

Practical	Mobile	Forensics

Table	of	Contents

Practical	Mobile	Forensics

Credits

About	the	Authors

About	the	Reviewers

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and	more

Why	subscribe?

Free	access	for	Packt	account	holders

Preface

What	this	book	covers

What	you	need	for	this	book

Who	this	book	is	for

Conventions

Reader	feedback

Customer	support

Downloading	the	example	code

Downloading	the	color	images	of	the	book

Errata

Piracy

Questions

1.	Introduction	to	Mobile	Forensics

Mobile	forensics

Mobile	forensic	challenges

Mobile	phone	evidence	extraction	process

The	evidence	intake	phase

The	identification	phase

The	legal	authority

The	goals	of	the	examination

The	make,	model,	and	identifying	information	for	the	device

Removable	and	external	data	storage

Other	sources	of	potential	evidence

The	preparation	phase

The	isolation	phase

The	processing	phase

The	verification	phase

Comparing	extracted	data	to	the	handset	data

Using	multiple	tools	and	comparing	the	results

Using	hash	values

The	document	and	reporting	phase

The	presentation	phase

The	archiving	phase

Practical	mobile	forensic	approaches

Mobile	operating	systems	overview

Android

iOS

Windows	phone

BlackBerry	OS

Mobile	forensic	tool	leveling	system

Manual	extraction

Logical	extraction

Hex	dump

Chip-off

Micro	read

Data	acquisition	methods

Physical	acquisition

Logical	acquisition

Manual	acquisition

Potential	evidence	stored	on	mobile	phones

Rules	of	evidence

Admissible

Authentic

Complete

Reliable

Believable

Good	forensic	practices

Securing	the	evidence

Preserving	the	evidence

Documenting	the	evidence

Documenting	all	changes

Summary

2.	Understanding	the	Internals	of	iOS	Devices

iPhone	models

iPhone	hardware

iPad	models

iPad	hardware

File	system

The	HFS	Plus	file	system

The	HFS	Plus	volume

Disk	layout

iPhone	operating	system

iOS	history

1.x	–	the	first	iPhone

2.x	–	App	Store	and	3G

3.x	–	the	first	iPad

4.x	–	Game	Center	and	multitasking

5.x	–	Siri	and	iCloud

6.x	–	Apple	Maps

7.x	–	the	iPhone	5S	and	beyond

The	iOS	architecture

The	Cocoa	Touch	layer

The	Media	layer

The	Core	Services	layer

The	Core	OS	layer

iOS	security

Passcode

Code	signing

Sandboxing

Encryption

Data	protection

Address	Space	Layout	Randomization

Privilege	separation

Stack	smashing	protection

Data	execution	prevention

Data	wipe

Activation	Lock

App	Store

Jailbreaking

Summary

3.	Data	Acquisition	from	iOS	Devices

Operating	modes	of	iOS	devices

Normal	mode

Recovery	mode

DFU	mode

Physical	acquisition

Acquisition	via	a	custom	ramdisk

The	forensic	environment	setup

Downloading	and	installing	the	ldid	tool

Verifying	the	codesign_allocate	tool	path

Installing	OSXFuse

Installing	Python	modules

Downloading	iPhone	Data	Protection	Tools

Building	the	IMG3FS	tool

Downloading	redsn0w

Creating	and	loading	the	forensic	toolkit

Downloading	the	iOS	firmware	file

Modifying	the	kernel

Building	a	custom	ramdisk

Booting	the	custom	ramdisk

Establishing	communication	with	the	device

Bypassing	the	passcode

Imaging	the	data	partition

Decrypting	the	data	partition

Recovering	the	deleted	data

Acquisition	via	jailbreaking

Summary

4.	Data	Acquisition	from	iOS	Backups

iTunes	backup

Pairing	records

Understanding	the	backup	structure

info.plist

manifest.plist

status.plist

manifest.mbdb

Header

Record

Unencrypted	backup

Extracting	unencrypted	backups

iPhone	Backup	Extractor

iPhone	Backup	Browser

iPhone	Data	Protection	Tools

Decrypting	the	keychain

Encrypted	backup

Extracting	encrypted	backups

iPhone	Data	Protection	Tools

Decrypting	the	keychain

iPhone	Password	Breaker

iCloud	backup

Extracting	iCloud	backups

Summary

5.	iOS	Data	Analysis	and	Recovery

Timestamps

Unix	timestamps

Mac	absolute	time

SQLite	databases

Connecting	to	a	database

SQLite	special	commands

Standard	SQL	queries

Important	database	files

Address	book	contacts

Address	book	images

Call	history

SMS	messages

SMS	Spotlight	cache

Calendar	events

E-mail	database

Notes

Safari	bookmarks

The	Safari	web	caches

The	web	application	cache

The	WebKit	storage

The	photos	metadata

Consolidated	GPS	cache

Voicemail

Property	lists

Important	plist	files

The	HomeDomain	plist	files

The	RootDomain	plist	files

The	WirelessDomain	plist	files

The	SystemPreferencesDomain	plist	files

Other	important	files

Cookies

Keyboard	cache

Photos

Wallpaper

Snapshots

Recordings

Downloaded	applications

Recovering	deleted	SQLite	records

Summary

6.	iOS	Forensic	Tools

Elcomsoft	iOS	Forensic	Toolkit

Features	of	EIFT

Usage	of	EIFT

Guided	mode

Manual	mode

EIFT-supported	devices

Compatibility	notes

Oxygen	Forensic	Suite	2014

Features	of	Oxygen	Forensic	Suite

Usage	of	Oxygen	Forensic	Suite

Oxygen	Forensic	Suite	2014	supported	devices

Cellebrite	UFED	Physical	Analyzer

Features	of	Cellebrite	UFED	Physical	Analyzer

Usage	of	Cellebrite	UFED	Physical	Analyzer

Supported	devices

Paraben	iRecovery	Stick

Features	of	Paraben	iRecovery	Stick

Usage	of	Paraben	iRecovery	Stick

Devices	supported	by	Paraben	iRecovery	Stick

Open	source	or	free	methods

Summary

7.	Understanding	Android

The	Android	model

The	Linux	kernel	layer

Libraries

Dalvik	virtual	machine

The	application	framework	layer

The	applications	layer

Android	security

Secure	kernel

The	permission	model

Application	sandbox

Secure	interprocess	communication

Application	signing

Android	file	hierarchy

Android	file	system

Viewing	file	systems	on	an	Android	device

Extended	File	System	–	EXT

Summary

8.	Android	Forensic	Setup	and	Pre	Data	Extraction	Techniques

A	forensic	environment	setup

Android	Software	Development	Kit

Android	SDK	installation

Android	Virtual	Device

Connecting	an	Android	device	to	a	workstation

Identifying	the	device	cable

Installing	the	device	drivers

Accessing	the	connected	device

Android	Debug	Bridge

Accessing	the	device	using	adb

Detecting	connected	devices

Killing	the	local	adb	server

Accessing	the	adb	shell

Handling	an	Android	device

Screen	lock	bypassing	techniques

Using	adb	to	bypass	the	screen	lock

Deleting	the	gesture.key	file

Updating	the	settings.db	file

Checking	for	the	modified	recovery	mode	and	adb	connection

Flashing	a	new	recovery	partition

Smudge	attack

Using	the	primary	Gmail	account

Other	techniques

Gaining	root	access

What	is	rooting?

Rooting	an	Android	device

Root	access	–	adb	shell

Summary

9.	Android	Data	Extraction	Techniques

Imaging	an	Android	Phone

Data	extraction	techniques

Manual	data	extraction

Using	root	access	to	acquire	an	Android	device

Logical	data	extraction

Using	the	adb	pull	command

Extracting	the	/data	directory	on	a	rooted	device

Using	SQLite	Browser

Extracting	device	information

Extracting	call	logs

Extracting	SMS/MMS

Extracting	browser	history

Analysis	of	social	networking/IM	chats

Using	content	providers

Physical	data	extraction

JTAG

Chip-off

Imaging	a	memory	(SD)	card

Summary

10.	Android	Data	Recovery	Techniques

Data	recovery

Recovering	the	deleted	files

Recovering	deleted	data	from	an	SD	card

Recovering	data	deleted	from	internal	memory

Recovering	deleted	files	by	parsing	SQLite	files

Recovering	files	using	file-carving	techniques

Summary

11.	Android	App	Analysis	and	Overview	of	Forensic	Tools

Android	app	analysis

Reverse	engineering	Android	apps

Extracting	an	APK	file	from	an	Android	device

Steps	to	reverse	engineer	Android	apps

Forensic	tools	overview

The	AFLogical	tool

AFLogical	Open	Source	Edition

AFLogical	Law	Enforcement	(LE)

Cellebrite	–	UFED

Physical	extraction

MOBILedit

Autopsy

Analyzing	an	Android	in	Autopsy

Summary

12.	Windows	Phone	Forensics

Windows	Phone	OS

Security	model

Windows	chambers

Capability-based	model

App	sandboxing

Windows	Phone	file	system

Data	acquisition

Sideloading	using	ChevronWP7

Extracting	the	data

Extracting	SMS

Extracting	e-mail

Extracting	application	data

Summary

13.	BlackBerry	Forensics

BlackBerry	OS

Security	features

Data	acquisition

Standard	acquisition	methods

Creating	a	BlackBerry	backup

BlackBerry	analysis

BlackBerry	backup	analysis

BlackBerry	forensic	image	analysis

Encrypted	BlackBerry	backup	files

Forensic	tools	for	BlackBerry	analysis

Summary

Index

Practical	Mobile	Forensics

Practical	Mobile	Forensics
Copyright	©	2014	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,
or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without
warranty,	either	express	or	implied.	Neither	the	authors,	nor	Packt	Publishing,	and	its
dealers	and	distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused
directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.
However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	published:	July	2014

Production	reference:	2140714

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78328-831-1

www.packtpub.com

Cover	image	by	Aniket	Sawant	(<aniket_sawant_photography@hotmail.com>)

http://www.packtpub.com
mailto:aniket_sawant_photography@hotmail.com

Credits
Authors

Satish	Bommisetty

Rohit	Tamma

Heather	Mahalik

Reviewers

Dr.	Aswami	Ariffin

Dr.	Salvatore	Fiorillo	(MSIT)

Yogesh	Khatri

Erik	Kristensen

Dr.	Michael	Spreitzenbarth

Commissioning	Editor

Rebecca	Youé

Acquisition	Editor

Rebecca	Youé

Content	Development	Editor

Balaji	Naidu

Technical	Editor

Manan	Badani

Copy	Editors

Sarang	Chari

Mradula	Hegde

Adithi	Shetty

Project	Coordinator

Aaron.S.Lazar

Proofreaders

Maria	Gould

Ameesha	Green

Indexer

Hemangini	Bari

Graphics

Disha	Haria

Abhinash	Sahu

Production	Coordinator

Adonia	Jones

Cover	Work

Adonia	Jones

About	the	Authors
Satish	Bommisetty	is	a	security	analyst	working	for	a	Fortune	500	company.	His	primary
areas	of	interest	include	iOS	forensics,	iOS	application	security,	and	web	application
security.	He	has	presented	at	international	conferences,	such	as	ClubHACK	and	C0C0n.
He	is	also	one	of	the	core	members	of	the	Hyderabad	OWASP	chapter.	He	has	identified
and	disclosed	vulnerabilities	within	the	websites	of	Google,	Facebook,	Yandex,	PayPal,
Yahoo!,	AT&T,	and	more,	and	is	listed	in	their	hall	of	fame.

I	would	like	to	thank	everyone	who	encouraged	me	while	producing	this	book,	especially
my	wife	for	her	great	support.

Rohit	Tamma	is	a	security	analyst	working	for	a	Fortune	500	company.	His	interests	lie
in	mobile	forensics,	Android	application	security,	and	web	application	security.	He	is
experienced	in	performing	vulnerability	assessments	and	penetration	testing	of	a	range	of
applications,	including	web	and	mobile	applications.	He	lives	in	Hyderabad,	India,	where
he	spends	time	with	his	parents	and	friends.

I	would	like	to	thank	everyone	who	encouraged	me	while	I	was	authoring	this	book,
especially	my	parents	and	my	friends	who	offered	their	support	in	every	way	they	could.
Special	thanks	to	Satish	Bommisetty,	my	colleague,	co-author	of	this	book,	who	mentored
me	all	the	way	through	with	his	valuable	suggestions.

Heather	Mahalik	is	the	Mobile	Exploitation	Team	Lead	at	Basis	Technology	and	the
Course	Lead	for	the	SANS	Smartphone	Forensics	course.	With	over	11	years’	experience
in	digital	forensics,	she	currently	focuses	her	energy	on	mobile	device	investigations,
forensic	course	development	and	instruction,	and	research	on	smartphone	forensics.

Prior	to	joining	Basis	Technology,	Heather	worked	at	Stroz	Friedberg	and	as	a	contractor
for	the	U.S.	Department	of	State	Computer	Investigations	and	Forensics	Lab.	She	earned
her	Bachelor’s	degree	from	West	Virginia	University.	She	has	authored	white	papers	and
forensic	course	material,	and	has	taught	hundreds	of	courses	worldwide	for	law
enforcement,	Government,	IT,	eDiscovery,	and	other	forensic	professionals	focusing	on
mobile	devices	and	digital	forensics.

There	are	a	lot	of	people	to	whom	I	owe	my	deepest	gratitude.	This	book	is	for	my
husband,	who	always	encourages	me	to	try	harder	and	strive	to	be	one	step	ahead.	This
book	is	also	for	Jack,	who	would	sleep	so	that	mama	could	write,	and	my	dad	and	mother-
in-law	for	always	supporting	me.	Professionally,	this	book	is	for	Brian	Carrier,	Eoghan
Casey,	Terrance	Maguire,	Rob	Lee,	and	Shawn	Howell	for	getting	me	addicted	to	this
trade	and	providing	me	with	the	opportunities	to	better	myself.	I	would	also	like	to	thank
my	co-workers,	who	have	taught	me	patience,	kept	a	smile	on	my	face,	and	helped	me
learn	more	about	forensics	than	most	would	deem	required.	You	guys	are	the	best!

About	the	Reviewers
Dr.	Aswami	Ariffin	specializes	in	digital	forensics	(PhD)	and	previously	was	a	GIAC
Certified	Forensic	Analyst	(GCFA)	and	Certified	Wireless	Security	Professional	(CWSP).
He	has	attended	various	digital	forensics	training	courses,	such	as	SANS	System
Forensics,	Investigation	and	Response	in	Australia,	multimedia	forensics	in	the	United
Kingdom	and	United	States,	and	also	data	recovery	in	South	Korea.

He	has	experience	in	handling	computer	crimes	and	computer-related	crimes	with	various
law	enforcement	agencies/regulatory	bodies	in	Malaysia	and	overseas	(recognized	as	an
expert	by	New	South	Wales	Police	Force,	Australia).	He	managed	more	than	1,800	digital
forensic	investigations	and	provided	expert	testimonies/coordination	in	Malaysia’s	High
Court	and	Royal	Commission	of	Inquiry.

He	is	active	in	research,	and	one	of	his	papers	entitled	Data	Recovery	From	Proprietary-
Formatted	Files	CCTV	Hard	Disks	was	accepted	for	publication	and	presentation	at	the
2013	Ninth	Annual	IFIP	WG	11.9	International	Conference	on	Digital	Forensics,	USA.	He
was	also	involved	as	a	committee	member	of	the	digital	forensics	program	of	the
prestigious	International	Conference	on	Availability,	Reliability,	and	Security	(ARES	2012
and	2013).

Due	to	his	immense	contribution	in	combating	cyber	crimes	and	developing
CyberSecurity,	Malaysia’s	digital	forensics	capabilities,	Dr.	Aswami	Ariffin	was	awarded
the	ISLA	(Information	Security	Leadership	Award)	in	2009	by	ISC2,	USA.	The	Attorney
General	Chambers	of	Malaysia	and	Royal	Malaysia	Police	also	issued	a	commendation
letter	and	certificate	of	appreciation	to	him.

Currently,	he	is	Vice	President	of	Cyber	Security	Responsive	Services	at	CyberSecurity
Malaysia.	He	provides	input	on	strategic	direction,	technical	leadership,	and	marketing
strategy	for	CyberSecurity	Malaysia	security	operations	and	research—Digital	Forensics
Department,	MyCERT,	and	Secure	Technology	Services.

Dr.	Salvatore	Fiorillo	(MSIT)	is	a	fast	learner,	problem	solver,	and	open-minded	person.
He	likes	unconventional	challenges.	Holding	a	degree	in	Political	Science	and	a	Master’s
degree	in	IT	Security,	his	interests	are	wide	ranging,	from	digital	forensic	and	general
hacking,	to	social,	anthropological,	statistics,	and	financial	studies.	He	is	a	network-centric
warfare	evangelist	and	gave	a	speech	at	De	Vere	University	Arms	in	Cambridge	(UK)
during	the	2007	conference	organized	by	the	Command	and	Control	Research	Program
(CCRP)	within	the	Office	of	the	Assistant	Secretary	of	US-Defense	(NII).	He	is	also	the
author	of	Theory	and	practice	of	flash	memory	mobile	forensics,	a	2009	widespread	paper
on	the	limits	of	digital	forensic	tools	(work	cited	in	the	2014	NIST	Guidelines	on	Mobile
Device	Forensics).

I	would	like	to	thank	Lucia	Tirino	and	Monica	Capasso	for	their	precious	help	and	support
throughout.	I	would	also	like	to	thank	the	people	at	Packt	Publishing;	they	are	all	very
professional	and	nice	people.

Yogesh	Khatri	is	an	assistant	professor	teaching	computer	forensics	at	Champlain	College

in	Burlington,	Vermont.	Prior	to	that,	he	has	had	a	decade	of	experience	working	in
industry	as	a	consultant	and	trainer	for	various	companies,	including	guidance	software,
during	which	he	worked	on	cases	in	several	countries,	and	with	many	Fortune	100
companies.	Yogesh	has	a	Master’s	degree	in	Computer	Engineering	from	Syracuse
University.	He	runs	a	blog	at	www.swiftforensics.com,	which	showcases	his	latest
research,	scripts,	ideas,	and	videos	on	computer	forensics.

Erik	Kristensen	holds	a	Bachelor’s	degree	in	Computer	Science	with	over	15	years	of
experience	with	computer	systems	that	includes	computer	security,	mobile	security,	and
computer	forensics.	During	his	time	in	the	United	States	Air	Force,	he	specialized	in
computer	security	and	helped	pioneer	a	mobile	security	program	for	the	BlackBerry,
Android,	and	iPhone	devices.	He	is	currently	a	GIAC	Certified	Forensics	Analyst	(GCFA)
and	is	the	primary	maintainer	of	the	SANS	Investigative	Forensics	Toolkit	(SIFT)	for
computer	forensics.	He	has	a	broad	range	of	experience	and	interests.	He	enjoys	problem
solving	and	thinking	out	of	the	box.	He	is	currently	the	lead	DevOps	engineer	for
viaForensics,	an	advanced	mobile	security	and	forensics	company.

Dr.	Michael	Spreitzenbarth	worked	several	years	as	a	freelancer	in	the	IT	security	sector
after	finishing	his	diploma	thesis	with	a	major	in	Mobile	Phone	Forensics.	In	2013,	he
finished	his	PhD	from	the	University	of	Erlangen-Nuremberg	in	the	field	of	Android
Forensics	and	Mobile	Malware	Analysis.	Since	this	time,	he	has	been	working	in	an
internationally	operating	CERT.	His	daily	work	deals	with	the	security	of	mobile	systems,
forensic	analysis	of	smartphones	and	suspicious	mobile	applications,	as	well	as	the
investigation	of	security-related	incidents.	Alongside	this,	he	is	working	on	the
improvement	of	mobile	malware	analysis	techniques	and	research	in	the	field	of	Android
and	iOS	forensics.

http://www.swiftforensics.com

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and
more
You	might	want	to	visit	www.PacktPub.com	for	support	files	and	downloads	related	to
your	book.

Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and
ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as
a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with
us	at	<service@packtpub.com>	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up
for	a	range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books
and	eBooks.

http://PacktLib.PacktPub.com

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt’s	online	digital
book	library.	Here,	you	can	access,	read	and	search	across	Packt’s	entire	library	of	books.

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com

Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print	and	bookmark	content
On	demand	and	accessible	via	web	browser

Free	access	for	Packt	account	holders
If	you	have	an	account	with	Packt	at	www.PacktPub.com,	you	can	use	this	to	access
PacktLib	today	and	view	nine	entirely	free	books.	Simply	use	your	login	credentials	for
immediate	access.

http://www.PacktPub.com

Preface
The	exponential	growth	of	mobile	devices	has	revolutionized	many	aspects	of	our	lives.	In
what	is	called	the	Post-PC	era,	smartphones	are	engulfing	desktop	computers	with	their
enhanced	functionality	and	improved	storage	capacity.	This	rapid	transformation	has	led
to	increased	usage	of	mobile	handsets	across	all	sectors.

Despite	their	small	size,	smartphones	are	capable	of	performing	many	tasks—sending
private	messages	and	confidential	e-mails,	taking	photos	and	videos,	making	online
purchases,	viewing	salary	slips,	completing	banking	transactions,	accessing	social
networking	sites,	managing	business	tasks,	and	more.	Hence,	a	mobile	device	is	now	a
huge	repository	of	sensitive	data,	which	could	provide	a	wealth	of	information	about	its
owner.	This	has	in	turn	led	to	the	evolution	of	mobile	device	forensics,	a	branch	of	digital
forensics	that	deals	with	retrieving	data	from	a	mobile	device.	Today,	there	is	a	huge
demand	for	specialized	forensic	experts,	especially	given	the	fact	that	the	data	retrieved
from	a	mobile	device	is	admissible	in	court.

Mobile	forensics	is	all	about	utilizing	scientific	methodologies	to	recover	data	stored
within	a	mobile	phone	for	legal	purposes.	Unlike	traditional	computer	forensics,	mobile
forensics	has	limitations	when	obtaining	evidence	due	to	rapid	changes	in	the	technology
and	the	fast-paced	evolution	of	mobile	software.	With	different	operating	systems	and	a
wide	range	of	models	being	released	into	the	market,	mobile	forensics	has	expanded	over
the	last	3-4	years.	Specialized	forensic	techniques	and	skills	are	required	in	order	to
extract	data	under	different	conditions.

This	book	takes	you	through	the	challenges	involved	in	mobile	forensics	and	practically
explains	detailed	methods	on	how	to	collect	evidence	from	different	mobile	devices	with
the	iOS,	Android,	BlackBerry,	and	Windows	mobile	operating	systems.

The	book	is	organized	in	a	manner	that	allows	you	to	focus	independently	on	chapters	that
are	specific	to	your	required	platform.

What	this	book	covers
Chapter	1,	Introduction	to	Mobile	Forensics,	introduces	you	to	the	concept	of	mobile
forensics,	core	values,	and	its	limitations.	The	chapter	also	provides	an	overview	of
practical	approaches	and	best	practices	involved	in	performing	mobile	forensics.

Chapter	2,	Understanding	the	Internals	of	iOS	Devices,	provides	an	overview	of	the
popular	Apple	iOS	devices,	including	an	outline	of	different	models	and	their	hardware.
The	book	explains	iOS	security	features	and	device	security	and	its	impact	on	the	iOS
forensics	approach.	The	chapter	also	gives	an	overview	of	the	iOS	file	system	and	outlines
the	sensitive	files	that	are	useful	for	forensic	examinations.

Chapter	3,	Data	Acquisition	from	iOS	Devices,	covers	various	types	of	forensic	acquisition
methods	that	can	be	performed	on	iOS	devices	and	guides	you	through	preparing	your
desktop	machine	for	forensic	work.	The	chapter	also	discusses	passcode	bypass
techniques,	the	physical	extraction	of	devices,	and	different	ways	that	the	device	can	be
imaged.

Chapter	4,	Data	Acquisition	from	iOS	Backups,	provides	a	detailed	explanation	of
different	types	of	iOS	backups	and	details	what	types	of	files	are	stored	during	the	backup.
The	chapter	also	covers	logical	acquisition	techniques	to	recover	data	from	backups.

Chapter	5,	iOS	Data	Analysis	and	Recovery,	discusses	the	type	of	data	that	is	stored	on
iOS	devices	and	the	general	location	of	this	data	storage.	Common	file	types	used	in	iOS
devices,	such	as	plist	and	SQLite,	are	discussed	in	detail	so	you	understand	how	data	is
stored	on	the	device,	which	will	help	forensic	examiners	to	efficiently	recover	data	from
these	files.

Chapter	6,	iOS	Forensic	Tools,	provides	an	overview	of	the	existing	open	source	and
commercial	iOS	forensics	tools.	These	tools	differ	in	the	range	of	mobile	phones	they
support	and	the	amount	of	data	that	they	can	recover.	The	chapter	describes	the	advantages
and	limitations	of	these	tools.

Chapter	7,	Understanding	Android,	introduces	you	to	the	Android	model,	file	system,	and
its	security	features.	It	provides	an	explanation	of	how	data	is	stored	in	any	android
device,	which	will	be	useful	while	carrying	out	forensic	investigations.

