dd if=/ of=/home

 d. dd if=/ of=/media/usb/backup/

 7. In which of these cases will a file called error.txt be created?

 a. Running cat filename 1> errors.txt when there is no such file

 b. Running cat filename 1> errors.txt when there is such a file

 c. Running cat filename 2> errors.txt when there is no such file

 d. Running cat filename 0> errors.txt when there is such a file

CHAPTER 3 ■ TOPIC 103: GNU AND UNIX COMMANDS

51

 8. ls -l | tee list.txt will redirect traffic to which two places?

 a. The screen and the file list.txt

 b. The screen and an error file

 c. List.txt and /var/log/syslog

 d. The screen and /var/log/tee.log

 9. Which of these will display all current system processes?

 a. ps

 b. ps -h

 c. ps -e

 d. ps aux

 10. To return a process to the foreground, you use fg and the PID
displayed by which command?

 a. ps aux

 b. job

 c. bg

 d. CTRL+z

 11. Which of the following will close a screen in GNU Screen?

 a. screen -x

 b. screen x

 c. CTRL-a w

 d. CTRL+a \

 12. Running kill with the value of 2 will send …

 a. sigint

 b. sighup

 c. sigterm

 d. pizza and beer

 13. Which of these will create a nasty process?

 a. nice -15 apt-get install apache2

 b. renice 15 apt-get install apache2

 c. nice --15 apt-get install apache2

 d. nice --15 -g audio

CHAPTER 3 ■ TOPIC 103: GNU AND UNIX COMMANDS

52

 14. Which of the following will interpret (hello) as plain text?

 a. grep

 b. grep -E

 c. grep -F

 d. egrep

 15. Which of the following will remove an entire line in Vim
Normal mode?

 a. dw

 b. D

 c. ZZ

 d. dd

 Answer Key
 1. c, 2. a, 3. d, 4. a, 5. b, 6. d, 7. c, 8. a, 9. c AND d 10. b, 11. d, 12. a, 13. c, 14. c, 15. d

53© David Clinton 2016
D. Clinton, Practical LPIC-1 Linux Certification Study Guide,
DOI 10.1007/978-1-4842-2358-1_4

 CHAPTER 4

 Topic 104: Devices, Linux
Filesystems, and the
Filesystem Hierarchy
Standard

 Properly booting, running, and securing your servers and PCs require well-designed
and well-maintained partitions and filesystems. Partitions, as you’ve seen in previous
chapters, are logically defined regions of a physical drive set aside for some particular use.
Filesystems are structures used to organize files on a partition—or, for that matter, across
multiple partitions—so that the files can be effectively accessed and secured.

 This chapter will cover partitions and filesystems with a particular interest in making
files as easily accessible as possible to those who need access, and beyond the reach of
those who don’t.

 Create Partitions and Filesystems
 Way, way back at the beginning of Chapter 1 , I discussed how, during the boot process,
your computer’s firmware reads the Master Boot Record (MBR) on your boot drive. You
remember all that stuff, right? Well good, because you’re going to need it to understand
how partitions can be managed—and rescued—in Linux.

 The MBR architecture can support up to four partitions, of which one can be defined
as secondary (the others must be primary). The secondary partition can be further
subdivided into smaller partitions. You should be aware, however, that MBR is starting to
show its age. For instance, it will only support drives up to 2TB in size.

 ■ Note Two terabytes you say? Why the hard drive on my first computer back in the
1980s had only 10MB of space and that included the entire operating system. And you
wouldn’t believe how much serious work I got done back then! You kids today are all
spoiled, that’s what you are.

http://dx.doi.org/10.1007/978-1-4842-2358-1_1

CHAPTER 4 ■ TOPIC 104: DEVICES, LINUX FILESYSTEMS, AND THE FILESYSTEM HIERARCHY STANDARD

54

 Now that my obligatory “cranky-old-admin” rant is over, let’s get back to business.
Although I will add that that machine—an ITT XT—also had only 640K of RAM and
smelled funny.

 In any case, that 2TB ceiling is now starting to look rather low, and the shift to more
modern systems is already well under way. The GPT (GUID Partition Table) is the most
obvious choice. Among other things, you’ll need it to allow dual booting with more
modern versions of Windows.

 To manage or troubleshoot uncooperative partitions, your first stop should probably
be fdisk:

 sudo fdisk /dev/sda

 Typing m in the shell that opens will display a menu. Typing p will list your current
partitions, which might look something like this:

 Disk /dev/sda: 320.1 GB, 320072933376 bytes
 255 heads, 63 sectors/track, 38913 cylinders, total 625142448 sectors
 Units = sectors of 1 * 512 = 512 bytes
 Sector size (logical/physical): 512 bytes / 512 bytes
 I/O size (minimum/optimal): 512 bytes / 512 bytes
 Disk identifier: 0x000163ac

 Device Boot Start End Blocks Id System
 /dev/sda1 * 2048 620949503 310473728 83 Linux
 /dev/sda2 620951550 625141759 2095105 5 Extended
 /dev/sda5 620951552 625141759 2095104 82 Linux swap / Solaris

 Notice the three partitions (sda1, sda2, and sda5) and the asterisk (*) in the Boot
field of sda1, which identifies sda1 as the boot partition. It’s also worth mentioning that a
Linux partition type is identified by the number 83, Extended as 5, and Linux swap as 82.

 If you want to create a new partition (after having carefully backed up all the data
on the existing partitions, as this action can be destructive), you should hit n. You will be
asked whether this partition should be primary or extended, and what its number and
start and finish positions should be.

 Don’t think you’re done at this point: there are still at least two steps to go. You
should now hit t and select a partition type (82, 83, etc.). When you are absolutely sure
that this is exactly what you want, you hold your breath and hit w to apply the changes.

 If you launch fdisk against a GPT- formatted drive you will be politely told to go
elsewhere for help:

 sudo fdisk /dev/sdb
 WARNING: GPT (GUID Partition Table) detected on '/dev/sdb'!
 The util fdisk doesn't support GPT. Use GNU Parted

CHAPTER 4 ■ TOPIC 104: DEVICES, LINUX FILESYSTEMS, AND THE FILESYSTEM HIERARCHY STANDARD

55

 For this, you can use either parted, as advised:

 sudo parted /dev/sdb

 or gdisk, which follows much the same approach as fdisk, except for GPT partitions.
 Now that you’ve got a new partition, you will still need to format it, or, in other

words, apply the structure of a particular filesystem. You can use mkfs (which, obviously,
stands for Make FileSystem) to format your partition, using the -t argument to specify a
filesystem type:

 sudo mkfs -t ext4 /dev/sdc1

 Swap files , which allow disk space to be used to temporarily substitute for system
memory (RAM), require a special tool:

 sudo mkswap /dev/sdb2

 And formatting to the reiserfs filesystem will work best with its own tool:

 sudo mkreiserfs /dev/sdb1

 As I’ve mentioned a number of different filesystems, let’s briefly describe the most
popular of them:

 ext2 (extended): This filesystem offers no journaling.
Journaling, by the way, means that a record of changes to a
partition is saved to a journal to improve crash recovery.

 ext3 and ext4 : Both offer journaling, while ext4 also handles
files up to 16TB. I think it’s safe to say that ext4 is currently the
most popular Linux filesystem, in fact, as of Linux kernel 4.3,
the ext3 module has been removed.

 reiserfs : Both journaled and stable.

 btrfs : Known to be extremely stable and reliable.

 XFS : A 64-bit journaled filesystem that is particularly well
suited to large files and filesystems.

 VFAT : An extension of the FAT32 filesystem. You may want to
format removable media (like USB drives) to VFAT due to its
compatibility with Windows.

CHAPTER 4 ■ TOPIC 104: DEVICES, LINUX FILESYSTEMS, AND THE FILESYSTEM HIERARCHY STANDARD

56

 Maintain the Integrity of Filesystems
 The proper care and feeding of your happy filesystem requires you to focus on three
areas: monitoring, preventative maintenance, and repair.

 Monitoring
 There’s a lot you can learn about your infrastructure from carefully watching the size
consumed by your data. For instance, once the files on a partition take up nearly
all available space, you could see a significant drop in system responsiveness as the
filesystem struggles to find space for everything.

 Linux lets you keep an eye on things from a number of different perspectives and
at various detail levels. Typing df will show you all the partitions—both physical and
virtual—on your system, along with both their used and available space. Adding the -h
argument will, as you’ve seen before, display the output in human readable terms:

 df -h

 The -i argument will display usage by inode. Inodes are data structures containing
attributes and the disk block location of a file or directory. It is theoretically possible
(although uncommon) that you could run out of available inodes while still having actual
space left on your partition, so it’s worth keeping this metric in mind (next to tonight’s
dinner menu and the dentist appointment you’ve got next Tuesday).

 df -i

 The du command will tell you how much disk space is being used by the contents of
a specific directory or directory hierarchy (measured in kilobytes, by default). This can be
useful when you’re trying to track down exactly who has been using up all your partition
space.

 du

 Adding -s will output only the total size.

 du -s

 There are some very creative and valuable uses for du, so make sure to read the man
page.

 man du

CHAPTER 4 ■ TOPIC 104: DEVICES, LINUX FILESYSTEMS, AND THE FILESYSTEM HIERARCHY STANDARD

57

 For a more detailed look into the inner workings of an ext partition, use dumpe2fs:

 sudo dumpe2fs /dev/sdb2 | less

 Because dumpe2fs will throw so much information at you, it’s worthwhile piping it to
 less so you can read it one screen at a time.

 Preventive Maintenance
 It’s always a nice idea to try to get a little control over your life before things go flying off
into total chaos. So the tune2fs tool can be worth a look. You can use tune2fs to set the
maximum number of disk mounts and the maximum interval (assuming you haven’t hit
the mount limit yet) between system checks:

 sudo tune2fs -c 40 -i 1m /dev/sda1

 The - c 40 sets the maximum mounts between checks of the /dev/sda1 partition to
40, and - i 1m sets the interval to one month. If you’re running an ext2 formatted disk
and you’re worried that you might face some crashes, you can add a journal, effectively
converting the partition to ext3, using tune2fs –j:

 sudo tune2fs -j /dev/sda1

 And while I’m on the topic of tune2fs, I will mention that you can edit or add the
filesystem volume label, which can make positively identifying a partition a lot more
straightforward (and thereby help prevent accidents):

 sudo tune2fs -L new_name /dev/sda1

 Naturally, there are similar tools for other filesystems that work pretty much the
same way.

 Repair
 So everything is collapsing all around you and getting home in time for supper is not even
a possibility. Even breakfast is beginning to look a bit unlikely. Yes, the electrical cable is
plugged in and both the front and rear power switches are on.

 Assuming that the problem revolves around your inability to access data on the disk,
you should first make sure that the drive is actually alive—if it’s a hard disk drive, listen,
or, if you’re properly grounded, feel it to see if it’s actually spinning. If it passes that test,
here’s what comes next.

CHAPTER 4 ■ TOPIC 104: DEVICES, LINUX FILESYSTEMS, AND THE FILESYSTEM HIERARCHY STANDARD

58

 If the drive is still mounted, unmount it (this assumes, of course, that you’re running
the system itself from a separate drive):

 sudo umount /dev/sdc

 Then run fsck (which stands for FileSystem ChecK):

 sudo fsck /dev/sdc1

 You might get a message like this:

 Dirty bit is set. Fs was not properly unmounted and some data may be
corrupt.

 This might be an indication that a corresponding block of memory has been changed
but not yet saved to disk. It might suggest the presence of corrupted data. It’s safe to let
fsck remove it.

 The e2fsck tool can also be called in for help. Running it against a device with -p will
launch an automated, noninteractive repair action:

 e2fsck -p /dev/sda1

 Table 4-1 lists some alternate arguments for e2fsck.

 Finally, running debugfs against a device like this:

 Table 4-1. e2fsck Command-line Arguments and Their Explanations

 -n Make no changes to the filesystem

 -y Assume “yes” to all questions

 -c Check for bad blocks and add them to the badblock list

 -f Force checking even if filesystem is marked clean

 - v Be verbose

 -b superblock Use alternative superblock

 -B blocksize Force blocksize when looking for superblock

 -j external_journal Set location of the external journal

 -l bad_blocks_file Add to badblocks list

 -L bad_blocks_file Set badblocks list

CHAPTER 4 ■ TOPIC 104: DEVICES, LINUX FILESYSTEMS, AND THE FILESYSTEM HIERARCHY STANDARD

59

 sudo debugfs /dev/sda1

 will drop you into a new shell where the question mark (?) will open a helpful menu.

 Control Mounting and Unmounting of Filesystems
 I just briefly mentioned unmounting a drive earlier, but I should probably spend a
bit more time on the subject now. A physical drive might be attached to your PC and
powered up, but it won’t be accessible to a filesystem until it’s been associated with an
appropriate mount point. For most devices, this will normally happen automatically
through entries in the /etc/fstab file. But you may sometimes have to manually mount or
unmount a disk.

 Traditionally, you usually mount devices to directories in /mnt or /media. In truth,
however, you can actually use any location you like. Let’s walk through the mount
process. From inside the /media directory, use mkdir to create a new directory called
newdrive:

 sudo mkdir newdrive

 Just to be absolutely sure, cd into the directory and run ls to confirm that it’s empty:

 cd /media/newdrive
 ls

 Now cd back up to the parent directory (/media, in this example):

 cd ..

 You will now need the name of the device you want to mount. Let’s run lsblk to list all
the block devices currently plugged in:

 lsblk

 Let’s assume that /dev/sdc1 was the drive you’re after. Now let’s run mount to mount
that drive to the newdrive directory:

 sudo mount /dev/sdc1 /media/newdrive

CHAPTER 4 ■ TOPIC 104: DEVICES, LINUX FILESYSTEMS, AND THE FILESYSTEM HIERARCHY STANDARD

60

 Let’s go in and take another look around:

 cd newdrive
 ls

 You should be able to see all the files and directories that came with that drive,
displayed inside the /media/newdrive directory.

 When it’s time to clean up your toys, you can use umount (without the first “n”) to
unmount the drive:

 sudo umount /dev/sdc1

 Sometimes you will try to mount a device but receive an “unknown type” error
message. In this case, you will have to specify the filesystem type as part of your mount
command:

 sudo mount -t ext3 /dev/sdc1 newdrive

 If you’re not sure which type it is, you can try running mount with -a and it will
attempt to mount the drive using all types.

 Now, what about that fstab file? If you want a partition to load automatically at boot,
you’ll need to make sure that it has an entry in the plain text /etc/fstab file. Let’s take a
look at this example:

 cat /etc/fstab
 # <file system> <mount point> <type> <options>
 <dump> <pass>
 # / was on /dev/sda2 during installation
 UUID=d334de16-3d76-460f-a65e-2b35a6b763ba /
 ext4 errors=remount-ro 0 1
 # /boot/efi was on /dev/sda1 during installation
 UUID=3613-9EDB /boot/efi vfat defaults 0
 1
 # swap was on /dev/sda3 during installation
 UUID=503d9513-257b-5622-9e15-c28ae8e504c3 none
 swap sw 0 0
 # old backup drive
 UUID="0bc97b1d-f202-46a0-9514-dc860f0afa38" /media/drive-
 backup ext4

 Look at the fourth entry: “old backup drive.” This one was added manually. To do
that I needed to run the blkid program to retrieve the drive’s UUID:

CHAPTER 4 ■ TOPIC 104: DEVICES, LINUX FILESYSTEMS, AND THE FILESYSTEM HIERARCHY STANDARD

61

 blkid /dev/sda1

 Running blkid also told me that the partition was formatted to ext4. All that was left
was to edit the fstab file and add a new line with the ID in quotation marks following
UUID=, the mount point (“/media/drive-backup” in this case), and the file type (ext4).
The next time the computer boots (or whenever sudo mount -a is run) the device will be
accessible.

 Manage Disk Quotas
 Since data bloat can have such a serious impact on system behavior (not to mention use
up space that might be needed for other processes and users), Linux allows you to assign
quotas that limit the disk space and number of inodes a particular user or group can
use. Appropriately enough, the program is called quota. You might need to install it, as it
doesn’t come with every fresh install.

 This will install quota on a Fedora/CentOS/RHEL system:

 sudo yum install quota

 You’ll need to add this text to the /etc/fstab entry of each drive you’d like quota to
control:

 ,usrquota,grpquota

 Now, you can either reboot the computer, or run:

 sudo mount -a

 to enable the new setting. You now need to build a table containing the current disk
usage, update disk quota files, and create the aquota.group and aquota.user files. All that
will be done by running:

 sudo quotacheck -avmug

 Here, a will check all, m will force a check on mounted filesystems, u and g will check
users and groups, respectively, and v means verbose. Now you will need to actually turn
quota on:

 sudo quotaon -av

CHAPTER 4 ■ TOPIC 104: DEVICES, LINUX FILESYSTEMS, AND THE FILESYSTEM HIERARCHY STANDARD

62

 You can generate a quota report using, you guessed it, repquota:

 sudo repquota -av

 Out of the box, none of your users will actually have any restrictions, so you’ll need to
edit the settings. You run the edquota program to do that. To edit a user’s quota, run:

 sudo edquota -u <username>

 To edit a group’s quota, go with -g:

 edquota -g <groupname>

 Either way, edquota will open in vi (aren’t you glad you played around with it as
much as you did). You will see that you are able to control disk usage by either blocks or
inodes, and apply either soft or hard limits. A soft limit will send a warning once a user
exceeds his limit, but nevertheless permit him to continue using the space. A hard limit
will prevent all exceptions to the rules. You can set the soft limit (and its maximum time)
with the -t flag:

 sudo edquota -t

 Manage File Permissions and Ownership
 Besides passwords and other user login control features, the most fundamental Linux tool
for managing access to private and system resources is permissions.

 Every object within a Linux filesystem has an owner and a group, and a set of rules
that determine exactly who and what gets access. Somehow, three separate notational
systems were developed to represent these permissions, and I’ll explore all of them. They
are Letters, Subjects, and Numbers.

 Letters
 Letters are divided into three uses, as shown in Table 4-2 .

 Table 4-2. Letters Used in the Linux System

 Code Permission

 r Read

 W Write

 X Execute

CHAPTER 4 ■ TOPIC 104: DEVICES, LINUX FILESYSTEMS, AND THE FILESYSTEM HIERARCHY STANDARD

63

 The subjects of these permissions are also divided into three groups, as shown in
Table 4-3 .

 Therefore, if, say, you would want to add write permissions over a file for all users,
you would run chmod like this:

 chmod o+w myfile.txt

 Here’s how you would remove read permissions from members of the file’s group:

 chmod g-r myfile.txt

 If you run ls -l against a particular file, you will see this represented graphically (well,
as graphically as the Linux command line gets anyway):

 ls -l | grep myfile
 -rw--r--r-- 1 ubuntu ubuntu 0 Dec 15 18:17 myfile.txt

 The first group of characters (-rw) tells you that the user (named ubuntu, in this
case) has both read and write permissions. Thanks to the g-w operation before, the group
(also called ubuntu) has only read but not write authority, as do all others. If this object
were a directory rather than a file, the first character in the line would be the letter d.

 You can use chown to change an object’s owner and group. Let’s transfer ownership
of this file over to Steve. Because there’s more than one owner involved here, you’ll need
root powers to do this:

 sudo chown steve:steve myfile.txt

 The second “steve” defines the group the object belongs to (in this case, the group
called “steve”). If you wanted to change ownership of a directory and its contents (and
subdirectories), you would add -R:

 sudo chown -R steve:steve /var/log

 Table 4-3. Subjects Used in the Linux System

 Code Subject

 u User (the object owner)

 g Group

 o Other (all other users)

CHAPTER 4 ■ TOPIC 104: DEVICES, LINUX FILESYSTEMS, AND THE FILESYSTEM HIERARCHY STANDARD

64

 By the way, I definitely would not do this on a live system, as it would almost
certainly mess up your logs!

 Numbers (octal)
 Numbers used in Linux system are also divided into three groups, as shown in Table 4-4 .

 You can use these numbers with chmod to achieve exactly the same effect as r, w,
and x. To configure a file’s permissions to allow read and write powers to the user and
group, but only read to others, run this:

 chmod 664 myfile.txt

 What’s going on here? Well, the values of read (4) and write (2), would, when added
together, come to 6. So you assign the number 6 to the first two positions (user and
group). The third position represents “others,” so you’ll give that the number 4, read only.

 Let’s try another one:

 cd /bin
 ls -l | grep cp
 -rwxr-xr-x 1 root root 130304 Mar 24 2014 cp

 The cp binary file depicted here would have an octal value of 751. Why? Well, it gives
rwx (read/write/execute; 4+2+1=7) to the user, r-x (read/execute; 4+1=5) to the group, and
x (execute; 1) to others.

 Umask
 The third representational system, umask, is a bit of a funny creature. It represents an
inversion of an object’s permissions. In other words, if the normal octal representation
of an object is 751, its umask would be 0026. Ignoring the first digit, the second 0 comes
from subtracting 7 (the object’s “user” value) from 7 (the highest possible octal value).
The 2 of the group is derived by subtracting 5 (the object’s “group” value) from 7. And the
6 is what happens when you subtract 1 (executable) from 7.

 Table 4-4. Numbers Used in the Linux System

 Value Permission

 4 Read

 2 Write

 1 Execute

CHAPTER 4 ■ TOPIC 104: DEVICES, LINUX FILESYSTEMS, AND THE FILESYSTEM HIERARCHY STANDARD

65

 One more example. The 664 you applied to myfile.txt above would have a umask of
0113. Work it out for yourself.

 What is the umask used for? Type umask on the command line and see what you get:

 umask

 The odds are that you saw 0002. What this means is that whenever the current user
creates a new Linux object, it will automatically be given the value of 0002, or, in other
terms, 664 (assuming it’s a file that can’t be executed). You can try it yourself by creating a
file and then checking out its permissions:

 touch newerfile.txt

 You can edit your umask value (to change the permissions that new files will get)
using something like:

 umask 022

 To prove it worked, create a new file:

 touch newestfile.txt

 and compare the permissions for both of them:

 ls -l | grep newe

 Know, however, that your umask value will only remain in effect until you close this
particular shell (even though the permission settings of the files you created in the shell
will be persistent).

 Using suid, sgid, and the Sticky Bit
 Sometimes you will want to restrict authority over a resource to as few people as possible,
but nevertheless make it generally available in limited circumstances. The best example
is passwd. The /etc/passwd file contains account information for all users on a Linux
system, but it must also be accessed when individual users update account details like
their passwords. So how can you maintain some control over such an important resource,
while still allowing any user to access it for his own needs? By adding an suid (Set owner
User ID), of course.

 The suid elevates any user who executes the file to the status of owner for only as long
as he is still executing. Let’s take a look at the passwd file:

CHAPTER 4 ■ TOPIC 104: DEVICES, LINUX FILESYSTEMS, AND THE FILESYSTEM HIERARCHY STANDARD

66

 cd /usr/bin
 ls -l | grep passwd
 -rwsr-sr-x 1 root root 47032 Feb 16 2014 passwd

 Notice the rws rather than rwx? That’s the suid. You can add the suid to an
executable file using u+s:

 sudo chmod u+s myexecutable

 You can do pretty much the same thing for groups, meaning that when the sgid is set
for a file, the process will have the same group rights as the file being executed. Using:

 sudo chmod g+s yourexecutable

 will add an sgid to this file, but only for members of its group. When sgid is applied to a
directory, all files and subdirectories subsequently created will inherit the same group
ownership from the parent directory.

 You can apply a sticky bit to a directory to protect files within the directory from
being deleted by other users (even users with file access). Let’s create a new directory,
check out its ls -l output, add the sticky bit (using -t), and then run ls -l once again to
confirm:

 sudo mkdir /run/ourfiles
 cd /run
 ls -l | grep ourfiles
 sudo chmod +t ourfiles
 ls -l | grep ourfiles

 Create and Change Hard and Symbolic Links
 Here’s something to ponder: besides the many thousands of system files spread through
hundreds of nested directories, let’s image that your home directory hierarchy, like mine,
holds more than 120,000 files. If you’ve done a good job arranging your directories so that
you can quickly drill down and find most of what you’re looking for—at least most of the
time—then you’re in pretty good shape.

 But even if you know where a file is, if you need to access it often, plowing through
all those layers of directories each time can be a real pain. You could simply move the
file to wherever you are when you normally need it, but that might take it out of the
environment where it will be backed up or updated. And who knows where you’ll be the
next time you need it?

 So what’s a poor admin to do? Link it.