Chapter	8,	Android	Forensic	Setup	and	Pre	Data	Extraction	Techniques,	guides	you
through	the	Android	forensic	setup	and	other	techniques	to	follow	before	extracting	any
information.	Screen	lock	bypass	techniques	and	gaining	root	access	are	also	discussed	in
this	chapter.

Chapter	9,	Android	Data	Extraction	Techniques,	provides	an	explanation	of	physical,	file
system,	and	logical	acquisition	techniques	to	extract	information	from	an	Android	device.

Chapter	10,	Android	Data	Recovery	Techniques,	explains	the	possibilities	and	limitations
for	data	recovery	on	Android	devices.	This	chapter	also	covers	the	process	to	reverse
engineer	Android	applications	to	unearth	crucial	information.

Chapter	11,	Android	App	Analysis	and	Overview	of	Forensic	Tools,	covers	various

available	open	source	and	commercial	tools,	which	are	helpful	during	forensic
examination	of	Android	devices.

Chapter	12,	Windows	Phone	Forensics,	provides	a	basic	overview	of	forensic	approaches
when	dealing	with	Windows	Phone	devices.

Chapter	13,	BlackBerry	Forensics,	provides	forensic	approaches	to	include	acquisition	and
analysis	techniques	when	dealing	with	BlackBerry	devices.	BlackBerry	encryption	and
data	protection	is	also	addressed.

What	you	need	for	this	book
The	book	provides	practical	forensic	approaches	and	explains	the	techniques	in	a	simple
manner.	The	content	is	organized	in	a	manner	that	allows	even	a	user	with	basic	computer
skills	to	examine	a	device	and	extract	the	required	data.	A	Macintosh,	Windows,	or	Linux
computer	will	be	helpful	to	successfully	perform	the	methods	defined	in	this	book.
Wherever	possible,	methods	for	all	computer	platforms	are	provided.

Who	this	book	is	for
This	book	is	intended	for	forensic	examiners	with	little	or	basic	experience	in	mobile
forensics	or	open	source	solutions	for	mobile	forensics.	The	book	will	also	be	useful	to
computer	security	professionals,	researchers,	and	anyone	seeking	a	deeper	understanding
of	mobile	internals.	The	book	will	also	come	in	handy	for	those	who	are	trying	to	recover
accidentally	deleted	data	(photos,	contacts,	SMS,	and	more).

Conventions
In	this	book,	you	will	find	a	number	of	styles	of	text	that	distinguish	between	different
kinds	of	information.	Here	are	some	examples	of	these	styles	and	an	explanation	of	their
meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,
pathnames,	dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	“To	view
the	raw	disk	images	on	the	iPhone,	connect	a	jailbroken	iPhone	to	a	workstation	over	SSH
and	run	the	ls	-lh	rdisk*	command.”

Any	command-line	input	or	output	is	written	as	follows:

iPhone4:/dev	root#	ls	-lh	rdisk*

crw-r-----	1	root	operator	14,	0	Oct	10	04:28	rdisk0

crw-r-----	1	root	operator	14,	1	Oct	10	04:28	rdisk0s1

crw-r-----	1	root	operator	14,	2	Oct	10	04:28	rdisk0s1s1

crw-r-----	1	root	operator	14,	3	Oct	10	04:28	rdisk0s1s2

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,	in
menus	or	dialog	boxes	for	example,	appear	in	the	text	like	this:	“iOS	provides	an	option
Erase	All	Content	and	Settings	to	wipe	the	data	on	the	iPhone.”

Note
Warnings	or	important	notes	appear	in	a	box	like	this.

Tip
Tips	and	tricks	appear	like	this.

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this
book—what	you	liked	or	may	have	disliked.	Reader	feedback	is	important	for	us	to
develop	titles	that	you	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	send	an	e-mail	to	<feedback@packtpub.com>,	and
mention	the	book	title	through	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	on	www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help
you	to	get	the	most	from	your	purchase.

Downloading	the	example	code
You	can	download	the	example	code	files	for	all	Packt	books	you	have	purchased	from
your	account	at	http://www.packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can
visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-mailed	directly	to
you.

http://www.packtpub.com
http://www.packtpub.com/support

Downloading	the	color	images	of	the	book
We	also	provide	you	a	PDF	file	that	has	color	images	of	the	screenshots/diagrams	used	in
this	book.	The	color	images	will	help	you	better	understand	the	changes	in	the	output.	You
can	download	this	file	from:
https://www.packtpub.com/sites/default/files/downloads/8311OS_ColoredImages.pdf

https://www.packtpub.com/sites/default/files/downloads/8311OS_ColoredImages.pdf

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the
code—we	would	be	grateful	if	you	would	report	this	to	us.	By	doing	so,	you	can	save
other	readers	from	frustration	and	help	us	improve	subsequent	versions	of	this	book.	If
you	find	any	errata,	please	report	them	by	visiting	http://www.packtpub.com/support,
selecting	your	book,	clicking	on	the	errata	submission	form	link,	and	entering	the	details
of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and	the
errata	will	be	uploaded	to	our	website,	or	added	to	any	list	of	existing	errata,	under	the
Errata	section	of	that	title.

http://www.packtpub.com/support

Piracy
Piracy	of	copyright	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come
across	any	illegal	copies	of	our	works,	in	any	form,	on	the	Internet,	please	provide	us	with
the	location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors,	and	our	ability	to	bring	you	valuable
content.

mailto:copyright@packtpub.com

Questions
You	can	contact	us	at	<questions@packtpub.com>	if	you	are	having	a	problem	with	any
aspect	of	the	book,	and	we	will	do	our	best	to	address	it.

mailto:questions@packtpub.com

Chapter	1.	Introduction	to	Mobile
Forensics
In	2013,	there	were	almost	as	many	mobile	cellular	subscriptions	as	there	were	people	on
earth,	says	International	Telecommunication	Union	(ITU).	The	following	figure	shows
the	global	mobile	cellular	subscriptions	from	2005	to	2013.	Mobile	cellular	subscriptions
are	moving	at	lightning	speed	and	passed	a	whopping	7	billion	early	in	2014.	Portio
Research	Ltd.	predicts	that	mobile	subscribers	will	reach	7.5	billion	by	the	end	of	2014
and	8.5	billion	by	the	end	of	2016.

Mobile	cellular	subscription	growth	from	2005	to	2013

Smartphones	of	today,	such	as	the	Apple	iPhone,	Samsung	Galaxy	series,	and	BlackBerry
phones,	are	compact	forms	of	computers	with	high	performance,	huge	storage,	and
enhanced	functionalities.	Mobile	phones	are	the	most	personal	electronic	device	a	user
accesses.	They	are	used	to	perform	simple	communication	tasks,	such	as	calling	and
texting,	while	still	providing	support	for	Internet	browsing,	e-mail,	taking	photos	and
videos,	creating	and	storing	documents,	identifying	locations	with	GPS	services,	and
managing	business	tasks.	As	new	features	and	applications	are	incorporated	into	mobile
phones,	the	amount	of	information	stored	on	the	devices	is	continuously	growing.	Mobiles
phones	become	portable	data	carriers,	and	they	keep	track	of	all	your	moves.	With	the
increasing	prevalence	of	mobile	phones	in	peoples’	daily	lives	and	in	crime,	data	acquired
from	phones	become	an	invaluable	source	of	evidence	for	investigations	relating	to
criminal,	civil,	and	even	high-profile	cases.	It	is	rare	to	conduct	a	digital	forensic
investigation	that	does	not	include	a	phone.	Mobile	device	call	logs	and	GPS	data	were
used	to	help	solve	the	attempted	bombing	in	Times	Square,	New	York,	in	2010.	The
details	of	the	case	can	be	found	at	http://www.forensicon.com/forensics-blotter/cell-
phone-email-forensics-investigation-cracks-nyc-times-square-car-bombing-case/.	The
science	behind	recovering	digital	evidence	from	mobile	phones	is	called	mobile	forensics.
Digital	evidence	is	defined	as	information	and	data	that	is	stored	on,	received,	or
transmitted	by	an	electronic	device	that	is	used	for	investigations.	Digital	evidence

http://www.forensicon.com/forensics-blotter/cell-phone-email-forensics-investigation-cracks-nyc-times-square-car-bombing-case/

encompasses	any	and	all	digital	data	that	can	be	used	as	evidence	in	a	case.

Mobile	forensics
Digital	forensics	is	a	branch	of	forensic	science	focusing	on	the	recovery	and
investigation	of	raw	data	residing	in	electronic	or	digital	devices.	Mobile	forensics	is	a
branch	of	digital	forensics	related	to	the	recovery	of	digital	evidence	from	mobile	devices.
Forensically	sound	is	a	term	used	extensively	in	the	digital	forensics	community	to
qualify	and	justify	the	use	of	particular	forensic	technology	or	methodology.	The	main
principle	for	a	sound	forensic	examination	of	digital	evidence	is	that	the	original	evidence
must	not	be	modified.	This	is	extremely	difficult	with	mobile	devices.	Some	forensic	tools
require	a	communication	vector	with	the	mobile	device,	thus	standard	write	protection
will	not	work	during	forensic	acquisition.	Other	forensic	acquisition	methods	may	involve
removing	a	chip	or	installing	a	bootloader	on	the	mobile	device	prior	to	extracting	data	for
forensic	examination.	In	cases	where	the	examination	or	data	acquisition	is	not	possible
without	changing	the	configuration	of	the	device,	the	procedure	and	the	changes	must	be
tested,	validated,	and	documented.	Following	proper	methodology	and	guidelines	is
crucial	in	examining	mobile	devices	as	it	yields	the	most	valuable	data.	As	with	any
evidence	gathering,	not	following	the	proper	procedure	during	the	examination	can	result
in	loss	or	damage	of	evidence	or	render	it	inadmissible	in	court.

The	mobile	forensics	process	is	broken	into	three	main	categories:	seizure,	acquisition,
and	examination/analysis.	Forensic	examiners	face	some	challenges	while	seizing	the
mobile	device	as	a	source	of	evidence.	At	the	crime	scene,	if	the	mobile	device	is	found
switched	off,	the	examiner	should	place	the	device	in	a	faraday	bag	to	prevent	changes
should	the	device	automatically	power	on.	Faraday	bags	are	specifically	designed	to
isolate	the	phone	from	the	network.	If	the	phone	is	found	switched	on,	switching	it	off	has
a	lot	of	concerns	attached	to	it.	If	the	phone	is	locked	by	a	PIN	or	password	or	encrypted,
the	examiner	will	be	required	to	bypass	the	lock	or	determine	the	PIN	to	access	the	device.
Mobile	phones	are	networked	devices	and	can	send	and	receive	data	through	different
sources,	such	as	telecommunication	systems,	Wi-Fi	access	points,	and	Bluetooth.	So	if	the
phone	is	in	a	running	state,	a	criminal	can	securely	erase	the	data	stored	on	the	phone	by
executing	a	remote	wipe	command.	When	a	phone	is	switched	on,	it	should	be	placed	in	a
faraday	bag.	If	possible,	prior	to	placing	the	mobile	device	in	the	faraday	bag,	disconnect
it	from	the	network	to	protect	the	evidence	by	enabling	the	flight	mode	and	disabling	all
network	connections	(Wi-Fi,	GPS,	Hotspots,	and	so	on).	This	will	also	preserve	the
battery,	which	will	drain	while	in	a	faraday	bag	and	protect	against	leaks	in	the	faraday
bag.	Once	the	mobile	device	is	seized	properly,	the	examiner	may	need	several	forensic
tools	to	acquire	and	analyze	the	data	stored	on	the	phone.

Mobile	device	forensic	acquisition	can	be	performed	using	multiple	methods,	which	are
defined	later.	Each	of	these	methods	affects	the	amount	of	analysis	required,	which	will	be
discussed	in	greater	detail	in	the	upcoming	chapters.	Should	one	method	fail,	another	must
be	attempted.	Multiple	attempts	and	tools	may	be	necessary	in	order	to	acquire	the	most
data	from	the	mobile	device.

Mobile	phones	are	dynamic	systems	that	present	a	lot	of	challenges	to	the	examiner	in

extracting	and	analyzing	digital	evidence.	The	rapid	increase	in	the	number	of	different
kinds	of	mobile	phones	from	different	manufacturers	makes	it	difficult	to	develop	a	single
process	or	tool	to	examine	all	types	of	devices.	Mobile	phones	are	continuously	evolving
as	existing	technologies	progress	and	new	technologies	are	introduced.	Furthermore,	each
mobile	is	designed	with	a	variety	of	embedded	operating	systems.	Hence,	special
knowledge	and	skills	are	required	from	forensic	experts	to	acquire	and	analyze	the
devices.

Mobile	forensic	challenges
One	of	the	biggest	forensic	challenges	when	it	comes	to	the	mobile	platform	is	the	fact
that	data	can	be	accessed,	stored,	and	synchronized	across	multiple	devices.	As	the	data	is
volatile	and	can	be	quickly	transformed	or	deleted	remotely,	more	effort	is	required	for	the
preservation	of	this	data.	Mobile	forensics	is	different	from	computer	forensics	and
presents	unique	challenges	to	forensic	examiners.

Law	enforcement	and	forensic	examiners	often	struggle	to	obtain	digital	evidence	from
mobile	devices.	The	following	are	some	of	the	reasons:

Hardware	differences:	The	market	is	flooded	with	different	models	of	mobile
phones	from	different	manufacturers.	Forensic	examiners	may	come	across	different
types	of	mobile	models,	which	differ	in	size,	hardware,	features,	and	operating
system.	Also,	with	a	short	product	development	cycle,	new	models	emerge	very
frequently.	As	the	mobile	landscape	is	changing	each	passing	day,	it	is	critical	for	the
examiner	to	adapt	to	all	the	challenges	and	remain	updated	on	mobile	device	forensic
techniques.
Mobile	operating	systems:	Unlike	personal	computers	where	Windows	has
dominated	the	market	for	years,	mobile	devices	widely	use	more	operating	systems,
including	Apple’s	iOS,	Google’s	Android,	RIM’s	BlackBerry	OS,	Microsoft’s
Windows	Mobile,	HP’s	webOS,	Nokia’s	Symbian	OS,	and	many	others.
Mobile	platform	security	features:	Modern	mobile	platforms	contain	built-in
security	features	to	protect	user	data	and	privacy.	These	features	act	as	a	hurdle
during	the	forensic	acquisition	and	examination.	For	example,	modern	mobile
devices	come	with	default	encryption	mechanisms	from	the	hardware	layer	to	the
software	layer.	The	examiner	might	need	to	break	through	these	encryption
mechanisms	to	extract	data	from	the	devices.
Lack	of	resources:	As	mentioned	earlier,	with	the	growing	number	of	mobile
phones,	the	tools	required	by	a	forensic	examiner	would	also	increase.	Forensic
acquisition	accessories,	such	as	USB	cables,	batteries,	and	chargers	for	different
mobile	phones,	have	to	be	maintained	in	order	to	acquire	those	devices.
Generic	state	of	the	device:	Even	if	a	device	appears	to	be	in	an	off	state,
background	processes	may	still	run.	For	example,	in	most	mobiles,	the	alarm	clock
still	works	even	when	the	phone	is	switched	off.	A	sudden	transition	from	one	state	to
another	may	result	in	the	loss	or	modification	of	data.
Anti-forensic	techniques:	Anti-forensic	techniques,	such	as	data	hiding,	data
obfuscation,	data	forgery,	and	secure	wiping,	make	investigations	on	digital	media
more	difficult.
Dynamic	nature	of	evidence:	Digital	evidence	may	be	easily	altered	either
intentionally	or	unintentionally.	For	example,	browsing	an	application	on	the	phone
might	alter	the	data	stored	by	that	application	on	the	device.
Accidental	reset:	Mobile	phones	provide	features	to	reset	everything.	Resetting	the
device	accidentally	while	examining	may	result	in	the	loss	of	data.
Device	alteration:	The	possible	ways	to	alter	devices	may	range	from	moving

application	data,	renaming	files,	and	modifying	the	manufacturer’s	operating	system.
In	this	case,	the	expertise	of	the	suspect	should	be	taken	into	account.
Passcode	recovery:	If	the	device	is	protected	with	a	passcode,	the	forensic	examiner
needs	to	gain	access	to	the	device	without	damaging	the	data	on	the	device.
Communication	shielding:	Mobile	devices	communicate	over	cellular	networks,
Wi-Fi	networks,	Bluetooth,	and	Infrared.	As	device	communication	might	alter	the
device	data,	the	possibility	of	further	communication	should	be	eliminated	after
seizing	the	device.
Lack	of	availability	of	tools:	There	is	a	wide	range	of	mobile	devices.	A	single	tool
may	not	support	all	the	devices	or	perform	all	the	necessary	functions,	so	a
combination	of	tools	needs	to	be	used.	Choosing	the	right	tool	for	a	particular	phone
might	be	difficult.
Malicious	programs:	The	device	might	contain	malicious	software	or	malware,	such
as	a	virus	or	a	Trojan.	Such	malicious	programs	may	attempt	to	spread	over	other
devices	over	either	a	wired	interface	or	a	wireless	one.
Legal	issues:	Mobile	devices	might	be	involved	in	crimes,	which	can	cross
geographical	boundaries.	In	order	to	tackle	these	multijurisdictional	issues,	the
forensic	examiner	should	be	aware	of	the	nature	of	the	crime	and	the	regional	laws.

Mobile	phone	evidence	extraction	process
Evidence	extraction	and	forensic	examination	of	each	mobile	device	may	differ.	However,
following	a	consistent	examination	process	will	assist	the	forensic	examiner	to	ensure	that
the	evidence	extracted	from	each	phone	is	well	documented	and	that	the	results	are
repeatable	and	defendable.	There	is	no	well-established	standard	process	for	mobile
forensics.	However,	the	following	figure	provides	an	overview	of	process	considerations
for	extraction	of	evidence	from	mobile	devices.	All	methods	used	when	extracting	data
from	mobile	devices	should	be	tested,	validated,	and	well	documented.

A	great	resource	for	handling	and	processing	mobile	devices	can	be	found	at	http://digital-
forensics.sans.org/media/mobile-device-forensic-process-v3.pdf.

Mobile	phone	evidence	extraction	process

http://digital-forensics.sans.org/media/mobile-device-forensic-process-v3.pdf

The	evidence	intake	phase
The	evidence	intake	phase	is	the	starting	phase	and	entails	request	forms	and	paperwork	to
document	ownership	information	and	the	type	of	incident	the	mobile	device	was	involved
in,	and	outlines	the	type	of	data	or	information	the	requester	is	seeking.	Developing
specific	objectives	for	each	examination	is	the	critical	part	of	this	phase.	It	serves	to
clarify	the	examiner’s	goals.

The	identification	phase
The	forensic	examiner	should	identify	the	following	details	for	every	examination	of	a
mobile	device:

The	legal	authority
The	goals	of	the	examination
The	make,	model,	and	identifying	information	for	the	device
Removable	and	external	data	storage
Other	sources	of	potential	evidence

We	will	discuss	each	of	them	in	the	following	sections.

The	legal	authority
It	is	important	for	the	forensic	examiner	to	determine	and	document	what	legal	authority
exists	for	the	acquisition	and	examination	of	the	device	as	well	as	any	limitations	placed
on	the	media	prior	to	the	examination	of	the	device.

The	goals	of	the	examination
The	examiner	will	identify	how	in-depth	the	examination	needs	to	be	based	upon	the	data
requested.	The	goal	of	the	examination	makes	a	significant	difference	in	selecting	the	tools
and	techniques	to	examine	the	phone	and	increases	the	efficiency	of	the	examination
process.

The	make,	model,	and	identifying	information	for	the	device
As	part	of	the	examination,	identifying	the	make	and	model	of	the	phone	assists	in
determining	what	tools	would	work	with	the	phone.

Removable	and	external	data	storage
Many	mobile	phones	provide	an	option	to	extend	the	memory	with	removable	storage
devices,	such	as	the	Trans	Flash	Micro	SD	memory	expansion	card.	In	cases	when	such	a
card	is	found	in	a	mobile	phone	that	is	submitted	for	examination,	the	card	should	be
removed	and	processed	using	traditional	digital	forensic	techniques.	It	is	wise	to	also
acquire	the	card	while	in	the	mobile	device	to	ensure	data	stored	on	both	the	handset
memory	and	card	are	linked	for	easier	analysis.	This	will	be	discussed	in	detail	in
upcoming	chapters.

Other	sources	of	potential	evidence
Mobile	phones	act	as	good	sources	of	fingerprint	and	other	biological	evidence.	Such
evidence	should	be	collected	prior	to	the	examination	of	the	mobile	phone	to	avoid
contamination	issues	unless	the	collection	method	will	damage	the	device.	Examiners
should	wear	gloves	when	handling	the	evidence.

The	preparation	phase
Once	the	mobile	phone	model	is	identified,	the	preparation	phase	involves	research
regarding	the	particular	mobile	phone	to	be	examined	and	the	appropriate	methods	and
tools	to	be	used	for	acquisition	and	examination.

The	isolation	phase
Mobile	phones	are	by	design	intended	to	communicate	via	cellular	phone	networks,
Bluetooth,	Infrared,	and	wireless	(Wi-Fi)	network	capabilities.	When	the	phone	is
connected	to	a	network,	new	data	is	added	to	the	phone	through	incoming	calls,	messages,
and	application	data,	which	modifies	the	evidence	on	the	phone.	Complete	destruction	of
data	is	also	possible	through	remote	access	or	remote	wiping	commands.	For	this	reason,
isolation	of	the	device	from	communication	sources	is	important	prior	to	the	acquisition
and	examination	of	the	device.	Isolation	of	the	phone	can	be	accomplished	through	the	use
of	faraday	bags,	which	block	the	radio	signals	to	or	from	the	phone.	Past	research	has
found	inconsistencies	in	total	communication	protection	with	faraday	bags.	Therefore,
network	isolation	is	advisable.	This	can	be	done	by	placing	the	phone	in	radio	frequency
shielding	cloth	and	then	placing	the	phone	into	airplane	or	flight	mode.

The	processing	phase
Once	the	phone	has	been	isolated	from	the	communication	networks,	the	actual	processing
of	the	mobile	phone	begins.	The	phone	should	be	acquired	using	a	tested	method	that	is
repeatable	and	is	as	forensically	sound	as	possible.	Physical	acquisition	is	the	preferred
method	as	it	extracts	the	raw	memory	data	and	the	device	is	commonly	powered	off
during	the	acquisition	process.	On	most	devices,	the	least	amount	of	changes	occur	to	the
device	during	physical	acquisition.	If	physical	acquisition	is	not	possible	or	fails,	an
attempt	should	be	made	to	acquire	the	file	system	of	the	mobile	device.	A	logical
acquisition	should	always	be	obtained	as	it	may	contain	only	the	parsed	data	and	provide
pointers	to	examine	the	raw	memory	image.

The	verification	phase
After	processing	the	phone,	the	examiner	needs	to	verify	the	accuracy	of	the	data	extracted
from	the	phone	to	ensure	that	data	is	not	modified.	The	verification	of	the	extracted	data
can	be	accomplished	in	several	ways.

Comparing	extracted	data	to	the	handset	data
Check	if	the	data	extracted	from	the	device	matches	the	data	displayed	by	the	device.	The
data	extracted	can	be	compared	to	the	device	itself	or	a	logical	report,	whichever	is
preferred.	Remember,	handling	the	original	device	may	make	changes	to	the	only
evidence—the	device	itself.

Using	multiple	tools	and	comparing	the	results
To	ensure	accuracy,	use	multiple	tools	to	extract	the	data	and	compare	results.

Using	hash	values
All	image	files	should	be	hashed	after	acquisition	to	ensure	data	remains	unchanged.	If	file
system	extraction	is	supported,	the	examiner	extracts	the	file	system	and	then	computes
hashes	for	the	extracted	files.	Later,	any	individually	extracted	file	hash	is	calculated	and
checked	against	the	original	value	to	verify	the	integrity	of	it.	Any	discrepancy	in	a	hash
value	must	be	explainable	(for	example,	if	the	device	was	powered	on	and	then	acquired
again,	thus	the	hash	values	are	different).

The	document	and	reporting	phase
The	forensic	examiner	is	required	to	document	throughout	the	examination	process	in	the
form	of	contemporaneous	notes	relating	to	what	was	done	during	the	acquisition	and
examination.	Once	the	examiner	completes	the	investigation,	the	results	must	go	through
some	form	of	peer-review	to	ensure	the	data	is	checked	and	the	investigation	is	complete.
The	examiner’s	notes	and	documentation	may	include	information	such	as	the	following:

Examination	start	date	and	time
The	physical	condition	of	the	phone
Photos	of	the	phone	and	individual	components
Phone	status	when	received—turned	on	or	off
Phone	make	and	model
Tools	used	for	the	acquisition
Tools	used	for	the	examination
Data	found	during	the	examination
Notes	from	peer-review

The	presentation	phase
Throughout	the	investigation,	it	is	important	to	make	sure	that	the	information	extracted
and	documented	from	a	mobile	device	can	be	clearly	presented	to	any	other	examiner	or	to
a	court.	Creating	a	forensic	report	of	data	extracted	from	the	mobile	device	during
acquisition	and	analysis	is	important.	This	may	include	data	in	both	paper	and	electronic
formats.	Your	findings	must	be	documented	and	presented	in	a	manner	that	the	evidence
speaks	for	itself	when	in	court.	The	findings	should	be	clear,	concise,	and	repeatable.
Timeline	and	link	analysis,	features	offered	by	many	commercial	mobile	forensics	tools,
will	aid	in	reporting	and	explaining	findings	across	multiple	mobile	devices.	These	tools
allow	the	examiner	to	tie	together	the	methods	behind	the	communication	of	multiple
devices.