CHAPTER 4 ■ TOPIC 104: DEVICES, LINUX FILESYSTEMS, AND THE FILESYSTEM HIERARCHY STANDARD

67

 Linux will let you place a symbolic copy of a file just about anywhere, so that
executing or opening it in its new location will have exactly the same effect as opening it
where it really lives.

 There are two kinds of linked files: symbolic (or soft) links and hard links. Hard links
are two files that actually share an inode, meaning that, although they may appear in
different directories, they’re actually the very same file.

 You create a hard link using ln. Let’s make a link in a directory called /home/
myname/files for the /home/myname/stuff1.txt file:

 ln ~/stuff1.txt ~/files/

 You can head over to the ~/files directory to take a look at your new identical twin.
Make a change to one of the files and then quickly run back to the other to marvel at the
miracle of synchronicity.

 You create a symbolic (soft) link using ln -s. This example will create a symbolic link
in your home directory to the cp (copy) file that lives in the /bin directory:

 ls -s /bin/cp ~/

 Run ls in both directories to compare the two:

 ls -l

 Here’s an example of symlinked files. The binary that runs vi is in the /usr/bin
directory. If you were to take a look at it:

 ls -l /usr/bin/vi
 lrwxrwxrwx 1 root root 20 Apr 6 2014 /usr/bin/vi ->
 /etc/alternatives/vi

 you would see the letter l (for link) at the beginning of the attributes, and an arrow
pointing to /etc/alternatives. Let’s take a look over there:

 ls -l /etc/alternatives/vi
 lrwxrwxrwx 1 root root 18 Apr 6 2014 /etc/alternatives/vi ->
 /usr/bin/vim.basic

 You can see the same attributes and an arrow pointing back to /usr/bin.

CHAPTER 4 ■ TOPIC 104: DEVICES, LINUX FILESYSTEMS, AND THE FILESYSTEM HIERARCHY STANDARD

68

 Find System Files and Place Files in the Correct
Location
 For those important files that aren’t conveniently linked (or for those links that you’ve
inconveniently lost), you’ll need some other tools for finding things. Right now I am going
to discuss some really powerful Linux tools. The first might not seem like a tool at all: the
Linux Filesystem Hierarchy Standard (FHS).

 Filesystem Hierarchy Standard
 With some minor exceptions, Linux distributions stick to the FHS to define a common
layout for pretty much all their system files. If you’re familiar with the basic layout and
purpose of just a half a dozen or so directories, then you’re a step closer to finding just
about anything.

 Let’s move to the root directory and list its contents:

 cd /
 ls

 Of the directories that you can see, I’ll focus on those listed in Table 4-5 .

 That’s it. Get a picture in your mind of those seven directories and their uses, and
you’re in business. Besides those, you should also be aware of some more directories
listed in Table 4-6 (many of which were mentioned previously in this book).

 Table 4-5. Key Directories in the Linux Filesystem Hierarchy Standard

 /bin Core system executables and shells

 /dev Hardware devices

 /etc Text-based config files

 /home User home subdirectories. Your home directory will be /home/yourname/
and your Desktop, Downloads, and other directories will be in /home/
yourname/

 /lib Code libraries

 /usr Application files

 /var Variable data including logs

CHAPTER 4 ■ TOPIC 104: DEVICES, LINUX FILESYSTEMS, AND THE FILESYSTEM HIERARCHY STANDARD

69

 Search Tools
 If, somehow, your new mental superpowers fail you and there’s something you still can’t
find, you’ll need to bring in the heavy guns. Suppose you want to find and list all the files
in /etc/ with the .conf extension (hint: there are more than 600 on my Ubuntu system).
Here you go:

 sudo find /etc/ -name *.conf

 The -name flag tells find to search for file names. (You need to be sudo or you’ll be
prevented from reading through certain directories.)

 But that was too easy: you cheated by allowing find to narrow the search to the /
etc/ directory. Let’s try something a bit harder. Perhaps you’ve forgotten where the fstab
file is kept:

 sudo find / -name fstab

 This did the job, but it took a bit longer because it had to search through all the files
on the computer. Let’s try something else:

 locate fstab

 Did you notice how much faster that went? How was locate able to pull that one off?
Locate relies on an index of file names and locations that’s updated regularly, so it doesn’t
need to crawl through every directory the way find does, it just needs to lazily browse its
index. You can manually update the index using:

 Table 4-6. Other Common Directories Found in the Linux Filesystem Hierarchy Standard

 /boot Bootloader files

 /media Place to mount external devices

 /mnt Alternative location for mounting external devices

 /opt Program installation files

 / proc Pseudo filesystem representing processes

 /root Root user’s home directory

 /run Runtime data storage

 /sbin Admin binaries

 / srv Site-specific data

 /sys System hardware info

 /tmp Temp system files

CHAPTER 4 ■ TOPIC 104: DEVICES, LINUX FILESYSTEMS, AND THE FILESYSTEM HIERARCHY STANDARD

70

 sudo updatedb

 Locate behavior is defined in the /etc/updatedb.conf file.
 If you know the name of a binary program, you can use some simple command-line

tools to help you locate the actual binary file. Typing:

 whereis ls

 will display the location of the binary that runs the ls command, along with that of its
source code and man file. Incidentally, running whereis with the -bms flag will accomplish
the same thing (and get you that much closer to carpal tunnel syndrome in the process).

 Typing which will return just the binary location, and typing type will identify any
aliases associated with the binary:

 which ls
 type ls

 Now Try This
 Practice mounting and unmounting a USB drive to various locations on your filesystem (/
media/newdirectory/ /mnt/newdirectory/ etc.). Now, after you’ve carefully ensured that
the drive contains no important files, confirm its designation (/dev/sdb, /dev/sdc) and
create a new ext4 partition out of all or, if you prefer, part of the drive. Then copy some
files from your system to the new partition and use chown to edit the files’ owner and
chmod to make them readable by anyone.

 Test Yourself
 1. Which of the following filesystems is NOT journaled:

 a. ext3

 b. XFS

 c. ext2

 d. reiserfs

 2. What will selecting “p” accomplish in fdisk?

 a. List current partitions

 b. List menu options

 c. Fix a corrupted partition

 d. Convert the partition to swap

CHAPTER 4 ■ TOPIC 104: DEVICES, LINUX FILESYSTEMS, AND THE FILESYSTEM HIERARCHY STANDARD

71

 3. Which of the following commands will display the total size
taken up by specified directories and their files?

 a. df -i

 b. e2fsck -B

 c. du

 d. du -s

 4. Which of these will successfully mount the drive called sdc1?

 a. sudo mount newdrive /dev/sdc1

 b. sudo mount /dev/sdc1 newdrive

 c. sudo /dev/sdc1 mount newdrive

 d. sudo mount sdc1 newdrive

 5. To which file must you add ,usrquota,grpquota to ensure
quota will run?

 a. /etc/fstab

 b. aquota.group

 c. edquota

 d. repquota

 6. What is the correct octal value of a text file that was created by
a user with the umask 0022?

 a. 641

 b. 644

 c. 664

 d. 422

 7. What is the octal value that corresponds to -rwxrw-r--?

 a. 554

 b. 777

 c. 764

 d. 467

 8. You create a symbolic link of the cp binary file using:

 a. ls -s /bin/cp ~/

 b. ls -s ~/ /bin/cp

CHAPTER 4 ■ TOPIC 104: DEVICES, LINUX FILESYSTEMS, AND THE FILESYSTEM HIERARCHY STANDARD

72

 c. ls /bin/cp ~/

 d. ls ~/ /bin/cp

 9. Which of the following directories contains text-based config
files?

 a. /proc

 b. /lib

 c. /etc

 d. /dev

 10. Which of the following will find the location of any file the
quickest?

 a. find

 b. locatedb

 c. locate

 d. whereis

 Answer Key
 1. c, 2. a, 3. d, 4. b, 5. a, 6. b, 7. c, 8. a, 9. c, 10. c

73© David Clinton 2016
D. Clinton, Practical LPIC-1 Linux Certification Study Guide,
DOI 10.1007/978-1-4842-2358-1_5

 CHAPTER 5

 Topic 105: Shells, Scripting,
and Databases

 With this chapter, I’ll reach the first material that falls under the LPIC-1 102 exam—
the second of two exams required for the Linux Professional Institute’s Linux Server
Professional certification. If you’re using this book as a guide to prepare for the exams,
there’s a good chance that you’ve just passed the 101 exam. Congratulations! If not, keep
plugging away, you’ll get there. And if you’re not going after any certifications, but you
just want to learn the IT skills you’ll need to get by in the 21st century, then welcome: it’s
great to have you here.

 Let’s get started.

 Customize and Use the Shell Environment
 In the Linux world, a shell is a program that interprets what you type at the command
line and relays it to the host operating system so it can be processed. There are a number
of shell flavors (bash, dash, sh, etc.), each with its own distinct properties and default
environment variables.

 Whichever shell you choose, you can launch it in one of two ways: login and
non-login . A non-login shell is one that launches from within a GUI desktop session
(and, thus, requires no log in). Any remote or non-GUI session will require authentication
and is therefore called a login session.

 It’s very important to be aware of this distinction, because the environment
parameters of login vs. non-login shell sessions are controlled through different files.
Why should you care? Because you will sometimes need to edit your parameters,
something that will prove a whole lot harder if you can’t find the right configuration file!

 When a login shell launches, it will read the /etc/profile file first. Whether or not /
etc/profile exists, the shell will then read the first of ~/.bash_profile, ~/.bash_login,
or ~/.profile it finds. The shell will load with whatever values it finds.

 ■ Note Using ~/, by the way, indicates a file in the user’s own home directory. The dot
preceding the file names means that these files are hidden—they are only visible to ls if the
-a argument is added.

CHAPTER 5 ■ TOPIC 105: SHELLS, SCRIPTING, AND DATABASES

74

 Non-login sessions will read the /etc/bash.bashrc and then the ~/.bashrc files.
Unfortunately, you’re just going to have to remember this.

 If you need to change shell environments in the middle of a session, you can use the
dot command. I kid you not: there’s actually a command called dot:

 . .bashrc

 which, in this case, will switch to the bash shell.
 You should also be aware of two more session-related items: ~/.bash_logout

controls the way a shell session will close, including how anything left in memory is (or
is not) erased. And any contents found in the /etc/skel/ directory will be automatically
copied to the home directories of newly created users. This is a good way to automate
the customized creation of new accounts. By default, desktop installations of Linux will
usually place an examples.desktop file in /etc/skel/ that will add a directory structure
(Desktop, Downloads, Documents) to new GUI accounts.

 Another reason the shell configuration files are so important is that they will store
new environment variables that you might create, making them available whenever
you log in. One class of variable is called an alias. You can create an alias using the alias
command (but I’ll bet you already knew that):

 alias prtz="cd /etc/;cat timezone"

 This command will create a new alias called prtz (print time zone) and define it to
perform two commands: cd /etc/ and cat timezone (the timezone file contains nothing
but your system’s local time zone setting). Now, I’ll admit that this particular example
won’t end up saving you all that many keystrokes, but you get the idea: rather than having
to type out a long sequence of commands, you can get the job done with a short and
easily remembered phrase.

 You can remove an alias using unalias:

 unalias prtz

 Functions are slightly more complicated shell variables. In fact, they begin to
approach scripts in their range. This one-line set up will create a function to list the
contents of a directory that will be provided at runtime:

 function listd() { ls -l $1; }

 In this case, typing listd at the command line, along with the location of the directory
you’d like displayed, will generate the list you’re after:

 listd /var/log

CHAPTER 5 ■ TOPIC 105: SHELLS, SCRIPTING, AND DATABASES

75

 Functions, just like aliases, can be easily removed:

 unset -f listd

 Customize and Write Simple Scripts
 Now that you’ve seen how you can “program” processes into newly created commands
like alias and function , you’re ready for shell scripts. Scripts lie somewhere between the
command line and full programming and, in fact, share some stronger qualities with each.

 Like the command line, scripts have full access to all Linux operations: you can
manipulate files and system settings and work with text streams just as if you were
at the command line. But you can also create much more complex data flows and
abstractions with scripts that closely resemble many of the most flexible features of many
programming languages.

 The basic structure of a shell script is quite simple. The plain text file—often using an
.sh extension in its name—will always begin with what’s known as the shebang line, that
identifies the binary of the particular shell you want to use (bash, in this case). Don’t ask
me why it’s called shebang , by the way, I haven’t a clue.

 #!/bin/bash

 That line will be followed by regular shell commands , comments (which aren’t read
by the shell when preceded by #), and, often, a final exit line:

 #!/bin/bash
 # this shell will print all directory files and then email it
 # to the root account:
 ls -l
 # this line will return an exit code 0, which means "success":
 exit 0

 When you’re ready to run the script, you simply launch it from the command line
(while in the same directory) using:

 ./scriptname.sh

 Not so fast there, Pilgrim. If you just tried that (and I surely hope you did), then you
probably encountered this error message:

 bash: ./scriptname.sh: Permission denied

CHAPTER 5 ■ TOPIC 105: SHELLS, SCRIPTING, AND DATABASES

76

 Permission denied? But if you just created that file, aren’t you automatically its
owner? Why would you need permission?

 The problem is that you haven’t made the script executable, so Linux thinks that it’s
still a regular text file. That’s easily fixed:

 chmod +x scriptname.sh

 Now you’re ready to run it.
 While you’re there, I should explain how you can send the output of a script as an

e-mail. Assuming the mail-utils package is installed on your system, piping a command
to the mail program, which you can tell to generate an e-mail to the root user, will get that
job done:

 ls -l | mail -s "output of script" root

 Let’s work through some more examples to illustrate the main scripting functions.

 User Inputs
 You can incorporate user inputs into your scripts using variables introduced with the
dollar sign ($) character. If you’re familiar with programming, you will know that other
languages require that you declare string variables before calling them. That’s not
necessary for bash scripts (although, as you will soon see, it is required if you want to use
variables as integers).

 In this case, you will echo a greeting message, use read to save the input as a value for
the variable $answer (although you won’t actually do anything with it in this example),
and run the date command:

 #!/bin/bash
 echo "Type any character if you'd like to know the time"
 read answer
 echo "Ok, it's "
 date

 So now let’s try importing and then working with integers:

 !/bin/bash
 declare -i number1
 declare -i number2
 declare -i total
 echo "Please enter a number "
 read number1
 echo "And another number "

CHAPTER 5 ■ TOPIC 105: SHELLS, SCRIPTING, AND DATABASES

77

 read number2 total=$number1+$number2
 echo "Aha! They equal " $total
 exit 0

 What happened here? You first declared three variables (one for each input number
and a third for the total that you will produce) and then, once again, used echo to ask the
user for some input. This time, the values created by read are used to feed the sum of
number1+number2 to the variable $total, which can then be printed to the screen as part of
the echo line. Note how you only add the $ symbol to variable names when they are retrieved.

 Testing Values
 You can use various testing tools in your scripts to confirm the status of specified values at
runtime. This can add a level of reliability to a script, as it makes it much less likely to fail
due to information that wasn’t available until runtime. In this example, -e will test for the
existence of a resource (a directory, in this case), and it will launch an operation (adding
that directory to the system PATH) if -e returns a positive result:

 #!/bin/bash
 echo "What directory do you want to add to the PATH?"
 read NewPath
 # -e will test for the existence of the new path
 if [-e "$NewPath"]; then

 echo "The " $NewPath " directory exists."
 echo $NewPath " is now in the PATH."
 PATH=$PATH:$NewPath
 export PATH
 echo "Your PATH environment variable is now:"
 echo $PATH

 else
 echo "Sorry, I'm afraid that " $NewPath " doesn’t exist."

 fi
 exit 0

 Notice that the structure of the if/else pair allows for a graceful failure should the
resource not exist. Notice also the fi that closes the if/else pair; fi is, of course, if backward.

 Besides -e, -f will confirm that a file exists and that it’s a regular file, -d will confirm
that a target is a directory (and not a file), and -r will confirm that a file is readable for the
current user.

 Another kind of test involves comparing multiple values to each other. This example
will compare the values of text1 and text2 to test whether they’re the same:

 #!/bin/bash
 echo "Please enter some text "
 read text1

CHAPTER 5 ■ TOPIC 105: SHELLS, SCRIPTING, AND DATABASES

78

 echo "Please enter some more text "
 read text2
 if test $text1 != $text2; then
 echo "they're not identical"
 else
 echo "they are identical"
 fi
 exit 0

 In the above example, != means “does NOT equal”. You can also test using eq (does
equal), lt (less than), and gt (greater than).

 For those times when you are faced with more than two choices, if/else structures
won’t help. But the case structure most definitely will! This example will take the user
input and apply it to three possible cases (each, through the use of the pipe [|] character,
incorporating two choices). Be careful to get all the fine syntax details right. Also, note
that esac is case in reverse.

 #!/bin/bash
 #A simple script to demonstrate the case structure.
 echo "What's your favorite car?"
 read CAR
 case $CAR in
 volvo | ford) echo "Nice! I love" $CAR
 ;;
 porsche | vw) echo "Not bad…" $CAR"'s are ok, too"
 ;;
 yugo | fiat) echo "Yuk!" $CAR"'s are ugly"
 ;;
 *) echo "Sorry, I’m not familiar with that make!"
 ;;
 esac
 exit 0

 Loops
 Many scripts require repeated actions while—or until—a certain condition is met. You
might, for example, want a script to launch some process only after a preceding process
has completed. You could write a script to test for the existence of the first process so that,
when the test fails, the new process is started.

 Like anything else related to scripting, there really is no end to the possible scenarios
a fertile imagination can dream up. Unfortunately, to illustrate the principles, you’ll have
to come back to my silly and unimaginative examples.

 Here’s a loop that, using while , will continue as long as a variable called COUNTER—
set to start at 10 and reduced one integer at a time—remains higher than 2. Try it for
yourself:

CHAPTER 5 ■ TOPIC 105: SHELLS, SCRIPTING, AND DATABASES

79

 #!/bin/bash
 #example of while loop:
 declare -i COUNTER
 COUNTER=10
 while [$COUNTER -gt 2]; do

 echo The counter is $COUNTER
 COUNTER=COUNTER-1

 done
 exit 0

 This next example is subtly different: it will continue until the counter (starting this
time at 20) falls below 10:

 #!/bin/bash
 #example of until loop:
 COUNTER=20
 until [$COUNTER -lt 10]; do

 echo COUNTER $COUNTER
 let COUNTER=COUNTER-1
 done
 exit 0

 Or, in other words, while continues as long as a condition IS true, but until continues
as long as it is NOT true.

 A loop built with for will take all the values returned by a command (ls in this case)
and act on them one at a time. In this case, each line of output from ls will be read in the i
variable and then printed by echo. When the last line has been printed, the loop will stop.

 This, by the way, is an example of command substitution: where the ls command is
inserted into the for loop to generate input. Command substitution can sound terribly
complicated, but it’s really nothing more than reassigning a command’s output:

 #!/bin/bash
 #example of for loop:
 for i in $(ls); do
 echo item: $i
 done
 exit 0

 The for tool can take input from seq (for sequence), which itself produces numbers
in sequence. Before creating a script, let’s try out seq on the command line, giving it a
numeric value:

 seq 10

CHAPTER 5 ■ TOPIC 105: SHELLS, SCRIPTING, AND DATABASES

80

 As you can see for yourself, seq will count from 1 to 10. Big deal. So can I. Okay, but it
can also be told where to start:

 seq 5 15

 Yawn.
 How about this: you can tell it to count in specified increments (this will count up

from 4 to 34 in increments of 6):

 seq 4 6 34

 I’ll assume that you’re still not particularly impressed. However, turning this tool
loose in a scripting environment, where it can be used to keep track of time or outside
events, might actually prove useful. Here’s a very simple example:

 #!/bin/bash
 for i in `seq 15`
 do
 echo "The current number in the sequence is $i."
 done
 exit 0

 Finally, you might sometimes need to launch Linux shell commands from within
programs written in other languages like C, Perl, or PHP. This can often be done by simply
prefacing the command with exec . Here’s an example in PHP:

 exec("dir", $output, $return);

 SQL Data Management
 The LPI doesn’t expect you to be a database guru, but you really do need at least a
basic idea of how relational databases (SQL) work and of how they can be installed and
integrated into a server operation.

 The LPIC exam focuses on the SQL command set, which has until recently been
most widely used by the open source MySQL engine . This has been complicated by the
recent MariaDB fork of the MySQL project and by the success of Amazon Aurora for their
RDS (Relational Database Service). But, from your perspective right now, this needn’t
worry you, because all three of those engines will use the same functionality and even
command base.

 For this guide, let’s imagine an online company that requires a database to track and
manage business communications.

CHAPTER 5 ■ TOPIC 105: SHELLS, SCRIPTING, AND DATABASES

81

 You will need to create a table, called contacts , in which each record will represent all
the data associated with a single e-mail message. As you can see illustrated in Figure 5-1 ,
each record will be made up of fields for the date/time, the customer’s e-mail address, the
text of the message, and any follow-up responses.

 First, you’ll need to install the database. Let’s go with MySQL :

 sudo apt-get update
 sudo apt-get install mysql-server

 You will be asked for a root database password during the installation process. Try
not to forget it. Once everything is installed, you can log in as root to the MySQL shell:

 mysql -u root -p

 Typing -u introduces the username and -p gets the shell to prompt you for your
password. You will now be inside the SQL shell.

 Figure 5-1. The elements of a typical SQL database

CHAPTER 5 ■ TOPIC 105: SHELLS, SCRIPTING, AND DATABASES

82

 One important detail: every command must be followed by a semicolon (;). If it’s not,
SQL will move to a new line but do nothing. This can be confusing and frustrating, but the
shell is just waiting for you to wake up and finish what you were saying (i.e., type the ;).

 You can list all current databases using:

 show databases;

 Predictably, you can create a new database named contacts using:

 create database contacts;

 Now, let’s run show databases again just to confirm that contacts exists:

 show databases;

 What you now want to do is start working on your new contacts database. But you’ll
need to share this information with MySQL, otherwise it will have no way of knowing
which database you’ve got in mind with your coming commands. Therefore, let’s run:

 use contacts;

 To see if there’s anything here yet, you’ll look for existing tables:

 show tables;

 Nothing.
 So let’s create a new table called emails that will contain records called date, email,

message, and response. Each string that is designated as VARCHAR (a variable length
character string) must be given a maximum length:

 create table emails (date DATE, email VARCHAR(20),
 message VARCHAR(250), response VARCHAR(250));

 Now you can manually insert a few records’ worth of data. This isn’t the way things
would normally work. It’s far more common to create a program using, say, PHP , that
accepts data via user input or some programmatic operations. But, under the hood, this is
the format all such actions will use:

 insert into emails (date,email,message,response) values
 ('2016-09-12','stan@angry.com','Where's my shipment?',
 'Which shipment?');

CHAPTER 5 ■ TOPIC 105: SHELLS, SCRIPTING, AND DATABASES

83

 Notice how you first identify all the fields for which you have data
(date,email,message,response), and then enter the content itself, separated by
apostrophes and commas. Syntax counts!

 For practice, perhaps you should add two or three more records following this
pattern.

 Once you’ve got some data happily settling into its new home, you will probably
want to see it. You can view your data (or, more commonly, “call it” for some kind of
processing) using select :

 select * from emails;

 This example will select all asterisked (*) records from the emails table.
 You can also insert data into specified fields by declaring only those you plan to

populate. In this example, you have nothing to insert into the response field:

 insert into emails (date,email,message) values
 ('2016-09-12','jeff@yahoo.com','hello');

 This command will select all the contents of every record whose e-mail is equal to
 stan@angry.com :

 select * from emails where email='stan@angry.com';

 This next example will delete those same contents. In fact, it can be very useful to use
select as a dry run before deleting anything to confirm that this formulation will deliver
exactly what you want:

 delete * from emails where email='stan@angry.com';

 You can globally search and replace the contents of specific fields using update .
This next example will update the e-mail address field from stan@angry.com to
 stanley@angry.com :

 update complaints
 set email='stanley@angry.com', message='I quit'
 where email='stan@angry.com';

 By the way, if you don’t specify “where email=”, MySQL will assume that you want to
populate every e-mail and message field across the entire table with this new data. You
might also note that, this time, you spread the single command across multiple lines by
simply leaving the semicolon until the very end.

http://mailto:stan@angry.com/
http://mailto:stan@angry.com/
http://mailto:stanley@angry.com/

CHAPTER 5 ■ TOPIC 105: SHELLS, SCRIPTING, AND DATABASES

84

 You can control the order by which records are displayed using order by while DESC
tells MySQL to display in descending order:

 select * from emails order by Date;
 select * from emails order by Date DESC;

 Where order by will change the order by which records are displayed, group by
allows you to list multiple records that share some common field in a single line, along
with a computed total value.