The	archiving	phase
Preserving	the	data	extracted	from	the	mobile	phone	is	an	important	part	of	the	overall
process.	It	is	also	important	that	the	data	is	retained	in	a	useable	format	for	the	ongoing
court	process,	for	future	reference,	should	the	current	evidence	file	become	corrupt,	and
for	record	keeping	requirements.	Court	cases	may	continue	for	many	years	before	the	final
judgment	is	arrived	at,	and	most	jurisdictions	require	that	data	be	retained	for	long	periods
of	time	for	the	purposes	of	appeals.	As	the	field	and	methods	advance,	new	methods	for
pulling	data	out	of	a	raw,	physical	image	may	surface,	and	then	the	examiner	can	revisit
the	data	by	pulling	a	copy	from	the	archives.

Practical	mobile	forensic	approaches
Similar	to	any	forensic	investigation,	there	are	several	approaches	that	can	be	used	for	the
acquisition	and	examination/analysis	of	data	from	mobile	phones.	The	type	of	mobile
device,	the	operating	system,	and	the	security	setting	generally	dictate	the	procedure	to	be
followed	in	a	forensic	process.	Every	investigation	is	distinct	with	its	own	circumstances,
so	it	is	not	possible	to	design	a	single	definitive	procedural	approach	for	all	the	cases.	The
following	details	outline	the	general	approaches	followed	in	extracting	data	from	mobile
devices.

Mobile	operating	systems	overview
One	of	the	major	factors	in	the	data	acquisition	and	examination/analysis	of	a	mobile
phone	is	the	operating	system.	Starting	from	low-end	mobile	phones	to	smartphones,
mobile	operating	systems	have	come	a	long	way	with	a	lot	of	features.	Mobile	operating
systems	directly	affect	how	the	examiner	can	access	the	mobile	device.	For	example,
Android	OS	gives	terminal-level	access	whereas	iOS	does	not	give	such	an	option.	A
comprehensive	understanding	of	the	mobile	platform	helps	the	forensic	examiner	make
sound	forensic	decisions	and	conduct	a	conclusive	investigation.	While	there	is	a	large
range	of	smart	mobile	devices,	four	main	operating	systems	dominate	the	market,	namely,
Google	Android,	Apple	iOS,	RIM	BlackBerry	OS,	and	Windows	Phone.	More
information	can	be	found	at	http://www.idc.com/getdoc.jsp?containerId=prUS23946013.
This	book	covers	forensic	analysis	of	these	four	mobile	platforms.	The	following	is	a	brief
overview	of	leading	mobile	operating	systems.

Android
Android	is	a	Linux-based	operating	system,	and	it’s	a	Google	open	source	platform	for
mobile	phones.	Android	is	the	world’s	most	widely	used	smartphone	operating	system.
Sources	show	that	Apple’s	iOS	is	a	close	second
(http://www.forbes.com/sites/tonybradley/2013/11/15/android-dominates-market-share-
but-apple-makes-all-the-money/).	Android	has	been	developed	by	Google	as	an	open	and
free	option	for	hardware	manufacturers	and	phone	carriers.	This	makes	Android	the
software	of	choice	for	companies	who	require	a	low-cost,	customizable,	lightweight
operating	system	for	their	smart	devices	without	developing	a	new	OS	from	scratch.
Android’s	open	nature	has	further	encouraged	the	developers	to	build	a	large	number	of
applications	and	upload	them	onto	Android	Market.	Later,	end	users	can	download	the
application	from	Android	Market,	which	makes	Android	a	powerful	operating	system.
More	details	on	Android	are	covered	in	Chapter	7,	Understanding	Android.

iOS
iOS,	formerly	known	as	the	iPhone	operating	system,	is	a	mobile	operating	system
developed	and	distributed	solely	by	Apple	Inc.	iOS	is	evolving	into	a	universal	operating
system	for	all	Apple	mobile	devices,	such	as	iPad,	iPod	touch,	and	iPhone.	iOS	is	derived
from	OS	X,	with	which	it	shares	the	Darwin	foundation,	and	is	therefore	a	Unix-like
operating	system.	iOS	manages	the	device	hardware	and	provides	the	technologies
required	to	implement	native	applications.	iOS	also	ships	with	various	system
applications,	such	as	Mail	and	Safari,	which	provide	standard	system	services	to	the	user.
iOS	native	applications	are	distributed	through	AppStore,	which	is	closely	monitored	by
Apple.	More	details	about	iOS	are	covered	in	Chapter	2,	Understanding	the	Internals	of
iOS	Devices.

Windows	phone
Windows	phone	is	a	proprietary	mobile	operating	system	developed	by	Microsoft	for
smartphones	and	pocket	PCs.	It	is	the	successor	to	Windows	mobile	and	primarily	aimed

http://www.idc.com/getdoc.jsp?containerId=prUS23946013
http://www.forbes.com/sites/tonybradley/2013/11/15/android-dominates-market-share-but-apple-makes-all-the-money/

at	the	consumer	market	rather	than	the	enterprise	market.	The	Windows	Phone	OS	is
similar	to	the	Windows	desktop	OS,	but	it	is	optimized	for	devices	with	a	small	amount	of
storage.	Windows	Phone	basics	and	forensic	techniques	are	discussed	in	Chapter	12,
Windows	Phone	Forensics.

BlackBerry	OS
BlackBerry	OS	is	a	proprietary	mobile	operating	system	developed	by	BlackBerry	Ltd.,
known	as	Research	in	Motion	(RIM),	exclusively	for	its	BlackBerry	line	of	smartphones
and	mobile	devices.	BlackBerry	mobiles	are	widely	used	in	corporate	companies	and	offer
native	support	for	corporate	mail	via	MIDP,	which	enables	wireless	sync	with	Microsoft
Exchange,	e-mail,	contacts,	calendar,	and	so	on,	while	used	along	with	the	BlackBerry
Enterprise	server.	These	devices	are	known	for	their	security.	BlackBerry	OS	basics	and
forensic	techniques	are	covered	in	Chapter	13,	BlackBerry	Forensics.

Mobile	forensic	tool	leveling	system
Mobile	phone	forensic	acquisition	and	analysis	involves	manual	effort	and	the	use	of
automated	tools.	There	are	a	variety	of	tools	that	are	available	for	performing	mobile
forensics.	All	the	tools	have	their	pros	and	cons,	and	it	is	fundamental	that	you	understand
that	no	single	tool	is	sufficient	for	all	purposes.	So	understanding	the	various	types	of
mobile	forensic	tools	is	important	for	forensic	examiners.	When	identifying	the
appropriate	tools	for	the	forensic	acquisition	and	analysis	of	mobile	phones,	a	mobile
device	forensic	tool	classification	system	(shown	in	the	following	figure)	developed	by
Sam	Brothers	comes	in	handy	for	the	examiners.

Cellular	phone	tool	leveling	pyramid	(Sam	Brothers,	2009)

The	objective	of	the	mobile	device	forensic	tool	classification	system	is	to	enable	an
examiner	to	categorize	the	forensic	tools	based	upon	the	examination	methodology	of	the
tool.	Starting	at	the	bottom	of	the	classification	and	working	upward,	the	methods	and	the
tools	generally	become	more	technical,	complex,	and	forensically	sound,	and	require
longer	analysis	times.	There	are	pros	and	cons	of	performing	an	analysis	at	each	layer.	The
forensic	examiner	should	be	aware	of	these	issues	and	should	only	proceed	with	the	level
of	extraction	that	is	required.	Evidence	can	be	destroyed	completely	if	the	given	method	or
tool	is	not	properly	utilized.	This	risk	increases	as	you	move	up	in	the	pyramid.	Thus,
proper	training	is	required	to	obtain	the	highest	success	rate	in	data	extraction	from	mobile
devices.

Each	existing	mobile	forensic	tool	can	be	classified	under	one	or	more	of	the	five	levels.
The	following	sections	contain	a	detailed	description	of	each	level.

Manual	extraction
This	method	involves	simply	scrolling	through	the	data	on	the	device	and	viewing	the	data
on	the	phone	directly	through	the	use	of	the	device’s	keypad	or	touchscreen.	The

information	discovered	is	then	photographically	documented.	The	extraction	process	is
fast	and	easy	to	use,	and	will	work	on	almost	every	phone.	This	method	is	prone	to	human
error,	such	as	missing	certain	data	due	to	unfamiliarity	with	the	interface.	At	this	level,	it	is
not	possible	to	recover	deleted	information	and	grab	all	the	data.	There	are	some	tools	that
have	been	developed	to	aid	an	examiner	to	easily	document	a	manual	extraction.

Logical	extraction
Logical	extraction	involves	connecting	the	mobile	device	to	forensic	hardware	or	to	a
forensic	workstation	via	a	USB	cable,	RJ-45	cable,	Infrared,	or	Bluetooth.	Once
connected,	the	computer	initiates	a	command	and	sends	it	to	the	device,	which	is	then
interpreted	by	the	device	processor.	Next,	the	requested	data	is	received	from	the	device’s
memory	and	sent	back	to	the	forensic	workstation.	Later,	the	examiner	can	review	the
data.	Most	of	the	forensic	tools	currently	available	work	at	this	level	of	the	classification
system.	The	extraction	process	is	fast,	easy	to	use,	and	requires	little	training	for	the
examiners.	On	the	flip	side,	the	process	may	write	data	to	the	mobile	and	might	change	the
integrity	of	the	evidence.	In	addition,	deleted	data	is	almost	never	accessible.

Hex	dump
A	hex	dump,	also	referred	to	as	a	physical	extraction,	is	achieved	by	connecting	the	device
to	the	forensic	workstation	and	pushing	unsigned	code	or	a	bootloader	into	the	phone	and
instructing	the	phone	to	dump	memory	from	the	phone	to	the	computer.	Since	the	resulting
raw	image	is	in	binary	format,	technical	expertise	is	required	to	analyze	it.	The	process	is
inexpensive,	provides	more	data	to	the	examiner,	and	allows	the	recovering	of	the	deleted
files	from	the	device-unallocated	space	on	most	devices.

Chip-off
Chip-off	refers	to	the	acquisition	of	data	directly	from	the	device’s	memory	chip.	At	this
level,	the	chip	is	physically	removed	from	the	device	and	a	chip	reader	or	a	second	phone
is	used	to	extract	data	stored	on	it.	This	method	is	more	technically	challenging	as	a	wide
variety	of	chip	types	are	used	in	mobiles.	The	process	is	expensive	and	requires	hardware
level	knowledge	as	it	involves	the	de-soldering	and	heating	of	the	memory	chip.	Training
is	required	to	successfully	perform	a	chip-off	extraction.	Improper	procedures	may
damage	the	memory	chip	and	render	all	data	unsalvageable.	When	possible,	it	is
recommended	that	the	other	levels	of	extraction	are	attempted	prior	to	chip-off	since	this
method	is	destructive	in	nature.	Also,	the	information	that	comes	out	of	memory	is	in	a
raw	format	and	has	to	be	parsed,	decoded,	and	interpreted.	The	chip-off	method	is
preferred	in	situations	where	it	is	important	to	preserve	the	state	of	memory	exactly	as	it
exists	on	the	device.	It	is	also	the	only	option	when	a	device	is	damaged	but	the	memory
chip	is	intact.

The	chips	on	the	device	are	often	read	using	the	Joint	Test	Action	Group	(JTAG)
method.	The	JTAG	method	involves	connecting	to	Test	Access	Ports	(TAPs)	on	a	device
and	instructing	the	processor	to	transfer	the	raw	data	stored	on	memory	chips.	The	JTAG
method	is	generally	used	with	devices	that	are	operational	but	inaccessible	using	standard
tools.

Micro	read
The	process	involves	manually	viewing	and	interpreting	data	seen	on	the	memory	chip.
The	examiner	uses	an	electron	microscope	and	analyzes	the	physical	gates	on	the	chip	and
then	translates	the	gate	status	to	0’s	and	1’s	to	determine	the	resulting	ASCII	characters.
The	whole	process	is	time	consuming	and	costly,	and	it	requires	extensive	knowledge	and
training	on	flash	memory	and	the	file	system.	Due	to	the	extreme	technicalities	involved	in
micro	read,	it	would	be	only	attempted	for	high-profile	cases	equivalent	to	a	national
security	crisis	after	all	other	level	extraction	techniques	have	been	exhausted.	The	process
is	rarely	performed	and	is	not	well	documented	at	this	time.	Also,	there	are	currently	no
commercial	tools	available	to	perform	a	micro	read.

Data	acquisition	methods
Data	acquisition	is	the	process	of	imaging	or	otherwise	extracting	information	from	a
digital	device	and	its	peripheral	equipment	and	media.	Acquiring	data	from	a	mobile
phone	is	not	as	simple	as	a	standard	hard	drive	forensic	acquisition.	The	following	points
break	down	the	three	types	of	forensic	acquisition	methods	for	mobile	phones:	physical,
logical,	and	manual.	These	methods	may	have	some	overlap	with	a	couple	of	levels
discussed	in	the	mobile	forensics	tool	leveling	system.	The	amount	and	type	of	data	that
can	be	collected	will	vary	depending	on	the	type	of	acquisition	method	being	used.

Physical	acquisition
Physical	acquisition	of	mobile	phones	is	performed	using	mobile	forensic	tools	and
methods.	Physical	extraction	acquires	information	from	the	device	by	direct	access	to	the
flash	memory.	The	process	creates	a	bit-for-bit	copy	of	an	entire	file	system,	similar	to	the
approach	taken	in	computer	forensic	investigations.	A	physical	acquisition	is	able	to
acquire	all	of	the	data	present	on	a	device	including	the	deleted	data	and	access	to
unallocated	space	on	most	devices.

Logical	acquisition
Logical	acquisition	of	mobile	phones	is	performed	using	the	device	manufacturer
application-programming	interface	for	synchronizing	the	phones	contents	with	a
computer.	Many	of	the	forensic	tools	perform	a	logical	acquisition.	However,	the	forensic
analyst	must	understand	how	the	acquisition	occurs	and	whether	the	mobile	is	modified	in
any	way	during	the	process.	Depending	on	the	phone	and	forensic	tools	used,	all	or	some
of	the	data	is	acquired.	A	logical	acquisition	is	easy	to	perform	and	only	recovers	the	files
on	a	mobile	phone	and	does	not	recover	data	contained	in	unallocated	space.

Manual	acquisition
With	mobile	phones,	physical	acquisition	is	usually	the	best	option,	and	logical	acquisition
is	the	second-best	option.	Manual	extraction	should	be	the	last	option	when	performing
the	forensic	acquisition	of	a	mobile	phone.	Both	logical	and	manual	acquisition	can	be
used	to	validate	findings	in	the	physical	data.	During	manual	acquisition,	the	examiner
utilizes	the	user	interface	to	investigate	the	contents	of	the	phone’s	memory.	The	device	is
used	normally	through	a	keypad	or	touchscreen	and	menu	navigation,	and	the	examiner
takes	pictures	of	each	screen’s	contents.	Manual	extraction	introduces	a	greater	degree	of
risk	in	the	form	of	human	error,	and	there	is	a	chance	of	deleting	the	evidence.	Manual
acquisition	is	easy	to	perform	and	only	acquires	the	data	that	appears	on	a	mobile	phone.

Potential	evidence	stored	on	mobile
phones
The	range	of	information	that	can	be	obtained	from	mobile	phones	is	detailed	in	this
section.	Data	on	a	mobile	phone	can	be	found	in	a	number	of	locations:	SIM	card,	external
storage	card,	and	phone	memory.	In	addition,	the	service	provider	also	stores
communication-related	information.	The	book	primarily	focuses	on	data	acquired	from	the
phone	memory.	Mobile	device	data	extraction	tools	recover	data	from	the	phone’s
memory.	Even	though	data	recovered	during	a	forensic	acquisition	depends	on	the	mobile
model,	in	general,	the	data	in	the	next	set	of	bullet	items	is	common	across	all	models	and
useful	as	evidence.	Note	that	most	of	the	following	artifacts	contain	date	and	time	stamps:

Address	Book:	This	stores	contact	names,	numbers,	e-mail	addresses,	and	so	on
Call	History:	This	contains	dialed,	received,	missed	calls,	and	call	durations
SMS:	This	contains	sent	and	received	text	messages
MMS:	This	contains	media	files	such	as	sent	and	received	photos	and	videos
E-mail:	This	contains	sent,	drafted,	and	received	e-mail	messages
Web	browser	history:	This	contains	the	history	of	websites	that	were	visited
Photos:	This	contains	pictures	that	are	captured	using	the	mobile	phone	camera,
those	downloaded	from	the	Internet,	and	the	ones	transferred	from	other	devices
Videos:	This	contains	videos	that	are	captured	using	the	mobile	camera,	those
downloaded	from	the	Internet,	and	the	ones	transferred	from	other	devices
Music:	This	contains	music	files	downloaded	from	the	Internet	and	those	transferred
from	other	devices
Documents:	This	contains	documents	created	using	the	device’s	applications,	those
downloaded	from	the	Internet,	and	the	ones	transferred	from	other	devices
Calendar:	This	contains	calendar	entries	and	appointments
Network	communication:	This	contains	GPS	locations
Maps:	This	contains	looked-up	directions,	and	searched	and	downloaded	maps
Social	networking	data:	This	contains	data	stored	by	applications,	such	as
Facebook,	Twitter,	LinkedIn,	Google+,	and	WhatsApp
Deleted	data:	This	contains	information	deleted	from	the	phone

Rules	of	evidence
Courtrooms	rely	more	and	more	on	the	information	inside	a	mobile	phone	as	vital
evidence.	Prevailing	evidence	in	court	requires	a	good	understanding	of	the	rules	of
evidence.	Mobile	forensics	is	a	relatively	new	discipline	and	laws	dictating	the	validity	of
evidence	are	not	widely	known.	However,	there	are	five	general	rules	of	evidence	that
apply	to	digital	forensics	and	need	to	be	followed	in	order	for	evidence	to	be	useful.
Ignoring	these	rules	makes	evidence	inadmissible,	and	your	case	could	be	thrown	out.
These	five	rules	are—admissible,	authentic,	complete,	reliable,	and	believable.

Admissible
This	is	the	most	basic	rule	and	a	measure	of	evidence	validity	and	importance.	The
evidence	must	be	preserved	and	gathered	in	such	a	way	that	it	can	be	used	in	court	or
elsewhere.	Many	errors	can	be	made	that	could	cause	a	judge	to	rule	a	piece	of	evidence
as	inadmissible.	For	example,	evidence	that	is	gathered	using	illegal	methods	is	commonly
ruled	inadmissible.

Authentic
The	evidence	must	be	tied	to	the	incident	in	a	relevant	way	to	prove	something.	The
forensic	examiner	must	be	accountable	for	the	origin	of	the	evidence.

Complete
When	evidence	is	presented,	it	must	be	clear	and	complete	and	should	reflect	the	whole
story.	It	is	not	enough	to	collect	evidence	that	just	shows	one	perspective	of	the	incident.
Presenting	incomplete	evidence	is	more	dangerous	than	not	providing	any	evidence	at	all
as	it	could	lead	to	a	different	judgment.

Reliable
Evidence	collected	from	the	device	must	be	reliable.	This	depends	on	the	tools	and
methodology	used.	The	techniques	used	and	evidence	collected	must	not	cast	doubt	on	the
authenticity	of	the	evidence.	If	the	examiner	used	some	techniques	that	cannot	be
reproduced,	the	evidence	is	not	considered	unless	they	were	directed	to	do	so.	This	would
include	possible	destructive	methods	such	as	chip-off	extraction.

Believable
A	forensic	examiner	must	be	able	to	explain,	with	clarity	and	conciseness,	what	processes
they	used	and	the	way	the	integrity	of	the	evidence	was	preserved.	The	evidence	presented
by	the	examiner	must	be	clear,	easy	to	understand,	and	believable	by	jury.

Good	forensic	practices
Good	forensic	practices	apply	to	the	collection	and	preservation	of	evidence.	Following
the	good	forensic	practices	ensures	that	evidence	will	be	accepted	in	a	court	as	being
authentic	and	accurate.	Modification	of	evidence,	either	intentionally	or	accidentally,	can
affect	the	case.	So,	understanding	the	best	practices	is	critical	for	forensic	examiners.

Securing	the	evidence
With	advanced	smartphone	features	such	as	Find	My	iPhone	and	remote	wipes,	securing
a	mobile	phone	in	a	way	that	it	cannot	be	remotely	wiped	is	of	great	importance.	Also,
when	the	phone	is	powered	on	and	has	service,	it	constantly	receives	new	data.	To	secure
the	evidence,	use	the	right	equipment	and	techniques	to	isolate	the	phone	from	all
networks.	With	isolation,	the	phone	is	prevented	from	receiving	any	new	data	that	would
cause	active	data	to	be	deleted.

Preserving	the	evidence
As	evidence	is	collected,	it	must	be	preserved	in	a	state	that	is	acceptable	in	court.
Working	directly	on	the	original	copies	of	evidence	might	alter	it.	So,	as	soon	as	you
recover	a	raw	disk	image	or	files,	create	a	read-only	master	copy	and	duplicate	it.	In	order
for	evidence	to	be	admissible,	there	must	be	a	method	to	verify	that	the	evidence	presented
is	exactly	the	same	as	the	original	collected.	This	can	be	accomplished	by	creating	a	hash
value	of	the	image.	After	duplicating	the	raw	disk	image	or	files,	compute	and	verify	the
hash	values	for	the	original	and	the	copy	to	ensure	that	the	integrity	of	the	evidence	is
maintained.	Any	changes	in	hash	values	should	be	documented	and	explainable.	All
further	processing	or	examination	should	be	performed	on	copies	of	the	evidence.	Any	use
of	the	device	might	alter	the	information	stored	on	the	handset.	So,	perform	only	the	tasks
that	are	absolutely	necessary.

Documenting	the	evidence
Be	sure	to	document	all	the	methods	and	tools	that	are	used	to	collect	and	extract	the
evidence.	Detail	your	notes	so	that	another	examiner	could	reproduce	them.	Your	work
must	be	reproducible;	if	not,	a	judge	may	rule	it	inadmissible.

Documenting	all	changes
It’s	important	to	document	the	entire	recovery	process,	including	all	the	changes	made
during	the	acquisition	and	examination.	For	example,	if	the	forensic	tool	used	for	the	data
extraction	sliced	up	the	disk	image	to	store	it,	this	must	be	documented.	All	changes	to	the
mobile	device,	including	power	cycling	and	syncing,	should	be	documented	in	your	case
notes.

Summary
Mobile	device	forensics	includes	many	approaches	and	concepts	that	fall	outside	of	the
boundaries	of	traditional	digital	forensics.	Examiners	responsible	for	mobile	devices	must
understand	the	different	acquisition	methods	and	the	complexities	of	handling	the	data
during	analysis.	Extracting	data	from	a	mobile	device	is	half	the	battle.	The	operating
system,	security	features,	and	type	of	smartphone	will	determine	the	amount	of	access	you
have	to	the	data.	The	next	chapter	will	provide	insight	to	iOS	forensics.	You	will	learn
about	the	file	system	layout,	security	features,	and	the	way	the	files	are	stored	on	the	iOS
device.

Chapter	2.	Understanding	the	Internals	of
iOS	Devices
As	of	September	2013,	Apple	had	sold	more	than	550	million	iOS	devices	(170	million
iPads	and	387	million	iPhones)	according	to	released	sales	records.	While	iOS	is	the
leading	operating	system	for	tablets	worldwide,	Android	continues	to	be	the	leading
operating	system	for	smartphones	worldwide.	The	following	screenshot	represents	the
worldwide	mobile/tablet	operating	system	share	from	2013	to	2014	according	to
https://www.netmarketshare.com/operating-system-market-share.aspx?
qprid=9&qpcustomb=1:

Regardless	of	the	statistics,	if	you	are	a	forensic	examiner,	chances	are	you	will	need	to
conduct	an	examination	of	an	iOS	mobile	device.

In	order	to	perform	a	forensic	examination	on	an	iOS	device,	the	examiner	must
understand	the	internal	components	and	inner	workings	of	that	device.	Developing	an
understanding	of	the	underlying	components	of	a	mobile	device	will	help	the	forensic
examiner	understand	the	criticalities	involved	in	the	forensic	process,	including	what	data
can	be	acquired,	where	the	data	is	stored,	and	what	methods	can	be	used	to	access	the	data
from	that	device.	So,	before	we	delve	into	the	examination	of	iOS	devices,	it	is	necessary
to	know	the	different	models	that	exist	and	their	internals.