 ■ Note The following example is borrowed from the excellent SQL tutorial at http://
www.w3schools.com/sql/sql_groupby.asp . With their examples and sandbox “try it
yourself” pages, w3schools is a great place to learn web development skills.

 Let’s imagine a database containing two tables: Shippers and Orders . The Shippers
table includes a field called ShipperName. The Orders table includes a field called
ShipperID, which identifies the shipper associated with each order, and another field
called OrderID. You’d like to display the total number of orders placed using each of the
three shippers in this system. To do that, you’ll have to select data from each of the tables,
join it together, and group by (or, in other words, count) all the orders sent through each
shipper. Here’s how it’s done:

 SELECT Shippers.ShipperName,COUNT(Orders.OrderID) AS NumberOfOrders
FROM Orders
 LEFT JOIN Shippers
 ON Orders.ShipperID=Shippers.ShipperID
 GROUP BY ShipperName;

 Now Try This
 Write a script that asks for a user’s telephone area code and test to see if he lives within a
hundred miles or so from you.

 Extra points if you can do the same thing after asking for the user’s complete phone
number (i.e., if you can figure out how to extract the area code digits from the longer
number).

http://www.w3schools.com/sql/sql_groupby.asp
http://www.w3schools.com/sql/sql_groupby.asp

CHAPTER 5 ■ TOPIC 105: SHELLS, SCRIPTING, AND DATABASES

85

 Test Yourself
 1. The first file read for a new login session is:

 a. /etc/bash.bashrc

 b. /etc/profile

 c. ~/.bashrc

 d. ~/.bash_login

 2. The first line of a shell script must include:

 a. !#/bin/bash

 b. #!/lib/bash

 c. #!/bin/bash

 d. !#/var/bash

 3. The script command that will accept user input is:

 a. read

 b. input

 c. echo -r

 d. declare

 4. Which of these will continue as long as COUNTER is higher
than 9?

 a. while [$COUNTER -lt 10]; do

 b. until [$COUNTER -lt 9]; do

 c. while [$COUNTER -lt 11]; do

 d. until [$COUNTER -lt 10]; do

 5. Which of the following is correct?

 a. insert into emails (date,email,message,response) values
(‘2016- 09-12’,‘jeff@yahoo.com’,‘hello’);

 b. insert into emails (date,email,message) values (‘2016-09-
12’,‘jeff@yahoo.com’,‘hello’);

 c. insert into emails (date,email,message) values (‘2016-09-
12’‘jeff@yahoo.com’‘hello’);

 d. insert into emails (date,email,message) values (‘2016-09-
12’,‘jeff@yahoo.com’,‘hello’)

CHAPTER 5 ■ TOPIC 105: SHELLS, SCRIPTING, AND DATABASES

86

 6. Which of these will accomplish your exact goals?

 a. set email=‘stanley@angry.com’, message=‘I quit’ where
email=‘stan@angry.com’;

 b. set email=‘stanley@angry.com’, message=‘I quit’;

 c. set email=‘stanley@angry.com’ message=‘I quit’ where
email=‘stan@angry.com’;

 d. get email=‘stanley@angry.com’, message=‘I quit’ where
email=‘stan@angry.com’;

 Answer Key
 1. b, 2. c, 3. a, 4. d, 5. b, 6. a

87© David Clinton 2016
D. Clinton, Practical LPIC-1 Linux Certification Study Guide,
DOI 10.1007/978-1-4842-2358-1_6

 CHAPTER 6

 Topic 106: User Interfaces
and Desktops

 If you can read (and if you’ve made it this far into the book, the odds are that you can),
then you’ve probably already noticed my distinct preference for use of the command
line. Nevertheless, there’s a reason even Linux offers such a rich choice of graphic user
interface (GUI) tools and environments. Just try logging into Netflix from the command
line using curl and you’ll understand what I mean. So setting up and managing GUI
desktops is definitely going to be an important part of a Linux admin’s job.

 I can tell you that, when it comes to handling graphic devices, Linux has come a very
long way over just the past decade. Not too long ago, adding a new video card or even a
mouse was not guaranteed to be a stress-free experience . Even supported devices often
required manual edits to arcane and hard-to-find configuration files. At this point, things
have improved so much that you might realistically go an entire career without ever
having to worry about getting mainstream hardware peripherals up and running.

 Nevertheless, because you might also need to work with older systems or with
nonstandard, cutting-edge hardware , it is still important to have at least a basic
understanding of how things work under the hood.

 Install and Configure X11
 Let’s start with the engine, known as X , that drives the Linux graphic interface. I should
provide just a bit of background. X is essentially a server that listens for connections from
clients using the X protocol and, when necessary, responds. X11 is an important version
of the X protocol and is the one I’ll discuss in this chapter.

 Once upon a time, X was controlled by settings in the xorg.conf configuration file (or,
on some systems, xf86Config). These days, if you look in the /etc/X11/ directory where
the xorg.conf configuration file is supposed to live, and odds are that you won’t find
anything. In fact, since integrating hardware peripherals on Linux has been so successfully
automated in recent years, the xorg.conf file is seldom used. Nevertheless, should the need
arise, you can create one yourself, and the LPI expects you to know how to do it.

CHAPTER 6 ■ TOPIC 106: USER INTERFACES AND DESKTOPS

88

 Here’s what a working xorg.conf file might look like:

 Section "InputDevice"
 # generated from default
 Identifier "Mouse0"
 Driver "mouse"
 Option "Protocol" "auto"
 Option "Device" "/dev/psaux"
 Option "Emulate3Buttons" "no"
 Option "ZAxisMapping" "4 5"
 EndSection

 Section "InputDevice"
 # generated from default
 Identifier "Keyboard0"
 Driver "kbd"
 EndSection

 Section "Monitor"
 Identifier "Monitor0"
 VendorName "Unknown"
 ModelName "Unknown"
 HorizSync 28.0 - 33.0
 VertRefresh 43.0 - 72.0
 Option "DPMS"
 EndSection

 Section "Device"
 Identifier "Device0"
 Driver "nvidia"
 VendorName "NVIDIA Corporation" EndSection

 Section "Screen"
 Identifier "Screen0"
 Device "Device0"
 Monitor "Monitor0"
 DefaultDepth 24
 SubSection "Display"
 Depth 24
 EndSubSection
 EndSection

 Section "ServerLayout"
 Identifier "Layout0"
 Screen 0 "Screen0"
 InputDevice "Keyboard0" "CoreKeyboard"
 InputDevice "Mouse0" "CorePointer"
 EndSection

CHAPTER 6 ■ TOPIC 106: USER INTERFACES AND DESKTOPS

89

 Let’s take a section-by-section look . I begin with two sections called InputDevice —
one describing a keyboard and the other a mouse. Since they are each the first device
of their kind attached to the system, they are identified, respectively, as Keyboard0 and
Mouse0. Their drivers and other configuration data are described in subsequent lines.

 The Monitor section similarly sets the hardware profile for the attached monitor, as
does the Device section for the video adapter.

 The Screen section works a bit differently. Since the monitor and video adapter must
obviously work together, Screen binds the two profiles into one unit. The ServerLayout
section then binds all hardware profiles (screen, mouse, and keyboard) into a single
profile, producing an integrated interface.

 If you need help creating your own configuration file , you can find some templates
in the /usr/share/X11/xorg.conf.d/ directory. It’s also worth mentioning that you can find
all kinds of documentation and templates for hundreds of installed programs within the /
usr/share/ directory tree.

 You should be aware of some excellent resources that allow you to research hardware
compatibility before you actually start adding components to a system. Some time back,
I was very surprised to discover that checking out video adapters didn’t even require that
I leave my beloved shell session: the built-in system manuals (man) actually contain a
remarkable amount of useful information. Running:

 man ati

 for instance—to see which ATI adapters are supported—will open a page that points me
to separate pages for Radeon, Rage 128, and Mach64 cards. Opening those pages:

 man Radeon

 will provide information on dozens of specific models.
 If that doesn’t cover the information you’re after, you can visit the drivers page of the

X.Org Foundation web site for a more complete list:

 http://www.x.org/wiki/Projects/Drivers/

 If you want to view your current X settings, run xdpyinfo:

 xdpyinfo | less

 Since the command will normally output a significant amount of data, you might
want to pipe it to less so you can view it one screen at a time.

 Running xwininfo will prompt you to click inside any open window on your desktop
and then display information on that window:

 xwininfo

http://www.x.org/wiki/Projects/Drivers/

CHAPTER 6 ■ TOPIC 106: USER INTERFACES AND DESKTOPS

90

 And if you need to know more about a particular monitor that’s attached to your
system (or to a remote system with which you’re trying to establish a GUI connection, for
that matter), you can view the $DISPLAY variable:

 echo $DISPLAY

 This can be especially useful for systems with multiple monitors. I will now ask you
to read the following words: X Font server .

 I’m sure you can guess what the purpose of the X Font server might once have been,
but I will assure you that it has not been used for many, many years and will never be
used again. So why do I bring it up at all? Because the LPI expects you to be “familiar”
with it. Well, now you are.

 Set Up a Display Manager
 One thing you will find on all Linux GUI systems is a display manager. A display manager is
needed to present a login screen and, once you’re logged in, to launch a desktop environment.
The X11 protocol will then, on behalf of your environment, manage desktop objects, window
control elements, frames, virtual and remote displays, and environment settings.

 But right now we’re only interested in display managers. And, in particular, the new
 LightDM manager (whose login screen is shown in Figure 6-1). Its relatively small set of
tasks is what makes it so fast and, presumably, is what gives it its name (“light”).

 Figure 6-1. The familiar LightDM login screen on Ubuntu 14.04

CHAPTER 6 ■ TOPIC 106: USER INTERFACES AND DESKTOPS

91

 Since LightDM is the manager that currently gets the most attention from the LPI,
that will be your main focus. While LightDM stores its main configuration settings within
files in the /usr/share/lightdm/lightdm.conf.d/ directory, you can override those settings
by editing (or creating) files in /etc/lightdm/lightdm.conf.d/ and the /etc/lightdm/
lightdm.conf file. LightDM, when it loads, will read all of those files in that order. Here are
the contents of my /etc/lightdm/lightdm.conf file:

 [SeatDefaults]
 user-session=gnome-fallback

 The file’s only entry tells you that my desktop is set to Gnome-Fallback (as opposed
to another desktop like Unity, KDE, or Gnome). Here’s the 50-guest-wrapper.conf file
from the /usr/share/lightdm/lightdm.conf.d directory:

 [SeatDefaults]
 guest-wrapper=/usr/lib/lightdm/lightdm-guest-session

 You can see that these files can be very simple. There are, however, a number of
 optional entries you can add. If you want only users with accounts to be able to log in, and
don’t want to allow guests, add an allow-guest line and set it accordingly:

 allow-guest=false

 You can force all users to be guests, so that any files or settings they create will be
erased at the end of their sessions. This can be useful if you’re providing a public kiosk
and you don’t want users to have any permanent system rights:

 autologin-guest=true

 If you would prefer that your login screen display a pull-down menu listing all
existing users, add this:

 greeter-hide-users=true

 If you’re the only one using your computer, you might like to set the autologin feature
(assuming your user name is Steve):

 autologin-user=steve

 This next setting will allow you ten seconds to switch to another user before being
automatically logged into the account specified by autologin-user=:

CHAPTER 6 ■ TOPIC 106: USER INTERFACES AND DESKTOPS

92

 autologin-user-timeout=10

 If you want to override the default greeter, add a .desktop file to the /usr/share/
xgreeters/ directory and point to it from the greeter-session line:

 greeter-session=unity-greeter.desktop

 Finally, you can have specific commands run on set events by adding them to any of
these script lines:

 display-setup-script=command
 display-stopped-script=command
 greeter-setup-script=command
 session-setup-script=command
 session-cleanup-script=command
 session-wrapper=command
 greeter-wrapper=command

 Besides LightDM , other common display managers include KDM, GDM (Gnome),
and the really old and deprecated XDM. Since I did briefly mention desktops, I should
clarify that display managers like LightDM manage the log in, but then pass most control
on to whichever of the dozens of available desktop environments a user has installed and
selected. Assuming you’ve installed alternate desktop environments, you can change
your default desktop by clicking the edit icon that’s usually somewhere near the password
field, and selecting the desktop you prefer (see Figure 6-2).

CHAPTER 6 ■ TOPIC 106: USER INTERFACES AND DESKTOPS

93

 Besides your ability to control who can log in to your computer, you can also limit the
kinds of remote X sessions that can be started. The tool that does this job is xhost. Typing
 xhost and the plus sign (+) character will allow anyone to log in to your account from
anywhere:

 xhost +

 Of course, they’ll need to have your password and some way to get past your router
and firewall, but this might still be a bit too wide open for normal day-to-day operations.
You can, therefore, close access to everyone using:

 xhost -

 In case that’s too restrictive for your needs, you can permit log ins from individual
hosts by entering the source IP address:

 xhost + 10.0.1.43

 Figure 6-2. Selecting a desktop through the pull-down menu on the login page

CHAPTER 6 ■ TOPIC 106: USER INTERFACES AND DESKTOPS

94

 If an individual source is no longer trusted—or simply no longer needed—you can
remove its permission this way:

 xhost - 10.0.1.43

 A much more secure and reliable method for allowing remote graphic sessions involves
running X11 over SSH, which is something I’ll discuss in Chapter 10 (Linux security).

 Accessibility
 As a Linux administrator, your job will sometimes include providing special assistance
to users whose disabilities make working with normal keyboards, mice, and screens
difficult. Linux, like all major operating systems, provides a significant set of access tools
to help the disabled.

 For users with limited or no vision, the brltty daemon provides an interface to many
third-party braille display devices, allowing them to read a Linux console:

 sudo apt-get install brltty

 While brltty won’t work with most graphic screen objects, it can read and interpret
text elements. Here is where you will find full documentation:

 http://mielke.cc/brltty/doc/X11.html

 Most accessibility tools can be controlled through what Ubuntu calls the Universal
Access panel (see Figure 6-3).

http://dx.doi.org/10.1007/978-1-4842-2358-1_10
http://mielke.cc/brltty/doc/X11.html

CHAPTER 6 ■ TOPIC 106: USER INTERFACES AND DESKTOPS

95

 Other distributions might use a slightly different name or appearance, but the tools
will all be pretty much the same.

 With Screen Reader enabled, a voice will audibly read the screen element that currently
has focus. You can also use the Alt+Super+S keystroke combination to enable or disable
the reader (“Super,” by the way, refers to the Windows Super Key at the bottom left corner
of most keyboards). There is more than one screen reading package available, with each
offering a different combination of features. Orca and Emacspeak are prominent examples.

 High Contrast will convert the desktop theme to colors that are much easier for vision-
impaired users to recognize. Large Text will magnify parts of the screen, or at least it should.
Unfortunately, the Large Text tool on some Linux distributions appears to be broken right
now. You can, however, download KMag that, when you click the Mouse button, will follow
your mouse around the screen, providing a customizable magnified view.

 For people with difficulty using a keyboard or mouse, Linux provides helpful settings.
From the Typing tab of Ubuntu’s Universal Access panel, you can enable “On Screen
Keyboard” (also known as Gnome Onscreen Keyboard , or GOK), which will display a
window with a keyboard on which you can type using your mouse. Sticky Keys considers
a sequence of keystrokes as though they were typed at the same time. This can be helpful
for people finding it difficult to hold down, say, the Alt and Tab keys together. Sticky Keys
can be toggled on and off from the Universal Access panel, or by typing the Shift key five
times in a row.

 Slow Keys increases the time between a key being pressed and the time it is
recorded. Since keys must be held for longer before they “count,” people who have trouble
hitting the right keys the first time will find the process easier.

 Figure 6-3. Accessibility for users with various impairments can be managed through the
Universal Access panel

CHAPTER 6 ■ TOPIC 106: USER INTERFACES AND DESKTOPS

96

 To avoid accidentally duplicated keystrokes, Bounce Keys will ignore keystrokes that
come too quickly after a previous key is pressed.

 When Mouse Keys is enabled (from the Pointing and Clicking tab of the Universal
Access panel), the keypad keys will control the mouse. Pressing the down arrow, for
instance, will very slowly move the mouse toward the bottom of the screen. Pressing the
number 5 will cause it to click.

 Simulated Secondary Click will interpret a longer single click as though it were a
double-click, and Hover Click (also known as Dwell Click) will take the act of hovering
your mouse cursor over a spot as a click.

 Now Try This
 Hit the Internet to find the most overpowered (and overpriced), super-turbocharged
graphics card out there that’s compatible with your existing hardware. Then find out if it
will run on your current Linux distribution, and what you’ll have to do to make it work.

 To reward yourself for all your great work, actually purchase and install the card. I
will note that Bootstrap IT won’t be paying for it—you’ll have to figure that part out for
yourself.

 Test Yourself
 1. Which section in the xorg.conf file binds all elements

together?

 a. Screen

 b. Device

 c. ServerLayout

 d. InputDevice

 2. Which section in the xorg.conf file binds the video devices
together?

 a. Screen

 b. Monitor

 c. Device

 d. InputDevices

 3. Which of the following will display information about your X
settings?

 a. xwininfo

 b. man trident

 c. echo $DISPLAY

 d. xdpyinfo

CHAPTER 6 ■ TOPIC 106: USER INTERFACES AND DESKTOPS

97

 4. Which of the following does NOT contain settings to manage
your display manager?

 a. /etc/lightdm/lightdm.conf

 b. /etc/share/lightdm/lightdm.conf.d/

 c. /etc/lightdm/lightdm.conf.d/

 d. /usr/share/lightdm/lightdm.conf.d/

 5. Which of these will provide a kiosk environment?

 a. autologin-guest=true

 b. autologin-user-timeout=10

 c. allow-guest=false

 d. session-setup-script=command

 6. Which of these will interpret sequential keystrokes as though
they occurred at the same time?

 a. Bounce Keys

 b. Mouse Keys

 c. Sticky Keys

 d. Simulated Secondary Click

 Answer Key
 1. c, 2. a, 3. d, 4. b, 5. a, 6. c

99© David Clinton 2016
D. Clinton, Practical LPIC-1 Linux Certification Study Guide,
DOI 10.1007/978-1-4842-2358-1_7

 CHAPTER 7

 Topic 107: Administrative
Tasks

 Linux distributions generally work smoothly right out of the box. Still, in the interests
of security and reliability, many of the things you’ll want to do with your Linux OS will
require some fine tuning. So, for instance, resources belonging to certain users might
include the kind of sensitive information that needs protection from outside eyes; remote
backups and system monitoring tasks need to be automated; and all users, sooner or
later, are going to complain about some peculiarities of their spell checkers.

 System optimization, therefore, will be the focus of this chapter.

 Manage User and Group Accounts
 Since Linux was designed as a multiuser environment whose resources can be widely
shared, it needs a reliable system for managing access. The structural units that make it all
work are user accounts and group accounts. As mentioned previously, every object within
a Linux filesystem has a unique set of permissions, dictating who may use it and how.
Thus, as long as only the right people are signed in to their accounts and your permissions
are all set correctly, you can be sure that everything will work the way it should.

 Users
 A user’s basic profile—including username, UID and GID, home directory, and default
shell—is included in the /etc/passwd file. Here’s an example showing the user name,
group ID, home directory, and shell:

 steve:x:1013:1013:,,,:/home/steve:/bin/bash

 Many years ago, an encrypted version of each user’s password would also be stored
in passwd but, since passwd needs open read permissions, that led to unacceptable
vulnerabilities. Instead, encrypted passwords are stored in the /etc/shadow file , which is
read by the system whenever a user attempts to log in. If you try to read the shadow file,
you will find that you’re not allowed unless you invoke admin privileges:

CHAPTER 7 ■ TOPIC 107: ADMINISTRATIVE TASKS

100

 sudo cat /etc/shadow

 Here’s a sample entry from shadow (with a truncated version of the encrypted
password):

 steve:6OYGemJFs$fhLFANy.O4.0:16807:0:99999:7:::

 For many Linux distributions , user accounts are managed using the useradd,
userdel, and usermod tools.

 ■ Note I should mention that some distributions, including Debian and Ubuntu, prefer
adduser and deluser etc., which, with some subtle differences, cover pretty much the same
ground. However, since the LPI wants you to focus on useradd, that’s what I’ll do here.

 You can add a new user and, depending on your /etc/login.defs settings, a new group
of the same name by simply running useradd followed by the name you’d like for the new
account:

 sudo useradd -m mark

 The -m tells Linux to create a home directory for the new user, which, by default in
this case, will be /home/mark. Unless you specify otherwise, the contents of the /etc/skel
directory (known as the skeleton directory) will be copied to the new home directory . By
default, useradd will not prompt you to create a new password for the account. You will
have to run passwd to manually add one:

 sudo passwd mark

 Passwd can also be used to update an existing user’s password.

 ■ Note In case you’re wondering, I’m afraid I, too, can’t explain why the Unix password
command is spelled passwd. Perhaps the author of the program (Julie Haugh) really didn’t
like typing. I guess this will just have to be one of the many mysteries that add spice to our
otherwise dull, daily lives.

 Adding arguments to useradd can further define account attributes. Table 7-1
provides some examples (see man useradd for more).

CHAPTER 7 ■ TOPIC 107: ADMINISTRATIVE TASKS

101

 You can remove a user from the system using userdel:

 sudo userdel stanley

 To edit an account’s settings once it already exists, you can run usermod. You can, for
instance, set a date on which the account will expire using:

 sudo usermod -e 2017-12-31 mark

 You can change Mark’s login name to Henry with -l:

 sudo usermod -l henry mark

 This will NOT change the account name or the name of his home directory.
 If you want to temporarily lock Mark (or Henry, as I guess he’s now known) out of his

account, you can use:

 sudo usermod -L henry

 Using -U will unlock his account and -G will add or remove membership in a group:

 sudo usermod -G sudo henry

 Perhaps the greatest security weakness your system will face is its passwords, and the
last person you should trust with the creation of a strong and secure password is a human
being. Yet, there aren’t usually all that many alternatives. Ideally, all our users should use
 password vault software packages like Figaro or KeePassX , which can generate very strong
passwords and make them conveniently available when needed. But even that won’t
solve a different problem: how to get people to regularly update their passwords.

 You can use chage to force users to do just that:

 sudo chage -m 5 -M 30 Max

 Table 7-1. Examples of Arguments to Define Attributes

 –G (or –groups) Adds the new user to other groups.

 –s (or --shell) Specifies a default shell for user logins.

 –u (or --uid) Lets you manually specify a UID (rather than the UID that would
otherwise be automatically assigned).

CHAPTER 7 ■ TOPIC 107: ADMINISTRATIVE TASKS

102

 This will force Max to update his password no less than five days, but no more than
30 days since his previous update (m = minimum, M = maximum). Using:

 sudo chage -W 7 Max

 will send Max a warning seven days before his deadline. You can list Max’s current
settings using:

 sudo chage --list Max

 Groups
 For all their value, there are limits to the flexibility of an object’s permissions. Let’s say
that you’ve got a directory containing sensitive documents that you want some, but not
all, users to be able to both read and edit. One way to give an individual user those rights
is to make him the object’s owner, but that would exclude everyone else. Another method
is to open up access to all users, but that might be far too permissive for your needs.

 The solution is to create a group and give it rights over the directory . You can then
add all the users who need rights to the group.

 Here’s how it works. You create a new group—let’s call it backoffice—with:

 sudo groupadd backoffice

 Then you can add all the necessary users to the group using usermod -G for each
user (as above), or by adding the user names to the backoffice line from the /etc/group
file. Just remember to add only a comma (and no space) between each name on the line.

 Here’s an entry from the /etc/group file showing the sudo (admin) group and its two
current members:

 sudo:x:27:mike,steve

 Using groupmod will let you change some details, like the group name:

 sudo groupmod -n frontoffice backoffice

 And groupdel will—all together now—delete a group:

 sudo groupdel frontoffice

CHAPTER 7 ■ TOPIC 107: ADMINISTRATIVE TASKS

103

 You should be aware that, just as the /etc/passwd file contains information about
users, the /etc/group file is a list of all current groups. While I’m on that topic, you can
use getent to display the entries of a number of Name Service Switch libraries, including
passwd, group, hosts, aliases, and networks:

 getent passwd

 Automate System Administration Tasks
 It’s a sad fact that many of the most important administrative tasks are far more likely to
get done if they don’t have to rely on you to do them. People forget stuff and get distracted
by all kinds of things (most of which are featured on YouTube “You might like …” panels).
So if you want to make absolutely sure that your critical data backups and log-file
rotations happen when they should, automate ’em.

 Linux offers three main scheduling tools to help you out on this: cron, anacron, and at.

 Using cron
 The cron system is actually very simple to use. If you list items in the /etc/ directory with
cron in their names, you’ll get this:

 $ ls -l /etc/ | grep cron
 -rw-r--r-- 1 root root 401 Dec 20 2012 anacrontab
 drwxr-xr-x 2 root root 4096 Nov 22 22:21 cron.d
 drwxr-xr-x 2 root root 4096 Dec 21 12:29 cron.daily
 drwxr-xr-x 2 root root 4096 Oct 16 2013 cron.hourly
 drwxr-xr-x 2 root root 4096 Apr 27 2014 cron.monthly
 -rw-r--r-- 1 root root 722 Feb 9 2013 crontab
 drwxr-xr-x 2 root root 4096 Nov 22 22:12 cron.weekly

 Right now, you’re interested in the cron.daily, cron.hourly, cron.weekly, and cron.
monthly directories. If you want a script to automatically run at any one of those intervals ,
just save it to the appropriate directory and forget about it (assuming, of course, that you
made the script executable using chmod +x). This works because crontab—as directed
by the /etc/crontab file—regularly reads and then executes any scripts found in these
directories. Here’s my system’s crontab file:

 $ cat /etc/crontab
 # m h dom mon dow user command
 17 * * * * root cd / && run-parts --report
 /etc/cron.hourly
 25 6 * * * root test -x /usr/sbin/anacron || (cd / && run- parts --report /
etc/cron.daily)

CHAPTER 7 ■ TOPIC 107: ADMINISTRATIVE TASKS

104

 47 6 * * 7 root test -x /usr/sbin/anacron || (cd / && run- parts --report /
etc/cron.weekly)
 52 6 1 * * root test -x /usr/sbin/anacron || (cd / && run- parts --report
/etc/cron.monthly)

 The commented-out line at the top of the file tells us what each column represents.
The first field (17, in the first row) is the number of minutes into an hour at which the
scripts will be executed. The second column (h) is the hour of the day; dom stands for
day of month, mon for month, and dow for day of week. Which means that the scripts in
the first row will be executed 17 minutes after the start of each hour, on each day of every
month, regardless of which day of the week it comes out on.

 This, of course, makes sense for scripts saved to cron.hourly. To take the last row as
another example, scripts in the cron.monthly directory will be executed once on the first
day of each month at 6:52 a.m.

 By the way, for compatibility reasons, the numbers 0 and 7 of the dow column both
refer to Sunday.

 Although the file shown above was the general system crontab, each individual user
will have their own crontab file. Technically, user crontabs are kept in the /var/spool/cron
directory tree, but you shouldn’t really work with those. Instead, running:

 crontab -e

 will open an editor with excellent documentation where you can create your own cron
jobs.

 While this isn’t on the LPIC exam, you should be aware that crontab functionality
can be handled on Systemd distributions using timer units. When you do set up your first
Systemd job, you will probably discover that they’re a bit more complicated than cron.
You’ll first need to create a file with the .timer extension in /etc/systemd/system/, then
another file with a .target extension in the same directory to act as its target, and finally
a third file as a service (with a .service extension). You then activate the job through
systemctl:

 systemctl enable /etc/systemd/system/jobname.timer
 systemctl start /etc/systemd/system/jobname.timer
 systemctl enable /etc/systemd/system/servicename.service

 Using anacron
 Cron works wonderfully for servers that are running 24 hours a day. However, if you’re
managing workstations or PCs that are turned off at night and over weekends—or
virtualized Docker-like containers that may only live for a few minutes or hours—then
you’ll need a different solution. Welcome to anacron.

 The anacrontab file that’s kept in the /etc/ directory looks a bit like crontab, except
that there are far fewer columns controlling timing. Here’s a sample anacrontab file:

CHAPTER 7 ■ TOPIC 107: ADMINISTRATIVE TASKS

105

 $ cat /etc/anacrontab
 # These replace cron's entries
 1 5 cron.daily run-parts --report /etc/cron.daily
 7 10 cron.weekly run-parts --report /etc/cron.weekly
 @monthly 15 cron.monthly run-parts --report
 /etc/cron.monthly

 The first column sets the number of days you want to leave between executions. The
number 1 would execute the job every day, while the number 7 would do it once a week.
Populating the field with the value @monthly indicates a single execution each month.
The next column tells anacron how long, in minutes, the system should wait after booting
before executing the command.

 During this discussion of crontab, you will have no doubt noticed that the final
three jobs in the crontab file included test -x /usr/sbin/anacron. This will check to see if
anacron is executable and, if it is NOT available, execute the job that follows.

 Using at
 The at program allows a command or script to be scheduled for a single execution at
some later time. The scheduling function is actually quite flexible and can take a number
of formats. You can, for instance, schedule an event relative to the current time:

 at now +15 minutes

 You could also use one of a number of designations for the next occurrence of an
absolute time:

 at 14:30
 at noon
 at midnight
 at teatime

 Teatime, by the way, is the break enjoyed at four in the afternoon by many in England
(and in some lands under their influence).

 You schedule an at job by typing a time as above and, in the new shell that will open,
the command or commands you’d like to be executed. When you’re done, press Ctrl+d to
exit the shell:

 at 14:30
 > cat /etc/passwd > ~/useraccounts.txt

 You can run atq to display a list of pending at jobs along with their IDs:

 atq

CHAPTER 7 ■ TOPIC 107: ADMINISTRATIVE TASKS

106

 With that information, you can cancel a pending job using atrm:

 atrm <ID>

 The batch program (even though it shares a name with the old DOS.BAT files) works
much the same as using at, but it will only execute a job if the system load levels permit it.

 The /var/spool/cron directory contains cron and at files created by regular users.
 Finally, you can control which of your users are allowed to create at or cron jobs

through whitelists and blacklists. If any users appear in the at.allow file in /etc/, then
they—and only they—will be permitted to create at jobs. If there is no at.allow file, or if
the file is empty, then all users will be permitted to create at jobs except for those listed
explicitly in the at.deny file. The exact same protocol is followed for the cron.allow and
cron.deny files.

 Localization and Internationalization
 In an age when just about every device is networked, if you want your machines to be
able to reliably talk to each other, maintaining the correct time, time zone, and locale is
more important than ever. You can display the system time and date using date. The --set
argument lets you set the date and time in this format:

 date --set="20160625 06:10:00"

 On Systemd systems, timedatectl acts in much the same way. You can set your
system to synchronize with an NTP server using:

 timedatectl set-ntp true

 Information on time zones throughout the world is kept in the /usr/share/zoneinfo
directory tree. You might have to drill down a level or two to get to your city. The function
of these files is to serve as targets to which you can link to obtain time zone data.

 You can update your system time zone setting by creating a symbolic link between
the /etc/localtime file and the appropriate time zone source file. In my case, it might work
like this:

 ls -sf /usr/share/zoneinfo/America/Toronto /etc/localtime

 Another way to do the same thing is by running either tzselect or dpkg- reconfigure
 tzdata and following instructions. Just in case three alternative tools aren’t enough for
you, you can also update your time zone by manually editing the /etc/timezone file,
creating a TZ system variable using:

 export TZ=Asia/Manila

CHAPTER 7 ■ TOPIC 107: ADMINISTRATIVE TASKS

107

 or, on Systemd systems (and assuming you live in New York), through:

 sudo timedatectl set-timezone America/New_York

 I believe that this is the most overserved system setting in all of Linuxdom.
 You can, by the way, add Systemd functionality to non-systemd systems by installing

the systemd-services package:

 sudo apt-get install systemd-services

 Besides your time and time zone settings, you also have to worry about locale. But
what, you might ask, is locale?

 Besides languages and alphabets, the way you represent certain values will differ
depending on where you live. Even among English-speaking countries , for instance, there
are significant variations in spelling. There are, as another example, quite a few formats
used to write dates using numbers. (For the life of me, I can never remember whether I’m
supposed to understand 15/04/06 as June 4, 2015, March 6, 2015, or March 15, 2004.)

 These values are all controlled by the localization settings. To list your current locale
settings, run:

 $ locale
 LANG=en_CA.UTF-8
 LANGUAGE=
 LC_CTYPE="en_CA.UTF-8"
 LC_NUMERIC=en_CA.UTF-8
 LC_TIME=en_CA.UTF-8
 LC_COLLATE="en_CA.UTF-8"
 LC_MONETARY=en_CA.UTF-8
 LC_MESSAGES="en_CA.UTF-8"
 LC_PAPER=en_CA.UTF-8
 LC_NAME=en_CA.UTF-8
 LC_ADDRESS=en_CA.UTF-8
 LC_TELEPHONE=en_CA.UTF-8
 LC_MEASUREMENT=en_CA.UTF-8
 LC_IDENTIFICATION=en_CA.UTF-8
 LC_ALL=

 As you can see, there’s quite a list of locale categories. They can each be set
separately but, by default, they all follow the LANG setting.

 Before you can change your locale, you’ll need to know which alternate locales are
available to you. To list them, run:

 locale -a

CHAPTER 7 ■ TOPIC 107: ADMINISTRATIVE TASKS

108

 To list all supported locales (even those that aren’t currently locally available), view
the /usr/share/i18n/SUPPORTED file:

 cat /usr/share/i18n/SUPPORTED

 To import a supported locale, run locale-gen. This example will make the Russia
locale, using UTF-8 encoding , available:

 locale-gen ru_RU.UTF-8

 Then, running:

 LANG=ru_RU.utf8

 will set that locale, but only for the current shell session. Adding export LANG=en_US.utf8
to the ~/.bashrc or ~/.profile file will make that locale permanent for that user. You will
need to log out and log in again for the change to take effect.

 Changing the LANG variable in the /etc/default/locale file to read like this:

 LANG="en_US.utf8"

 which will set the locale for all users. Again, this will only take effect for new sessions.
 Table 7-2 lists some of those locale categories and their purposes.

 LC_ALL= will, when given a value, apply that value to all locale categories.
 LANG=C is another special locale setting that can sometimes be useful. This will emulate

C language syntax and conventions and is used because it’s very unlikely to cause conflicts,
given that C is the programming language in which most operating systems were written.

 Table 7-2. Some Common Linux Locale Values

 LC_TIME Date and time formats.

 LC_NUMERIC Nonmonetary numeric formats.

 LC_MONETARY Monetary formats.

 LC_PAPER Paper size (i.e., A4 for Europe and Letter for North America).

 LC_ADDRESS Address formats and location information.

 LC_TELEPHONE Telephone number formats.

 LC_MEASUREMENT Measurement units (Metric or Other).

 LC_IDENTIFICATION Metadata about the locale information.

CHAPTER 7 ■ TOPIC 107: ADMINISTRATIVE TASKS

109

 Finally, character encoding can play a large role in localization. The example I
used above specified UTF-8 as the default encoding, and that’s generally a very safe bet.
However, there are other options, including ISO-8859, ASCII, and Unicode.

 Should you need it, you can use the iconv program to convert a text file between
character encodings:

 iconv -f ascii -t utf8 oldfilename > newfilename

 Now Try This
 Create a new directory called /var/opt/myapp to store program data from your
(imaginary) myapp application. Next, create a new group called myapp and give it rights
over the directory. Finally, create a new user and add him to the myapps group, but do not
give the new user sudo rights.

 Switch to the new user using su and try to copy a file to the /var/opt/myapp directory
to confirm that everything is working the way it should.

 Test Yourself
 1. Encrypted passwords are stored in which of these?

 a. /etc/passwd

 b. /etc/usermod

 c. /usr/passwd

 d. /etc/shadow

 2. Which of these will suspend a user’s account?

 a. sudo usermod -L henry

 b. sudo usermod -l henry

 c. sudo usermod -s henry

 d. sudo usermod -G henry

 3. Which of these will set a maximum expiry date for a user’s
password?

 a. sudo chage -m 30 Max

 b. sudo chage -M 30 Max

 c. sudo passwd -m 30 Max

 d. sudo shadow -M 30 Max

CHAPTER 7 ■ TOPIC 107: ADMINISTRATIVE TASKS

110

 4. How can you change a group name from backoffice to
frontoffice?

 a. sudo groupmod -n backoffice frontoffice

 b. sudo groupmod -n frontoffice backoffice

 c. sudo groupadd -n backoffice frontoffice

 d. sudo groupadd -w backoffice frontoffice

 5. When will this crontab job execute?: 30 14 * * 3

 a. 2:00 p.m. every day of March.

 b. 2:30 p.m. every Wednesday of every month.

 c. 2:30 a.m. every Tuesday of every month.

 d. 2:30 p.m. every Monday of every month.

 6. When will this anacron job execute?: 7 20

 a. Once a week, at least 20 minutes after boot and assuming
there is no overlapping crontab job.

 b. Once a week assuming it’s after the 20th of the month.

 c. Once a week, at least 20 minutes after boot.

 d. On the 20th of the month, seven minutes after boot.

 7. To prevent all users besides Henry from creating at jobs,
create ____:

 a. an at.allow file with his name in it.

 b. an at.deny file with his name in it.

 c. an at.deny file with the names of all other users in it.

 d. a cron.allow file with his name in it.

 8. Which of these will NOT work to update your time zone?

 a. ls -sf /usr/share/zoneinfo/America/Toronto /etc/
localtime

 b. export TZ=Asia/Manila

 c. dpkg-reconfigure tzselect

 d. sudo timedatectl set-timezone America/New_York

 Answer Key
 1. d, 2. a, 3. b, 4. b, 5. b, 6. c, 7. a, 8. c

111© David Clinton 2016
D. Clinton, Practical LPIC-1 Linux Certification Study Guide,
DOI 10.1007/978-1-4842-2358-1_8

 CHAPTER 8

 Topic 108: Essential System
Services

 Like all operating systems, Linux quietly provides a number of seemingly minor, but
critical, services. In this chapter, you’ll learn about managing the Linux services that
oversee the accuracy of your time settings, the way events are logged, and e-mail and
printing facilities. These things may not seem all that exciting, but just imagine what life
would be like for you as an administrator if any one of them ever failed.

 Maintain System Time
 Besides ensuring that your computer’s time zone setting is correct, as discussed in
Chapter 7 , it’s also critically important to make sure that your system time is in sync with
reality. This is true for anyone using a PC or smartphone who doesn’t want to arrive late
for a dentist appointment, but it’s many, many times more true for an application server
that’s processing financial transactions whose time stamps simply must be completely
accurate.

 I was once involved in an IT project that required closely coordinating the behavior
of dozens of routers to within 1/100 of a second of each other. If I got that wrong, we
risked the loss of thousands of dollars of equipment.

 So, having said that, have you got the time?

 The Hardware Clock
 Well, as it turns out, the answer to that question will depend on which part of your
computer you’re talking to. The hardware clock (also known as the BIOS clock, the
CMOS clock, or the real-time clock [RTC]) will respond one way, and the software system
time will often respond with something else. That’s largely because, when left to its own
devices (so to speak), the hardware clock measures time in complete isolation from the
rest of the world. Just like the time on your quartz watch will sometimes be a bit behind or
ahead, the CMOS battery can lead the hardware clock astray in relation to network time.

http://dx.doi.org/10.1007/978-1-4842-2358-1_7

CHAPTER 8 ■ TOPIC 108: ESSENTIAL SYSTEM SERVICES

112

 The system clock, on the other hand, can be synchronized with highly accurate
NTP (Network Time Protocol) time servers over the Internet. I’ll discuss setting up NTP
connectivity in a just a minute or two, but first, let’s look at the relationship between the
hardware and system clocks.

 As already mentioned, you can display the system time through the date command:

 date

 You can display the current hardware time with:

 sudo hwclock -r

 When everything is said and done, is it really healthy to have two conflicting times
being used on one machine? It’s not always a problem, as software services tend to work
exclusively with the system time, but in those cases where you need to coordinate things,
help is at hand. You can update your system clock so it will be set to the current hardware
time using hctosys :

 sudo hwclock --hctosys

 And you can update your hardware time to match the system value using systohc:

 sudo hwclock --systohc

 Once your hardware clock is properly set, you might also want it to report time
according to your local time zone or to a different value, usually UTC (Coordinated
Universal Time, a common international standard):

 sudo hwclock --localtime
 sudo hwclock --utc

 You can also manually set the hardware time using this format:

 hwclock --set --date="8/10/16 13:30:00"

 Network Time Protocol (NTP)
 If you want to properly coordinate your system time with a reliable network time provider,
you’ll need to use some kind of NTP service. The ntpdate program can be used from the
command line or from within a script to update your system time to one or more specified
network servers. One variation of this for Debian or Ubuntu systems is ntpdate-debian:

CHAPTER 8 ■ TOPIC 108: ESSENTIAL SYSTEM SERVICES

113

 sudo ntpdate-debian

 By default, ntpdate-debian will poll the ntp.ubuntu.com server.
 If necessary, ntpdate will adjust your system time gradually, to reduce the risk

of conflicts. If the local error is less than 128 milliseconds, ntpdate will use slewing to
gradually make the change. If the error is greater than 128 milliseconds, then it will use
stepping instead. If your system time is more than 1,024 seconds off—known as insane
time—no changes will be made until you manually correct it.

 Although ntpdate is not nearly as accurate over the long term as NTP, it can
sometimes be useful to prepare your system for NTP.

 So let’s talk about NTP. The NTP service—effectively the product of the labor of just
one man: David L. Mills of the University of Delaware—draws on reliable time sources
like the US Naval Observatory in Bethesda, Maryland.

 A server that takes its time directly from a primary source like the observatory is
called a stratum 1 server. Servers that are configured to receive their time from a stratum 1
server are known as stratum 2 servers, and so on until stratum 15.

 Obviously, the closer your computer (known as a consumer) is to stratum 1, the
more reliable its time will be. However, if all computers tried to take their time from a
single stratum 1 server, the load might become too great to handle. To prevent this, NTP
prefers that you set your NTP configuration to get its time from an NTP pool.

 Let’s see how all this works. You can install the NTP program from the regular
repositories. On Debian systems, you can use:

 sudo apt-get install ntp

 Once it’s installed, you can monitor the service using the ntpq shell , or from the command
line by adding parameters to the ntpq command; -p will, for instance, list existing peers:

 ntpq -p

 The NTP configuration is kept in the /etc/ntp.conf file. Here are some excerpts from
a typical .conf file on an Ubuntu machine. I will describe them as I go along:

 # /etc/ntp.conf, configuration for ntpd; see ntp.conf(5)
 # for help
 driftfile /var/lib/ntp/ntp.drift

 Drift occurs when a clock is either faster or slower than a reference clock (a network
time provider, in this case). The drift value, often stored in the ntp.drift file in the /var/
lib/ntp/ directory, is measured in parts per million (ppm). If your drift value is a positive
number, it means your clock is moving too fast. If it’s negative, your clock is slow:

 # Enable this if you want statistics to be logged.
 #statsdir /var/log/ntpstats/

CHAPTER 8 ■ TOPIC 108: ESSENTIAL SYSTEM SERVICES

114

 The statsdir setting will enable logging of NTP statistics to files in the /var/log/
ntpstats/ directory:

 # Specify one or more NTP servers.
 # Use servers from the NTP Pool Project. Approved by
 # Ubuntu Technical Board on 2011-02-08 (LP: #104525).
 # See http://www.pool.ntp.org/join.html
 # for more information.
 server 0.ubuntu.pool.ntp.org
 server 1.ubuntu.pool.ntp.org
 server 2.ubuntu.pool.ntp.org
 server 3.ubuntu.pool.ntp.org

 This is probably the most important section of the file. On Ubuntu systems , servers
from the Ubuntu NTP pool are automatically added, sending you randomly to any one
of the four. You could, of course, remove these servers and replace them with your own,
including private NTP servers within your own network.

 The next line designates a fallback server if the pool fails:

 # Use Ubuntu's ntp server as a fallback.
 server ntp.ubuntu.com

 The last line I’ll discuss allows you to set your computer up as a server for other
consumers. You would, of course, need to remove the hash symbol (#) from the broadcast
line and change the IP address to match the broadcast address of your subnet:

 # If you want to provide time to your local subnet,
 # change the next line.
 # (Again, the address is an example only.)
 #broadcast 192.168.123.255

 System Logging
 All kinds of Linux services and programs output log data as part of their activities.
Whether they’re error messages, success notifications, user login records, or system crash
information, these messages need to be directed and saved in a way that will make them
useful. A common protocol for managing log files and the way they’re populated is rsyslog.

 Using syslogd
 The rsyslog is just one of many syslog log management protocols that allows you to
control the creation and movement of log data; rsyslog itself replaced syslog on many
systems and seems more widely used. Besides those two, syslog-ng (known for its

CHAPTER 8 ■ TOPIC 108: ESSENTIAL SYSTEM SERVICES

115

content-based filtering) and klogd (which focuses on kernel messaging) have also
enjoyed widespread adoption.

 As you’ve already seen a number of times, most Linux log files—at least those in
traditional Linux architectures—live in or below the /var/log/ directory. On systems using
rsyslog, the flow of log data is controlled through the /etc/rsyslog.conf file, which points
to additional config files in the /etc/rsyslog.d/ directory . Here is a section from a typical /
etc/rsyslog.d/50-default.conf file:

 auth,authpriv.* -/var/log/auth.log

 .;auth,authpriv.none -/var/log/syslog

 cron.* -/var/log/cron.log

 daemon.* -/var/log/daemon.log

 kern.* -/var/log/kern.log

 lpr.* -/var/log/lpr.log

 mail.* -/var/log/mail.log

 #user.* -/var/log/user.log

 Let’s try to understand what it all means. The information flowing from services can
be broken down into a number of facilities:

 auth lpr security (same
as auth)

 authpriv mail syslog

 cron mark user

 daemon news uucp

 kern,

 and user-defined facilities are named local0 through local7.
 Messages from each of those facilities can be categorized using one of these priority

levels:

 debug warn (same as warning) alert

 info err emerg

 notice error (same as err) panic (same
as emerg)

 warning crit

 Error, warn, and panic have all been deprecated.

CHAPTER 8 ■ TOPIC 108: ESSENTIAL SYSTEM SERVICES

116

 A facility that’s represented together with a priority like this:

 cron.err

 would be an instruction to log all error messages from the cron facility to the designated
log file (as mentioned in the right-hand column).

 With that information, you’ll decode the second line of the 50- default.conf file. The
. means that all messages from all priority levels will be added to /var/log/syslog, even
if they’re also sent to other log files. The ;auth,authpriv.none at the end of the facility line
means that messages from the auth and authpriv facilities will NOT be logged.

 You can edit an entry to change its behavior. If you didn’t want all mail messages to
be added to the mail.log file, you could change mail.* to mail.alert so that only messages
of priority alert and higher will be sent, but not those of lower priority.

 Using journald
 By default, Systemd-based Linux distributions like Red Hat and CentOS (and Ubuntu
from 15.04 and up) have replaced individual log files like syslog and dmesg with a single
binary logging system managed by journald. The journal itself is written to the /var/
log/journal/ directory. You can view and manage logs through journalctl . Adding -e, for
instance, will display only the 1,000 most recent journal entries from all sources:

 journalctl -e

 You can also use journalctl to check how much disk space your logs are currently
using. This is more important than you might think, as logs can sometimes grow to
enormous sizes and, if left untended, effectively cripple entire systems:

 $ journalctl --disk-usage
 Journals take up 88.0M on disk.

 You can edit journald settings through the journald.conf file:

 nano /etc/systemd/journald.conf

 There, you will be able to set system values like how large the journal file will be
allowed to grow (#SystemMaxFileSize=).

 Using logger
 On first glance, you might think the logger tool is just about as useful as a remote control
for a car radio. Now don’t laugh: I once had to buy an after-market radio/CD player for my

CHAPTER 8 ■ TOPIC 108: ESSENTIAL SYSTEM SERVICES

117

car and it came with a remote. None of the techs who installed it could figure out what it
was for either. I mean, just how far could you get from the dashboard while you’re driving?

 But logger, a tool that lets you post text strings to a log file directly from the command
line, might seem just as silly. That is, until you realize that you might sometimes need
important events recorded manually with the accurate time stamp of a log file. Or,
alternatively, you might want to include a simple logging mechanism within a script. In
any case, you should be familiar with logger.

 Open up two terminals side by side. In the first, use tail to print ongoing entries in
syslog:

 tail -f /var/log/syslog

 In the second terminal, type:

 logger Hello there!

 You should be able to see your latest “Hello there!” added to the syslog file, along
with your account name (the source) and the time/date stamp. You can also control
where a message is logged by adding a value for -p:

 logger -p lpr.crit Help!