This	book	primarily	focuses	on	the	iPhone	and	forensic	techniques	associated	with	it.
However,	the	same	techniques	may	be	applied	to	other	Apple	devices,	such	as	the	iPod
Touch,	iPad,	and	Apple	TV.

https://www.netmarketshare.com/operating-system-market-share.aspx?qprid=9&qpcustomb=1

iPhone	models
The	iPhone	is	among	the	most	popular	mobile	phones	on	the	market.	Apple	released	the
first	generation	iPhone	in	June	2007.	Ever	since	the	first	release,	the	iPhone	has	gained	a
lot	of	popularity	due	to	its	advanced	functionality	and	usability.	The	introduction	of	the
iPhone	has	redefined	the	entire	world	of	mobile	computing.	Consumers	started	looking	for
faster	and	more	efficient	phones.	Various	iPhone	models	exist	now	with	different	features
and	storage	capabilities	to	serve	the	consumer	requirements.	The	following	table	lists	all
the	iPhone	models	and	its	initial	iOS	versions.	With	the	iPhone,	individuals	can	access	e-
mail,	take	photos	and	videos,	listen	to	music,	browse	the	Internet,	and	do	much	more.
Furthermore,	endless	applications	are	available	for	download	to	extend	the	standard
capabilities	that	exist	on	the	iPhone.

Device Model Initial	OS Internal	name Identifier Release	date

iPhone	2G A1203 iPhone	OS	1.0 M68AP iPhone	1,1 June	2007

iPhone	3G A1241
iPhone	OS	2.0 N82AP iPhone	1,2 July	2008

iPhone	3G	(china) A1324

iPhone	3GS A1303
iPhone	OS	3.0 N88AP iPhone	2,1 June	2009

iPhone	3GS	(china) A1325

iPhone	4	-	GSM A1332
iOS	4.0

N90AP iPhone	3,1
June	2010

iPhone	4	-	CDMA A1349 N92AP iPhone	3,2

iPhone	4S A1387
iOS	5.0 N94AP iPhone	4,1 October	2011

iPhone	4S	(China) A1431

iPhone	5 A1428

iOS	6.0

N41AP iPhone	5,1

September	2012
iPhone	5	rev2

A1429
N42AP iPhone	5,2

A1442

iPhone	5C	-	GSM
A1456

iOS	7.0

N48AP iPhone	5,3

September	2013

A1532

iPhone	5C	-	CDMA

A1507

N49AP iPhone	5,4
A1516

A1526

A1529

iPhone	5S	-	GSM
A1433

iOS	7.0

N51AP iPhone	6,1
A1533

iPhone	5S	-	CDMA

A1457

N53AP iPhone	6,2
A1518

A1528

A1530

iPhone	models

The	most	recent	iPhones,	the	seventh	generation	iPhone	5C	and	iPhone	5S,	were	just
released	at	the	time	of	writing	this	book.	Currently,	there	is	no	method	or	tool	available	to
physically	recover	data	from	these	devices.	However,	the	file	system	and	a	logical
acquisition	can	be	obtained	if	the	iPhone	is	unlocked.	Acquisition	methods	for	data
extraction	are	available	and	will	be	discussed	in	Chapter	3,	Data	Acquisition	from	iOS
Devices,	and	Chapter	4,	Data	Acquisition	from	iOS	Backups.

Before	examining	an	iPhone,	it	is	necessary	to	identify	the	correct	hardware	model	and	the
firmware	version	installed	on	the	device.	Knowing	the	iPhone	details	helps	you	to
understand	the	criticalities	and	possibilities	of	obtaining	evidence	from	the	iPhone.	For
example,	in	many	cases,	the	device	passcode	is	required	in	order	to	obtain	the	file	system
or	logical	image.	Depending	on	the	iOS	version,	device	model,	and	passcode	complexity,
it	may	be	possible	to	obtain	the	device	passcode	using	a	brute	force	attack.

There	are	various	ways	to	identify	the	hardware	of	a	device.	The	easiest	way	to	identify
the	hardware	of	a	device	is	by	observing	the	model	number	displayed	on	the	back	of	the
device.	The	following	image	shows	the	model	number	etched	on	the	back	of	the	casing.
Apple’s	knowledge	base	articles	can	be	helpful	for	this	purpose.	Details	on	identifying
iPhone	models	can	be	found	at	http://support.apple.com/kb/HT3939.

iPhone	model	number	located	on	the	back	of	the	case

The	firmware	version	of	an	iPhone	can	be	found	by	accessing	the	Settings	option	and	then
navigating	to	General	|	About	|	Version,	as	shown	in	the	following	screenshot.	The
purpose	of	the	firmware	is	to	enable	certain	features	and	assist	with	the	general

http://support.apple.com/kb/HT3939

functioning	of	the	device.

The	iPhone	About	screen,	displaying	firmware	Version	5.1.1	(9B206)

Alternatively,	the	ideviceinfo	command-line	tool	available	in	the	libimobiledevice
software	library	(http://www.libimobiledevice.org/)	can	be	used	to	identify	the	iPhone
model	and	its	iOS	version.	The	library	allows	you	to	communicate	with	an	iPhone	even	if
the	device	is	locked	by	a	passcode.	The	software	library	was	developed	by	Nikias	Bassen
(pimskeks),	and	it	was	compiled	for	Mac	OS	X	by	Ben	Clayton	(benvium).

Mac	OS	X	can	be	installed	in	virtual	machines	for	use	on	a	Windows	platform.	To	obtain
the	iPhone	model	and	its	iOS	version	information	on	Mac	OS	X	10.8,	the	following	steps
must	be	followed:

1.	 Open	the	terminal	application.
2.	 From	the	command	line,	run	the	following	command	to	download	the

libimobiledevice	library:

$	git	clone	https://github.com/benvium/libimobiledevice-macosx.git	

~/Desktop/libimobiledevice-macosx/

The	command	creates	the	libimobiledevice-macosx	directory	on	the	user’s	desktop
and	places	the	libimobiledevice	command-line	tools	onto	it.

3.	 Navigate	to	the	libimobiledevice-macosx	directory,	as	follows:

$	cd	~/Desktop/libimobiledevice-macosx/

http://www.libimobiledevice.org/

4.	 Create	and	edit	the	.bash_profile	file	using	the	nano	command,	as	follows:

$	nano	~/.bash_profile

5.	 Add	the	following	two	lines	to	the	.bash_profile	file,	as	follows:

export	DYLD_LIBRARY_PATH=~/Desktop/libimobiledevice-

macosx/:$DYLD_LIBRARY_PATH

PATH=${PATH}:~/Desktop/libimobiledevice-macosx/

Press	Ctrl	+	X,	type	the	letter	y	and	hit	Enter	to	save	the	file.

6.	 Return	to	the	terminal	and	run	the	following	command:

$	source	~/.bash_profile

7.	 Connect	the	iPhone	to	the	Mac	workstation	using	a	USB	cable,	and	run	the
ideviceinfo	command	with	the	-s	option:

$./ideviceinfo	-s

Output	of	the	ideviceinfo	command	displays	the	iPhone	identifier,	internal	name,
and	the	iOS	version	as	shown:

BuildVersion:	9B206

DeviceClass:	iPhone

DeviceName:	iPhone4

HardwareModel:	N90AP

ProductVersion:	5.1.1

ProductionSOC:	true

ProtocolVersion:	2

TelephonyCapability:	true

UniqueChipID:	1937316564364

WiFiAddress:	58:1f:aa:22:d1:0a

Every	release	of	the	iPhone	comes	with	improved	or	newly	added	features.	The	following
tables	show	the	specifications	and	features	of	legacy	and	current	iPhone	models:

Specification iPhone iPhone	3G iPhone	3GS

System	on	chip Samsung	Chip Samsung	Chip Samsung	Chip

CPU 620	MHz	Samsung	32-bit
RISC	ARM

620	MHz	Samsung	32-bit	RISC
ARM 833	MHz	ARM	Cortex-A8

Onboard	RAM 128	MB 128	MB 256	MB

Screen	size	(in
inches) 3.5 3.5 3.5

Resolution 480*320 480*320 480*320

Connectivity Wi-Fi,	Bluetooth	2.0,
GSM

Wi-Fi,	Bluetooth	2.0,
GSM/UMTS/HSDPA,	GPS

Wi-Fi,	Bluetooth	2.1,	GSM,
UMTS/HSDPA,	GPS

Camera	(megapixel) 2 2 3

Front	camera N/A N/A N/A

Storage	(GB) 4,	8,	16 8,	16 8,	16,	32

Weight	(in	ounces) 4.8 4.7 4.8

Dimensions 4.5	*	2.4	*	0.46 4.55	*	2.44	*	0.48 4.55	*	2.44	*	0.48

Battery	life
8/7/6/24 5/7/5/24 5/10/5/30

Talk/video/web/audio

Standby	time	(hours) 250 300 300

Colors Black Black,	white	(white	not	in	8	GB) Black,	white	(white	not	in	8	GB)

Material Aluminum,	glass,	and
steel Glass,	plastic,	and	steel Glass,	plastic,	and	steel

Connector USB	2.0	dock	connector USB	2.0	dock	connector USB	2.0	dock	connector

SIM	card	form-factor Mini	SIM Mini	SIM Mini	SIM

Siri	support No No No

The	most	recent	iPhone	features	are	shown	in	the	following	table:

Specification iPhone	4 iPhone	4S iPhone	5 iPhone	5C

System	on	chip Apple	A4 Apple	A5 Apple	A6 Apple	A6

CPU 1	GHz	ARM	Cortex-A8 800	MHz	dual	core
ARM	Cortex-A9

1.3	GHz	dual	core
Apple-designed
ARMv7s

1.3	GHz	dual	core
Apple-designed
ARMv7s

Onboard	RAM 512	MB 512	MB 1	GB 1	GB

Screen	size	(in
inches) 3.5 3.5 4 4

Resolution 960*640 960*640 1136*640 1136*640

Connectivity

Wi-Fi,	Bluetooth	2.1,
GSM,
UMTS/HSDPA/HSUPA,
GPS

Wi-Fi,	Bluetooth	4,
GSM,
UMTS/HSDPA/HSUPA,
GPS

Wi-Fi,	Bluetooth	4,
UMTS/HSDPA+/DC-
HSDPA,	GSM,	GPS

Wi-Fi,	Bluetooth	4,
UMTS/HSDPA+/DC-
HSDPA/LTE,	GSM,
GPS

Camera	(megapixel) 5 8 8 8

Front	camera VGA VGA 720P 720P

Storage	(GB) 8,	16,	32 8,	16,	32,	64 16,	32,	64 8,	16,	32,	64

Weight	(in	ounces) 4.8 4.9 3.95 4.7

Dimensions 4.5	*	2.31	*	0.37 4.5	*	2.31	*	0.37 4.87	*	2.31	*	0.30 4.98	*	2.33	*	0.353

Battery	life
7/10/10/40 8/10/9/40 8/10/10/40 10/10/10/40

Talk/video/web/audio

Standby	time	(hours) 300 300 225 250

Colors Black Black,	white Black,	white White,	pink,	yellow,
blue,	or	green

Material Aluminosilicate	glass
and	stainless	steel

Aluminosilicate	glass
and	stainless	steel

Black	-	anodized
aluminum	slate	metal
white	-	silver
aluminum	metal

White,	pink,	yellow,
blue,	or	green

Connector USB	2.0	dock	connector USB	2.0	dock	connector Lightning	connector Lightning	connector

SIM	card	form-factor Micro	SIM Micro	SIM Nano-SIM Nano-SIM

Siri	support No Yes Yes Yes

One	of	the	major	changes	in	the	iPhone	5,	iPhone	5C,	and	iPhone	5S	is	the	USB	dock
connector,	which	is	used	to	charge	and	synchronize	the	device	with	the	computer.	Devices
prior	to	the	iPhone	5	use	a	30-pin	USB	dock	connector,	whereas	the	newer	iPhones	use	an
eight-pin	lightning	connector.

iPhone	hardware
The	iPhone	is	a	collection	of	modules,	chips,	and	electronic	components	from	different
manufacturers.	Due	to	the	complexities	of	the	iPhone,	the	list	of	hardware	components	is
extensive.	A	detailed	list	of	iPhone	hardware	components	is	defined	at
https://viaforensics.com/resources/white-papers/iphone-forensics/overview.

The	following	images	show	the	internals	of	the	iPhone	5S.	The	images	were	taken	after
dismantling	the	iPhone	5S.	Internal	images	for	all	iPhones	can	be	found	in	the	teardown
section	from	http://www.ifixit.com/Device/iPhone.

The	iPhone	5S	teardown	image—side	one	(included	with	kind	permission	from
TechInsights)

And	the	following	is	the	image	showing	the	back	of	the	iPhone	5S:

The	iPhone	5S	teardown	image—side	two	(included	with	kind	permission	from

https://viaforensics.com/resources/white-papers/iphone-forensics/overview
http://www.ifixit.com/Device/iPhone

TechInsights)

iPad	models
The	Apple	iPhone	changed	the	way	cell	phones	are	produced	and	used.	Similarly,	the
iPad,	a	version	of	the	tablet	computer	introduced	in	January	2010,	squashed	the	sales	of
notebooks.	With	the	iPad,	individuals	can	shoot	video,	take	photos,	play	music,	read
books,	browse	the	Internet,	and	do	much	more.	Various	iPad	models	exist	now	with
different	features	and	storage	capabilities.	The	following	table	lists	all	the	iPad	models	and
their	initial	iOS	versions.	Details	on	identifying	iPad	models	can	be	found	at
http://support.apple.com/kb/ht5452.

Device Model Initial	OS Internal	name Identifier Release	date

iPad	-	Wi-Fi A1219
iOS	3.2

K48AP iPad	1,1
January	2010

iPad	-	3G A1337 	 iPad	1,1

iPad	2	-	Wi-Fi A1395 	 K93AP iPad	2,1

March	2011iPad	2	-	GSM A1396 iOS	4.3 K94AP iPad	2,2

iPad	2	-	CDMA A1397 	 K95AP iPad	2,3

iPad	2	-	Wi-Fi	rev A1395 	 K93AAP iPad	2,4

March	2012
iPad	3	-	Wi-Fi A1416 	 J1AP iPad	3,1

iPad	3	-	Wi-Fi	+	Cellular	Verizon A1403 iOS	5.1 J2AP iPad	3,2

iPad	3	-	Wi-Fi	+	Cellular	AT&T A1430 	 J2AAP iPad	3,3

iPad	4	-	Wi-Fi A1458 iOS	6.0 P101AP iPad	3,4

October	2012

iPad	4	-Wi-Fi	+	Cellular	AT	&T A1459 	 P102AP iPad	3,5

iPad	4	-	Wi-Fi	+	Cellular	Verizon A1460 iOS	6.0.1 P103AP iPad	3,6

iPad	mini	-	Wi-Fi A1432 iOS	6.0 P105AP iPad	2,5

iPad	mini	-Wi-Fi	+	Cellular	AT&T A1454 	 P106AP iPad	2,6

iPad	mini	-	Wi-Fi	+	Cellular	Verizon	and	Sprint A1455 iOS	6.0.1 P107AP iPad	2,7

iPad	Air	-	Wi-Fi A1474
iOS	7.0.3

J71AP iPad	4,1
November	2013

iPad	Air	-	Wi-Fi	+	Cellular A1475 J72AP iPad	4,2

Every	release	of	the	iPad	comes	with	improved	or	newly	added	features.	The	following
table	shows	the	specifications	and	features	of	legacy	and	current	iPad	Wi-Fi	models:

Specification iPad iPad	2 iPad	3 iPad	4 iPad	Mini iPad	Air

http://support.apple.com/kb/ht5452

System	on	chip Apple	A4 Apple	A5 Apple	A5X Apple	A6X Apple	A5 Apple	A7

CPU
1GHz	dual	core
Samsung-
Intrinsity

1	GHz	dual	core
ARM	Cortex-
A9

1	GHz	dual	core
ARM	Cortex-
A9

1.4	GHz	dual
core	Apple
Swift

1	GHz	dual	core
ARM	Cortex-
A9

1.4	GHz	dual
core	ARMv8-
A

Onboard	RAM 256	MB 512	MB 1	GB 1	GB 512	MB 1	GB

Screen	size	(in
inches) 9.7 9.7 9.7 9.7 7.9 9.7

Resolution 1024*768 1024*768 2048*1536 2048*1536 1024*768 2048*1536

Connectivity Wi-Fi,	Bluetooth
2.1

Wi-Fi,
Bluetooth	2.1

Wi-Fi,
Bluetooth	4

Wi-Fi,
Bluetooth	4

Wi-Fi,
Bluetooth	4

Wi-Fi,
Bluetooth	4

Camera
(megapixel) N/A 0.7 5 5 5 5

Front	camera N/A 0.3	MP 0.3	MP 1.2	MP 1.2	MP 1.2	MP

Storage	(GB) 16,	32,	64 16,	32,	64 16,	32,	64 16,	32,	64,	128 16,	32,	64 16,	32,	64,
128

Weight	(in
ounces) 24 21.6 22.9 22.9 10.8 16

Dimensions 9.56	*	7.47	*	0.5 9.5	*	7.31	*
0.34

9.5	*	7.31	*
0.37

9.5	*	7.31	*
0.37

7.87	*	5.3	*
0.28

9.4	*	6.6	*
0.29

Battery	life
10/10/140 10/10/140 10/10/140 10/10/140 10/10/140 10/10/140

Video/web/audio

Standby	time
(hours) 1	month 1	month 1	month 1	month 1	month 1	month

Connector USB	2.0	dock
connector

USB	2.0	dock
connector

USB	2.0	dock
connector

Lightning
connector

Lightning
connector

Lightning
connector

iPad	hardware
One	of	the	key	successes	of	Apple	iOS	devices	is	the	proper	selection	of	its	hardware
components.	Just	like	the	iPhone,	the	iPad	is	also	a	collection	of	modules,	chips,	and
electronic	components	from	different	manufacturers.	Internal	images	for	all	iPads	can	be
found	in	the	teardown	section	of	http://www.ifixit.com/Device/iPad.

The	following	images	show	the	internals	of	the	iPad	3.	The	images	were	taken	after
dismantling	the	iPad	3	cellular	model	and	were	obtained	from
http://www.chipworks.com/.

The	iPad	3	cellular	model	teardown	image—side	one	(included	with	kind	permission	from
Chipworks)

The	following	image	shows	side	two	of	the	iPad	3	cellular	model:

Included	with	kind	permission	from	Chipworks

http://www.ifixit.com/Device/iPad
http://www.chipworks.com/

File	system
To	better	understand	the	forensic	process	of	an	iPhone,	it	is	good	to	know	about	the	file
system	that	is	used.	The	file	system	used	in	the	iPhone	and	other	Apple	iOS	devices	is
HFSX,	a	variation	of	HFS	Plus	with	one	major	difference.	HFSX	is	case	sensitive
whereas	HFS	Plus	is	case	insensitive.	Other	differences	will	be	discussed	later	in	this
chapter.	OS	X	uses	HFS	Plus	by	default	and	iOS	uses	HFSX.

The	HFS	Plus	file	system
In	1996,	Apple	developed	a	new	file	system,	Hierarchical	File	System	(HFS),	to
accommodate	the	storage	of	large	datasets.	In	an	HFS	file	system	the	storage	medium	is
represented	as	volumes.	HFS	volumes	are	divided	into	logical	blocks	of	512	bytes.	The
logical	blocks	are	numbered	from	first	to	last	on	a	given	volume	and	will	remain	static
with	the	same	size	as	physical	blocks,	that	is,	512	bytes.	These	logical	blocks	are	grouped
together	into	allocation	blocks,	which	are	used	by	the	HFS	file	system	to	track	data	in	a
more	efficient	way.	HFS	uses	a	16-bit	value	to	address	allocation	blocks,	which	limits	the
number	of	allocation	blocks	to	65,535.	To	overcome	the	inefficient	allocations	of	disk
space	and	some	of	the	limitations	of	HFS,	Apple	introduced	the	HFS	Plus	file	system
(http://dubeiko.com/development/FileSystems/HFSPLUS/tn1150.html).

The	HFS	Plus	file	system	was	designed	to	support	larger	file	sizes.	HFS	volumes	are
divided	into	sectors	that	are	usually	512	bytes	in	size.	These	sectors	are	grouped	together
into	allocation	blocks.	The	number	of	allocation	blocks	depends	on	the	total	size	of	the
volume.	HFS	Plus	uses	block	addresses	of	32	bits	to	address	allocation	blocks.	HFS	Plus
uses	journaling	by	default.	Journaling	is	the	process	of	logging	every	transaction	to	the
disk,	which	helps	in	preventing	file	system	corruption.	The	key	characteristics	of	the	HFS
Plus	file	system	are:	efficient	use	of	disk	space,	unicode	support	for	filenames,	support	for
name	forks,	file	compression,	journaling,	dynamic	resizing,	dynamic	defragmentation,	and
an	ability	to	boot	on	operating	systems	other	than	Mac	OS.

http://dubeiko.com/development/FileSystems/HFSPLUS/tn1150.html

The	HFS	Plus	volume
The	HFS	Plus	volume	contains	a	number	of	internal	structures	to	manage	the	organization
of	data.	These	structures	include	a	header,	alternate	header,	and	five	special	files:	an
allocation	file,	an	Extents	Overflow	file,	a	Catalog	file,	an	Attributes	file,	and	a	Startup
file.	Among	the	five	files,	three	files,	the	Extents	Overflow	file,	the	Catalog	file,	and	the
Attribute	file,	use	a	B-tree	structure,	a	data	structure	that	allows	data	to	be	efficiently
searched,	viewed,	modified,	or	removed.	The	HFS	Plus	volume	structure	is	shown	in	the
following	figure:

The	volume	structure	is	described	as	follows:

The	first	1,024	bytes	are	reserved	for	boot	load	information.
Volume	Header:	This	stores	volume	information,	such	as	the	size	of	allocation
blocks,	a	timestamp	of	when	the	volume	was	created,	and	metadata	about	each	of	the
five	special	files.
Allocation	File:	This	file	is	used	to	track	which	allocation	blocks	are	in	use	by	the
system.	The	file	format	consists	of	one	bit	for	every	allocation	block.	If	the	bit	is	set,
the	block	is	in	use.	If	it	is	not	set,	the	block	is	free.
Extents	Overflow	File:	This	file	records	the	allocation	blocks	that	are	allocated
when	the	file	size	exceeds	eight	blocks,	which	helps	in	locating	the	actual	data	when
referred.	Bad	blocks	are	also	recorded	in	the	file.
Catalog	File:	This	file	contains	information	about	the	hierarchy	of	files	and	folders,
which	is	used	to	locate	any	file	and	folder	within	the	volume.
Attribute	File:	This	file	contains	inline	data	attribute	records,	fork	data	attribute
records,	and	extension	attribute	records.
Startup	File:	This	file	holds	the	information	needed	to	assist	in	booting	a	system	that

does	not	have	HFS	Plus	support.
Alternate	Volume	Header:	This	is	a	backup	of	the	volume	header,	and	it	is	primarily
used	for	disk	repair.
The	last	512	bytes	are	reserved	for	use	by	Apple,	and	it	is	used	during	the
manufacturing	process.

Disk	layout
By	default,	the	file	system	is	configured	as	two	logical	disk	partitions:	system	(root	or
firmware)	partition	and	user	data	partition.

The	system	partition	contains	the	OS	and	all	of	the	preloaded	applications	used	with	the
iPhone.	The	system	partition	is	mounted	as	read-only	unless	an	OS	upgrade	is	performed
or	the	device	is	jailbroken.	The	partition	is	updated	only	when	a	firmware	upgrade	is
performed	on	the	device.	During	this	process,	the	entire	partition	is	formatted	by	iTunes
without	affecting	any	of	the	user	data.	The	system	partition	takes	only	a	small	portion	of
storage	space,	normally	between	0.9	GB	and	2.7	GB,	depending	on	the	size	of	the	NAND
drive.	As	the	system	partition	was	designed	to	remain	in	factory	state	for	the	entire	life	of
the	iPhone,	there	is	typically	little	useful	evidentiary	information	that	can	be	obtained
from	it.	If	the	iOS	device	was	jailbroken,	files	containing	information	regarding	the
jailbreak	may	be	resident	on	the	system	partition.	Jailbreaking	an	iOS	device	allows	the
user	root	access	to	the	device	and	voids	the	manufacturer	warranty.	Jailbreaking	will	be
discussed	later	in	this	chapter.

The	user	data	partition	contains	all	user-created	data	ranging	from	music	to	contacts.	The
user	data	partition	occupies	most	of	the	NAND	memory	and	is	mounted	at	/private/var
on	the	device.	Most	of	the	evidentiary	information	can	be	found	in	this	partition.	During	a
physical	acquisition,	both	the	user	data	and	system	partitions	can	be	captured	and	saved	as
a	.dmg	or	.img	file.	These	raw	image	files	can	be	mounted	as	read-only	for	forensic
analysis,	which	is	covered	in	detail	in	Chapter	3,	Data	Acquisition	from	iOS	Devices.	Even
on	non-jailbroken	iOS	devices,	it	is	recommended	to	acquire	both	the	system	and	user	data
partitions	to	ensure	all	data	is	obtained	for	examination.

To	view	the	mounted	partitions	on	the	iPhone,	connect	a	jailbroken	iPhone	to	a
workstation	over	SSH,	and	run	the	mount	command.	For	this	example,	iPhone	4	with	5.1.1
is	used.

The	mount	command	shows	that	the	system	partition	is	mounted	on	/	(root),	and	the
user	data	partition	is	mounted	on	/private/var,	as	shown	in	the	following	command
lines.	Both	partitions	show	HFS	as	the	file	system,	and	the	user	data	partition	even	shows
that	journaling	is	enabled.

iPhone4:~	root#	mount

/dev/disk0s1s1	on	/	(hfs,	local,	journaled,	noatime)

devfs	on	/dev	(devfs,	local,	nobrowse)

/dev/disk0s1s2	on	/private/var	(hfs,	local,	journaled,	noatime,	protect)

To	view	the	raw	disk	images	on	the	iPhone,	connect	a	jailbroken	iPhone	to	a	workstation
over	SSH,	and	run	the	ls	-lh	rdisk*	command.	rdisk0	is	the	entire	file	system	and
rdisk0s1	is	the	firmware	partition.	rdisk0s1s1	is	the	root	file	system	and	rdisk0s1s2	is
the	user	file	system,	as	shown	in	the	following	command	lines:

iPhone4:/dev	root#	ls	-lh	rdisk*

crw-r-----	1	root	operator	14,	0	Oct	10	04:28	rdisk0

crw-r-----	1	root	operator	14,	1	Oct	10	04:28	rdisk0s1

crw-r-----	1	root	operator	14,	2	Oct	10	04:28	rdisk0s1s1

crw-r-----	1	root	operator	14,	3	Oct	10	04:28	rdisk0s1s2

iPhone	operating	system
iOS	is	Apple’s	most	advanced	and	feature-rich	proprietary	mobile	operating	system.	It	was
released	with	the	first	generation	of	the	iPhone.	When	introduced,	it	was	named	iPhone
OS,	and	later	it	was	renamed	to	iOS	to	reflect	the	unified	nature	of	the	operating	system
that	powers	all	Apple	iOS	devices,	such	as	the	iPhone,	iPod	Touch,	iPad,	and	Apple	TV.
iOS	is	derived	from	core	OS	X	technologies	and	streamlined	to	be	compact	and	efficient
for	mobile	devices.

It	utilizes	a	multitouch	interface	where	simple	gestures	are	used	to	operate	and	control	the
device,	such	as	swiping	your	finger	across	the	screen	to	move	to	the	successive	page	or
pinching	your	fingers	to	zoom.	In	simple	terms,	iOS	assists	with	the	general	functioning	of
the	device.	iOS	is	really	Mac	OS	X	with	some	significant	differences:

The	architecture	for	which	the	kernel	and	binaries	are	compiled	is	ARM-based	rather
than	Intel	x86_64
The	OS	X	kernel	is	open	source,	whereas	the	iOS	kernel	remains	closed
Memory	management	is	much	tighter
The	system	is	hardened	and	does	not	allow	access	to	the	underlying	APIs

iOS	history
iOS,	like	any	other	operating	system,	has	gone	through	multiple	updates	since	its	release.
Apple	occasionally	releases	newer	versions	to	enable	new	features,	to	support	latest
hardware,	and	to	fix	bugs.	The	latest	version	of	iOS	at	the	time	of	this	writing	is	iOS	7.0.3.
Though	Apple	sticks	with	a	numeric	approach	for	new	iOS	builds,	all	iOS	versions	have
code	names	that	are	private	to	Apple.	The	following	sections	describe	the	history	of	iOS
development.

1.x	–	the	first	iPhone
iPhone	OS	1.x	was	the	first	release	of	Apple’s	touch-centric	mobile	operating	system.	On
its	initial	release,	Apple	stated	that	the	iPhone	uses	a	version	of	the	desktop	operating
system,	OS	X.	Later	it	was	named	iPhone	OS.	The	original	build	was	known	as	Alpine,
but	the	final	released	version	was	Heavenly.

2.x	–	App	Store	and	3G
iPhone	OS	2.0	(known	as	BigBear)	was	released	along	with	iPhone	3G.	Features	required
for	corporate	needs	such	as	VPN	and	Microsoft	Exchange	were	introduced	with	this
release.	The	big	addition	to	the	OS	with	this	release	was	the	App	Store,	a	marketplace	for
the	third-party	applications	that	could	run	on	the	iPhone.	Apple	also	released	the	iPhone
Software	Development	Kit	(SDK)	to	assist	developers	in	creating	applications	on	the
App	Store	for	free	or	for	purchase.	Global	Positioning	System	(GPS)	was	also	added	to
the	iPhone	with	this	release.

3.x	–	the	first	iPad
iPhone	OS	3.0	(known	as	Kirkwood)	became	available	with	the	release	of	iPhone	3GS.
The	iOS	release	brought	the	copy/paste	feature,	spotlight	searches,	and	push	notifications
for	third-party	applications,	and	many	other	enhancements	to	the	built-in	applications.
Multitasking	was	introduced,	but	it	was	limited	to	a	selection	of	the	applications	Apple
included	on	the	device.	The	first	iPad	was	introduced	with	iPhone	OS	3.2	(known	as
Wildcat)	and	later	updated	to	3.2.2,	a	version	specifically	made	for	the	iPad.

4.x	–	Game	Center	and	multitasking
iOS	4.0	(known	as	Apex)	was	the	first	major	release	after	renaming	the	iPhone	OS	to	iOS.
This	release	brought	over	100	new	features,	such	as	FaceTime,	iBooks,	voice	control,	and
1,500	new	APIs	to	the	developers.	Starting	with	this	release,	multitasking	was	extended	to
third-party	iOS	applications.	Apple	also	released	Game	Center,	an	online	multiplayer
social	gaming	network	along	with	this	release.

5.x	–	Siri	and	iCloud
iOS	5.0	(known	as	Telluride)	was	released	with	iPhone	4S.	iOS	5	with	iPhone	4S
introduced	Apple’s	natural	language-based	voice	control,	Siri—a	virtual	assistant.	This
update	brought	many	new	features,	such	as	notification	center,	iMessages,	Newsstand,
Twitter	integration,	the	Reminders	application,	and	over	the	air	(OTA)	software	updates.

The	biggest	addition	to	the	release	was	the	iCloud,	Apple’s	cloud-based	service	that
allows	users	to	synchronize	their	contacts,	calendar,	pictures,	and	much	more	to	the	cloud.

6.x	–	Apple	Maps
iOS	6.0	(known	as	Sundance)	was	released	in	June	2012	with	the	release	of	iPhone	5.
With	iOS	6,	the	old,	Google-powered	Maps	application	was	removed,	and	an	all-new
Apple	Maps	with	data	supplied	by	TomTom	was	added.	The	YouTube	application	was
also	removed	in	this	update.	iOS	6	brought	many	new	features,	such	as	Facebook
integration,	FaceTime	over	cellular	network,	Passbook,	and	many	enhancements	to	the
built-in	applications.	Better	privacy	controls	were	added	with	this	release.

7.x	–	the	iPhone	5S	and	beyond
iOS	7.0	(known	as	Innsbruck)	was	released	in	September	2013	with	the	release	of	iPhone
5S.	The	biggest	change	in	iOS	7	and	the	most	important	was	the	system-wide	redesign.
With	this	release,	Apple	took	the	interface	experience	from	static	to	dynamic.	A	ton	of
new	features	were	introduced,	such	as	control	center,	Airdrop,	iTunes	Radio,	FaceTime
audio,	automatic	updates	for	applications,	activation	lock,	and	many	more.	With	iPhone
5S,	Apple’s	Touch	ID	fingerprint	identity	sensor,	a	biometric	authentication	technology,
was	introduced.

All	the	iOS	versions	are	not	supported	by	all	the	iOS	devices.	Each	iOS	version	is
compatible	only	with	a	few	devices,	as	shown	in	the	following	iOS	compatibility	matrix.
This	table	was	created	using	http://iossupportmatrix.com/.The	blocks	in	green	signify	that
an	iOS	version	was	supported	for	that	device.	If	a	version	is	listed,	it	is	the	earliest	version
supported	for	that	device.	The	blocks	in	red	mean	no	support	for	that	device,	and	the
blocks	in	blue	are	still	iOS	versions	supported	by	Apple.

http://iossupportmatrix.com/

The	OS	compatibility	matrix

The	iOS	architecture
iOS	acts	as	an	intermediary	between	the	underlying	hardware	components	and	the
applications	that	appear	on	the	screen.	The	applications	do	not	talk	to	the	underlying
hardware	directly.	Instead,	they	communicate	through	a	well-defined	system	interface	that
protects	the	applications	from	hardware	changes.	This	abstraction	makes	it	easy	to	build
applications	that	work	on	devices	with	different	hardware	capability.

The	iOS	architecture	consists	of	four	layers:	the	Cocoa	Touch	layer,	Media	layer,	Core
Services	layer,	and	Core	OS	layer,	as	shown	in	the	following	figure.	Each	layer	consists	of
several	frameworks	that	would	help	to	build	an	application.

The	iOS	layers

The	Cocoa	Touch	layer
The	Cocoa	Touch	layer	contains	the	key	frameworks	required	to	develop	the	visual
interface	for	iOS	applications.	Frameworks	in	this	layer	provide	the	basic	application
infrastructure	and	support	key	technologies,	such	as	multitasking	and	touch-based	input,
and	many	high-level	system	services.

The	Media	layer
The	Media	layer	provides	the	graphics	and	audio	and	video	frameworks	to	create	the	best
multimedia	experience	available	on	a	mobile	device.	The	technologies	in	this	layer	help
developers	to	build	applications	that	look	and	sound	great.

The	Core	Services	layer
This	Core	Services	layer	provides	the	fundamental	system	services	that	are	required	for
the	applications.	All	these	services	are	not	used	by	the	developers	though	many	parts	of
the	system	are	built	on	top	of	them.	The	layer	contains	the	technologies	to	support	features
such	as	location,	iCloud,	and	social	media.

The	Core	OS	layer
The	Core	OS	layer	is	the	base	layer	and	sits	directly	on	top	of	the	device	hardware.	This

layer	deals	with	low-level	functionalities	and	provides	services	such	as	networking	(BSD
sockets),	memory	management,	threading	(POSIX	threads),	file	system	handling,	external
accessories	access,	and	inter-process	communication.

iOS	security
iOS	was	designed	with	security	at	its	core.	At	the	highest	level,	the	iOS	security
architecture	appears	as	shown	in	the	following	figure:

The	iOS	security	architecture

Apple	iOS	devices	such	as	iPhone,	iPad,	and	iPod	Touch	are	designed	with	layers	of
security.	Low-level	hardware	features	safeguard	from	malware	attacks	and	the	high-level
OS	features	prevent	unauthorized	use.	A	brief	overview	of	the	iOS	security	features	are
provided	in	the	following	sections.

Passcode
Passcodes	restrict	unauthorized	access	to	the	device.	Once	a	passcode	is	set,	each	time	you
turn	on	or	wake	up	the	device,	it	will	ask	for	the	passcode	to	access	the	device.	iPhone
supports	simple	as	well	as	complex	passcodes.	iPhone	5S	also	supports	touch	ID

fingerprints	as	a	passcode.

Code	signing
Code	signing	prevents	users	from	downloading	and	installing	unauthorized	applications
on	the	device.	Apple	says	“Code	Signing	is	the	process	by	which	your	compiled	iOS
application	is	sealed	and	identified	as	yours.	Also,	iOS	devices	won’t	run	an	application	or
load	a	library	unless	it	is	signed	by	a	trusted	party.	To	ensure	that	all	apps	come	from	a
known	and	approved	source	and	have	not	been	tampered	with,	iOS	requires	that	all
executable	code	be	signed	using	an	Apple-issued	certificate.”

Sandboxing
Sandboxing	mitigates	the	post-code-execution	exploitation	by	placing	the	application	into
a	tightly	restricted	area.	Applications	installed	on	the	iOS	device	are	sandboxed,	and	one
application	cannot	access	the	data	stored	by	the	other	application.

Encryption
On	iOS	devices,	the	entire	file	system	is	encrypted	with	a	file	system	key,	which	is
computed	from	the	device’s	unique	hardware	key.

Data	protection
Data	protection	is	designed	to	protect	data	at	rest	and	to	make	offline	attacks	difficult.	It
allows	applications	to	leverage	the	user’s	device	passcode	in	concert	with	the	device
hardware	encryption	to	generate	a	strong	encryption	key.	Later,	the	strong	encryption	key
is	used	to	encrypt	the	data	stored	on	the	disk.	This	key	prevents	data	from	being	accessed
when	the	device	is	locked,	ensuring	that	critical	information	is	secured	even	if	the	device
is	compromised.

Address	Space	Layout	Randomization
Address	Space	Layout	Randomization	(ASLR)	is	an	exploit	mitigation	technique
introduced	with	iOS	4.3.	ASLR	randomizes	the	application	objects’	location	in	the
memory,	making	it	difficult	to	exploit	the	memory	corruption	vulnerabilities.

Privilege	separation
iOS	runs	with	the	principle	of	least	privileges.	It	contains	two	user	roles:	root	and	mobile.
The	most	important	processes	in	the	system	run	with	root	user	privileges.	All	other
applications	that	the	user	has	direct	access	to,	such	as	the	browser	and	third-party
applications,	run	with	mobile	user	privileges.

Stack	smashing	protection
Stack	smashing	protection	is	an	exploit	mitigation	technique.	It	protects	against	buffer
overflow	attacks	by	placing	a	random	and	known	value	(called	stack	canary)	between	a
buffer	and	control	data	on	the	stack.

Data	execution	prevention

Data	execution	prevention	(DEP)	is	an	exploit	mitigation	technique	mechanism	in	which	a
processor	can	distinguish	the	portions	of	memory	that	are	executable	code	from	data.

Data	wipe
iOS	provides	an	option	Erase	All	Content	and	Settings	to	wipe	the	data	on	the	iPhone.
This	type	of	data	wipe	erases	user	settings	and	information	by	removing	the	encryption
keys	that	protects	the	data.	As	the	encryption	keys	are	erased	from	the	device,	it	is	not
possible	to	recover	the	deleted	data	in	forensic	investigations.	Other	wiping	methods	are
available	that	overwrite	the	data	in	the	device	memory.	More	information	on	wiping	can
be	found	at	http://support.ap	ple.com/kb/ht2110.

Activation	Lock
Activation	Lock,	introduced	with	iOS	7,	is	a	theft	deterrent	that	works	by	leveraging	Find
My	iPhone.	When	Find	My	iPhone	is	enabled,	it	enables	the	Activation	Lock,	and	your
Apple	ID	and	password	will	be	required	to	turn	off	Find	My	iPhone,	to	erase	your	device,
and	to	reactive	your	device.

http://support.ap
http://ple.com/kb/ht2110

App	Store
The	App	Store	is	an	application	distribution	platform	for	iOS,	developed	and	maintained
by	Apple.	It	is	a	centralized	online	store	where	users	can	browse	and	download	both	free
and	paid	apps.	These	apps	expand	the	functionality	of	a	mobile	device.	As	of	December
2013,	there	are	more	than	1	million	applications	in	the	App	Store,	and	users	have
downloaded	them	over	60	billion	times.	Apps	available	in	the	App	Store	are	generally
written	by	third-party	developers.	Developers	use	XCode	and	the	iPhone	SDK	to	develop
iOS	applications.	Later,	they	submit	the	app	to	Apple	for	approval.	Apple	follows	an
extensive	review	process	to	check	the	app	against	the	company	guidelines.	If	Apple
approves	the	app,	it	is	published	to	the	App	Store	where	users	can	download	or	buy	it.	The
strict	review	process	makes	the	App	Store	less	prone	to	malware.	Currently,	users	can
access	the	App	Store	via	iTunes	and	also	from	their	iOS	devices.

Jailbreaking
Jailbreaking	is	the	process	of	removing	limitations	imposed	by	Apple’s	mobile	operating
system	through	the	use	of	software	and	hardware	exploits.	Jailbreaking	permits	unsigned
code	to	run	and	gain	root	access	on	the	operating	system.	The	most	common	reason	for
jailbreaking	is	to	expand	the	limited	feature	set	imposed	by	Apple’s	App	Store	and	to
install	unapproved	apps.	Many	publicly	available	jailbreaking	tools	add	an	unofficial
application	installer	to	the	device,	such	as	Cydia,	which	allows	users	to	install	many	third-
party	applications,	tools,	tweaks,	and	apps	from	an	online	file	repository.	The	software
downloaded	from	Cydia	opens	up	endless	possibilities	on	a	device	that	a	non-jailbroken
device	would	never	be	able	to	do.	The	most	popular	jailbreaking	tools	are	redsn0w,
sn0wbreeze,	evasi0n,	Absinthe,	seas0npass,	and	so	on.	Not	all	the	iOS	versions	are
jailbreakable.	The	website	http://www.guidemyjailbreak.com/choose-iphone-to-jailbreak/
can	be	helpful	to	find	out	whether	a	particular	iOS	version	is	jailbreakable	or	not	and	with
which	method.	In	October	2012,	The	U.S.	Copyright	Office	declared	that	jailbreaking	the
iPad	is	illegal,	while	jailbreaking	the	iPhone	is	deemed	legal.	The	governing	law	is
reviewed	every	three	years.

http://www.guidemyjailbreak.com/choose-iphone-to-jailbreak/

Summary
The	first	step	in	a	forensic	examination	of	an	iOS	device	should	be	identifying	the	device
model.	The	model	of	an	iOS	device	can	be	used	to	help	the	examiner	develop	an
understanding	of	the	underlying	components	and	capabilities	of	the	device,	which	can	be
used	to	drive	the	methods	for	acquisition	and	examination.	Legacy	iOS	devices	should	not
be	disregarded	because	they	may	surface	as	part	of	an	investigation.	Examiners	must	be
aware	of	all	iOS	devices	as	old	devices	are	sometimes	still	in	use	and	may	be	tied	to	a
criminal	investigation.	The	next	chapter	will	provide	tips	and	techniques	for	acquiring	data
from	the	iOS	devices	discussed	in	this	chapter.

Chapter	3.	Data	Acquisition	from	iOS
Devices
An	iPhone	recovered	from	a	crime	scene	can	provide	a	rich	source	of	evidence	due	to	its
increased	storage	capabilities	and	Internet	connectivity.	According	to	several	news
references,	Ocsar	Pistorius’	iPads	were	examined	by	a	mobile	expert	and	presented	during
the	murder	trial	to	show	Internet	activity	hours	before	the	murder	of	his	girlfriend.	There
are	different	ways	to	acquire	forensic	data	from	an	iPhone.	Though	each	method	will	have
its	positives	and	negatives,	the	fundamental	principle	of	any	acquisition	method	is	to
obtain	a	bit-by-bit	picture	of	the	original	data.

This	chapter	covers	physical	acquisition	techniques	that	target	the	physical	storage
medium	directly	and	extract	a	disk	image	from	the	device	into	an	external	file,	which	can
be	examined	later	using	forensic	tools.

Operating	modes	of	iOS	devices
Before	we	dive	into	the	forensic	techniques	and	acquisition	methods,	it	is	important	to
know	the	different	operating	modes	of	an	iPhone.	Many	forensic	tools	and	methods
require	you	to	place	the	device	into	one	of	the	operating	modes.	Understanding	the	iOS
device	operating	modes	is	required	in	order	to	perform	a	particular	action	on	the	device.
iOS	devices	are	capable	of	running	in	different	operating	modes:	normal	mode,	recovery
mode,	and	DFU	mode.	Most	forensic	tools	require	the	examiner	to	know	which	mode	the
device	is	currently	utilizing.	We	will	define	each	mode	in	this	section.	When	the	term
“iPhone”	is	referenced,	it	should	be	understood	that	the	statement	remains	true	for	all	iOS
devices.

Normal	mode
When	an	iPhone	is	switched	on,	it	is	booted	to	its	operating	system.	This	mode	is	known
as	normal	mode.	Most	of	the	regular	activities	(calling,	texting,	and	so	on)	performed	on
an	iPhone	will	be	run	in	normal	mode.

When	an	iPhone	is	turned	on,	internally,	it	goes	through	a	secure	boot	chain,	as	shown	in
the	following	figure.	Each	step	in	the	boot-up	process	contains	software	components	that
are	cryptographically	signed	by	Apple	to	ensure	integrity.

A	secure	boot	chain	of	an	iPhone	in	normal	mode

The	Boot	ROM,	known	as	the	secure	ROM,	is	a	read-only	memory	(ROM)	and	is	the
first	significant	code	that	runs	on	an	iPhone
(http://images.apple.com/ipad/business/docs/iOS_Security_Feb14.pdf).	The	Boot	ROM
code	contains	the	Apple	root	CA	public	key,	which	is	used	to	verify	the	signature	of	the
next	stage	before	allowing	it	to	load.	When	the	iPhone	is	started,	the	application	processor
executes	the	code	from	the	Boot	ROM,	which,	in	turn,	verifies	whether	the	Low	Level
Bootloader	(LLB)	is	signed	by	Apple	or	not	and	loads	it	accordingly.	When	LLB	finishes
its	tasks,	it	verifies	and	loads	the	second	stage	boot	loader	(iBoot).	iBoot	verifies	and	loads
the	iOS	kernel,	which,	in	turn,	verifies	and	runs	all	the	user	applications	as	shown	in	the
preceding	figure.	The	secure	boot	chain	ensures	iOS	runs	only	on	validated	Apple	devices.

http://images.apple.com/ipad/business/docs/iOS_Security_Feb14.pdf

Recovery	mode
During	the	boot-up	process,	if	one	step	is	unable	to	load	or	verify	the	next	step,	then	the
boot-up	is	stopped	and	the	iPhone	displays	a	screen,	as	shown	in	the	following	screenshot.
This	mode	is	known	as	the	recovery	mode.	The	recovery	mode	is	required	to	perform
upgrades	or	restore	the	iPhone.

To	enter	recovery	mode,	perform	the	following	steps:

1.	 Turn	off	the	device—press	and	hold	down	the	Sleep/Power	button	located	at	the	top
of	the	iPhone	until	the	red	slider	appears.	Then,	move	the	slider	and	wait	for	the
device	to	turn	off.

2.	 Hold	down	the	iPhone	Home	button	and	connect	the	device	to	a	computer	via	a	USB
cable.	The	device	should	turn	on.

3.	 Continue	holding	the	Home	button	until	the	Connect	to	iTunes	screen	appears,	as
shown	in	the	following	screenshot.	Then,	you	can	release	the	Home	button.	(On	a
jail-broken	iOS	device,	this	screen	may	appear	with	different	icons.)	Most	forensic
tools	and	extraction	methods	will	alert	the	examiner	to	the	current	state	of	the	iOS
device.

You	can	read	about	the	iPhone	recovery	mode	at	http://support.apple.com/kb/HT1808.

To	exit	the	recovery	mode,	reboot	the	iPhone.	This	can	be	completed	by	holding	the	Home
and	Sleep/Power	button	until	the	Apple	logo	appears.	Normally,	the	process	of	rebooting
returns	the	iPhone	from	recovery	mode	to	normal	mode.	The	examiner	may	experience	a
situation	where	the	iPhone	constantly	reboots	into	recovery	mode.	This	is	known	as	a

http://support.apple.com/kb/HT1808

recovery	loop.	A	recovery	loop	often	occurs	when	the	user	attempts	to	jailbreak	their	iOS
device	and	an	error	occurs.

Several	open	source	methods	exist	to	repair	a	recovery	loop.	The	following	example
shows	the	redsn0w	tool,	which	can	be	used	to	exit	a	recovery	loop.	You	can	download	the
latest	version	of	redsn0w	from	the	following	link:	https://sites.google.com/a/iphone-
dev.com/files/.

Then,	navigate	to	Extras	|	Recovery	fix,	as	shown	in	the	following	screenshot.	An
external	method	or	tool	may	not	be	required.	Sometimes,	placing	the	device	in	DFU	mode
and	connecting	the	device	to	iTunes	will	properly	reboot	the	iPhone.

The	redsn0w	recovery	fix

https://sites.google.com/a/iphone-dev.com/files/

DFU	mode
During	the	boot-up	process,	if	the	Boot	ROM	is	not	able	to	load	or	verify	LLB,	then	the
iPhone	displays	a	black	screen.	This	mode	is	known	as	the	Device	Firmware	Upgrade
(DFU)	mode.	DFU	mode	is	a	low-level	diagnostic	mode	and	is	designed	to	perform
firmware	upgrades	for	the	iPhone.	During	a	firmware	upgrade,	the	iPhone	goes	through	a
different	boot	sequence	as	shown	in	the	following	figure.	Most	forensic	tools	use	DFU
mode	to	perform	a	physical	acquisition.

A	secure	boot	chain	of	an	iPhone	in	DFU	mode

In	DFU	mode,	the	Boot	ROM	boots	first,	which,	in	turn,	verifies	and	runs	the	second	stage
boot	loaders,	iBSS	and	iBEC.	The	iBEC	loader	verifies	and	loads	the	kernel.	The	kernel
verifies	and	loads	the	ramdisk	into	memory.	Again,	most	forensic	acquisition	methods
require	the	iOS	device	to	be	successfully	entered	in	DFU	mode.	As	mentioned	in	Chapter
1,	Introduction	to	Mobile	Forensics,	all	steps	must	be	well	documented	by	the	examiner.
The	handling	of	the	iOS	device	is	no	exception.	DFU	mode	is	a	method	recognized	in
mobile	device	forensics	and	is	deemed	to	be	a	forensically	sound	action	to	prepare	the
device	for	forensic	acquisition.