 This will log the word “Help!” to the lpr (printer) log file and categorize it with a
priority of crit.

 Using logrotate
 As mentioned earlier, the sheer volume of log messages produced by a busy Linux system
can quickly overwhelm available storage space. Rather than simply deleting files when
they grow too large (which can lead to the premature loss of valuable data), the solution
is to rotate them. Rotation behavior is controlled by settings in the /etc/logrotate.conf file.
Let’s look at a few lines from the file.

 # rotate log files weekly
 weekly

 This sets the system default for log rotation frequency:

 # keep 4 weeks worth of backlogs
 rotate 4

CHAPTER 8 ■ TOPIC 108: ESSENTIAL SYSTEM SERVICES

118

 This tells the system how long older, rotated logs should be kept before being
deleted:

 # uncomment this if you want your log files compressed
 #compress

 When activated, this setting will compress rotated log files in order to save space:

 # packages drop log rotation information into this directory include /etc/
logrotate.d

 This line points to files in the /etc/logrotate.d/ directory where nonsystem packages
can keep their own log file rotation config files:

 Here’s a snippet from the /etc/logrotate.d/apt file that controls rotation rules for logs
generated by the apt package manager:

 /var/log/apt/history.log {
 rotate 12
 monthly
 compress
 missingok
 notifempty
 }

 Mail Transfer Agent Basics
 E-mail, despite many earnest predictions to the contrary over the past 20 years or so, is
still very much alive and well. And despite the existence of powerful enterprise e-mail
solutions from providers like Google, you might still one day be called upon to create an
e-mail server to handle mail for a private domain. Having done this myself more than
once, I can tell you that it’s not nearly as hard as it might seem.

 A mail transfer agent (MTA) uses protocols like the Simple Mail Transfer Protocol
(SMTP) for sending mail, and the Post Office Protocol 3 (POP3) or Internet Message
Access Protocol (IMAP) for receiving.

 From the perspective of a command-line user, the four better-known Linux e-mail
agents (qmail, postfix, sendmail, and exim) share a similar interface. The truth is, that
qmail is no longer maintained, and exim seems to be largely unused, partly due to its
poor reputation for security. But the LPI expects you to be at least familiar with their
existence.

 Here I’ll focus on postfix, although most of the commands you will see should work
for any package. You prepare your server by installing postfix and mailutils:

 apt-get install postfix mailutils

CHAPTER 8 ■ TOPIC 108: ESSENTIAL SYSTEM SERVICES

119

 You’ll be asked to set your domain during the installation process, but you can
always leave it for now and add it later by editing the mydestination line of the /etc/
postfix/main.cf file. You will have to open up port 25 for incoming traffic in order to
receive e-mail.

 Now that it’s installed, you can send mail to a local address (any user account on the
system) using the sendmail command:

 sendmail -t tony

 You might be prompted for a subject, which you can fill in, and then hit Enter. On the
next line, you can compose your message, hitting Enter and then Ctrl+d to save and send
the mail.

 Typing simply mail at the command line will list all the e-mails your account has
received. By typing the number next to a message, you can read it. Typing d after reading
it will delete the message, and q will exit the shell. If you have trouble either sending or
receiving mail, be sure to check the logs, which, on Debian systems , can be found in the /
var/log/mail file.

 You can create aliases , which are groups of mail recipients, by editing the /etc/aliases
file:

 sudo nano /etc/aliases

 Just add a new line with the name of your alias group, a colon, a space, or tab, and
the names of the people you want to include:

 marketing: tony, salesguys@gmail.com, steve@mycompanyname.com

 To tell postfix about the new alias, run:

 sudo newaliases

 and you’re done.
 Assuming that you chose marketing as the name for your new alias, you can now use

the alias name on your e-mail like this:

 sendmail -t marketing

 Your e-mail will automatically be sent to all the users listed as part of the alias.
 If you would like to forward e-mails received by a particular e-mail account to a

different address, create a new file in the home directory of the account whose mail you
want forwarded:

 touch ~/.forward

CHAPTER 8 ■ TOPIC 108: ESSENTIAL SYSTEM SERVICES

120

 Then add the address to which you want mail forwarded to the file.

 echo salesguys@gmail.com >> .forward

 Finally, as you might expect, you can view pending e-mails using mailq:

 mailq

 Manage Printers and Printing
 Remember that paperless office we were told digital networks and computers would give
the world? That one didn’t seem to work out so well, did it? Printers today go through
more paper than would have ever been possible in the good old days of pencils and desks.

 Which is just a way of saying that managing printers is going to be as important a
part of any admin’s job as it ever was in the past. The only difference is that the quality
and reliability of printers have improved. Not to mention that there are now good Linux
software drivers available for just about every modern model.

 Linux distributions will usually use CUPS (the Common Unix Printing System)
to manage printers. You can certainly configure and manage CUPS through the CUPS
configuration file at /etc/cups/cupsd.conf, but, as you can see from Figure 8-1 , most
people access the browser-based interface at http://localhost:631 .

 Either way, you can use CUPS to perform administrative tasks like adding or
removing printers, controlling network accessibility, updating drivers, or managing
classes (groups of printers that can be used on an as-available basis). CUPS logs are
(on Debian systems at least) usually kept in /var/log/cups, but you can view them in the
browser interface as well.

 Figure 8-1. The CUPS (Common Unix Printing System) browser administration interface

http://localhost:631/

CHAPTER 8 ■ TOPIC 108: ESSENTIAL SYSTEM SERVICES

121

 ■ Note Fun fact: I’ll bet you didn’t know that CUPS is feely provided and maintained by
Apple. That’s right: Apple Inc.

 Before there was CUPS, Linux folk printed using the lpd command-line interface . To
your unending joy, lpd still exists, and the LPI expects you to be familiar with its workings
for their exam. The truth is, though, that the basic lpd commands aren’t complicated at
all and generally follow the same patterns that we’ve seen in a number of other places. So
don’t worry too much about this.

 The lp daemon is actually now aware of the CUPS configuration and will therefore
know all about your installed printers without requiring your input. If you’ve never had
to manually configure a dot matrix printer connected through a 25-pin parallel cable, you
can’t really appreciate what good news this is.

 Getting started is as simple as pointing to a file:

 lp mytext.txt

 If you’ve got more than one printer connected to your system (or perhaps via a
network), you can specify the one you want. This command will print to my Brother laser
printer:

 lp -d DCP7060D mytext.txt

 If you’re not sure what your printer is called, run:

 lpq

 You can also print a text stream directly from the command line:

 echo hello | lp

 but that just wastes a perfectly fine sheet of paper!
 Using lpq will also list any pending print jobs. If you’d like to remove a job (perhaps

to clear a jam in the queue), use lprm and the job number:

 lprm 423

 Using lprm followed by a dash:

 lprm -

CHAPTER 8 ■ TOPIC 108: ESSENTIAL SYSTEM SERVICES

122

 will remove all the jobs in the queue.
 You can block new jobs from reaching a printer using cupsreject:

 cupsreject DCP7060D

 and unblock it with:

 cupsaccept DCP7060D

 Now Try This
 Write a short script that will execute a command (say, to read the contents of /etc/
passwd) and then post a message that indicates success to the auth.alert log facility. Test
your script to make sure it works, then use the cron system to make sure it runs regularly,
once an hour.

 Don’t forget to cancel the once-an-hour thing when you’re done. You should always
clean up your toys when you’re done playing with them.

 Test Yourself
 1. What will sudo hwclock --hctosys do?

 a. Update your hardware time to match the system time.

 b. Display the current hardware time.

 c. Tell the clock to report using UTC.

 d. Update your system time to match the hardware time.

 2. The value contained in /var/lib/ntp/ntp.drive is measured
in: _______

 a. ppm

 b. milliseconds

 c. seconds

 d. mta

 3. Which of these systems uses a binary logging system?

 a. syslogd

 b. journald

 c. rsyslogd

 d. klogd

CHAPTER 8 ■ TOPIC 108: ESSENTIAL SYSTEM SERVICES

123

 4. Where can packages keep config files controlling their logging
behavior?

 a. /etc/systemd/

 b. /etc/logrotate.d/

 c. /var/log/syslog/

 d. /etc/rsyslog.d/

 5. Which packages do you need to install to get the postfix MTA
working?

 a. mailutils and postfix

 b. sendmail and postfix

 c. exim and mailutils

 d. mailutils, postfix, and newaliases

 6. Which file do you edit to change your e-mail domain
information?

 a. /etc/mailutils/main.cf

 b. /etc/mail/mailutils/config.conf

 c. /etc/postfix/main.cf

 d. /etc/mail/postfix.conf

 7. You can list all attached printers using:

 a. lp -d

 b. lp -ls

 c. lprm -

 d. lpq

 Answer Key
 1. d, 2. a, 3. b, 4. b, 5. a, 6. c, 7. d

125© David Clinton 2016
D. Clinton, Practical LPIC-1 Linux Certification Study Guide,
DOI 10.1007/978-1-4842-2358-1_9

 CHAPTER 9

 Topic 109: Networking
Fundamentals

 Without a way to accurately identify how to reach devices, all network (and Internet)
communication would simply collapse. My computer might be physically connected to
yours (and to a million others), but expecting my e-mail to magically find its destination
without a routable address is like throwing a bottle with a message inside into the ocean
and expecting it to arrive on the kitchen table of a friend who lives ten thousand miles
away. Within five minutes.

 Fundamentals of Internet Protocols
 Broadly speaking, modern networks rely on three conventions to solve the problem of
addressing: transmission protocols (like TCP, UDP, and ICMP), network addressing (IPv4
and IPv6), and service ports.

 Transmission Protocols
 The Transmission Control Protocol (TCP) carries most web, e-mail, and ftp
communication. It is TCP’s packet verification feature that qualifies it for content that
can’t afford to arrive incomplete. The User Datagram Protocol (UDP) is a good choice for
when verification isn’t needed, as with streaming video and VOIP (Voice Over Internet
Protocol), which can tolerate some dropped packets. UDP does provide checksums.
The Internet Control Message Protocol (ICMP; part of the Internet layer of the Internet
protocol suite, rather than the Transport layer) is used mostly for quick and dirty
exchanges like ping.

 Network Addressing
 Every network-connected device must have its own unique IP (Internet Protocol) address.
I’ll discuss IPv6 addresses a bit later, but for now, let’s work with IPv4.

CHAPTER 9 ■ TOPIC 109: NETWORKING FUNDAMENTALS

126

 IPv4
 An IPv4 address is made up of four numeric octets, each comprised of a number between
0 and 255, such as this:

 192.168.0.101

 Those four octets are divided into two parts: octets toward the left describe networks,
and octets to the right describe individual nodes (each of which can be assigned to
a single device). Put in slightly different terms, the network is the larger space within
which local devices exist and communicate freely with each other. The nodes are those
individual devices.

 In one possible configuration of the above example, the first three octets (192.168.0)
might have been set aside as the network, and the final octet (101) is the node address
given to a particular device. Such a network could have as many as 256 devices (although
at least three of those addresses—0, 255, and often 1—are reserved for network use).

 This can be described either through a netmask, such as 255.255.255.0, or using the
CIDR (Classless Inter-Domain Routing) convention, such as 192.168.0.0/24. The 24 in this
case represents the network portion, made up of 24 bits, or three 8-bit octets (3*8=24).

 However, the same address could actually be used for completely different network
structures. Let’s say, by way of an example, that our network will grow beyond 256
devices. We could reserve two octets for nodes rather than just one. In this case, only the
first two octets would make up the network (subnet) address: 192.168, freeing the other
two octets for nodes. This would make more than 65,000 (256*256) addresses available.
Here’s what the netmask of such an address would look like:

 255.255.0.0

 And here’s how the same network would be represented using the CIDR format
(remember: 2*8=16):

 192.168.0.0/16

 Let’s go back to the original example (192.168.0.0/24). The third octet was, as you will
remember, part of the network address. But you can use it to create multiple subnets . One
subnet, allowing (around) 256 nodes, would be:

 192.168.0

 But you could create a second subnet that would allow a different set of (around) 256
nodes using this notation:

 192.168.1

CHAPTER 9 ■ TOPIC 109: NETWORKING FUNDAMENTALS

127

 In fact, you could create more than 250 separate networks, each supporting more
than 250 unique nodes, all the way up to:

 192.168.254

 Why would you want to do this? Because networking is about more than just
connecting devices, it’s also about managing and, sometimes, separating them. Perhaps
your company has resources that need to be accessible to some people (the developers,
perhaps) but not others (marketing). But marketing might need access to a whole
different set of resources. Keeping them logically separated into their own subnets can be
a super efficient way to do that.

 One more point about subnetting: to make things just a bit more complicated,
you can use addresses from a single octet for both networks and nodes. You could, for
instance, reserve some of the third octet for networks and the rest for device nodes. It
might look something like this in CIDR:

 172.16.0.1/20

 and would have a netmask of:

 255.255.240.0

 It takes a while to absorb these rules. As always, you’ll learn quickest by playing with
your own networks (I’ll demonstrate the tools you can use for this later). In the meantime,
by doing a Google search for “subnet calculator” you can find a number of terrific tools to
help you visualize and design an infinite range of subnets.

 Network Address Translation (NAT)
 You may have noticed that my examples above were all either in the 192.168 or 172.16
address ranges. There’s a reason for that (although the basic rules discussed will apply to
all network addresses): these are within the address ranges reserved for local networks.
Why do we need addresses that can be used only in local, private networks? Because if we
didn’t do that, we would have run out of network addresses many years ago.

 The problem was that the Internet grew far larger than was ever imagined. The
number of attached devices had grown into the billions (and now, with the growing
Internet of Things, beyond even that). IPv4—by definition—can provide just over four
billion theoretical addresses, and that’s not nearly enough.

 The brilliant solution adopted by Internet architects was to reserve certain address
ranges for use ONLY in private networks that would communicate with the “outside”
world by way of network translation at the router level. This way, you could have millions
of devices behind a single physical or virtual router, each with its own privately routable
address, but all together using only a single public address.

 These are the three private NAT address ranges :

CHAPTER 9 ■ TOPIC 109: NETWORKING FUNDAMENTALS

128

 10.0.0.0 to 10.255.255.255

 172.16.0.0 to 172.31.255.255

 192.168.0.0 to 192.168.255.255

 You should be aware that all IPv4 network addresses (not only NAT) fall into one of
three classes:

 Class: First octet:

 Class A between 1 and 127

 Class B between 128 and 191

 Class C between 192 and 223

 As you can see, each of the three NAT address ranges falls into a different network
 class . At the same time, I should mention that network class rules are no longer always
strictly observed.

 IPv6
 The IPv6 protocol was a different solution to the problem of limited numbers of available
addresses. Largely because of the success of NAT, there’s been little pressure to widely
adopt IPv6, so you won’t see all that much of it yet. But its time will definitely come, and
you should be familiar with how it works.

 IPv6 addresses are 128-bit addresses and are made up of eight hexadecimal numbers
separated by colons.

 ■ Note Hexadecimal numbers (sometimes called base 16 or hex) are simply numbers
that use 0-9 (to represent the numbers 0-9), and the first six letters of the alphabet (a-f)
representing the numbers 10-15.

 This is what an IPv6 address might look like:

 fd60:0:0:0:240:f8cf:fd51:67cf

CHAPTER 9 ■ TOPIC 109: NETWORKING FUNDAMENTALS

129

 For those addresses (like the one above) with more than one adjacent field equaling
zero, you can also write it with compressed fields replaced by double colons:

 fd60::240:f8cf:fd51:67cf

 Just as discussed with IPv4, IPv6 addresses are divided into two parts: the network
section (those fields to the left) and the address section (to the right). IPv6 notation, much
like CIDR notation, distinguish between network and address fields using an /n value.
Given that IPv6 addresses are 128-bit addresses, an address whose four leftmost fields
represent networks would be /64, whereas an actual device would be designated as /128.

 Service Ports
 Even though every network-connected device has its own unique address, because a
single server can offer multiple services, incoming traffic will also need to know which
service port it wants. By accepted convention, all ports between 1 and 65535 are divided
into three types:

 1 to 1023 Well-known ports

 1024 to 49151 ICANN registered ports (reserved for specific commercial protocols)

 49152 to 65535 Dynamic ports (available to anyone for ad hoc use)

 ■ Note We should perhaps pause every now and again to appreciate the many
conventions that “rule” the information technology world. Without accepted conventions,
there really could be no Internet, or even much of an IT industry. It’s especially noteworthy
that many of our most important protocols were created through the hard work of very
bright people acting as unpaid volunteers.

 Table 9-1 lists some of the more common well-known ports with which you should
be familiar, both for the LPIC exam and for daily your work as a Linux admin.

CHAPTER 9 ■ TOPIC 109: NETWORKING FUNDAMENTALS

130

 You can see a much more complete and up-to-date list of the well-known and
ICANN (Internet Corporation for Assigned Names and Numbers) registered ports in the /
etc/services file:

 less /etc/services

 Directing a request through a specific service port will often require that you add the
port number to the target address. Thus, an HTTP request might look like this:

 192.168.0.146:80

 And a request for a service on an ad hoc port might use:

 192.168.0.146:60123

 Table 9-1. Common “Well-Known” Network Ports and the Services for Which They’re Used

 Port Uses

 21 FTP data control

 22 SSH (Secure Shell)

 23 Telnet (useful, but not secure)

 25 SMTP (Simple Mail Transfer Protocol)

 53 DNS (Domain Name System)

 80 HTTP (Hypertext Transfer Protocol)

 110 POP3

 123 NTP (Network Time Protocol)

 139 NetBIOS

 143 IMAP (Internet Message Access Protocol)

 161 SNMP (Simple Network Management Protocol)

 162 snmptrap # Traps for SNMP

 389 LDAP (Lightweight Directory Access Protocol)

 443 HTTPS (Hypertext Transfer Protocol over SSL)

 465 URL Rendesvous Directory (Cisco)

 514 (UDP) syslog

 514 (TCP) cmd (no passwords)

 636 LDAP over SSL

 993 IMAPS (Internet Message Access Protocol over SSL)

 995 POP3 over TLS/SSL

CHAPTER 9 ■ TOPIC 109: NETWORKING FUNDAMENTALS

131

 Basic Network Configuration
 Now that you are hopefully comfortable with the general principles of networking,
let’s turn our attention to the practical task of setting up and maintaining network
connectivity.

 First, I should point out that things are changing in Linuxland: the much-loved
ifconfig family of commands from the net-tools package is being deprecated in favor of ip.
Net-tools is still installed by default on many distributions, and it can always be installed
manually, but the world is—slowly—moving toward ip. The LPIC exam , in its current
form, requires knowledge of both systems, so I’ll demonstrate them side by side.

 You can run ifconfig on its own to see a list of all your recognized network devices
and their statuses:

 $ ifconfig
 eth0 Link encap:Ethernet HWaddr 74:d4:35:5d:4c:a5
 inet addr:192.168.0.105
Bcast:192.168.0.255
 Mask:255.255.255.0
 inet6 addr: fe80::76d4:35ff:fe5d:4ca5/64 Scope:Link
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:194338 errors:0 dropped:0 overruns:0 frame:0
 TX packets:136839 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:191307800 (191.3 MB) TX bytes:18732326 (18.7 MB)

 In the case of this partial output, ifconfig shows us that the eth0 NIC has been given
the DHCP NAT address of 192.168.0.105 and an IPv6 address. It also displays various
other indicators, including the download and upload statistics since the last boot.

 Using ip addr list produces a similar output, but with less scope:

 ip addr list
 2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP>
 mtu 1500 qdisc pfifo_fast state UP group default qlen 1000
 link/ether 74:d4:35:5d:4c:a5 brd ff:ff:ff:ff:ff:ff
 inet 192.168.0.102/24 brd 192.168.0.255 scope global eth0
 valid_lft forever preferred_lft forever
 inet6 fe80::76d4:35ff:fe5d:4ca5/64 scope link
 valid_lft forever preferred_lft forever

 If you’re feeling lazy, you can accomplish the same thing using “ip a l” or even just
“ip a”.

 If you don’t see an interface that you thought should have been there, it might simply
not have been loaded. You can help it along with this (assuming that its name is eth1):

 sudo ifup eth1

CHAPTER 9 ■ TOPIC 109: NETWORKING FUNDAMENTALS

132

 In the brave new world of ip, this is how you would do the same thing:

 sudo ip link set dev eth1 up

 Let’s parse this command: ip will use the set command against the device (dev)
whose type is link that’s identified as eth1, telling Linux to bring the device up. As you can
see, ip syntax is a bit more like human speech.

 You can bring a device down using either:

 sudo ip link set dev eth1 down

 or:

 sudo ifdown eth1

 I should add that, unlike ip link set, ifup and ifdown can also be used to configure (or
deconfigure) interfaces.

 You will sometimes have to configure an interface manually, which can be done from
the command line . This example does it the ip way:

 sudo ip a add 192.168.1.150/255.255.255.0 dev eth1

 Here “ip a add” was used to tell the system that you’re adding an interface and
applying it to the known device, eth1. You assign this interface the IP address of
192.168.1.150 (making sure that it fits with the subnet architecture and will be able to
connect to the router), using a netmask of 255.255.255.0. This can also be done by editing
the configuration files.

 On Fedora, you’ll want to work with the appropriate file in the /etc/sysconfig/
network-scripts directory. Here’s a possible example:

 nano /etc/sysconfig/network-scripts/ifcfg-enp2s0f0

 On Debian/Ubuntu machines , it’s the interfaces file that you’re after:

 nano /etc/network/interfaces

CHAPTER 9 ■ TOPIC 109: NETWORKING FUNDAMENTALS

133

 It’s more common for interfaces to get their IP addresses automatically from a DHCP
(Dynamic Host Configuration Protocol) server. This will often occur behind the scenes
during system boot. If, for some reason, it didn’t work for your interface, or if it’s an
interface you just added, you can send a request for a DHCP address using:

 sudo dhclient eth1

 For an interface to gain access to the larger network (and to the Internet beyond), it
will need a route to the outside world, which will generally go through a router (hence the
name). You can view your current route tables using:

 route

 If you don’t yet have a working route and you do know the IP address of your router,
you can add a route, using either:

 sudo route add default gw 192.168.1.1

 or:

 sudo ip route add default via 192.168.1.1

 By the way, an improperly set route table is a very common cause of network
problems. If you’ve recently updated the address of your router or other gateway device
and then suffer some connectivity problem, make sure your route table matches the
real-world router.

 Basic Network Troubleshooting
 So nothing’s working. Well, the workstations are all humming away happily, but your
users aren’t able to download their important productivity documents (and it’s not like
YouTube is down or anything). Your boss doesn’t look very pleased about this and you
want to know what to do first.

 This is Linux , right? So you open a terminal. As you can see from Figure 9-1 , I’ll start
from the inside and work out to troubleshoot.

CHAPTER 9 ■ TOPIC 109: NETWORKING FUNDAMENTALS

134

 Check whether your computer’s external interface (usually designated as either eth0
or em0) has an IP address:

 ifconfig

 or:

 ip a

 If it does, that probably means you’ve been successfully connected to your DHCP
server , so the problem must lie farther afield. If you don’t have an IP address, you might
want to use dmesg to confirm that the network interface itself was picked up by your
system:

 dmesg | grep eth0

 If there’s no match for eth0 (or eth1, em0, or whatever you suspect might be the
designation for your interface), then your kernel-level driver might have crashed
(see Chapter 8 on kernel modules), or you might have a hardware problem of some sort.

 Figure 9-1. Sample networking troubleshooting flowchart

http://dx.doi.org/10.1007/978-1-4842-2358-1_8

CHAPTER 9 ■ TOPIC 109: NETWORKING FUNDAMENTALS

135

 You can shut down the machine and open the case to confirm that the network card
(assuming that it isn’t integrated with the motherboard) is properly seated in its slot.
Remember to properly ground yourself. If that appears to be fine and you’ve got a spare
card, you can install that to see if Linux recognizes it when you boot up again.

 In any case, assuming you get through that stage without discovering what’s causing
your trouble, check to see if you can ping your router:

 ping 192.168.0.1

 Remember: your router address will usually be the same as your DHCP address, but
with a 1 in the final field, rather than whatever number you had. Ping, by the way, uses
the ICMP transmission protocol to send lots of very small data packets to the specified
address, requesting that the host echoes the packets back. If ping was successful, you will
be shown something like this:

 PING 192.168.0.1 (192.168.0.1) 56(84) bytes of data.
 64 bytes from 192.168.0.1: icmp_seq=1 ttl=57 time=26.2
 64 bytes from 192.168.0.1: icmp_seq=2 ttl=57 time=25.9
 64 bytes from 192.168.0.1: icmp_seq=3 ttl=57 time=26.7
 64 bytes from 192.168.0.1: icmp_seq=4 ttl=57 time=26.9

 ■ Note Don’t forget that, as the industry moves to IPv6 , more and more purpose-built
tools will appear to accommodate that change. Ping6 is one of those.

 If that works, then the problem is clearly not between your computer and the router.
If that doesn’t work, then you should check your cabling and switches at all ends. You can
also try rebooting your router and switch.

 ■ Note It sometimes feels like 95% of IT problems can be solved by rebooting . Most of
the remaining 5% can be taken care of by keeping users away from IT resources, although
that may sometimes lead to long-term productivity complications.

 Now let’s assume that you can successfully ping your router. The problem must be a
bit farther out. Try pinging the DNS name for a known web site:

 ping google.com

 If that fails, there might be a problem with your Internet provider (which will require
a friendly phone call, assuming your phone still works). But it’s also possible that your
DNS address translation isn’t working. To find out, ping the IP address of an external
service that you know should work. My favorite for these times is Google’s DNS server,
because the IP is just so easy to remember:

CHAPTER 9 ■ TOPIC 109: NETWORKING FUNDAMENTALS

136

 ping 8.8.8.8

 If that works (even though ping google.com did not), then you know it’s a DNS issue,
which is discussed in the last section of this chapter.

 If it doesn’t work, it might be your Internet provider’s fault, but it can still be helpful
to narrow down the location of the blockage. Traceroute (or its IPv6 cousin, traceroute6)
can help fill in some of the gaps. Running traceroute against a known address will show
you each step your packets took along the route to a destination, including the one right
before things failed:

 traceroute 8.8.8.8

 Tracepath , by the way, delivers much the same function as traceroute. And both
traceroute and tracepath have their IPv6 equivalents: traceroute6 and tracepath6.

 If the network problem is inbound, rather than outbound (in other words: people
can’t access resources on your network), then you’ll need a different set of tools. First, you
should confirm that all necessary ports are open. So, for instance, if you’re running a web
server, you’ll probably need to open port 80 and, perhaps, 443.

 You can use netstat to display all the ports and sockets that are currently listening on
your system:

 netstat -l | grep http

 Using grep http will, of course, help narrow down your search.
 From a computer on an external network you can also use netcat to poke at your

network to see what’s open. This example will test port 80 (assuming that “your network”
is bootstrap-it.com):

 nc -z -v bootstrap-it.com 80

 In general, by the way, netcat is an excellent tool for testing your security.

 Configure Client Side DNS
 As mentioned earlier, all network devices have unique IP addresses. Since, however,
people find it a lot easer to work with and remember more human-readable addresses
(like bootstrap-it.com), DNS (Domain Name System) servers will translate back and forth
between IPs and URLs. When I type google.com into the URL bar of a browser, there’s
a DNS server somewhere that’s busy converting that into the correct IP address and
sending off my request.

 For this to work, you will need to designate a DNS server that can handle translation
requests. This can be done on Debian/Ubuntu machines from the file:

 /etc/network/interfaces

CHAPTER 9 ■ TOPIC 109: NETWORKING FUNDAMENTALS

137

 and, on Red Hat, using if-up scripts.
 Here’s what an interfaces file with DNS settings might look like:

 auto eth0
 iface eth0 inet static
 address 10.0.0.23
 netmask 255.255.255.0
 gateway 10.0.0.1
 dns-nameservers 208.67.222.222 208.67.220.220
 dns-search example.com

 The nameservers being used here are those provided by the OpenDNS service.
 The dns-search line tells the system that any searches launched without fully

qualified domain names (FQDNs) will be appended to example.com.
 Let me explain what that means: if I were to enter just the word “documents” into the

URL bar of a browser, the request would normally fail. That’s because there is no domain
that matches documents (and it’s a badly formed address in any case). However, with my
dns-search value set, the local DNS server would try to find a resource somewhere within
the local network called example.com/documents and dutifully fetch that for me.

 Often, however, if your machine is a DHCP client, it will take the DNS settings) from
its DHCP server. You might see a reference to this in the /etc/resolv.conf file (which, these
days, is really nothing more than an autogenerated symlink):

 # Generated by NetworkManager
 search d-linkrouter
 nameserver 192.168.0.1

 The hostname of your own computer can also be used as an alternate to its IP
address. You can update your host name by editing both the /etc/hosts and /etc/
hostname files.

 The hosts file can also be used to create a local alias. Let’s say that, for some reason,
you need to type commands in the terminal involving long URLs:

 wget amazon.com

 Okay. So amazon.com is not a particularly long URL, but you understand what I
mean. If you’d like to create a shortcut, add this line to your hosts file:

 54.239.25.200 www.amazon.com a

 From now on, whenever you need to access amazon.com from the command line,
typing just the letter “a” will get it done:

 wget a

CHAPTER 9 ■ TOPIC 109: NETWORKING FUNDAMENTALS

138

 The host and dig tools can be run against either domain names or IP addresses to
return DNS information. Both can be useful for troubleshooting DNS problems:

 $ host bootstrap-it.com

 The order your system uses when resolving hostnames to IP addresses is determined
by the hosts line in the /etc/nsswitch.conf file. Here’s an example:

 hosts: files myhostname mdns4_minimal [NOTFOUND=return]
 dns mdns4

 You can edit the order the system) uses by simply changing the sequence of this line.

 Now Try This
 If you can get your hands on an unused wireless router, plug it in to your PC via a network
cable and log in to the interface (it usually works by pointing your browser to 192.168.0.1,
you can check the router case for login details). Note the current LAN settings (and, if
you’re nervous, how to reset it to its factory settings).

 Now change the network subnet mask (which will, most likely, be 255.255.255.0) to
255.255.0.0, and create a network in a new subnet. You might want to use a range that’s
something like 192.168.1.1 to 192.168.1.253. Boot a laptop or a smartphone and log it in as
a DHCP client on the new network. Make sure the IP address now used by your device is
within the range you set.

 Warning: be prepared to do a lot of rebooting and reconfiguring until you get it right.
Remember: It’s not frustrating, it’s fun!

 Test Yourself
 1. The ping travels using the ____ protocol:

 a. TCP

 b. ICMP

 c. CIDR

 d. UDP

 2. A subnet with a CIDR of 172.16.0.1/18 would have which
netmask?

 a. 255.255.240.0

 b. 255.255.255.0

CHAPTER 9 ■ TOPIC 109: NETWORKING FUNDAMENTALS

139

 c. 255.255.255.18

 d. 255.255.192.0

 3. Which of the following addresses belongs to Class B?

 a. 172.30.1.126

 b. 192.15.0.54

 c. 10.0.0.2

 d. 198.168.1.1

 4. Which of these can’t possibly be a real IPv6 address?

 a. fd60:0:0:0:240:r8cf:fd51:67cf

 b. fd60:0:0:0:240:f8cf:fd51:67cf

 c. fd60::240:f8cf:fd51:67cf

 d. fd60:0:0:0:240:f8cf:fd51:6776

 5. Which of these will successfully connect to a secure http
web page?

 a. https://bootstrap-it.com:22

 b. https://bootstrap-it.com:443

 c. https://bootstrap-it.com:80

 d. https://bootstrap-it.com:143

 6. Which of these will start a network interface?

 a. ip link set dev eth0 down

 b. ifup eth0

 c. ifconfig eth0

 d. dhclient eth0

 7. Which of these will NOT tell you whether an interface is
functioning?

 a. ifconfig

 b. ip a

 c. dmesg | grep eth0

 d. ping eth0

https://bootstrap-it.com:22/
https://bootstrap-it.com/
https://bootstrap-it.com:80/
https://bootstrap-it.com:143/

CHAPTER 9 ■ TOPIC 109: NETWORKING FUNDAMENTALS

140

 8. Which of these will NOT tell you which network service
ports are open?

 a. netstat -l

 b. netstat

 c. nc -z -v bootstrap-it 80

 d. traceroute bootstrap-it 80

 9. Which of these has NOTHING to do with DNS servers?

 a. /etc/NetworkManager/NetworkManager.conf

 b. /etc/network/interfaces

 c. /etc/resolv.conf

 d. /etc/nsswitch.conf

 Answer Key
 1. b, 2. d, 3. a, 4. a, 5. b, 6. b, 7. d, 8. d, 9. Trick question: they ALL do!

141© David Clinton 2016
D. Clinton, Practical LPIC-1 Linux Certification Study Guide,
DOI 10.1007/978-1-4842-2358-1_10

 CHAPTER 10

 Topic 110: Security

 Creating a reasonably secure compute environment requires elements from just about
every area of system administration. Perhaps that’s why the LPI put security at the very
end of their exam objectives, because you will, in fact, need all your skills to make this
work.

 I used the term “reasonably secure” because, when it comes to security, anyone who
thinks his resources are 100% safe is fooling himself. An old friend who had worked for
a national foreign service once told me that every single one of that country’s overseas
embassies was provided with a government-issue hammer for use in the event they
were overrun. The purpose of the hammer? To physically destroy every hard drive in the
building. There really is no better solution (and even that one is imperfect).

 The bottom line: when it comes to IT security, there’s never enough that can be done
and you can never completely relax. Let’s get started.

 System Security
 As discussed previously, user passwords are usually among the weakest links in your
system. In Chapter 7 , I explained how you can use the command chage to force your
users to update their passwords from time to time. While it’s not required by the LPIC-1
exam, you can also use PAM (Pluggable Authentication Module) to enforce password
complexity . PAM is controlled through the /etc/pam.d/system-auth file (on Red Hat)
or the /etc/pam.d/common- password (on Debian systems). Editing the “ password
required ” line to read something like this:

 password required pam_cracklib.so minlen=12 lcredit=1
 ucredit=1 dcredit=2 ocredit=1

 can make a big difference. This example will force users to create passwords whose
minimum length is 12 characters, and where “credit” is given for the presence of at least
one character that’s in lowercase , one in uppercase, two digits, and one “other” (i.e.,
nonalphanumeric).

 I also discussed how important it is to use a root or admin account as seldom as
possible. Administrative powers should be given to only those users who absolutely need
it, and even then, they should use those powers only through sudo.

http://dx.doi.org/10.1007/978-1-4842-2358-1_7

CHAPTER 10 ■ TOPIC 110: SECURITY

142

 You can add a user to the sudo group (thereby giving him the right to admin powers
for single commands) through chmod:

 sudo usermod -aG sudo steve

 This will add a user named Steve to the sudo group. Once you’ve done that, you can
view the /etc/group file and Steve’s name should be among those on the sudo line.

 cat /etc/group | grep sudo

 You can edit the way that sudo works on your system through the /etc/sudoers file ,
but you must use the visudo command rather than trying to edit the file directly. If you
view the sudoers file (which itself, for obvious reasons, requires sudo), you will notice
that there are separate lines defining the privileges given to members of the root, admin,
and sudo groups. This allows you to very finely tune the powers you give to each of your
 administrative users . An example of this would be:

 # User privilege specification
 root ALL=(ALL:ALL) ALL
 # Members of the admin group may gain root privileges
 %admin ALL=(ALL) ALL
 # Allow members of group sudo to execute any command
 %sudo ALL=(ALL:ALL) ALL

 So, to review, you should never, ever, EVER log in to a system as root or with
persistent admin powers. And that’s perfectly true, except where it isn’t. There will be
times when you have no choice but to start up an admin shell . To do that, type:

 sudo su

 and enter your password. Note that, in most cases, your shell prompt will now look
something like this:

 root@newpc:/home#

 You should also keep track of the users who are logging in to your system. If, for
instance, most of the gang where you work are out of the office by five each afternoon,
then you should expect there won’t be too many of them still logged in a half an hour
later. And even if one or two might have left their workstations running (hopefully with a
 password-protected screensaver), you definitely won’t be seeing too much activity.

 That’s why a quick review of user log ins can be useful. Using “w” will tell you when
a user logged in, what system resources he’s using, and, most importantly, what process
he’s running at the moment. Here is an example:

CHAPTER 10 ■ TOPIC 110: SECURITY

143

 $ w
 12:48:00 up 4:49, 3 users, load average: 0.02, 0.18, 0.30
 USER TTY FROM LOGIN@ IDLE JCPU
 PCPU WHAT
 dbclinto :0 :0 08:00 ?xdm? 32:40
 0.22s init --user
 dbclinto pts/1 :0.0 09:26 21.00s 0.28s
 0.16s ssh dbclinton@1
 dbclinto pts/4 :0.0 12:47 0.00s 0.06s
 0.01s w

 This output shows you that, besides my own bootup log in from 8:00 this morning,
I’ve also got two shell sessions running: one, an ssh session into the Fedora laptop right
next to me (it sure beats having to turn my chair around to actually use its keyboard), and
the other, the shell from which I ran w.

 Doesn’t look like anyone else is around, and that’s what I want to see. I need to be
able to account for every single session that’s listed.

 Running who and last will also list log ins. Last can be particularly useful, as it lists all
of the log ins since the beginning of the current month. Adding -d will also show you the
origin host of each log in to give you an idea of where they’ve been coming from:

 last -d

 Monitoring files using lsof (LiSt Open Files) can also be a powerful security tool,
especially since, in Linux, everything (even a directory) is a file.

 You can list all processes (and their users) that have opened a specific file:

 lsof /var/log/syslog

 By adding +D, you can list all open files within a directory hierarchy :

 lsof +D /var/log/

 Using -u will narrow down your search to only those files opened by the specified user:

 lsof -u steve

 But suppose you’re Steve and you know (or at least you hope) you’re reliable, but
you’d like to check into all those other suspicious characters you’ve seen around. The use
of the caret symbol (^) will display everyone EXCEPT you:

 lsof -u ^steve

CHAPTER 10 ■ TOPIC 110: SECURITY

144

 You can use lsof along with kill to close all files opened by a specific user:

 kill -9 `lsof -t -u steve`

 You can even use lsof (with -i) to list all open network connections:

 lsof -i

 Consider incorporating some of those lsof tools into a script to automatically
monitor your system activity.

 Much of the same functionality of lsof can also be found in fuser. Fuser, too, will let
you zero in on specific files:

 fuser /var/log/syslog

 It must be added, however, that fuser can get much more personal about it. Using:

 fuser -km /home

 will kill all processes accessing the filesystem /home. Be warned: by kill, it means kill.
 By displaying which users and processes are accessing the http port (80), this next

example will tell you if there’s any unauthorized activity involving your web server:

 sudo fuser -v -n tcp 80

 In Chapter 9 you used netcat and netstat to search for open network ports. As
mentioned there, from a security perspective, you should always be very interested in
making sure there are no unnecessary ports open on the sites you manage. There’s one
more tool that covers some of the same ground: nmap. Running nmap against local or
 Internet-based addresses will display all open ports:

 nmap bootstrap-it.com

 Using nmap with the -sU flag will perform a UDP scan:

 sudo nmap -sU 10.0.2.143

 You can restrict an nmap scan to a specific port:

 nmap -p 80 bootstrap-it.com

http://dx.doi.org/10.1007/978-1-4842-2358-1_9

CHAPTER 10 ■ TOPIC 110: SECURITY

145

 or, if you’re trying to monitor a larger number of network resources, you can scan a range
of addresses, with built-in exclusions:

 nmap 192.168.2.0/24 --exclude 192.168.2.3

 Besides looking for unusual things that are going on right now, you should also
keep an eye open for vulnerabilities that could be exploited in the future. Files with suid
permissions comprise one class of files that can potentially cause trouble.

 As mentioned previously, a file with the suid bit can be used by any user AS
THOUGH they shared the file’s full admin rights. Sometimes, as with the /usr/bin/passwd
binary , this is necessary. However, if you notice the suid in unexpected places, you should
consider taking a closer look.

 You can easily check your whole filesystem for suid using:

 sudo find / -type f -perm -u=s -ls

 Nice. The problem is that this will probably return a rather long list of files. How are
you to know if there’s actually a problem? One solution is to take the stream produced
by using find and filter it for entries that are also writable by others, have the sgid bit
set , or are unowned by a valid package or user. That will narrow down your search to
combinations that definitely deserve more attention.

 You can search for files with guid (group) permissions using:

 sudo find / -type f -perm -g=s -ls

 And this will find ownerless files :

 find / -xdev \(-nouser -o -nogroup \) -print

 You can set limits on the system resources available to specified users or even groups
using ulimit. Try reviewing your own default limits by running:

 ulimit -a

 Notice the categories that can be controlled, including individual file size, the number
of open files, and the maximum number of user processes. Maintaining the right balance
of limits can help prevent the abuse of account privileges without unnecessarily restricting
your users’ legitimate activities. You can edit user and group limits in the /etc/security/
limits.conf file . Here are some of the sample settings that illustrate the way the file works:

 #root hard core 100000
 #@student hard nproc 20

CHAPTER 10 ■ TOPIC 110: SECURITY

146

 #@faculty soft nproc 20
 #@faculty hard nproc 50
 #@student - maxlogins 4

 You should also keep an eye on active processes using ps :

 ps aux

 Of course, that will produce way too much information to be useful. Adding our old
friend grep into the mix should help narrow things down:

 ps aux | grep apache2

 Host Security
 Besides controlling the behavior of local users, it’s also vital to be able to limit the things
that people coming from beyond your local system can do. At its simplest, that might
mean preventing nonroot log ins. Creating a readable file called nologin in the /etc
directory will do just that:

 sudo touch /etc/nologin

 You can leave the file empty or include a message you’d like users to see that explains
why they’re currently locked out of the system.

 Once you do decide to allow remote log ins, you can, in association with the init.d
 run-level control system I discussed in Chapter 1 , closely control what your guests can do
through the inetd (or, on newer distributions, xinetd) system. Inetd is known as a super-
server because its job is to listen for requests on all ports listed in the config file and then,
when appropriate, start and stop requested services.

 The original goal was to save system resources by having one single running server
activate services only when they were actually needed, and then shut them down when
they’re done. But, besides the built-in security benefits of turning off unused services,
inetd also provided an added advantage through the ability to apply access control.

 A typical /etc/xinetd.conf configuration file will include entries like these:

 defaults
 {

 instances = 60
 log_type = SYSLOG authpriv
 log_on_success = HOST PID

http://dx.doi.org/10.1007/978-1-4842-2358-1_1

CHAPTER 10 ■ TOPIC 110: SECURITY

147

 log_on_failure = HOST
 cps = 25 30

 }
 includedir /etc/xinetd.d

 Note the includedir /etc/xinetd.d line , which points to the /etc/xinetd.d directory,
which itself contains individual files for each service that will be controlled by xinetd.
Here’s an example of an xinetd file :

 # default: off
 # description: An RFC 863 discard server.
 # This is the tcp version.
 service discard
 {
 disable = yes
 type = INTERNAL
 id = discard-stream socket_type = stream
 protocol = tcp
 user = root
 wait = no
 }
 # This is the udp version. service discard
 {
 disable = yes
 type = INTERNAL
 id = discard-dgram
 socket_type = dgram
 protocol = udp
 user = root
 wait = yes
 }

 The main value you should be aware of is disable. The current setting for both the
TCP and UDP versions is “yes,” which means that remote requests for the RFC 863 discard
server will be refused. To tell xinetd to accept such requests, the disable value should be
changed to “no.” Discard, by the way, is roughly the equivalent of the /dev/null directory ,
a convenient place to dump debugging or testing data that will be immediately destroyed.

 Besides discard and the few others you might see in a clean install of Linux, xinetd is
also often used to control services like ftp, pop3, rsync, smtp, and telnet.

 Once you’ve enabled a service through xinetd, anyone logging in will be able to
launch it. If you’d like to retain control over exactly which remote users get to use a
particular service, you should use TCP wrappers . To do that, you’ll need to edit the
appropriate service file in /etc/xinetd.d/ to tell xinetd to load the tcpd daemon, rather than
the service daemon itself. As an example, here’s what you would add to the vsftpd file :

CHAPTER 10 ■ TOPIC 110: SECURITY

148

 server = /usr/sbin/tcpd
 serverargs = /usr/sbin/vsftpd

 You would also need to permit remote access by editing the disable line to read no
rather than yes :

 disable = no

 Any edits to the xinetd configuration require a service restart. If you’re using Upstart,
run:

 sudo service xinetd restart

 For Systemd, use this instead:

 systemctl reload xinetd.service

 Now you’ll need to edit the hosts.allow and hosts.deny files in the /etc/ directory.
You could, for instance, add this line to hosts.deny:

 vsftpd: ALL

 which will deny access to users logging in from any external host. The hosts.deny file will
be read first, allowing the contents of hosts.allow the last word. Therefore, if you would
add something like this to the hosts.allow file:

 vsftpd: 192.168.0.101, 10.0.4.23

 then users coming from specifically those two hosts WOULD be allowed.

 Encryption: Securing Data in Transit
 Files often need to be moved from place to place. If it’s just family photos or recipes,
you might as well simply send them as e-mail attachments or via ftp (or fax, for those of
you old enough to remember such things, although your family photos might not come
through the fax at quite their original resolution).

 But you should be aware that data packets moving across the Internet are—legally
or otherwise—visible to just about anyone who cares to look. For that reason, you should
never transfer files containing financial or other private information (including credit
card numbers or passwords) through wireless or public digital networks , unless they’ve
been encrypted first.

CHAPTER 10 ■ TOPIC 110: SECURITY

149

 Encryption rewrites a data file using an encryption algorithm that makes the file
unintelligible. If the encryption was strong enough, the only practical way to decrypt
it and get access to its contents is to apply the public half of a decryption key pair that
essentially performs the encryption process in reverse. Many network communication
tools—like telnet, ftp, and most e-mail services—are not encrypted and are, therefore,
vulnerable.

 Now let’s look at using the OpenSSH secure shell for encrypted remote login sessions
(something I’ve used a fair number of times already through the demonstrations in this
book), and learn about SSH tunnels and encrypting specific files using GnuPG.

 OpenSSH
 Once the OpenSSH server package is installed on a computer, it can host remote login
sessions:

 sudo apt-get install openssh-server

 Users who only need to log on to remote systems as guests can install the client
package:

 sudo apt-get install openssh-client

 Once everything is properly installed, a user can open a new session using the ssh
command and enter the password when prompted:

 ssh tony@10.0.4.243
 tony@10.0.4.243's password:

 All keystrokes and data that travel back and forth for the duration of this session will
be securely encrypted. You can also transfer files between sites using the scp (“secure
copy”) program that’s included with OpenSSH:

 scp myfile.tar.gz tony@10.0.4.243:/home/tony/

 Note that you will need to specify a target directory on the remote computer where
you’d like the file saved. The target directory has to be one to which the user you’re
logging in as has access. That means you won’t be able to copy a file directly to, say, the /
var/www/html/ directory of the remote machine.

 You can also use scp the other way, to move a file from a remote host to yours. This
will copy the newfile.tar.gz file to the current directory (represented by the dot at the end):

 scp tony@10.0.4.243:/home/tony/newfile.tar.gz .

CHAPTER 10 ■ TOPIC 110: SECURITY

150

 The /etc/ssh/ssh_config file controls the way local users will access remote hosts,
while the /etc/ssh/sshd_config file (assuming that openssh- server is installed) manages
how remote users log in to your machine. Running ls against the /etc/ssh/ directory will
display the key pairs ssh uses to authenticate sessions:

 $ ls /etc/ssh
 moduli ssh_host_dsa_key ssh_host_ecdsa_key.pub
 ssh_import_id
 ssh_config ssh_host_dsa_key.pub ssh_host_rsa_key
 sshd_config ssh_host_ecdsa_key ssh_host_rsa_key.pub

 Those keys with a .pub extension are public keys, while the versions without an
extension are private keys. This directory includes key pairs using the DSA, ECDSA, RSA,
and ed25519 encryption algorithms.

 OpenSSH version 1 would probably have used key pair files called ssh_host_rsa and
 ssh_host_dsa . There are other differences between versions 1 and 2. With version 1, for
instance, once the client receives the public key from the server, it would use the server’s
public key to generate and then send a 256-bit secret key. Now that they both have an
identical secret key, the two systems can safely share data. Version 2, on the other hand,
will use what’s called a Diffie-Hellman key agreement to negotiate a secret key without
needing to send any complete key over the network.

 Passwordless Access
 Even OpenSSH has a potential weakness, and it’s an old, familiar complaint: the
password. Based on the discussion in previous chapters, you still need to authenticate to
the host system using a password.

 Besides the inconvenience, this extra step also introduces something of a
vulnerability into the process. Therefore, wherever possible, you should configure your
ssh connections for passwordless access. You do this by generating a new key pair on your
client machine (the computer you plan to use to connect to the server):

 ssh-keygen -t rsa

 You’ll need to choose a specific algorithm type: the above example uses rsa. You can
optionally create a passphrase that you’ll use later whenever you log in. In any case, using
a passphrase is not required and it’s often ignored.