To	enter	DFU	mode,	perform	the	following	steps:

1.	 Download	and	install	iTunes	on	your	forensic	workstation	from
http://www.apple.com/itunes/download/.

2.	 Connect	your	device	to	the	forensic	workstation	via	a	USB	cable.
3.	 Turn	off	the	device.
4.	 Hold	down	the	Power	button	for	3	seconds.
5.	 Hold	down	the	Home	button	without	releasing	the	Power	button	for	exactly	10

http://www.apple.com/itunes/download/

seconds.
6.	 Release	the	Power	button	and	continue	to	hold	down	the	Home	button	until	you	are

alerted	by	iTunes	with	the	iTunes	has	detected	an	iPhone	in	recovery	mode.	You
must	restore	the	iPhone	before	it	can	be	used	with	iTunes	message.

7.	 At	this	point,	the	iPhone	screen	will	be	black	and	should	not	display	anything.	The
iPhone	is	ready	to	be	used	in	DFU	mode.	If	you	see	the	Apple	logo	or	other	signals
that	the	device	is	booting,	repeat	steps	2	through	6	until	iTunes	displays	that	message.

To	verify	whether	the	iPhone	is	in	DFU	mode	on	Mac	OS	X,	launch	System	Information
and	go	to	the	USB	option.	You	should	see	a	device	similar	to	what	is	shown	in	the
following	screenshot:

The	MAC	system	information	displaying	a	DFU-mode	device

Just	like	in	recovery	mode,	to	exit	DFU	mode,	hold	down	the	Home	button	and	the	Power
button	until	the	Apple	logo	appears	on	the	device.	More	information	can	be	found	on
methods	to	verify	DFU	mode	at	http://www.zdziarski.com/blog/wp-
content/uploads/2013/05/iOS-Forensic-Investigative-Methods.pdf.

http://www.zdziarski.com/blog/wp-content/uploads/2013/05/iOS-Forensic-Investigative-Methods.pdf

Physical	acquisition
iOS	devices	have	two	types	of	memory:	volatile	(RAM)	and	non-volatile	(NAND	Flash).
RAM	is	used	to	load	and	execute	the	key	parts	of	the	operating	system	or	the	application.
The	data	stored	on	the	RAM	is	lost	after	a	device	reboots.	RAM	usually	contains	very
important	application	information	such	as	active	applications,	usernames,	passwords,	and
encryption	keys.	Though	the	information	stored	in	the	RAM	can	be	crucial	in	an
investigation,	currently	there	is	no	method	or	tool	available	to	acquire	the	RAM	memory
from	a	live	iPhone.

Unlike	RAM,	NAND	is	non-volatile	memory	and	retains	the	data	stored	in	it	even	after	a
device	reboots.	NAND	flash	is	the	main	storage	area	and	contains	the	system	files	and
user	data	(http://www.nist.gov/forensics/research/upload/draft-guidelines-on-mobile-
device-forensics.pdf).	The	goal	of	physical	acquisition	is	to	perform	a	bit-by-bit	copy	of
the	NAND	memory,	similar	to	the	way	in	which	a	computer	hard	drive	would	be
forensically	acquired.	While	data	storage	seems	similar,	NAND	differs	from	the	magnetic
media	found	in	modern	hard	drives.	NAND	memory	is	cheaper,	faster,	and	holds	a	great
amount	of	data.	Thus,	NAND	is	the	ideal	storage	for	mobile	devices	as	mentioned	in
iPhone	and	iOS	Forensics,	Andrew	Hoog	And	Katie	Strzempka,	Elsevier	BV.

Physical	acquisition	has	the	greatest	potential	for	recovering	data	from	iOS	devices;
however,	evolving	security	features	(secure	boot	chain,	storage	encryption,	and	passcode)
on	these	devices	may	hinder	the	accessibility	of	the	data	during	forensic	acquisition.
Researchers	and	commercial	forensic	tool	vendors	are	continually	attempting	new
techniques	to	bypass	the	security	features	and	perform	physical	acquisition	on	iOS
devices.	Currently,	there	are	two	methods	that	can	be	used	to	gain	access	to	the	iOS	device
and	grab	a	physical	image	of	the	NAND.	The	two	methods	are	explained	in	detail	in	the
following	sections.

http://www.nist.gov/forensics/research/upload/draft-guidelines-on-mobile-device-forensics.pdf

Acquisition	via	a	custom	ramdisk
Acquisition	via	a	custom	ramdisk	is	a	novel	method	to	acquire	data	from	an	iPhone.	It
gains	access	to	the	file	system	by	loading	a	custom	ramdisk	into	the	memory	and
exploiting	a	weakness	in	the	boot	process	while	the	device	is	in	the	DFU	mode.	A	custom
ramdisk	contains	the	forensic	tools	necessary	to	dump	the	file	system	over	USB	via	an
SSH	tunnel.	Loading	a	custom	ramdisk	onto	a	device	will	not	alter	the	user	data,	and	thus
the	evidence	will	not	be	destroyed.

Imagine	a	computer	that	is	protected	with	an	OS-level	password,	we	can	still	access	the
hard	disk	contents	by	booting	with	a	live	CD.	Similarly,	on	the	iPhone,	we	can	load	a
custom	ramdisk	over	USB	and	access	the	file	system.	However,	the	iPhone	secure	boot
chain	prevents	us	from	loading	the	custom	ramdisk.	We	can	achieve	this	by	exploiting	a
Boot	ROM	vulnerability	and	patching	successive	stages,	as	shown	in	the	following	figure:

An	exploited	boot	chain	of	an	iPhone	in	DFU	mode

Hacker	communities	have	found	several	Boot	ROM	vulnerabilities	in	A4	devices	(iPhone
4	and	older	iPhone	models).	Currently,	there	are	no	Boot	ROM	exploits	for	A5+	devices
(iPhone	4S	and	later	models)	that	allow	access	for	physical	acquisition	of	the	device.	Boot
ROM	vulnerabilities	cannot	be	fixed	with	software	updates,	effectively	making	a	device
vulnerable	forever.

In	addition	to	this,	the	file	system	on	the	iPhone	is	encrypted.	Since	the	release	of	the
iPhone	3GS,	the	hardware	and	firmware	encryption	are	built	into	iOS	devices.	Every	iOS
device	has	a	dedicated	AES	256-bit	crypto	engine	(the	AES	cryptographic	accelerator)
with	two	hardcoded	keys:	UID	(Unique	ID)	and	GID	(Group	ID)	(as	stated	by	Zdziarski	in
one	of	his	books).	The	CPU	on	the	device	cannot	read	the	hardcoded	keys	but	can	use

them	for	encryption	and	decryption	through	the	AES	accelerator.	The	UID	key	is	unique
for	each	device	and	is	used	to	create	device-specific	keys	(the	0x835	key	and	the	0x89B
key)	that	are	later	used	for	file	system	encryption.	The	UID	allows	data	to	be
cryptographically	tied	to	a	particular	device;	so,	even	if	the	flash	chip	is	moved	from	one
device	to	other,	the	files	are	not	readable	and	remain	encrypted.	The	GID	key	is	shared	by
all	devices	with	the	same	application	processor	(for	example,	all	devices	that	use	the	A4
chip)	and	is	used	to	decrypt	the	iOS	firmware	images	(IPSW)	during	installation,	restore,
and	update.	The	GID	prevents	hackers	from	reversing	the	firmware	and	finding	security
vulnerabilities.

Apart	from	the	UID	and	GID,	all	other	cryptographic	keys	are	created	by	the	system’s
random	number	generator	(RNG)	using	an	algorithm	based	on	Yarrow.	More
information	on	encryption	and	Yarrow-based	algorithms	can	be	found	at
http://images.apple.com/ipad/business/docs/iOS_Security_Feb14.pdf.

iPhone	Data	Protection	Tools	is	an	open	source	iOS	forensic	toolkit	written	by	Jean-
Baptiste	and	Jean	Sigwald,	which	uses	the	custom	ramdisk	technique.	The	forensic	toolkit
builds	a	custom	ramdisk	and	loads	it	to	the	device	by	exploiting	the	Boot	ROM
vulnerability	in	the	DFU	mode.	The	custom	ramdisk	includes	tools	to	enumerate	device
information,	brute	force	passcode	attempts,	and	create	a	raw	image	of	the	disk	partition.
The	forensic	toolkit	also	obtains	device	encryption	keys,	decrypts	the	file	system,	and
recovers	the	deleted	files.	The	iPhone	Data	Protection	Tools	currently	work	with	the
iPhone	3G,	3GS	and	4;	iPod	touch	2G,	3G	and	4G;	and	iPad	1	models.	More	information
on	this	can	be	found	at	https://code.google.com/p/iphone-dataprotection/wiki/README.

http://images.apple.com/ipad/business/docs/iOS_Security_Feb14.pdf
https://code.google.com/p/iphone-dataprotection/wiki/README

The	forensic	environment	setup
The	following	steps	explain	how	to	use	the	iPhone	Data	Protection	Tools	on	Mac	OS	X
10.8.5	with	Xcode	4.6.1	and	iOS	6.1	SDK	(other	versions	should	work	with	the	same
steps).	Assuming	that	you	already	have	Xcode	with	UNIX	tools	installed,	you	will	need	to
install	some	additional	command-line	tools,	Python	modules,	and	binaries	to	build	and	use
the	iPhone	Data	Protection	Tools.

Downloading	and	installing	the	ldid	tool
First,	you	need	to	download	the	ldid	tool,	which	is	used	to	view	and	manipulate	code
signatures	and	embedded	entitlements	plist	files	of	binaries.	On	Mac	OS	X,	open	the
terminal	window	and	use	the	curl	command,	as	shown,	to	download	the	Idid	tool:

$curl	-O	http://networkpx.googlecode.com/files/ldid

%	Total	%	Received	%	Xferd	Average	Speed		Time		Time	Time		Current

																											Dload		Upload	Total	Spent	Left		Speed

100	32016	100	32016	0		0		52214				0	--:--:--	--:--:--	--:--:--		279k

Grant	execution	permission	to	the	ldid	tool	and	move	it	to	the	bin	directory	in	the	usr
folder,	using	the	commands	shown:

$chmod	+x	ldid	

$sudo	mv	ldid	/usr/bin/

Verifying	the	codesign_allocate	tool	path
Create	a	symbolic	link	to	the	Xcode	folder,	as	shown:

$sudo	ln	-s	/Applications/Xcode.app/Contents/Developer	/

iPhone	Data	Protection	Tools	require	the	codesign_allocate	tool,	which	is	present	by
default	if	the	UNIX	tools	were	installed	with	Xcode.	To	find	whether	codesign_allocate
exists	or	not,	use	the	command	shown:

$which	codesign_allocate/usr/bin/codesign_allocate

If	you	do	not	see	the	location	of	codesign_allocate	from	the	command-line	output,
create	a	symbolic	link	to	it,	as	shown:

$sudo	ln	-

s/Developer/Platforms/iPhoneOS.platform/Developer/usr/bin/codesign_allocate	

/usr/bin

Installing	OSXFuse
iOS	firmware	files	are	in	the	IMG3	file	format.	To	modify	the	ramdisk,	the	iPhone	Data
Protection	Tools	include	a	FUSE	file	system	that	understands	the	IMG3	format.	The	latest
version	of	OSXFuse	should	be	installed	on	your	forensic	workstation.	OSXFuse	extends
the	native	file	handling	capabilities	of	OS	X	and	allows	you	to	mount	the	file	systems	that
are	not	natively	supported	by	OS	X.	You	can	download	and	install	OSXFuse	by	executing
the	commands	shown	or	directly	from	the	following	link:
http://sourceforge.net/projects/osxfuse/files/osxfuse-2.6.2/osxfuse-2.6.2.dmg.

http://sourceforge.net/projects/osxfuse/files/osxfuse-2.6.2/osxfuse-2.6.2.dmg

$sudo	curl	-O	-L	http://sourceforge.net/projects/osxfuse/files/osxfuse-

2.6.2/osxfuse-2.6.2.dmg

%	Total	%	Received	%	Xferd	Average	Speed		Time		Time			Time		Current

																											Dload			Upload	Total	Spent		Left		Speed

100	8608k	100	8608k	0		0			546k					0		0:00:15		0:00:15	--:--:--698k

Next,	run	the	three	commands	as	shown:

$hdiutil	mount	osxfuse-2.6.2.dmg	

Checksumming	Gesamte	Disk	(Apple_HFS	:	0)…

...

Gesamte	Disk	(Apple_HFS	:	0):	verified			CRC32	$6D4256E4

verified			CRC32	$D09075DF

/dev/disk2																																					/Volumes/FUSE	for	OS	X

$sudo	installer	-pkg	/Volumes/FUSE\	for\	OS\	X/Install\	OSXFUSE\	2.6.pkg	-

target	/

installer:	Package	name	is	FUSE	for	OS	X	(OSXFUSE)

installer:	Installing	at	base	path	/

installer:	The	install	was	successful.

$hdiutil	eject	/Volumes/FUSE\	for\	OS\	X/

"disk3"	unmounted.

"disk3"	ejected.

Installing	Python	modules
The	Python	scripts	of	iPhone	Data	Protection	Tools	require	installation	of	several	Python
modules:	construct,	progressbar,	and	setuptools.	You	can	install	the	required	Python
modules	using	Python’s	easy_install	command,	as	shown:

$sudo	easy_install	construct	progressbar	

Searching	for	construct

Reading	http://pypi.python.org/simple/construct/

Best	match:	construct	2.5.1

Downloading	https://pypi.python.org/packages/source/c/construct/construct-

2.5.1.zip#md5=4616eb3c12e86ba859ff2ed2f01ddb1c

Processing	construct-2.5.1.zip

[...]

Installed	/Library/Python/2.7/site-packages/construct-2.5.1-py2.7.egg

Processing	dependencies	for	construct

Searching	for	six

Reading	http://pypi.python.org/simple/six/

Best	match:	six	1.4.1

Downloading	https://pypi.python.org/packages/source/s/six/six-

1.4.1.tar.gz#md5=bdbb9e12d3336c198695aa4cf3a61d62

Processing	six-1.4.1.tar.gz

[...]

Installed	/Library/Python/2.7/site-packages/six-1.4.1-py2.7.egg

Finished	processing	dependencies	for	construct

Searching	for	progressbar

Reading	http://pypi.python.org/simple/progressbar/

Reading	http://code.google.com/p/python-progressbar

Best	match:	progressbar	2.3

Downloading	http://python-progressbar.googlecode.com/files/progressbar-

2.3.tar.gz

Processing	progressbar-2.3.tar.gz

[...]

Installed	/Library/Python/2.7/site-packages/progressbar-2.3-py2.7.egg

Processing	dependencies	for	progressbar

Finished	processing	dependencies	for	progressbar

Searching	for	setuptools

Best	match:	setuptools	0.6c12dev-r88846

Adding	setuptools	0.6c12dev-r88846	to	easy-install.pth	file

Installing	easy_install	script	to	/usr/local/bin

[...]

Processing	dependencies	for	setuptools

Finished	processing	dependencies	for	setuptools

The	Python	scripts	also	require	the	cryptography	modules	PyCrypto	and	M2Crypto	to
decrypt	iOS	firmware	images,	files,	and	keychain	items.	You	can	download	and	install	the
PyCrypto	tool	directly	from	the	following	link:	https://rudix-
mountainlion.googlecode.com/files/pycrypto-2.6-1.pkg.

You	can	install	the	M2Crypto	module	using	the	commands	shown:

$sudo	curl	-O	-L	

http://chandlerproject.org/pub/Projects/MeTooCrypto/M2Crypto-0.21.1-py2.7-

macosx-10.8-intel.egg

%	Total	%	Received	%	Xferd	Average	Speed	Time		Time			Time		Current

																											Dload		Upload	Total	Spent		Left		Speed

100	477k	100	477k		0				0		63290				0		0:00:07	0:00:07	--:--:--	102k

$sudo	easy_install	M2Crypto-0.21.1-py2.7-macosx-10.8-intel.egg	

Processing	M2Crypto-0.21.1-py2.7-macosx-10.8-intel.egg

[...]

Installed	/Library/Python/2.7/site-packages/M2Crypto-0.21.1-py2.7-macosx-

10.8-

intel.egg

Processing	dependencies	for	M2Crypto==0.21.1

Finished	processing	dependencies	for	M2Crypto==0.21.1

Finally,	to	download	the	latest	copy	of	iPhone	Data	Protection	Tools	from	the	Google	code
repository,	you	need	to	install	the	Mercurial	source	code	management	system.	You	can
download	and	install	this	using	the	easy_install	command,	as	shown,	or	directly	from
the	following	link:	http://mercurial.berkwood.com/binaries/Mercurial-2.6.2-py2.7-
macosx10.8.zip.

$sudo	easy_install	mercurial

Searching	for	mercurial

Reading	http://pypi.python.org/simple/mercurial/

Best	match:	mercurial	2.8

Downloading	https://pypi.python.org/packages/source/M/Mercurial/mercurial-

2.8.tar.gz#md5=76b565f48000e9f331356ab107a5bcbb

Processing	mercurial-2.8.tar.gz

[...]

Processing	dependencies	for	mercurial

Finished	processing	dependencies	for	mercurial

Downloading	iPhone	Data	Protection	Tools
Download	the	latest	copy	of	iPhone	Data	Protection	Tools	using	Mercurial	(hg),	as	shown:

$sudo	hg	clone	https://code.google.com/p/iphone-dataprotection/

https://rudix-mountainlion.googlecode.com/files/pycrypto-2.6-1.pkg
http://mercurial.berkwood.com/binaries/Mercurial-2.6.2-py2.7-macosx10.8.zip

warning:	code.google.com	certificate	with	fingerprint	

ad:3c:56:fb:e8:c0:62:b0:ff:89:21:52:98:b1:a1:d4:94:a4:1c:84	not	verified	

(check	hostfingerprints	or	web.cacerts	config	setting)

destination	directory:	iphone-dataprotection

requesting	all	changes

adding	changesets

adding	manifests

adding	file	changes

added	72	changesets	with	2033	changes	to	1865	files

updating	to	branch	default

152	files	updated,	0	files	merged,	0	files	removed,	0	files	unresolved

The	command	in	the	preceding	screenshot	creates	the	iphone-dataprotection	directory
and	downloads	iPhone	Data	Protection	Tools	to	it.

Building	the	IMG3FS	tool
Build	the	IMG3	FUSE	file	system	from	the	img3fs	directory.	This	module	enables	you	to
directly	mount	the	firmware	disk	images	included	in	the	iOS	firmware	packages	(IPSW),
as	shown	in	the	following	command	lines:

$cd	iphone-dataprotection

$sudo	make	-C	img3fs/gcc	-o	img3fs	img3fs.c	-Wall	-lfuse_ino64	-lcrypto	-

I/usr/local/include/osxfuse	||	gcc	-o	img3fs	img3fs.c	-Wall	-losxfuse_i64	-

lcrypto	-I/usr/local/include/osxfuse

img3fs.c:	In	function	'img3_check_decrypted_data':img3fs.c:100:	warning:	

pointer	targets	in	passing	argument	2	of	'strncmp'	differ	in	signedness

img3fs.c:104:	warning:	pointer	targets	in	passing	argument	2	of	'strncmp'	

differ	in	signedness

img3fs.c:108:	warning:	pointer	targets	in	passing	argument	2	of	'strncmp'	

differ	in	signedness

[...]

After	running	the	make	command,	you	will	notice	a	few	compiler	warning	messages,
which	you	can	ignore.

Downloading	redsn0w
Firmware	disk	images	included	in	the	iOS	firmware	packages	are	encrypted.	The	redsn0w
application,	a	famous	iOS	jailbreaking	utility	developed	by	the	iPhone	Dev	Team,	contains
a	plist	file	with	the	decryption	keys	for	all	previously	released	iOS	firmware	images.	The
iPhone	Data	Protection	build	scripts	will	use	the	decryption	keys	to	automatically	decrypt
the	kernel	and	ramdisk.	To	do	this,	download	the	latest	version	of	redsn0w	and	create	a
symbolic	link	to	its	Keys.plist	file	in	the	current	directory,	as	shown	in	the	following
code.	Later	in	this	chapter,	you	will	also	use	redsn0w	to	boot	the	custom	ramdisk	onto	the
device.

$sudo	curl	-O	-L	https://sites.google.com/a/iphone-

dev.com/files/home/redsn0w_mac_0.9.15b3.zip

%	Total	%	Received	%	Xferd	Average	Speed			Time	Time		Time		Current		Dload			

Upload	Total	Spent	Left		Speed

100	17.1M	100	17.1M	0			0			298k					0		0:00:58	0:00:58—		329k

$sudo	unzip	redsn0w_mac_0.9.15b3.zip	

Archive:		redsn0w_mac_0.9.15b3.zip

creating:	redsn0w_mac_0.9.15b3/

inflating:	redsn0w_mac_0.9.15b3/boot-ipt4g.command		

inflating:	redsn0w_mac_0.9.15b3/credits.txt		

inflating:	redsn0w_mac_0.9.15b3/license.txt	

[...]

extracting:	redsn0w_mac_0.9.15b3/redsn0w.app/Contents/PkgInfo		

creating:	redsn0w_mac_0.9.15b3/redsn0w.app/Contents/Resources/

inflating:	redsn0w_mac_0.9.15b3/redsn0w.app/Contents/Resources/redsn0w.icns	

$sudo	cp	redsn0w_mac_0.9.15b3/redsn0w.app/Contents/MacOS/Keys.plist	.

Creating	and	loading	the	forensic	toolkit
At	this	point,	all	of	the	prerequisites	should	be	installed,	and	you	should	be	ready	to	build
and	load	the	custom	ramdisk	onto	your	target	iOS	device.	First,	we	patch	the	ramdisk
signature	checks	in	the	kernel	and	build	a	custom	ramdisk	with	our	forensic	tools.	Later,
we	use	redsn0w	to	load	the	modified	kernel	and	the	custom	ramdisk	by	exploiting	the
Boot	ROM	vulnerability.

Downloading	the	iOS	firmware	file
An	iOS	firmware	update	software	archive	(IPSW)	file	for	the	hardware	model	with	which
you	intend	to	use	the	custom	ramdisk	is	required.	iPhone	Data	Protection	Tools	supports
the	ramdisk	creation	for	iOS	6	IPSW	and	lower	versions.	For	best	results,	use	the	latest
version	of	iOS	5	IPSW	to	create	the	ramdisk.	iOS	5	kernel	is	compatible	with	the	previous
and	forthcoming	iOS	versions.	So,	even	if	your	device	is	running	on	iOS	7	or	iOS	4,	you
can	prepare	the	ramdisk	with	iOS	5.	You	can	download	the	IPSW	file	for	the	target	device
from	http://getios.com/index.php.

Copy	the	downloaded	IPSW	to	the	dataprotection	directory	inside	the	iphone	folder,	as
shown	in	the	following	command:

$cp	~/Downloads/iPhone3,1_5.1.1_9B208_Restore.ipsw	.

Note
The	above	command	ends	with	.	which	represents	the	current	working	directory.

The	iPhone3,1_5.1.1_9B208_Restore.ipsw	file	used	in	the	preceding	command	targets
the	iPhone	4	device.	The	IPSW	filenames	include	the	hardware	model	(iPhone3,1),	the
iOS	version	number	(5.1.1),	and	the	specific	build	number	(9B208).

Modifying	the	kernel
For	the	custom	ramdisk	to	work	properly,	a	modified	kernel	is	required.	The
kernel_patcher.py	script	in	iPhone	Data	Protection	Tools	extracts	the	kernelcache	from
the	supplied	IPSW	file	and	patches	it.	The	kernel	patching	utility	makes	appropriate
changes	to	the	kernel	to	disable	the	code	signing	to	run	arbitrary	binaries	and	to	allow
access	to	restricted	functions.	Run	the	kernel_patcher.py	script	on	your	IPSW	to	create	a
patched	kernelcache	and	a	shell	script	that	builds	the	ramdisk,	as	shown	in	the	following
commands:

$sudo	python	python_scripts/kernel_patcher.py	

iPhone3,1_5.1.1_9B208_Restore.ipsw	

Decrypting	kernelcache.release.n90

Unpacking…

Doing	CSED	patch

Doing	getxattr	system	patch

Doing	nand-disable-driver	patch

Doing	task_for_pid_0	patch

Doing	IOAES	gid	patch

Doing	AMFI	patch

Doing	_PE_i_can_has_debugger	patch

http://getios.com/index.php

Doing	IOAESAccelerator	enable	UID	patch

Patched	kernel	written	to	kernelcache.release.n90.patched

Created	script	make_ramdisk_n90ap.sh,	you	can	use	it	to	(re)build	the	

ramdisk

The	script	creates	a	patched	kernel	file	called	kernelcache.release.n90.patched	to	the
current	working	directory.	For	the	iOS	5	IPSW	file,	it	also	creates	a	script	called
make_ramdisk_n90ap.sh	to	build	the	custom	ramdisk.	Pay	attention	to	the	file	names
because	they	may	differ	depending	on	the	iOS	device	model.