 The passphrase should not be confused with the host account password, as this one
simply locally decrypts the private key and does not require sending account passwords
over a network connection.

 The new key pair will be saved to the hidden .ssh directory within your user’s home
directory. You can view the files through ls with the -a (meaning all) option:

 ls -a ~/.ssh

CHAPTER 10 ■ TOPIC 110: SECURITY

151

 Now you will have to copy the new public key to the host. Remember: you should
only do this using a secure transfer method:

 scp keyname.pub tony@10.0.4.243:/home/tony

 Log in to the host machine and add the contents of the new key to the ~/.ssh/
authorized_keys file within the home directory of the account you will be accessing:

 cat keyname.pub >> ~/.ssh/authorized_keys

 If you do decide to pipe it in this way, make sure to use two greater than signs (>>)
rather than one, as > will overwrite the file’s current contents!

 Next, still on the host machine, make sure that the authorized_keys file can be read
ONLY by its owner:

 chmod 600 ~/.ssh/authorized_keys

 You can now log out of the host. Now for the fun part: try logging in once again:

 ssh tony@10.0.4.243

 You should get in without the need for a password. I’ll bet that makes you feel really
welcome!

 Using ssh-agent
 You can maintain a higher level of password security without needing to use (or expose)
your passwords with each new session you initiate by employing ssh-agent. Running eval
within a shell will pass a passphrase to OpenSSH each time you launch a new ssh session
from within that shell.

 eval `ssh-agent -s `

 Note the use of the backtick (`) symbol, which is usually found at the top left corner
of your keyboard.

 You can then add your ssh key to the agent using:

 ssh-add ~/.ssh/id_rsa

 where id_rsa is the name of the key you wish to add.

CHAPTER 10 ■ TOPIC 110: SECURITY

152

 X11 Tunnels
 You can use ssh connectivity as a platform, or, as it’s sometimes known, a tunnel, for
a wider range of connected services. So, for instance, you can make remote use of the
 graphic functionality of an X11 session on top of an existing ssh session. Let’s do that step
by step.

 On the host machine, edit the /etc/ssh/sshd_config file so that the value of the
X11Forwarding line is yes:

 sudo nano /etc/ssh/sshd_config
 X11Forwarding yes

 On the client machine (i.e., the PC you will use to log in to the host), edit the
 ForwardX11 line in the /etc/ssh/ssh_config file so that it, too, reads yes:

 sudo nano /etc/ssh/ssh_config
 ForwardX11 yes

 Now, from your client computer, use ssh to start an X session:

 ssh -X -l tony 10.0.4.243

 You will find yourself in what looks like just another terminal session. What’s so X
about this? Don’t trust me? Try running a GUI program like gedit (a graphic text editor):

 gedit

 If everything worked the way it should, you will find yourself using gedit on your
laptop or workstation, but as part of the filesystem , and relying on the resources of your
host. Depending on your network connection and memory limits, you might be surprised
at the kinds of tasks you can attempt using such tunnels.

 GnuPG Config
 Our last stop on this journey will be file encryption. While encrypting networked sessions
is a perfectly good solution, there may be times when all you want to do is send a single
document containing some sensitive information. Rather than encrypting the whole
connection, you can simply encrypt the document itself and provide your recipient with
the key to decrypt it at the other end.

 GPG (Gnu Privacy Guard) will encrypt a file using one or more public keys. The file
can subsequently be decrypted using a private key that corresponds to any one of the
public keys used during encryption. So, as illustrated in Figure 10-1 , you could choose to

CHAPTER 10 ■ TOPIC 110: SECURITY

153

generate a random symmetric key using the public key from the recipient’s computer to
get things started. It will then encrypt the file and send it, along with the new symmetric
key. At the receiving end, GPG will use the recipient’s private key to decrypt the message.

 You could also use your own public key for encryption and then send it to your
recipients for decryption.

 You generate keys using gpg --genkey:

 gpg --gen-key

 The program will prompt you for a key type, key length, lifetime (i.e., when, if ever,
the key will automatically expire), a username that you can create (and remember for
later use), an e-mail address, a comment, and finally, a passphrase. Many of these details
are used to help build randomness into the encryption.

 The final step will be to produce “noise” (random keystrokes) while GPG generates
the encrypted file. GPG expects a LOT of noise, so just hitting a few keys here and there
might not do it. What I do is open a new shell (on the same machine, obviously), and
create some industrial strength (but harmless) noise using something like this:

 sudo find / -type f | xargs grep somerandomstring > /dev/null

 Figure 10-1. The Gnu Guard key exchange process

CHAPTER 10 ■ TOPIC 110: SECURITY

154

 Alternatively, you can install and run the haveged program to quiety generate all the
entropy you need. Once it’s done, you can go to the hidden GPG directory within your
home directory and take a look:

 cd ~/.gnupg

 Once you’ve oriented yourself, it’s time to encrypt a file. Assuming there’s a file
named verysecretdata.txt, here’s how it will work:

 gpg --encrypt \
 --recipient tony-key \
 --recipient steve-key \
 verysecretdata.txt

 In this example, I used the public keys previously sent to me by both Tony and Steve.
I’ll discuss importing and exporting public keys in just a moment.

 Listing the files in the .gnupg directory once again, you can see that there is now a
 verysecretdata file with a .gpg extension.

 Feel free to send the gpg file to your recipient using any method you like. Remember:
it’s encrypted so no one else along the way should be able to read it.

 Of course, either you or your recipient will have to import each other’s key before
anything can be done with the file. And before either of you can import it, it will have to
be exported and then sent. You export the key using gpg --export :

 gpg --export username > mygpg.pub

 The file name you use doesn’t matter, as long as it has a .pub extension. Once you’ve
transferred the key to the recipient, they can import it using gpg --import :

 gpg --import mygpg.pub

 Assuming that the key is now part of the recipient’s GPG collection, they can decrypt
it using some variation of this command, where the output value is the name you’d like
the decrypted file to have and the value of decrypt is the encrypted file you’ve received:

 gpg --output verysecretdata --decrypt
 verysecretdata.txt.gpg

 You can view all the keys that are currently part of your system using:

 gpg --list-keys

CHAPTER 10 ■ TOPIC 110: SECURITY

155

 And, as might sometimes be necessary, you can revoke a key with the key ID that you
saw displayed by --list-keys:

 gpg --gen-revoke 6372552D

 Using --gen-revoke will generate some output, which you should copy into a file
that you can keep safe, as it could prove very useful later. With the file, you will always be
able to import your up-to-date key status into a new (or recovery) GPG installation. You
import a file using:

 gpg --import revoked.txt

 The distribution and updating of keys between users can be managed through
online public keyservers. You can retrieve a key using –recv- key and send it with –send-
key. Here’s what a retrieval command might look like:

 gpg --keyserver certserver.pgp.com --recv-key 0xBB7576AC

 Now Try This
 Use ssh-keygen to set up passwordless access to a machine (perhaps an LXC container)
and try it out to make sure it works. Now, while logged in on that machine, launch a full
battery of tests against your own computer, testing for open ports, X access, and remote
login access.

 If you can’t get through your own defenses, pat yourself on the back.

 Test Yourself
 1. Restricting the output of fuser to a specific port requires

which flag?

 a. -v

 b. -i

 c. -sU

 d. -n

CHAPTER 10 ■ TOPIC 110: SECURITY

156

 2. Which of these will find all files on the system with the guid
bit set?

 a. find / -type f -perm -u=s -ls

 b. find / -xdev \(-nouser -o -nogroup \) -print

 c. find / -type d -perm -u=s -ls

 d. find / -type f -perm -g=s -ls

 3. Which of these will list all open files beneath the specified
directory?

 a. lsof +D /var/log/

 b. lsof -u /var/log/

 c. lsof /var/log/

 d. fuser /var/log/syslog

 4. Which of these will using “w” NOT display?

 a. Log in time.

 b. Inode limit.

 c. Origin host.

 d. Idle time.

 5. Which file is used to control inetd behavior?

 a. /etc/xinetd.conf

 b. /var/inetd.conf

 c. /etc/inetd.conf

 d. /etc/inetd.d/conf

 6. Which lines must you edit in vsftpd to tell xinetd to control
access?

 a. Server and serverargs

 b. Disable and server

 c. Server and disable

 d. User and serverargs

CHAPTER 10 ■ TOPIC 110: SECURITY

157

 7. Which of these files controls the behavior of an ssh server?

 a. /etc/ssh/ssh_config

 b. /etc/ssh/ssh_host_dsa_key

 c. /etc/sshd_config

 d. /etc/ssh/sshd_config

 8. The public key stored on a server requires which permissions?

 a. 644

 b. 600

 c. 640

 d. 755

 9. Which config file should include ForwardX11 yes to allow X11
sessions?

 a. /etc/ssh/sshd_config

 b. /etc/sshd_config

 c. /etc/sshd/ssh_config

 d. /etc/ssh/ssh_config

 10. Which will decrypt a GPG-encrypted file named my-
encrypted-file.gpg?

 a. gpg --output newfilename --decrypt my-encrypted-file.
gpg

 b. gpg --output my-encrypted-file.gpg --decrypt
newfilename

 c. gpg --export my-encrypted-file.gpg > newfilename

 d. gpg --export newfilename > my-enctrypted-file.gpg

 Answer Key
 1. d, 2. d, 3. a, 4. b, 5. c, 6. a, 7. d, 8. b, 9. d, 10. a

159© David Clinton 2016
D. Clinton, Practical LPIC-1 Linux Certification Study Guide,
DOI 10.1007/978-1-4842-2358-1

 APPENDIX

 LPIC-1 Exam Objectives

 (Taken from www.lpi.org/study-resources/lpic-1-101-exam-objectives)

 LPIC-1 Exam 101
 Exam Objectives Version : Version 4.0 (last updated: April 15th, 2015)

 Exam Covered : LPIC-1 101 (101-400) also available as CompTIA Linux+ (LX0-103);
Exam 1 of 2 to obtain LPIC-1 Linux Server Professional certification

 Topic 101: System Architecture
 101.1 Determine and configure hardware settings

 Weight: 2
 Description : Candidates should be able to determine and configure fundamental

system hardware.
 Key Knowledge Areas:

• Enable and disable integrated peripherals

• Configure systems with or without external peripherals such as
keyboards

• Differentiate between the various types of mass storage devices

• Know the differences between coldplug and hotplug devices

• Determine hardware resources for devices

• Tools and utilities to list various hardware information (e.g., lsusb,
lspci, etc.)

• Tools and utilities to manipulate USB devices

• Conceptual understanding of sysfs, udev, dbus

http://www.lpi.org/study-resources/lpic-1-101-exam-objectives

APPENDIX ■ LPIC-1 EXAM OBJECTIVES

160

 The following is a partial list of the used files, terms and utilities:

 modprobe lsmod

 /proc/ lspci

 /dev/ lsusb

 101.2 Boot the system
 Weight: 3
 Description : Candidates should be able to guide the system through the booting

process.
 Key Knowledge Areas:

• Provide common commands to the boot loader and options to
the kernel at boot time

• Demonstrate knowledge of the boot sequence from BIOS to boot
completion

• Understanding of SysVinit and systemd

• Awareness of Upstart

• Check boot events in the log files

 Terms and Utilities :

 dmesg initramfs

 BIOS init

 bootloader SysVinit

 kernel systemd

 101.3 Change runlevels/boot targets and shutdown or reboot system
 Weight: 3
 Description : Candidates should be able to manage the SysVinit runlevel or systemd

boot target of the system. This objective includes changing to single user mode, shutdown
or rebooting the system. Candidates should be able to alert users before switching
runlevels/boot targets and properly terminate processes. This objective also includes
setting the default SysVinit runlevel or systemd boot target. It also includes awareness of
Upstart as an alternative to SysVinit or systemd.

APPENDIX ■ LPIC-1 EXAM OBJECTIVES

161

 Key Knowledge Areas:

• Set the default runlevel or boot target

• Change between runlevels/boot targets including single user
mode

• Shutdown and reboot from the command line

• Alert users before switching runlevels/boot targets or other major
system events

• Properly terminate processes

 Terms and Utilities:

 /etc/inittab telinit /usr/lib/
systemd/

 shutdown systemd wall

 init systemctl

 /etc/init.d/ /etc/systemd/

 Topic 102: Linux Installation and Package Management
 102.1 Design hard disk layout

 Weight: 2
 Description : Candidates should be able to design a disk partitioning scheme for a

Linux system.
 Key Knowledge Areas:

• Allocate filesystems and swap space to separate partitions or disks

• Tailor the design to the intended use of the system

• Ensure the /boot partition conforms to the hardware architecture
requirements for booting

• Knowledge of basic features of LVM

 Terms and Utilities:

 / (root) filesystem swap space

 /var filesystem mount points

 /home filesystem partitions

 /boot filesystem

APPENDIX ■ LPIC-1 EXAM OBJECTIVES

162

 102.2 Install a boot manager
 Weight: 2
 Description : Candidates should be able to select, install and configure a boot

manager.
 Key Knowledge Areas:

• Providing alternative boot locations and backup boot options

• Install and configure a boot loader such as GRUB Legacy

• Perform basic configuration changes for GRUB 2

• Interact with the boot loader

 The following is a partial list of the used files, terms and utilities:

 menu.lst, grub.cfg and grub.conf

 grub-install

 grub-mkconfig

 MBR

 102.3 Manage shared libraries
 Weight: 1
 Description: Candidates should be able to determine the shared libraries that

executable programs depend on and install them when necessary.
 Key Knowledge Areas:

• Identify shared libraries

• Identify the typical locations of system libraries

• Load shared libraries

 Terms and Utilities:

 ldd /etc/ld.so.conf

 ldconfig LD_LIBRARY_PATH

 102.4 Use Debian package management
 Weight: 3
 Description : Candidates should be able to perform package management using the

Debian package tools.
 Key Knowledge Areas:

• Install, upgrade and uninstall Debian binary packages

• Find packages containing specific files or libraries which may or
may not be installed

APPENDIX ■ LPIC-1 EXAM OBJECTIVES

163

• Obtain package information like version, content, dependencies,
package integrity and installation status (whether or not the
package is installed)

 Terms and Utilities:

 /etc/apt/sources.list apt-get

 dpkg apt- cache

 dpkg-reconfigure aptitude

 102.5 Use RPM and YUM package management
 Weight: 3
 Description : Candidates should be able to perform package management using

RPM and YUM tools.
 Key Knowledge Areas:

• Install, re-install, upgrade and remove packages using RPM and
YUM

• Obtain information on RPM packages such as version, status,
dependencies, integrity and signatures

• Determine what files a package provides, as well as find which
package a specific file comes from

 Terms and Utilities:

 rpm /etc/yum.repos.d/

 rpm2cpio yum

 /etc/yum.conf yumdownloader

 Topic 103: GNU and Unix Commands
 103.1 Work on the command line

 Weight: 4
 Description : Candidates should be able to interact with shells and commands using

the command line. The objective assumes the Bash shell.
 Key Knowledge Areas:

• Use single shell commands and one line command sequences to
perform basic tasks on the command line

• Use and modify the shell environment including defining,
referencing and exporting environment variables

• Use and edit command history

• Invoke commands inside and outside the defined path

APPENDIX ■ LPIC-1 EXAM OBJECTIVES

164

 Terms and Utilities:

 bash pwd uname

 echo set history

 env unset .bash_history

 export man

 103.2 Process text streams using filters
 Weight: 3
 Description : Candidates should be able to apply filters to text streams.
 Key Knowledge Areas:

• Send text files and output streams through text utility filters to
modify the output using standard UNIX commands found in the
GNU textutils package

 Terms and Utilities:

 cat nl tail

 cut od tr

 expand paste unexpand

 fmt pr uniq

 head sed wc

 join sort

 less split

 103.3 Perform basic file management
 Weight: 4
 Description : Candidates should be able to use the basic Linux commands to

manage files and directories.
 Key Knowledge Areas:

• Copy, move and remove files and directories individually

• Copy multiple files and directories recursively

• Remove files and directories recursively

• Use simple and advanced wildcard specifications in commands

• Using find to locate and act on files based on type, size, or time

• Usage of tar, cpio and dd

APPENDIX ■ LPIC-1 EXAM OBJECTIVES

165

 Terms and Utilities:

 cp rmdir gzip

 find touch gunzip

 mkdir tar bzip2

 mv cpio xz

 ls dd file globbing

 rm file

 103.4 Use streams, pipes and redirects
 Weight: 4
 Description : Candidates should be able to redirect streams and connect them

in order to efficiently process textual data. Tasks include redirecting standard input,
standard output and standard error, piping the output of one command to the input of
another command, using the output of one command as arguments to another command
and sending output to both stdout and a file.

 Key Knowledge Areas:

• Redirecting standard input, standard output and standard error

• Pipe the output of one command to the input of another
command

• Use the output of one command as arguments to another
command

• Send output to both stdout and a file

 Terms and Utilities:

 tee

 xargs

 103.5 Create, monitor and kill processes
 Weight: 4
 Description : Candidates should be able to perform basic process management.
 Key Knowledge Areas:

• Run jobs in the foreground and background

• Signal a program to continue running after logout

• Monitor active processes

• Select and sort processes for display

• Send signals to processes

APPENDIX ■ LPIC-1 EXAM OBJECTIVES

166

 Terms and Utilities:

 & nohup pgrep

 bg ps pkill

 fg top killall

 jobs free screen

 kill uptime

 103.6 Modify process execution priorities
 Weight: 2
 Description : Candidates should be able to manage process execution priorities.
 Key Knowledge Areas:

• Know the default priority of a job that is created

• Run a program with higher or lower priority than the default

• Change the priority of a running process

 Terms and Utilities:

 nice renice

 ps top

 103.7 Search text files using regular expressions
 Weight: 2
 Description : Candidates should be able to manipulate files and text data using

regular expressions. This objective includes creating simple regular expressions
containing several notational elements. It also includes using regular expression tools to
perform searches through a filesystem or file content.

 Key Knowledge Areas:

• Create simple regular expressions containing several notational
elements

• Use regular expression tools to perform searches through a
filesystem or file content

 Terms and Utilities:

 grep sed

 egrep regex(7)

 fgrep

APPENDIX ■ LPIC-1 EXAM OBJECTIVES

167

 103.8 Perform basic file editing operations using vi
 Weight: 3
 Description : Candidates should be able to edit text files using vi. This objective

includes vi navigation, basic vi modes, inserting, editing, deleting, copying and finding
text.

 Key Knowledge Areas:

• Navigate a document using vi

• Use basic vi modes

• Insert, edit, delete, copy and find text

 Terms and Utilities :

 vi i, o, a

 /, ? c, d, p, y, dd, yy

 h,j,k,l ZZ, :w!, :q!, :e!

 Topic 104: Devices, Linux Filesystems , Filesystem
Hierarchy Standard
 104.1 Create partitions and filesystems

 Weight: 2
 Description : Candidates should be able to configure disk partitions and then create

filesystems on media such as hard disks. This includes the handling of swap partitions.
 Key Knowledge Areas:

• Manage MBR partition tables

• Use various mkfs commands to create various filesystems such as:

• ext2/ext3/ext4

• XFS

• VFAT

• Awareness of ReiserFS and Btrfs

• Basic knowledge of gdisk and parted with GPT

 Terms and Utilities:

 fdisk parted

 gdisk mkfs

 mkswap

APPENDIX ■ LPIC-1 EXAM OBJECTIVES

168

 104.2 Maintain the integrity of filesystems
 Weight: 2
 Description : Candidates should be able to maintain a standard filesystem, as well as

the extra data associated with a journaling filesystem.
 Key Knowledge Areas:

• Verify the integrity of filesystems

• Monitor free space and inodes

• Repair simple filesystem problems

 Terms and Utilities:

 du mke2fs XFS tools (such as xfs_
metadump and xfs_info) df debugfs

 fsck dumpe2fs

 e2fsck tune2fs

 104.3 Control mounting and unmounting of filesystems
 Weight: 3
 Description : Candidates should be able to configure the mounting of a filesystem.
 Key Knowledge Areas:

• Manually mount and unmount filesystems

• Configure filesystem mounting on bootup

• Configure user mountable removable filesystems

 Terms and Utilities:

 /etc/fstab mount

 /media/ umount

 104.4 Manage disk quotas
 Weight: 1
 Description : Candidates should be able to manage disk quotas for users.
 Key Knowledge Areas:

• Set up a disk quota for a filesystem

• Edit, check and generate user quota reports

APPENDIX ■ LPIC-1 EXAM OBJECTIVES

169

 Terms and Utilities:

 quota repquota

 edquota quotaon

 104.5 Manage file permissions and ownership
 Weight: 3
 Description : Candidates should be able to control file access through the proper use

of permissions and ownerships.
 Key Knowledge Areas:

• Manage access permissions on regular and special files as well as
directories

• Use access modes such as suid, sgid and the sticky bit to maintain
security

• Know how to change the file creation mask

• Use the group field to grant file access to group members

 Terms and Utilities:

 chmod chown

 umask chgrp

 104.6 Create and change hard and symbolic links
 Weight: 2
 Description : Candidates should be able to create and manage hard and symbolic

links to a file.
 Key Knowledge Areas:

• Create links

• Identify hard and/or soft links

• Copying versus linking files

• Use links to support system administration tasks

 Terms and Utilities:

 ln

 ls

 104.7 Find system files and place files in the correct location
 Weight: 2

APPENDIX ■ LPIC-1 EXAM OBJECTIVES

170

 Description : Candidates should be thoroughly familiar with the Filesystem
Hierarchy Standard (FHS) , including typical file locations and directory classifications.

 Key Knowledge Areas:
• Understand the correct locations of files under the FHS

• Find files and commands on a Linux system

• Know the location and purpose of important file and directories
as defined in the FHS

 Terms and Utilities:

 find which

 locate type

 updatedb /etc/updatedb.conf

 whereis

 LPIC-1 Exam 102
 Exam Covered: LPIC-1 102 (102-400) also available as CompTIA Linux+ (LX0-104); Exam
2 of 2 to obtain LPIC-1 Linux Server Professional certification

 Topic 105: Shells , Scripting and Data Management
 105.1 Customize and use the shell environment

 Weight: 4
 Description : Candidates should be able to customize shell environments to meet

users’ needs. Candidates should be able to modify global and user profiles.
 Key Knowledge Areas:

• Set environment variables (e.g., PATH) at login or when spawning
a new shell

• Write Bash functions for frequently used sequences of commands

• Maintain skeleton directories for new user accounts

• Set command search path with the proper directory

APPENDIX ■ LPIC-1 EXAM OBJECTIVES

171

 The following is a partial list of the used files, terms and utilities:

 . set ~/.bash_logout

 source unset function

 /etc/bash.bashrc ~/.bash_profile alias

 /etc/profile ~/.bash_login lists

 env ~/.profile

 export ~/.bashrc

 105.2 Customize or write simple scripts
 Weight: 4
 Description : Candidates should be able to customize existing scripts, or write simple

new Bash scripts.
 Key Knowledge Areas:

• Use standard sh syntax (loops, tests)

• Use command substitution

• Test return values for success or failure or other information
provided by a command

• Perform conditional mailing to the superuser

• Correctly select the script interpreter through the shebang (#!)
line

• Manage the location, ownership, execution and suid-rights of
scripts

 Terms and Utilities:

 for while

 test seq

 if exec

 read

 105.3 SQL data management
 Weight: 2
 Description : Candidates should be able to query databases and manipulate data

using basic SQL commands. This objective includes performing queries involving joining
of 2 tables and/or subselects.

APPENDIX ■ LPIC-1 EXAM OBJECTIVES

172

 Key Knowledge Areas:

• Use of basic SQL commands

• Perform basic data manipulation

 Terms and Utilities:

 insert delete group by

 update from order by

 select where join

 Topic 106: User Interfaces and Desktops
 106.1 Install and configure X11

 Weight: 2
 Description : Candidates should be able to install and configure X11.
 Key Knowledge Areas:

• Verify that the video card and monitor are supported by an X
server

• Awareness of the X font server

• Basic understanding and knowledge of the X Window
configuration file

 Terms and Utilities:

 /etc/X11/xorg.conf xwininfo

 xhost xdpyinfo

 DISPLAY X

 106.2 Setup a display manager
 Weight: 1
 Description : Candidates should be able to describe the basic features and

configuration of the LightDM display manager. This objective covers awareness of the
display managers XDM (X Display Manger), GDM (Gnome Display Manager) and KDM
(KDE Display Manager).

 Key Knowledge Areas:

• Basic configuration of LightDM

• Turn the display manager on or off

• Change the display manager greeting

• Awareness of XDM, KDM and GDM

APPENDIX ■ LPIC-1 EXAM OBJECTIVES

173

 Terms and Utilities:

 lightdm

 /etc/lightdm/

 106.3 Accessibility
 Weight: 1
 Description : Demonstrate knowledge and awareness of accessibility technologies.
 Key Knowledge Areas:

• Basic knowledge of keyboard accessibility settings (AccessX)

• Basic knowledge of visual settings and themes

• Basic knowledge of assistive technology (ATs)

 Terms and Utilities:

 Sticky/Repeat Print Desktop Gestures (used
at login, for
example GDM)

 Keys Themes

 Slow/Bounce/Toggl Screen Reader

 e Keys Braille Display Orca

 Mouse Keys Screen Magnifier GOK

 High On-Screen emacspeak

 Contrast/Large Keyboard

 Topic 107: Administrative Tasks
 107.1 Manage user and group accounts and related system files

 Weight: 5
 Description : Candidates should be able to add, remove, suspend and change user

accounts.
 Key Knowledge Areas:

• Add, modify and remove users and groups

• Manage user/group info in password/group databases

• Create and manage special purpose and limited accounts

APPENDIX ■ LPIC-1 EXAM OBJECTIVES

174

 Terms and Utilities:

 /etc/passwd getent useradd

 /etc/shadow groupadd userdel

 /etc/group groupdel usermod

 /etc/skel/ groupmod

 chage passwd

 107.2 Automate system administration tasks by scheduling jobs
 Weight: 4
 Description : Candidates should be able to use cron or anacron to run jobs at regular

intervals and to use at to run jobs at a specific time.
 Key Knowledge Areas:

• Manage cron and at jobs

• Configure user access to cron and at services

• Configure anacron

 Terms and Utilities:

 /etc/cron. /etc/crontab at

 {d,daily,hourly,mo
nthly,weekly}/

 /etc/cron.allow atq

 /etc/cron.deny atrm

 /etc/at.deny /var/spool/cron/ anacron

 /etc/at.allow crontab /etc/anacrontab

 107.3 Localisation and internationalisation
 Weight: 3
 Description : Candidates should be able to localize a system in a different language

than English. As well, an understanding of why LANG=C is useful when scripting.
 Key Knowledge Areas:

• Configure locale settings and environment variables

• Configure timezone settings and environment variables

APPENDIX ■ LPIC-1 EXAM OBJECTIVES

175

 Terms and Utilities:

 /etc/timezone LC_ALL date

 /etc/localtime LANG iconv

 / TZ UTF-8

 usr/share/zoneinfo /usr/bin/locale ISO-8859

 / tzselect ASCII

 LC_* timedatectl Unicode

 Topic 108: Essential System Services
 108.1 Maintain system time

 Weight: 3
 Description : Candidates should be able to properly maintain the system time and

synchronize the clock via NTP.
 Key Knowledge Areas:

• Set the system date and time

• Set the hardware clock to the correct time in UTC

• Configure the correct timezone

• Basic NTP configuration

• Knowledge of using the pool.ntp.org service

• Awareness of the ntpq command

 Terms and Utilities:

 /usr/share/zoneinfo/

 /etc/timezone /etc/ntp.conf

 /etc/localtime date

 hwclock ntpdate

 ntpd pool.ntp.org

 108.2 System logging
 Weight: 3

APPENDIX ■ LPIC-1 EXAM OBJECTIVES

176

 Description : Candidates should be able to configure the syslog daemon. This
objective also includes configuring the logging daemon to send log output to a central log
server or accept log output as a central log server. Use of the systemd journal subsystem
is covered. Also, awareness of rsyslog and syslog-ng as alternative logging systems is
included.

 Key Knowledge Areas:

• Configuration of the syslog daemon

• Understanding of standard facilities, priorities and actions

• Configuration of logrotate

• Awareness of rsyslog and syslog-ng

 Terms and Utilities:

 syslog.conf logrotate /

 syslogd /etc/logrotate.conf etc/systemd/journa ld.conf

 klogd /etc/logrotate.d/

 /var/log/ journalctl /var/log/journal/

 logger

 108.3 Mail Transfer Agent (MTA) basics
 Weight: 3
 Description : Candidates should be aware of the commonly available MTA programs

and be able to perform basic forward and alias configuration on a client host. Other
configuration files are not covered.

 Key Knowledge Areas:
• Create e-mail aliases

• Configure e-mail forwarding

• Knowledge of commonly available MTA programs (postfix,
sendmail, qmail, exim) (no configuration)

 Terms and Utilities:

 ~/.forward newaliases sendmail

 sendmail mail exim

 emulation layer mailq qmail

 commands postfix

APPENDIX ■ LPIC-1 EXAM OBJECTIVES

177

 108.4 Manage printers and printing
 Weight: 2
 Description : Candidates should be able to manage print queues and user print jobs

using CUPS and the LPD compatibility interface.
 Key Knowledge Areas:

• Basic CUPS configuration (for local and remote printers)

• Manage user print queues

• Troubleshoot general printing problems

• Add and remove jobs from configured printer queues

 Terms and Utilities:

 CUPS configuration files, tools and utilities

 /etc/cups/

 lpd legacy interface (lpr, lprm, lpq)

 Topic 109: Networking Fundamentals
 109.1 Fundamentals of Internet protocols

 Weight: 4
 Description : Candidates should demonstrate a proper understanding of TCP/IP

network fundamentals.
 Key Knowledge Areas:

• Demonstrate an understanding of network masks and CIDR
notation

• Knowledge of the differences between private and public “dotted
quad” IP addresses

• Knowledge about common TCP and UDP ports and services (20,
21, 22, 23, 25, 53, 80, 110, 123, 139, 143, 161, 162, 389, 443, 465,
514, 636, 993, 995)

• Knowledge about the differences and major features of UDP, TCP
and ICMP

• Knowledge of the major differences between IPv4 and IPv6

• Knowledge of the basic features of IPv6

APPENDIX ■ LPIC-1 EXAM OBJECTIVES

178

 Terms and Utilities:

 /etc/services Subnetting

 IPv4, IPv6 TCP, UDP, ICMP

 109.2 Basic network configuration
 Weight: 4
 Description : Candidates should be able to view, change and verify configuration

settings on client hosts.
 Key Knowledge Areas:

• Manually and automatically configure network interfaces

• Basic TCP/IP host configuration

• Setting a default route

 Terms and Utilities:

 /etc/hostname /etc/hosts /etc/nsswitch.conf

 ifconfig ifdown route

 ifup ip ping

 109.3 Basic network troubleshooting
 Weight: 4
 Description : Candidates should be able to troubleshoot networking issues on client

hosts.
 Key Knowledge Areas :

• Manually and automatically configure network interfaces and
routing tables to include adding, starting, stopping, restarting,
deleting or reconfiguring network interfaces

• Change, view, or configure the routing table and correct an
improperly set default route manually

• Debug problems associated with the network configuration

APPENDIX ■ LPIC-1 EXAM OBJECTIVES

179

 Terms and Utilities:

 ifconfig hostname traceroute6

 ip dig tracepath

 ifup netstat tracepath6

 ifdown ping netcat

 route ping6

 host traceroute

 109.4 Configure client side DNS
 Weight: 2
 Description : Candidates should be able to configure DNS on a client host.
 Key Knowledge Areas:

• Query remote DNS servers

• Configure local name resolution and use remote DNS servers

• Modify the order in which name resolution is done

 Terms and Utilities:

 /etc/hosts host

 /etc/resolv.conf dig

 /etc/nsswitch.conf getent

 Topic 110: Security
 110.1 Perform security administration tasks

 Weight: 3
 Description : Candidates should know how to review system configuration to ensure

host security in accordance with local security policies.
 Key Knowledge Areas:

• Audit a system to find files with the suid/sgid bit set

• Set or change user passwords and password aging information

• Being able to use nmap and netstat to discover open ports on a
system

• Set up limits on user logins, processes and memory usage

• Determine which users have logged in to the system or are
currently logged in

• Basic sudo configuration and usage

APPENDIX ■ LPIC-1 EXAM OBJECTIVES

180

 Terms and Utilities:

 find chage usermod

 passwd netstat ulimit

 fuser sudo who, w, last

 lsof /etc/sudoers

 nmap su

 110.2 Setup host security
 Weight: 3
 Description : Candidates should know how to set up a basic level of host security.
 Key Knowledge Areas:

• Awareness of shadow passwords and how they work

• Turn off network services not in use

• Understand the role of TCP wrappers

 Terms and Utilities:

 /etc/nologin /etc/xinetd.conf /etc/init.d/

 /etc/passwd /etc/inetd.d/ /etc/hosts.allow

 /etc/shadow /etc/inetd.conf /etc/hosts.deny

 /etc/xinetd.d/ /etc/inittab

 110.3 Securing data with encryption
 Weight: 3
 Description : The candidate should be able to use public key techniques to secure

data and communication.
 Key Knowledge Areas:

• Perform basic OpenSSH 2 client configuration and usage

• Understand the role of OpenSSH 2 server host keys

• Perform basic GnuPG configuration, usage and revocation

• Understand SSH port tunnels (including X11 tunnels)

APPENDIX ■ LPIC-1 EXAM OBJECTIVES

181

 Terms and Utilities:

 ssh ~/.ssh/id_dsa and id_dsa.pub

 ssh-keygen /etc/ssh/ssh_host_rsa_key and

 ssh-agent ssh_host_rsa_key.pub

 ssh-add /etc/ssh/ssh_host_dsa_key and

 ~/.ssh/id_rsa and id_rsa.pub ssh_host_dsa_key.pub

 ~/.ssh/authorized_keys ssh_known_hosts
gpg ~/.gnupg/

183© David Clinton 2016
D. Clinton, Practical LPIC-1 Linux Certification Study Guide,
DOI 10.1007/978-1-4842-2358-1

 A
 Accessibility , 94–96
 Administrative tasks

 arguments , 101
 attributes , 101
 Linux distributions , 100
 Linux fi lesystem , 99
 passwd , 100
 password vault software packages , 101
 useradd , 100
 users , 99–102

 Anacron , 104–105
 Aptitude package manager , 26
 ‘at’ program command , 105
 Attributes , 101
 Autogenerated symlink , 137
 Automate system administration , 174

 B
 Bash shell , 31–33
 Basic fi le management , 164–165
 Boot manager, installation and

confi guration , 21

 C
 Calibre’s private repository , 28
 Classless Inter-Domain

Routing (CIDR) , 126
 Client side DNS , 136–138, 179
 Coldplug , 159
 Common Unix Printing System (CUPS) , 120
 CompTIA Linux+ , 159
 Control mounting , 168
 cpio archive tool , 40
 cron system , 103–104, 116

 D
 Data Management , 170–172
 Debian package management system ,

119, 141, 162–163
 Desktops , 172–173
 Device management

 administrators and developers , 12
 browser-based web

conferencing tool , 13
 circuit boards , 12
 Internet searches , 13
 Linux kernel modules , 11–12
 troubleshooting , 12
 USB drives and cameras , 11

 /dev/null directory , 147
 Disk partitioning

 default , 17
 GUI GParted tool , 19–20
 Logical Volume Manager

(LVM) , 20–21
 performance and security , 17
 swap fi le , 17
 Ubuntu server installation

process , 18–19
 Disk quotas , 61–62, 168
 Display manager

 autologin feature , 91
 commands , 92
 Gnome-Fallback , 91
 LightDM login screen , 90, 92
 login screen , 90
 optional entries , 91
 pull-down menu , 91, 93
 router , 93
 settings , 91
 X11 protocol , 90
 xhost , 93

 Index

■ INDEX

184

 Domain Name System (DNS) , 136–138
 DOS.BAT fi les , 106
 Dwell Click , 96
 Dynamic Host Confi guration Protocol

(DHCP) , 133

 E
 Editing operations , 167
 Encryption

 algorithm , 149
 e-mail attachments , 148
 wireless/public digital networks , 148

 English-speaking countries , 107
 Essential system services , 175
 /etc/pam.d/system-auth fi le , 141
 /etc/resolv.conf fi le , 137
 /etc/rsyslog.d/ directory , 115
 /etc/security/limits.conf fi le , 145
 /etc/shadow fi le , 99
 /etc/ssh/sshd_confi g fi le , 150
 /etc/sudoers fi le , 142
 /etc/systemd/ , 161
 /etc/xinetd.conf confi guration fi le , 146
 /etc/xinetd.d/ , 147
 Execution priorities , 45–46

 F
 Fedora installation , 9
 FHS . See Filesystem Hierarchy Standard

(FHS)
 Figaro , 101
 File archives , 40
 File management , 37–39
 File permissions , 169
 Filesystem Hierarchy Standard (FHS) ,

68–69, 167–168, 170
 ForwardX11 line , 152
 Fully qualifi ed domain names

(FQDNs) , 137

 G
 gedit , 152
 Gnome Onscreen Keyboard (GOK) , 95
 Gnu and Unix commands

 Bash shell , 31–33
 description , 31
 execution priorities , 45–46
 fi le archives , 40

 fi le management , 37–39
 Regular Expression (REGEX) , 46–47
 streams, pipes and redirects , 41–42
 text stream processing , 33–37
 vi editor , 48–49

 GnuPG Confi g , 152–155
 Gnu Privacy Guard (GPG) , 152
 gpg --export , 154
 gpg --import , 154
 GRand Unifi ed Bootloader (GRUB)

 advanced menu , 4
 older versions , 2–3
 parameters , 4–5
 version 2 boot menu , 3

 Graphic functionality , 152
 Graphic user interface (GUI) , 87
 grep , 136
 Groups

 directory , 102
 /etc/group fi le , 103
 sensitive documents , 102
 usermod-G , 102

 GRUB . See GRand Unifi ed Bootloader
(GRUB)

 guid (group) permissions , 145
 GUID Partition Table (GPT) , 54–55

 H
 Hard and symbolic links , 169
 Hardware clock , 111–112
 Hardware settings , 159
 hctosys , 112
 Host security

 built-in security benefi ts , 146
 hosts.deny , 148
 nonroot log , 146
 run-level control system , 146
 TCP wrappers , 147
 UDP versions , 147
 vsftpd fi le , 147
 xinetd fi le confi guration , 147, 148

 Hotplug , 159

 I, J
 includedir /etc/xinetd.d line , 147
 Inetd , 146
 InputDevice , 89
 Integrity of fi lesystems , 168
 Internationalization , 106–109, 174–175

■ INDEX

185

 Internet Message Access
Protocol (IMAP) , 118

 Internet protocols , 177–178
 IPv4 address , 126–127
 IPv6 protocol , 128–129

 K
 KDE Display Manager , 172
 KeePassX , 101
 Kernel-level driver , 134

 L
 LightDM manager , 90, 91
 Linux boot process

 BIOS , 1
 cloud platform , 1
 GRUB advanced menu , 4
 GRUB stage , 2–5
 hardware environment , 1
 pseudo fi lesystems , 10–11
 run levels , 7–9
 steps , 2
 temporary fi lesystem (tmpfs) , 2
 testing , 13–15
 troubleshooting , 5–6

 Linux Filesystems , 167–168
 Linux installation , 161–162
 Linux Locale Values , 108
 Linux OS , 99
 LiSt Open Files (lsof) , 143
 Localization , 106–109, 174–175
 logger , 116
 logrotate , 117–118
 lp daemon , 121
 lpd command-line interface , 121
 LPIC-1 exam

 CompTIA Linux+ , 170
 professional certifi cation , 159

 lsof tools , 144

 M
 Mail Transfer Agent (MTA)

 basics , 118–120, 176

 N
 nameservers , 137
 netcat , 136

 Network Address Translation (NAT) , 127–128
 address ranges , 127
 attached devices , 127
 IPv4 network , 128
 IPv6 protocol , 128–129
 network translation , 127

 Network confi guration , 178
 command line , 132
 Debian/Ubuntu machines , 132
 DHCP NAT address , 131
 gateway device , 133
 ifconfi g , 131
 interface , 131
 LPIC exam , 131

 Network interface card (NIC) , 13
 Network time protocol (NTP) , 112–114
 Network troubleshooting

 DHCP server , 134
 external interface , 134
 Internet provider , 135
 IPv6 , 135
 kernel modules , 134
 Linux , 133
 netstat , 136
 ping , 135
 rebooting , 135
 router address , 135

 ntpdate program , 112
 ntpq shell , 113

 O
 OpenSSH 2 server , 180
 OpenSSH server package , 149–150
 Ownership , 169

 P, Q
 Package management , 161–162
 Package managers

 APT system , 23–26
 download and install, software , 23
 dpkg , 23–24
 RPM , 27
 system libraries , 23
 yum , 27

 Partitions and fi lesystems
 Boot fi eld , 54
 btrfs , 55
 control mounting and

unmounting , 59–60
 disk quotas , 61–62

■ INDEX

186

 ext2 , 55
 ext3 and ext4 , 55
 FHS , 68–69
 fi le permissions and ownership

 letters , 62–63
 numbers , 64
 subjects , 63
 suid, sgid and sticky bit , 65–66
 umask , 64–65

 GUID Partition Table (GPT) , 54–55
 hard and symbolic links , 66–67
 Master Boot Record (MBR) , 53
 monitoring , 56
 preventive maintenance , 57
 reiserfs , 55
 repair , 57–58
 search tools , 69–70
 swap fi les , 55
 VFAT , 55
 XFS , 55

 Passwordless access , 150–151
 Password-protected screensaver , 142
 Personal Package Archive (PPA) , 28
 Pluggable Authentication

Module (PAM) , 141
 Post Offi ce Protocol 3 (POP3) , 118
 Printers , 120–121, 177
 Printing , 120–121, 177
 Process execution priorities , 166
 Process management

 background , 43–45
 killing , 45
 monitoring , 42–43

 Pseudo fi lesystems , 10–11

 R
 Real-time clock (RTC) , 111
 Red Hat Enterprise Linux , 27
 Regular Expression (REGEX) , 46–47
 Remote backups , 99
 RFC 863 discard server , 147
 rsyslog , 114
 Runlevels/boot targets , 161

 S
 Scripting , 170–172
 Search text fi les , 166
 Secure Shell network connectivity tool , 9

 Securing data , 180
 LPI , 141
 national foreign service , 141

 Security administration tasks , 179–180
 Service ports , 129–130
 Setup host security , 180
 Shared libraries , 21–22
 Shells , 170–172

 alias command , 74
 ~/.bash_logout controls , 74
 confi guration fi les , 74
 functions , 74
 login and non-login , 73–74

 Shell scripts
 alias and function , 75
 commands , 75
 inputs , 76–77
 loops , 78–80
 shebang , 75
 structure , 75
 testing values , 77–78

 Simple Mail Transfer Protocol (SMTP) , 118
 SQL data management

 elements , 81
 fi elds , 83
 MySQL , 80–81
 online company , 80
 PHP , 82
 records , 84
 shippers and orders , 84

 ssh-agent , 151
 ssh_host_dsa , 150
 statsdir setting , 114
 Streams , 165
 Super-turbocharged graphics , 96
 Synaptic package manager , 25
 syslogd , 114–116
 Systemarchitecture . See Linux boot

process
 System booting , 160–161
 systemctl , 161
 Systemd boot target , 160, 161
 Systemd functionality , 107
 System logging , 176
 System security

 administrative users , 142
 admin shell , 142
 categories , 145
 directory hierarchy , 143
 internet-based addresses , 144
 lowercase , 141

Partitions and fi lesystems (cont.)

■ INDEX

187

 lsof tools , 144
 ownerless fi les , 145
 password complexity , 141
 password-protected

screensaver , 142
 password required , 141
 ps processes , 146
 sgid bit set , 145
 ssh session , 143
 sudo group , 142
 user log ins , 142
 vulnerabilities , 145

 SysVinit runlevel , 160

 T
 Text stream processing , 33–37
 Text streams , 164
 Tracepath , 136
 Traceroute , 136
 Transmission Control

Protocol (TCP) , 125
 Troubleshooting , 5–6

 U
 Ubuntu systems , 114
 Unix Commands , 163

 User Datagram Protocol
(UDP) , 125

 User interfaces , 172–173
 accessibility , 94–96
 cutting-edge hardware , 87

 /usr/bin/passwd binary , 145
 UTF-8 encoding , 108

 V, W
 /var/spool/cron directory , 106

 X
 X11 protocol

 ATI adapters , 89
 built-in system manuals , 89
 confi guration fi le , 87, 89
 hardware profi le , 89
 server , 87

 X engine , 87
 X Font server , 90
 xhost , 93
 xorg.conf fi le , 88–89

 Y, Z
 YUM package management , 163

	Contents at a Glance
	Contents
	About the Author
	Introduction
	Chapter 1: Topic 101: System Architecture
	Device Management: The Linux Boot Process
	Troubleshooting
	Run Levels
	Pseudo Filesystems
	Device Management
	Now Try This
	Test Yourself
	Answer Key

	Chapter 2: Topic 102: Linux Installation and Package Management
	Disk Partitioning
	Install and Configure a Boot Manager
	Shared Libraries
	Package Managers
	Local: dpkg
	Repositories: APT
	Local: RPM
	Repositories: yum

	Now Try This
	Test Yourself
	Answer Key

	Chapter 3: Topic 103: Gnu and Unix Commands
	The Bash Shell
	Processing Text Streams
	File Management
	File Archives

	Streams, Pipes, and Redirects
	Managing Processes
	Monitoring Processes
	Managing Background Processes
	Killing Processes

	Execution Priorities
	Using Regular Expressions (REGEX)
	Using vi
	Now Try This
	Test Yourself
	Answer Key

	Chapter 4: Topic 104: Devices, Linux Filesystems, and the Filesystem Hierarchy Standard
	Create Partitions and Filesystems
	Maintain the Integrity of Filesystems
	Monitoring
	Preventive Maintenance
	Repair

	Control Mounting and Unmounting of Filesystems
	Manage Disk Quotas
	Manage File Permissions and Ownership
	 Letters
	Numbers (octal)
	Umask
	Using suid, sgid, and the Sticky Bit

	Create and Change Hard and Symbolic Links
	Find System Files and Place Files in the Correct Location
	Filesystem Hierarchy Standard
	Search Tools

	Now Try This
	Test Yourself
	Answer Key

	Chapter 5: Topic 105: Shells, Scripting, and Databases
	Customize and Use the Shell Environment
	Customize and Write Simple Scripts
	User Inputs
	Testing Values
	Loops

	SQL Data Management
	Now Try This
	Test Yourself
	Answer Key

	Chapter 6: Topic 106: User Interfaces and Desktops
	Install and Configure X11
	Set Up a Display Manager
	Accessibility
	Now Try This
	Test Yourself
	Answer Key

	Chapter 7: Topic 107: Administrative Tasks
	Manage User and Group Accounts
	Users
	Groups

	Automate System Administration Tasks
	Using cron
	Using anacron
	Using at

	Localization and Internationalization
	Now Try This
	Test Yourself
	Answer Key

	Chapter 8: Topic 108: Essential System Services
	Maintain System Time
	The Hardware Clock
	Network Time Protocol (NTP)

	System Logging
	Using syslogd
	Using journald
	Using logger
	Using logrotate

	Mail Transfer Agent Basics
	Manage Printers and Printing
	Now Try This
	Test Yourself
	Answer Key

	Chapter 9: Topic 109: Networking Fundamentals
	Fundamentals of Internet Protocols
	Transmission Protocols
	Network Addressing
	IPv4
	Network Address Translation (NAT)
	IPv6
	Service Ports

	Basic Network Configuration
	Basic Network Troubleshooting
	Configure Client Side DNS
	Now Try This
	Test Yourself
	Answer Key

	Chapter 10: Topic 110: Security
	System Security
	Host Security
	Encryption: Securing Data in Transit
	OpenSSH
	Passwordless Access
	Using ssh-agent
	X11 Tunnels
	GnuPG Config

	Now Try This
	Test Yourself
	Answer Key

	Appendix: LPIC-1 Exam Objectives
	LPIC-1 Exam 101
	Topic 101: System Architecture
	Topic 102: Linux Installation and Package Management
	Topic 103: GNU and Unix Commands
	Topic 104: Devices, Linux Filesystems, Filesystem Hierarchy Standard

	LPIC-1 Exam 102
	Topic 105: Shells, Scripting and Data Management
	Topic 106: User Interfaces and Desktops
	Topic 107: Administrative Tasks
	Topic 108: Essential System Services
	Topic 109: Networking Fundamentals
	Topic 110: Security

	Index