Building	a	custom	ramdisk
Give	permission	to	execute	the	make_ramdisk_n90ap.sh	ramdisk	build	script	and	execute
this	script	to	create	the	custom	ramdisk	as	follows:

$chmod	+x	make_ramdisk_n90ap.sh	

Before	executing	the	script,	edit	the	file	and	fix	the	iOS	SDK	path	as	follows:

$sudo	nano	make_ramdisk_n90ap.sh

As	we	are	using	iOS	SDK	6.1,	append	6.1	to	the	for	loop,	as	shown	in	the	following	code:

for	VER	in	4.2	4.3	5.0	5.1	6.0	6.1

Fix	the	IOKit	path	by	replacing
/Developer/Platforms/iPhoneOS.platform/Developer/SDKs/iPhoneOS$VER.sdk/System/Library/Frameworks/IOKit.framework/IOKit

with
/Applications/Xcode.app/Contents/Developer/Platforms/iPhoneOS.platform/Developer/SDKs/iPhoneOS$VER.sdk/System/Library/Frameworks/IOKit.framework/IOKit

in	the	if	statement.

After	making	the	necessary	changes,	press	Ctrl	+	X,	type	the	letter	y	and	hit	the	Enter	key
on	the	keyboard	to	save	the	file.

Execute	the	make_ramdisk_n90ap.sh	script;	it	will	download	ssh.tar.gz	from	Google
Code.	Next,	compile	the	ramdisk	tools	located	in	the	ramdisk_tools	folder	and	add	them
to	the	existing	ramdisk	to	prepare	a	forensic	ramdisk,	as	shown	in	the	following	command:

$sudo	./make_ramdisk_n90ap.sh	

Found	iOS	SDK	6.1

[some	warning	messages]

Archive:		iPhone3,1_5.1.1_9B208_Restore.ipsw

inflating:	038-5512-003.dmg								

TAG:	TYPE	OFFSET	14	data_length:4

[...]

"disk2"	unmounted.

"disk2"	ejected.

You	can	boot	the	ramdisk	using	the	following	command	(fix	paths)redsn0w	-i	

iPhone3,1_5.1.1_9B208_Restore.ipsw	-r	myramdisk_n90ap.dmg	-k	

kernelcache.release.n90.patched

Add	-a	"-v	rd=md0	nand-disable=1"	for	nand	dump/read	only	access

If	you	are	using	an	iOS	6	IPSW	file,	run	the	build_ramdisk_ios6.sh	file	to	create	the
custom	ramdisk.	Before	running	the	script,	you	need	to	edit	Makefile	in	the
ramdisk_tools	directory,	fix	the	iOS	SDK	version,	and	compile	it	using	the	make

command.

Booting	the	custom	ramdisk
To	load	the	custom	ramdisk	onto	the	device,	start	redsn0w	from	the	command	line	using
the	IPSW,	custom	ramdisk,	and	patched	kernel	as	shown	in	the	following	command:

$sudo	./redsn0w_mac_0.9.15b3/redsn0w.app/Contents/MacOS/redsn0w	-i	

iPhone3,1_5.1.1_9B208_Restore.ipsw	-r	myramdisk_n90ap.dmg	-k	

kernelcache.release.n90.patched	

Turn	off	your	iOS	device	and	connect	it	to	the	computer,	which	is	running	redsn0w,	with	a
USB	cable.	When	the	device	is	connected,	redsn0w	is	displayed	on	the	screen	as	shown	in
the	following	screenshot:

The	redsn0w	welcome	screen

Click	on	Next	and	follow	the	steps	displayed	on	the	screen	to	place	the	device	in	the	DFU
mode.	Once	your	device	is	in	the	DFU	mode,	redsn0w	exploits	one	of	the	Boot	ROM

vulnerabilities	and	loads	the	modified	kernel	and	custom	ramdisk.	If	the	process	is
successful,	you	will	notice	the	image	of	a	pineapple	on	the	iPhone,	followed	by	boot
messages	in	small	text.	Once	the	process	is	completed,	you	will	notice	an	ASCII	version
of	the	OK	message	on	the	device.

Establishing	communication	with	the	device
The	custom	ramdisk	booted	onto	the	iPhone	contains	an	SSH	server,	which	will	allow
remote	command-line	access	to	the	device	through	the	USB	protocol.	The	USB
multiplexing	daemon	(usbmuxd),	a	background	daemon	in	Apple’s	mobile	device
framework,	is	used	to	tunnel	the	TCP	socket	connection	over	the	USB	protocol	to	a	local
TCP	socket	listening	on	the	device.	In	this	case,	run	tcprelay.py,	as	shown	in	the
following	command	line,	to	connect	to	the	SSH	server	that	is	running	on	the	custom
ramdisk:

$python	usbmuxd-python-client/tcprelay.py	-t	22:2222	1999:1999

Forwarding	local	port	2222	to	remote	port	22

Forwarding	local	port	1999	to	remote	port	1999

Other	python	scripts	included	in	iPhone	Data	Protection	Tools	communicate	with	the
device	over	SSH.	So,	you	should	keep	running	tcprelay.py	in	another	terminal	until	you
acquire	data	from	the	device.

Bypassing	the	passcode
The	iPhone	provides	an	option	for	its	users	to	set	a	passcode	on	their	device	to	prevent
unauthorized	access.	Once	a	passcode	is	set,	whenever	the	device	is	turned	on	or
awakened	from	sleep	mode,	the	passcode	is	required	to	access	the	data.	iOS	supports	a
simple	four-digit	code	and	complex	alphanumeric	passcodes	of	any	length.	With	the
iPhone	5S,	the	user	fingerprint	scan	can	also	be	used	to	lock/unlock	the	device.	For	iPhone
5S,	the	user	can	also	select	a	simple	four-digit	code	to	use	in	case	the	fingerprint	is	not
recognized.	By	default,	the	passcode	is	a	four-digit	numeric	code	but	by	modifying	the
settings,	it	can	be	set	to	be	a	complex	passcode.	The	user	also	has	the	option	to	erase	all
the	contents	on	the	iPhone	after	10	failed	passcode	attempts.

Passcode-locked	devices	are	being	utilized	more	frequently	due	to	general	user	awareness
of	theft	and	security	policies	from	organizations.	Circumventing	the	passcode	is	not
always	possible	due	to	security	improvements	in	iOS.	The	forensic	examiner	should	try	to
secure	the	passcode	from	the	owner	to	prevent	issues	in	acquiring	data	from	newer,	locked
iOS	devices.

In	the	initial	releases	of	iOS	until	iOS	3,	the	passcode	for	unlocking	the	device	was	stored
directly	in	the	keychain,	a	place	to	store	passwords	securely	on	the	iPhone.	This	passcode
security	can	be	bypassed	by	just	removing	the	record	from	the	keychain	or	by	removing
the	UI	setting	that	asks	for	the	passcode	after	booting	with	the	custom	ramdisk.

Since	iOS	4,	the	passcode	is	not	stored	on	the	device	in	any	format.	By	setting	a	device
passcode,	the	user	automatically	enables	data	protection,	which	protects	the	data	at	rest.
With	data	protection,	the	data	on	the	device	is	encrypted	with	a	set	of	class	keys	stored	in
the	System	keybag.	The	System	keybag	itself	is	protected	with	a	passcode	key,	generated
from	the	user’s	passcode	and	the	device’s	UID.	So,	in	order	to	decrypt	the	protected
keychain	items	and	files	on	the	file	system,	you	first	need	to	decrypt	the	System	keybag.	If
there	is	no	passcode,	the	System	keybag	can	be	easily	decrypted.	If	there	is	a	simple	four-
digit	passcode,	you	will	have	to	guess	it	to	decrypt	the	System	keybag.	As	the	passcode	is
tangled	with	the	device’s	UID	key,	brute	force	attempts	must	be	performed	on	the	device.
Also,	the	same	passcode	on	different	devices	generates	different	passcode	keys	as	the	UID
is	unique	per	device.	Passcode	brute	force	attacks	performed	at	the	springboard	level
introduce	delays,	lock	the	device,	and	may	lead	to	the	wiping	of	data.	However,	these
protection	mechanisms	are	not	applicable	when	you	are	performing	a	brute	force	attack	on
a	kernel	extension	(AppleKeyStore)	to	decrypt	the	System	keybag.	It	is	worth	mentioning
that	some	tools	will	attempt	to	crack	the	passcode	on	an	iOS	device	by	accessing	the	host
computer	for	which	that	iOS	device	was	connected	and	synced.	The	tool	accesses	the
pairing	key	through	an	escrow	file	to	decrypt	the	locked	device.	For	this	to	work,	the
examiner	would	need	to	have	access	to	both	the	iOS	device	and	the	host	computer	to
which	the	device	is	backed	up.

Should	the	host	computer	not	be	available,	as	mentioned,	the	demo_bruteforce.py	Python
script	included	in	iPhone	Data	Protection	Tools	can	perform	brute	force	attack	and	guess
any	four-digit	passcode	within	18	minutes.	Brute	force	on	the	device	is	slow,	and	the	time

required	to	brute	force	a	passcode	depends	on	the	device’s	capability.	The	following	table
lists	the	time	required	to	brute	force	passcodes	of	various	lengths	and	complexity
requirements	on	the	iPhone	4:

Passcode	length Complexity Time

4 Numeric 18	minutes

4 Alphanumeric 19	days

6 Alphanumeric 196	days

8 Alphanumeric 755	thousand	years

8 Alphanumeric,	complex 27	million	years

On	Mac	OS	X,	open	a	new	terminal	and	run	the	following	command.	The	brute	force
script	uses	the	1999	port	opened	with	tcprelay.py	to	communicate	with	the	ramdisk	tools
on	the	device.	The	script	brute	forces	the	passcode,	decrypts	the	System	keybag,	dumps
the	data	protection	keys,	and	places	them	into	a	directory	named	with	the	Unique	Device
Identifier	(UDID)	of	the	target	device	in	a	.plist	format.

$sudo	python	python_scripts/demo_bruteforce.py	

Connecting	to	device	:	b716de79051ef093a98fc3ff1c46ca5e36faabc3Keybag	UUID	

:	5b14620bd1e74013bfa66325b6946773

Enter	passcode	or	leave	blank	for	bruteforce:

Hit	Enter	on	the	keyboard	to	start	the	brute	force	process:

Trying	all	4-digits	passcodes…

0	of	10000	ETA:		--:--:--

10	of	10000	ETA:		0:30:48																																											

20	of	10000	ETA:		0:30:33																																											

30	of	10000	ETA:		0:30:18																																											

40	of	10000	ETA:		0:30:02																																											

50	of	10000	ETA:		0:29:51																																											

1100	of	10000	ETA:		0:25:54																																									

1110	of	10000	ETA:		0:25:53																																									

10000	of	10000	Time:	0:03:14	

100%	|##|

BruteforceSystemKeyBag	:	0:03:14.543986

{'passcode':	'1111',	'passcodeKey':	

'1f5c25823297f97f3cb38d998726fc22787ca3f31b8932c2b868700a341145b5'}True

Keybag	type	:	System	keybag	(0)

Keybag	version	:	3

Keybag	UUID	:	5b14620bd1e74013bfa66325b6946773

Class							WRAP															Type							Key								Public	key						

NSFileProtectionComplete																													3				AES								

746f01658ec28b3ba99339e35beb37232f89658fd0214eb4c4cac99976b05039	

NSFileProtectionCompleteUnlessOpen																			3				Curve25519	

65db69526ea4026227d5faa0dc9066c1092e510aa586a2f62d9101e419600703	

a035e0f5a6ee59b9e5928cc67b644c6a5cc8c5235c1a5440a02686d222fc3a08

NSFileProtectionCompleteUntilFirstUserAuthentication	3				AES								

a32826f0abdf6fb1c049d395baa12b07e05a310fb49626a5cef078ca4a7a46f4	

NSFileProtectionRecovery?																												3				AES								

28ec11f7719c7b36d6f4621a07c3b088fe65c9909c7adb45cf73ad8b9814a330	

kSecAttrAccessibleWhenUnlocked																							3				AES								

bab62b621ebcf0fbc97ee9a2f1fb6d3ee4a198f5a49a7e233c9dcdf2805292e0	

kSecAttrAccessibleAfterFirstUnlock																			3				AES								

638ae8c4a1a694b8db2968eba28ef39a14d5397ef102e4872395df619bd00d31	

kSecAttrAccessibleAlways																													1				AES								

5071e2058e148b7deee5b08fd685c0b29cd9d717f57732647dee0239513c7c79	

kSecAttrAccessibleWhenUnlockedThisDeviceOnly									3				AES								

3702f4d05b3b910860b9f17577d5f34bbf26e9a6f20594ea308d72919e182531	

kSecAttrAccessibleAfterFirstUnlockThisDeviceOnly					3				AES								

3d8fbd6b41c520f1dc8ebe6786abe4848fa1799456300b89c630c23ff931d6c8	

kSecAttrAccessibleAlwaysThisDeviceOnly															1				AES								

1774408c99198fb048ca5fbcd06feadc7d5e4c28a571111df557db9f58040ba5	

[...]

If	the	user	chooses	a	strong	passcode	that	is	not	easy	to	guess,	we	can	still	access	the	files
protected	with	NSFileProtectionNone	and	keychain	items	protected	by	the
kSecAttrAccessibleAlways	data	protection	classes.

Imaging	the	data	partition
Physical	imaging	refers	to	the	dd	image	of	the	logical	partitions.	As	discussed	in	Chapter
2,	Understanding	the	Internals	of	iOS	Devices,	NAND	flash	on	iOS	devices	contains	two
logical	disk	partitions:	system	partition	and	user	data	partition.	On	a	non-jailbroken
device,	the	system	partition	will	be	kept	in	the	read-only	format.	The	user	data	partition
contains	all	the	user-installed	applications	and	data.	For	full	forensic	analysis,	it	is
preferred	that	both	the	system	and	data	partition	are	acquired.	Most	forensic	tools	will
capture	both	partitions	in	one	image.	If	the	examiner	has	a	time	crunch,	at	the	minimum,
they	should	dump	the	entire	data	partition.	To	acquire	a	disk	image	of	the	user	data
partition,	run	the	dump_data_partition.sh	shell	script,	as	shown	in	the	following
command	lines:

$sudo	./dump_data_partition.sh	

Warning:	Permanently	added	'[localhost]:2222'	(RSA)	to	the	list	of	known	

hosts.

root@localhost's	password:	

Enter	alpine	as	the	password,	which	is	the	default	SSH	password	on	iOS	devices,	and	hit
Enter	on	the	keyboard:

Device	UDID	:	b716de79051ef093a98fc3ff1c46ca5e36faabc3

Dumping	data	partition	in	

b716de79051ef093a98fc3ff1c46ca5e36faabc3/data_20131209-1956.dmg…

Warning:	Permanently	added	'[localhost]:2222'	(RSA)	to	the	list	of	known	

hosts.

[...]

The	raw	disk	image	will	begin	transferring,	as	shown	in	the	following	command	lines,
which	should	also	be	reflected	by	a	gradual	increase	in	the	size	of	the	file	on	the	desktop.
The	script	runs	for	several	minutes	to	hours	depending	on	the	size	of	the	file	system.	For
example,	acquiring	an	image	from	an	8	GB	iPhone	4	roughly	takes	30	minutes.

1801554+0	records	in

1801554+0	records	out

14758330368	bytes	(15	GB)	copied,	2463.01	s,	6.0	MB/s

The	script	dumps	the	entire	user	data	partition	and	places	it	into	a	directory	named	UDID	of
the	target	device	in	a	DMG	format	that	can	be	mounted	directly	onto	Mac	OS	X.	Only	the
user	data	partition	is	copied,	so	the	actual	file	size	will	be	less	than	the	iPhone	size.
Double-clicking	on	the	DMG	file	mounts	it	in	read-write	mode	and	might	effect	the	image
integrity.	To	maintain	the	integrity,	you	can	use	the	hdiutil	command	to	mount	the	image
in	read-only	mode,	as	shown	in	the	following	command.	(Note	that	the	file	path	reflects
the	DMG	file	you	created.)

$hdiutil	attach	-readonly	

b716de79051ef093a98fc3ff1c46ca5e36faabc3/data_20131209-1956.dmg	

/dev/disk3																																												/Volumes/Data

The	output	of	the	hdiutil	command	shows	that	the	disk	image	has	been	attached	to	the
/dev/disk3	device	file	and	can	be	mounted	on	/Volumes/Data	with	the	following

command:

$cd	/Volumes/Data/

You	can	now	browse	the	file	system	in	/Volumes/Data/	and	observe	that	all	file	contents
are	encrypted,	as	shown	in	the	following	command:

$hexdump	-C	mobile/Library/AddressBook/AddressBook.sqlitedb	|	head

The	output	is	as	shown	in	the	following	screenshot:

The	encrypted	addressBook	file

To	unmount	the	image,	use	the	hdiutil	eject	command	as	follows:

$cd	/

$hdiutil	eject	/Volumes/Data/

"disk3"	unmounted.

"disk3"	ejected.

When	the	extracted	disk	image	is	mounted	on	Mac	OS	X,	you	can	browse	the	file	system.
However,	you	cannot	read	the	files	as	they	are	encrypted.	To	read	any	file	data,	the	file
contents	must	be	decrypted	using	the	keys	in	the	System	keybag.

Decrypting	the	data	partition
The	entire	file	system	is	encrypted	with	an	EMF	key,	with	the	exception	of	actual	files	on
the	file	system,	which	are	encrypted	with	other	keys	(the	data	protection	class	keys).	The
EMF	key	is	encrypted	with	the	0x89B	key.	The	emf_decrypter.py	Python	script	included
in	iPhone	Data	Protection	Tools	can	be	used	to	decrypt	the	raw	disk	image.	This	script
uses	the	raw	disk	image	and	keys	in	the	aforementioned	plist	to	decrypt	all	of	the
encrypted	files	on	the	file	system,	as	shown	in	the	following	command	lines:

$sudo	python	python_scripts/emf_decrypter.py	

b716de79051ef093a98fc3ff1c46ca5e36faabc3/data_20131209-1956.dmg	

b716de79051ef093a98fc3ff1c46ca5e36faabc3/f03d282cc7182d46.plist

Password:Using	plist	file	

b716de79051ef093a98fc3ff1c46ca5e36faabc3/f03d282cc7182d46.plist

Keybag	unlocked	with	passcode	key

cprotect	version	:	4	(iOS	5)

Test	mode	:	the	input	file	will	not	be	modified

Press	a	key	to	continue	or	CTRL-C	to	abort

Hit	Enter	to	continue	the	script	execution:

Decrypting	iNode1559014

Decrypting	iNode3056993

Decrypting	iNode3056996

Decrypting	iNode6811

[...]

Decrypting	AddressBook.sqlitedb

Decrypting	AddressBook.sqlitedb-shm

Decrypting	AddressBook.sqlitedb-wal

Decrypting	AddressBookImages.sqlitedb

Decrypting	AddressBookImages.sqlitedb-shm

[...]

Decrypting	IMG_1117.JPG

Decrypting	IMG_1128.PNG

Decrypting	IMG_1139.JPG

[...]

Decrypting	KeywordIndex.plist

Decrypting	Manifest.sqlitedb

Decrypting	express.psa

Decrypted	50518	files

The	script	modifies	the	disk	image	directly	and	the	files	are	now	decrypted	and	readable.
To	verify	this,	you	can	mount	the	disk	image	and	examine	AddressBook.sqlitedb,	which
was	previously	unreadable,	with	the	following	command:

$hdiutil	attach	-readonly	data_20131209-1956.dmg	

/dev/disk3																																			/Volumes/Data

$cd	/Volumes/Data/

$hexdump	-C	mobile/Library/AddressBook/AddressBook.sqlitedb	|	head

The	output	is	as	shown	in	the	following	screenshot:

The	decrypted	AddressBook	file

Now,	you	should	be	able	to	fully	examine	the	artifacts	on	the	data	partition,	which	will	be
covered	in	detail	in	Chapter	5,	iOS	Data	Analysis	and	Recovery.

Recovering	the	deleted	data
Once	a	raw	image	of	the	device	is	obtained,	you	can	recover	the	deleted	files	in	the
unallocated	space	by	carving	the	HFS	journal	using	the	emf_undelete.py	script.	This
script	recovers	only	a	limited	number	of	files,	as	shown	in	the	following	command:

$sudo	python	python_scripts/emf_undelete.py	UDID/data_20131209-1956.dmg

To	recover	more	deleted	files	or	photos,	acquire	a	low-level	NAND	image	using
ios_examiner.py	and	run	the	undelete	command.

To	acquire	a	low-level	NAND	image,	boot	the	custom	ramdisk	and	the	patched	kernel
onto	the	iPhone	with	the	nand-disable	boot	flag,	as	shown	in	the	following	command:

$sudo	./redsn0w_mac_0.9.15b3/redsn0w.app/Contents/MacOS/redsn0w	-i	

iPhone3,1_5.1.1_9B208_Restore.ipsw	-r	myramdisk_n90ap.dmg	-k	

kernelcache.release.n90.patched	-a	"-v	rd=md0	nand-disable=1"

Once	the	ramdisk	is	booted	successfully,	run	the	ios_examiner.py	script	without
parameters.	It	allows	you	to	enter	commands	in	the	ios_examiner	shell,	as	shown	in	the
following	command	lines:

$cd	iphone-dataprotection$sudo	python	python_scripts/ios_examiner.py	

Connecting	to	device	:	b716de79051ef093a98fc3ff1c46ca5e36faabc3

Device	model:	iPhone	4	GSM

UDID:	b716de79051ef093a98fc3ff1c46ca5e36faabc3

ECID:	1937316564364

Serial	number:	870522V6A4S

key835:	ef8f36fb3a85b42a72e8c5efa6b1a844

key89B:	de75b5f5fa6abc5bf25293b38f980a52

[...]

YaFTL_readCxtInfo	FAIL,	restore	needed	maxUsn=4491408

FTL	restore	in	progress

100%	|##|

BTOC	not	found	for	block	13	(usn	4491530),	scanning	all	pages

402	used	pages	in	block

LwVM	header	CRC	OK

cprotect	version	:	4	(iOS	5)

iOS	version:		5.1.1

Keybag	state:	locked

(iPhone4-data)	/	

Run	the	bruteforce	command	to	brute	force	the	passcode	and	unlock	the	keybag:

(iPhone4-data)	/	bruteforce

Passcode	comlexity	(from	OpaqueStuff)	:	4	digits

Enter	passcode	or	leave	blank	for	bruteforce:

Hit	Enter	and	you	will	see	the	following	command	lines:

Passcode	""	OKKeybag	state:	unlocked

Save	device	information	plist	to	[b716de7905.plist]:

Hit	Enter	to	save	the	encryption	keys	to	a	plist	file	(b716de7905.plist).

Run	the	nand_dump	command	as	shown	in	the	following	command	lines.	It	copies	the

NAND	image	to	the	dataprotection	folder.

(iPhone4-data)	/	nand_dump	iphone4-nand.bin

Dumping	16GB	NAND	to	iphone4-nand.bin

100%	|##|

NAND	dump	time	:	0:45:36.200233

SHA1:	a16aa578679ef6a787c8c26a40de4b745a3ae179	

Once	the	NAND	image	and	the	plist	file	are	obtained,	you	can	use	ios_examiner.py	and
run	the	undelete	command	to	recover	the	deleted	files,	as	shown	in	the	following
command	lines:

$sudo	python	python_scripts/ios_examiner.py	iphone4-nand.bin	

b716de7905.plist

Loading	device	information	from	b716de7905.plist

Device	model:	iPhone	4	GSM

UDID:	b716de79051ef093a98fc3ff1c46ca5e36faabc3

ECID:	1937316564364

Serial	number:	870522V6A4S

key835:	ef8f36fb3a85b42a72e8c5efa6b1a844

key89B:	de75b5f5fa6abc5bf25293b38f980a52

[...]

cprotect	version	:	4	(iOS	5)

iOS	version:		5.1.1

(iPhone4-data)	/	undelete

Building	FTL	lookup	table	v1

100%	|###################################|

Collecting	existing	file	ids

23297	file	IDs

Carving	catalog	file

Found	deleted	file	record	51657	shaders.data	created	2012-06-09	02:19:28

Found	deleted	file	record	51656	shaders.maps	created	2012-06-09	02:19:28

[...]

Carving	attribute	file	for	file	keys

20261	files,	50997	keys

_FBStory.h

[...]

The	command	recovers	the	deleted	files	and	places	them	into	a	directory	named	undelete.
The	recovery	process	is	slow	and	takes	hours	to	recover	all	the	files.

If	a	device	is	restored,	wiped,	or	upgraded	to	a	new	OS	version,	the	file	system	key	(EMF)
is	erased	and	a	new	key	is	recreated.	Without	the	original	EMF	key,	it	is	not	possible	to
recover	the	underlying	file	system	structure.	So,	it	is	not	possible	to	recover	the	deleted
files	when	an	iPhone	is	restored,	wiped,	or	upgraded.	Also,	iOS	devices	include	a	feature
called	Effaceable	Storage	to	securely	erase	the	keys.	This	feature	accesses	the	underlying
storage	(NAND)	to	directly	address	and	erase	a	small	number	of	blocks	at	a	very	low
level,	which	makes	it	impossible	to	recover	deleted	keys.

Acquisition	via	jailbreaking
To	perform	physical	acquisition	on	devices	that	are	not	vulnerable	to	the	Boot	ROM
exploit,	the	device	must	be	jailbroken.	Jailbreaking	an	iPhone	allows	the	examiner	to
install	tools	that	would	not	normally	be	on	the	device,	such	as	SSH.	By	far,	the	most
popular	method	for	jailbreaking	is	with	redSn0w	or	evasi0n.	Both	tools	have	simple
wizards	that	will	step	the	iOS	device	through	the	jailbreak	process	and	install	the	Cydia
application.	An	examiner	should	only	jailbreak	a	device	as	a	last	resort	and	should	use
great	caution	when	doing	so.	Again,	all	steps	taken	by	the	examiner	must	be	well-
documented.	The	jailbreaking	process	makes	changes	to	the	device,	which	may	damage
evidence	or	render	it	inadmissible	in	court.	If	possible,	consider	performing	a	logical
acquisition	first	to	preserve	evidence	that	may	be	lost	during	the	jailbreaking	process.

To	obtain	an	image	of	the	user	data	partition,	the	forensic	workstation	and	the	target	iOS
device	must	be	placed	on	the	same	wireless	network.	From	the	forensic	workstation,	run
the	following	SSH	command	to	start	the	process.	Make	sure	that	you	replace	the	IP
address	used	in	the	command	with	your	device’s	IP	address	before	running	it.

$ssh	root@192.168.2.9	"dd	if=/dev/rdisk0s1s2		bs=8192"	>	data.dmg

Enter	alpine	as	the	password	and	hit	Enter	on	the	keyboard.	This	process	may	take
several	hours	depending	on	the	capacity	of	the	iPhone.	Once	completed,	it	displays	a
certain	number	of	bytes	that	have	been	copied,	as	shown	in	the	following	command	lines:

1801554+0	records	in

1801554+0	records	out

14758330368	bytes	(15	GB)	copied,	2722.38	s,	5.4	MB/s

The	SSH	command	connects	to	the	SSH	server	on	the	iOS	device	as	a	root	user.	The	dd
if=/dev/rdisk0s1s2	bs=8192	command	executes	the	disk	copy	utility	on	the	iPhone	and
reads	the	user	data	partition	located	at	/dev/rdisk0s1s2	with	a	block	size	of	8K.	The
command	outputs	the	data.dmg	file	onto	the	forensic	workstation	drive.	The	resulted
image	file	can	be	manipulated	by	the	forensic	analyst’s	choice	of	tools.

It	is	not	possible	to	jailbreak	a	device	that	is	protected	with	a	passcode.	So,	if	a	device
(A5+)	is	protected	with	a	passcode	and	is	not	jailbroken,	it	is	not	possible	to	perform
physical	acquisition	on	that	device.	Also,	it	should	be	noted	that	the	raw	disk	image
obtained	from	the	iPhone	is	encrypted	and	cannot	be	parsed.	In	order	to	decrypt	the	image,
we	must	obtain	encryption	keys	from	the	device.	The	encryption	keys	are	tied	to	the
device’s	UID	key,	which	can	be	used	only	when	the	IOAESAccelerator	kernel	extension	is
patched.	It	is	easy	to	obtain	encryption	keys	on	devices	that	run	on	iOS	5	and	earlier
versions.	Since	iOS	6,	Apple	introduced	new	security	features	to	the	kernel	such	as
Kernel	Address	Space	Layout	Randomization	and	Kernel	Address	Space	Protection,
which	prevent	examiners	from	patching	the	kernel	code	directly.	However,	the	Elcomsoft
iOS	Forensic	Toolkit,	a	commercial	tool	for	iOS	forensics,	claims	that	it	is	capable	of
performing	physical	acquisition	on	devices	that	run	on	iOS	6	and	iOS	7.	This	claim
assumes	that	the	iOS	device	is	jailbroken,	or	that	the	examiner	has	access	to	the	host
computer	that	contains	the	pairing	keys	in	escrow	files.	The	tool	is	discussed	in	detail	in

Chapter	6,	iOS	Forensic	Tools.

The	following	details	explain	the	steps	involved	in	obtaining	a	disk	image	from	the	iPhone
4S	that	has	iOS	5	and	is	protected	with	a	passcode	in	this	example.

As	a	prerequisite,	the	iPhone	4S	should	already	be	jailbroken	and	OpenSSH	is	installed	on
it	with	the	default	root	user	password.

Set	up	the	iPhone	Data	Protection	Tools	as	explained	in	the	previous	sections.	Edit
Makefile	in	the	ramdisk_tools	folder,	fix	the	iOS	SDK	version,	and	run	the	make
command:

$cd	iphone-dataprotection

$cd	ramdisk_tools

$sudo	make

Connect	the	iPhone	to	the	computer	via	USB	and	establish	the	communication	by	running
the	tcprelay.py	script	as	follows:

$cd	iphone-dataprotection

$python	usbmuxd-python-client/tcprelay.py	-t	22:2222	

Dump	the	iPhone	user	data	partition	using	the	following	command:

$ssh	root@127.0.0.1	"dd	if=/dev/rdisk0s1s2		bs=8192"	>	data.dmg

Enter	alpine	as	the	password	and	hit	Enter.

Download	kernel_patcher	from	https://code.google.com/p/iphone-
dataprotection/issues/detail?id=49&q=a5	and	move	it	to	the	ramdisk_tools	folder	with
the	following	command:

$mv	~/Downloads/kernel_patcher	~/Documents/iphone-dataprotection/

Copy	kernel_patcher,	bruteforce,	and	device_infos	scripts	to	the	iPhone	using	the	scp
command:

$cd	ramdisk_tools

$scp		-P	2222	kernel_patcher	device_infos	bruteforce	

root@127.0.0.1:/var/root/

Enter	alpine	as	the	password	and	hit	Enter.

Run	the	ssh	command	and	grant	execute	permissions	to	the	uploaded	scripts	with	the
following:

$ssh	root@127.0.0.1	-p	2222

Enter	alpine	as	the	password	and	hit	Enter:

iPhone#	chmod	+x	kernel_patcher	bruteforce	device_infos

Run	the	kernel_patcher	and	bruteforce	scripts.	It	patches	the	kernel,	brute	forces	the
passcode,	decrypts	the	System	keybag,	and	creates	a	plist	file	on	the	iPhone	root	directory,
as	shown	in	the	following	command	lines:

iPhone#./	kernel_patcher

https://code.google.com/p/iphone-dataprotection/issues/detail?id=49&q=a5

iPhone#./bruteforce	

Writing	results	to	f04d282cc7182d47.plist

[...]

Copy	the	plist	file	from	the	iPhone	to	the	desktop	using	the	scp	command:

$scp	-P	2222	root@127.0.0.1:/var/root/f04d282cc7182d47.plist	.

To	decrypt	the	disk	image,	run	emf_decrypter.py,	as	follows:

$sudo	python	python_scripts/emf_decrypter.py	data.dmg	

f04d282cc7182d47.plist

Now,	you	should	be	able	to	fully	examine	the	artifacts	on	the	data	partition.

Summary
The	first	step	in	the	iPhone	forensic	examination	is	to	acquire	the	data	from	the	device.
There	are	different	ways	to	acquire	data	from	an	iPhone.	This	chapter	covered	physical
acquisition	techniques	and	techniques	to	bypass	passcodes	and	data	encryptions	using
open	source	methods.	Physical	acquisition	is	preferred	as	it	recovers	more	data	from	the
device;	however,	it	is	not	possible	to	perform	physical	acquisition	on	all	iOS	devices.	The
following	table	summarizes	the	physical	acquisition	possibilities	on	iOS	devices:

Model Physical	acquisition

iPhone	3G,	3GS,	4

Yes	(if	no/easy	passcode)iPad	1

iPod	touch	2G,	3G,	4G

iPhone	4S,	5

Only	if	jailbroken,	and	until	iOS	6.1.2	(if	no/easy	passcode)iPad	2,	3,	4	and	iPad	mini

iPod	touch	5G

iPhone	5S	and	5C No

While	physical	acquisition	is	the	best	method	for	forensically	obtaining	the	majority	of	the
data	from	iOS	devices,	logical	or	backup	files	may	exist	or	be	the	only	method	to	extract
data	from	the	device.	The	next	chapter	discusses	iOS	device	backup	files	in	detail	to
include	user,	forensic,	encrypted,	and	iCloud	backup	files	and	the	methods	to	conduct	your
forensic	examination.

Chapter	4.	Data	Acquisition	from	iOS
Backups
The	physical	acquisition	of	an	iPhone	provides	the	most	data	in	an	investigation,	but	you
can	also	find	a	wealth	of	information	on	iPhone	backups.	iPhone	users	have	several
options	to	back	up	data	present	on	their	devices.	iPhone	users	can	choose	to	back	up	data
to	their	computer	using	the	Apple	iTunes	software	or	to	the	Apple	cloud	storage	service
known	as	iCloud.	Every	time	an	iPhone	is	synced	with	a	computer	or	to	iCloud,	it	creates
a	backup	by	copying	the	selected	files	from	the	device.	The	user	can	determine	what	is
contained	in	the	backup,	so	some	may	be	more	inclusive	than	others.	Also,	the	user	can
back	up	to	both	a	computer	and	iCloud,	and	the	data	derived	from	each	location	may
differ.	Sometimes,	the	best	information	available	on	an	iOS	device	is	recovered	from	a
backup	file.

In	the	previous	chapter,	we	covered	techniques	to	acquire	data	from	an	iPhone.	This
chapter	covers	backup	file	acquisition	techniques	using	Apple’s	synchronization	protocol
from	the	device	onto	a	computer	or	to	iCloud.	Chapter	5,	iOS	Data	Analysis	and
Recovery,	will	then	teach	you	how	to	analyze	the	data	pulled	from	Chapter	3,	Data
Acquisition	from	iOS	Devices,	and	Chapter	4,	Data	Acquisition	from	iOS	Backups.

iTunes	backup
A	wealth	of	information	is	stored	on	any	computer	that	has	been	previously	synced	with
an	iPhone.	These	computers,	commonly	referred	to	as	host	computers,	can	have	historical
data	and	passcode-bypass	certificates.	So,	in	a	criminal	investigation,	a	search	warrant	can
be	obtained	to	seize	a	computer	that	belongs	to	the	suspect.	iOS	backup	file	forensics
mainly	involve	analyzing	an	offline	backup	produced	by	an	iPhone.	However,	the	iTunes
backup	method	is	also	useful	in	cases	when	physical	acquisition	of	a	device	is	not	feasible.
In	this	situation,	examiners	essentially	create	an	iTunes	backup	of	the	device	and	analyze
it	using	forensic	software.	Thus,	it	is	important	for	an	examiner	to	completely	understand
the	backup	process	and	the	tools	involved.

iPhone	backup	files	can	be	created	using	the	iTunes	software,	which	is	available	for	MAC
OS	X	and	Windows	platforms.	iTunes	is	a	free	utility	provided	by	Apple	for	data
synchronization	and	management	between	the	iPhone	and	the	computer.	iTunes	uses
Apple’s	proprietary	synchronization	protocol	to	copy	data	from	the	iPhone	to	a	computer.
An	iPhone	can	be	synced	with	a	computer	using	a	USB	or	Wi-Fi.	iTunes	provides	an
option	for	encrypted	backup,	but	by	default	it	creates	an	unencrypted	backup	whenever	an
iPhone	is	synced.	The	backup	copies	of	the	iPhone	can	also	be	useful	to	recover	data	if	the
phone	is	lost	or	damaged.

iTunes	is	configured	to	automatically	initiate	the	synchronization	process	once	the	iPhone
is	connected	to	the	computer.	To	avoid	unintended	data	exchange	between	the	iPhone	and
the	computer,	disable	the	automatic	synchronization	process	before	connecting	your
iPhone	to	the	forensic	workstation.	The	following	screenshot	illustrates	the	option	that
disables	automatic	syncing	in	iTunes	Version	11.1.3.

To	disable	auto-syncing	in	iTunes,	perform	the	following	steps:

1.	 Navigate	to	iTunes	|	Preferences	|	Devices.
2.	 Check	Prevent	iPods,	iPhones	and	iPads	from	syncing	automatically	and	click	on

the	OK	button.

iTunes—disabling	automatic	sync

3.	 Once	you	verify	the	synchronization	settings,	connect	the	iPhone	to	the	computer
using	a	USB	cable.	If	the	connected	iPhone	is	not	protected	with	a	passcode,	iTunes
immediately	recognizes	the	device.	This	can	be	verified	by	the	iPhone	icon	displayed
on	the	upper-right	corner	of	the	iTunes	interface	as	shown	in	the	following
screenshot:

4.	 If	the	connected	iPhone	is	protected	with	a	passcode,	iTunes	prompts	the	user	to
unlock	the	device	before	starting	the	sync	process,	as	shown	in	the	following
screenshot.	Once	the	iPhone	is	unlocked	with	a	valid	passcode,	iTunes	recognizes	the
device	and	allows	the	user	to	back	up	and	sync	with	the	computer.	Once	an	iPhone	is
successfully	synced	with	a	computer,	iTunes	allows	it	to	back	up	without	unlocking
the	device	when	the	same	iPhone	is	connected	to	that	computer	again.

iTunes—iPhone	locked	message

5.	 Once	iTunes	recognizes	the	device,	a	single	click	on	the	iPhone	icon	displays	the
iPhone	summary	including	the	iPhone’s	name,	capacity,	firmware	version,	serial
number,	free	space,	and	phone	number,	as	shown	in	the	following	screenshot.	The
iPhone	Summary	page	also	displays	the	options	to	create	backups.

iTunes—iPhone	summary

Pairing	records
When	iTunes	detects	the	iPhone,	sets	of	pairing	records	are	exchanged	between	the	iPhone
and	the	computer.	Pairing	is	the	mechanism	by	which	your	computer	establishes	a	trusted
relationship	with	your	device	so	that	iTunes	can	communicate	with	it.	Once	a	computer
has	been	paired,	it	can	access	personal	information	on	the	device	and	can	even	initiate	a
backup	of	the	device.	Similar	pairing	occurs	in	iOS	7	with	commercial	forensic	tools.

On	the	iPhone,	pairing	records	are	stored	in	the
/var/root/Library/Lockdown/pair_records/	directory.	The	directory	will	contain
multiple	pairing	records	if	the	device	is	paired	with	multiple	computers.	Pairing	records
are	stored	as	a	property	list	(.plist)	file	with	a	filename	representing	the	unique
identifier	given	to	the	computer.	Property	list	files	are	binary	formatted	XML-like	files,
explained	in	detail	in	Chapter	5,	iOS	Data	Analysis	and	Recovery.	Pairing	records	on	the
device	contain	the	HostID,	root	certificate,	device	certificate,	and	host	certificate.	For
example,	the	content	shown	in	the	following	screenshot	was	located	in	a	pairing	record	on
one	particular	iPhone	with	a	file	named	97D6299A-8EDA-454F-9C62-
4BB031F45DD6.plist.	Pairing	records	stored	on	the	iPhone	are	deleted	only	when	the
phone	is	restored	to	factory	state.

Pairing	records	on	the	iPhone

On	the	computer,	pairing	records	are	stored	in	a	preconfigured	location	depending	on	the
operating	system	as	shown	in	the	following	table.	Pairing	records	are	stored	as	a	property
list	file	with	a	filename	representing	the	iPhone’s	unique	device	identifier.	Pairing	records
on	the	computer	are	known	as	lockdown	certificates.

Operating	system Location

Windows %AllUserProfile%\Apple\Lockdown\

Mac	OS	X /private/var/db/lockdown/

Pairing	records	on	the	computer	contain	the	device	certificate,	Escrow	keybag,	root
certificate,	host	certificate,	host	private	key,	and	root	certificate	and	private	key.	For
example,	the	content	shown	in	the	following	screenshot	was	located	in	a	pairing	record	on
one	particular	computer	with	a	file	named
6c1b7aca59e2eba6f4635cfe7c4b2de1bd812898.plist.

Pairing	record	on	a	computer

The	Escrow	keybag	stored	on	the	computer	allows	iTunes	to	back	up	and	sync	with	the
device	even	in	a	locked	state.	The	Escrow	keybag	is	a	copy	of	the	System	keybag	and
contains	a	collection	of	data	protection	class	keys	that	are	used	for	encryption	on	the
iPhone.	Commercial	tools	that	claim	to	be	able	to	crack	a	locked	iPhone	without	brute
force	require	access	to	the	host	computer	and	thus,	the	Escrow	keybag.	The	keybag
improves	the	user	experience	during	device	synchronization	and	gives	access	to	all	classes
of	data	on	the	device	without	entering	the	passcode.

The	Escrow	keybag	is	protected	with	a	newly	generated	key	computed	from	the	key	0x835
and	stored	in	an	escrow	record	on	the	device.	The	escrow	record	is	a	property	list	file
stored	in	the	/private/var/root/Library/Lockdown/escrow_records/	directory	with	a
filename	that	represents	the	computer’s	unique	identifier.	Starting	with	iOS	5,	escrow
records	are	protected	with	the	UntilFirstUserAuthentication	data	protection	class,
which	ties	the	encryption	to	the	user’s	passcode.	So,	the	device	passcode	must	be	entered
before	backing	up	with	iTunes	for	the	first	time.

Understanding	the	backup	structure
When	the	iPhone	is	backed	up	to	a	computer,	the	backup	files	are	stored	in	a	backup
directory,	which	exists	as	a	40-character	hexadecimal	string,	and	corresponds	to	the
Unique	Device	Identifier	(UDID)	of	the	device.	The	backup	process	may	take	a
considerable	amount	of	time	depending	on	the	size	of	the	data	stored	on	the	iPhone	during
the	first	backup.	The	location	of	the	backup	directory	where	your	backup	data	is	stored
depends	on	the	computer’s	operating	system.	The	following	table	displays	a	list	of	the
common	operating	systems	and	the	default	location	of	the	iTunes	backup	directory:

Operating
system Backup	directory	location

Windows	XP \Documents	and	Settings\[user	name]\Application	Data\Apple

Computer\MobileSync\Backup\

Windows
Vista/7/8

\Users\[user	name]\AppData\Roaming\Apple	Computer\MobileSync\Backup\

Mac	OS	X
~/Library/Application	Support/MobileSync/Backup/

(~	represents	your	Home	folder)

During	the	first	sync,	iTunes	creates	a	backup	directory	and	takes	a	complete	backup	of
the	device.	On	subsequent	syncs,	iTunes	only	backs	up	the	files	that	are	modified	on	the
device	and	updates	the	existing	backup	directory.	Also,	when	a	device	is	updated	or
restored,	iTunes	automatically	initiates	a	backup	and	takes	a	differential	backup.	A
differential	backup	has	the	same	name	as	the	backup	directory,	but	appended	with	a	dash
(-),	the	ISO	date	of	the	backup,	a	dash	(-),	and	the	time	in	a	24-hour	format	with	seconds
([UDID]+	'-'	+	[Date]+'-'+[Time	stamp]).

The	iTunes	backup	makes	a	copy	of	everything	on	the	device	to	include	contacts,	SMSes,
photos,	the	calendar,	music,	call	logs,	configuration	files,	documents,	the	keychain,
network	settings,	offline	web	application	cache,	bookmarks,	cookies	and	application	data,
and	so	on.	The	backup	also	contains	device	details	such	as	the	serial	number,	UDID,	SIM
details,	and	phone	number.	This	information	can	also	be	used	to	prove	a	relationship
between	the	desktop	and	the	mobile	device.

The	backup	directory	contains	four	standard	files	along	with	the	individual	data	files,
which	may	exist	in	various	formats	depending	on	the	version	of	iTunes.	Older	versions
will	contain	*.mdbackup,	*.mdata,	*.mdinfo,	and	some	files	with	no	file	extensions.	The
standard	files	store	details	about	the	backup	and	the	device	from	which	it	was	derived.
These	file	names	are	as	follows:

info.plist

manifest.plist

status.plist

manifest.mbdb

The	first	three	files	are	property	list	files	that	can	be	easily	analyzed	using	the	Property

List	Editor	application	on	Mac	OS	X.

info.plist
The	info.plist	file	stores	details	about	the	backed	up	device	and	typically	contains	the
following	information:

Device	name	and	display	name:	This	is	the	name	of	the	device,	which	typically
includes	the	owner’s	name
ICCID:	This	is	the	Integrated	Circuit	Card	Identifier,	which	is	the	serial	number	of
the	SIM
Last	backup	date:	This	is	the	timestamp	of	the	last	successful	backup
IMEI:	This	is	the	International	Mobile	Equipment	Identity,	which	is	used	to	uniquely
identify	the	mobile	phone
Phone	Number:	This	is	the	phone	number	of	the	device	at	the	time	of	backup
Installed	applications:	This	is	the	list	of	application	identifiers	on	the	device
Product	type	and	production	version:	This	is	the	device	model	and	firmware
version
Serial	number:	This	is	the	serial	number	of	the	device
iTunes	version:	This	is	the	version	of	iTunes	that	generated	the	backup
Target	Identifier	and	Unique	Identifier:	This	is	the	UDID	of	the	device

manifest.plist
The	manifest.plist	file	describes	the	contents	of	the	backup	and	typically	contains	the
following	information:

Applications:	This	is	a	list	of	third-party	applications	installed	on	the	backed	up
device,	their	version	numbers,	and	bundle	identifiers
Date:	This	is	the	timestamp	of	a	backup	created	or	last	updated
IsEncrypted:	This	identifies	whether	the	backup	is	encrypted	or	not.	For	encrypted
backups	the	value	is	True,	otherwise	it	is	False
Lockdown:	This	contains	device	details,	last	backup	computer’s	name,	and	other
remote	syncing	profiles
WasPasscodeSet:	This	identifies	whether	a	passcode	was	set	on	the	device	when	it
was	last	synced
Backup	keybag:	Starting	with	iOS	4,	a	Backup	keybag	is	created	for	each	backup
made	by	iTunes.	The	Backup	keybag	contains	a	new	set	of	data	protection	class	keys
that	are	different	from	the	keys	in	the	System	keybag,	and	backed	up	data	is	re-
encrypted	with	the	new	class	keys.	Keys	in	the	Backup	keybag	facilitate	the	storage
of	backups	in	a	secure	manner

status.plist
The	status.plist	file	stores	details	about	the	backup	status	and	typically	contains	the
following	information:

BackupState:	This	identifies	whether	the	backup	is	a	new	backup	or	one	that	has
been	updated

Date:	This	is	the	timestamp	of	the	last	time	the	backup	was	modified
IsFullBackup:	This	identifies	whether	or	not	the	backup	was	a	full	backup	of	the
device

manifest.mbdb
The	manifest.mbdb	file	is	a	binary	file	and	contains	records	about	all	other	files	in	the
backup	directory	along	with	the	file	sizes,	file	type,	and	file	structure.	The	manifest.mbdb
file	header	and	record	format	are	shown	in	the	following	tables.

Header

The	file	header	is	a	fixed	value	of	6	bytes.	This	value	acts	as	a	magic	string	to	identify	the
file	format.

Type Data Description

uint8 mbdb\5\0 This	files	a	magic	string

Record

Each	record	in	the	manifest.mbdb	file	contains	details	about	a	file	in	the	backup.

Type Data Description

String Domain This	is	the	domain	name.

String Path This	is	the	file	path.

String Target This	is	an	absolute	path	for	symbolic	links.

String Digest This	contains	SHA1	hash	0xFF	0xFF	for	directories	and	for	AppDomain	files,	and	0x00	0x14
for	SystemDomain	files.

String Encryption	key This	indicates	encrypted	files	and	0xFF	0xFF	for	unencrypted	files.

uint16 Mode This	identifies	file	type	0xA000	for	symbolic	link,	0x4000	for	directory,	and	0x8000	for
regular	files.

uint64 inode	number This	is	a	lookup	entry	in	the	inode	table.

uint32 User	ID This	is	mostly	501.

uint32 Group	ID This	is	mostly	501.

uint32 Last	modified
time This	is	the	file’s	last	modified	time	in	the	Unix	time	format.

uint32 Last	accessed
time This	is	the	file’s	last	accessed	time	in	the	Unix	time	format.

uint32 Created	time This	is	the	file	created	time	in	the	Unix	time	format

uint64 Size This	is	the	length	of	a	file.	It	is	0	for	a	symbolic	link	and	a	directory.

uint8 Protection	class This	is	the	data	protection	class	0x1	To	0xB.

uint8 Number	of
properties This	is	the	number	of	extended	attributes.

The	manifest.mbdb	file	header

Apart	from	the	standard	files,	the	backup	directory	also	contains	hundreds	of	backup	files
with	varying	file	extensions	depending	on	the	version	of	iTunes	used	to	create	the	backup,
as	described	earlier.	In	the	following	screenshot,	the	backup	was	created	with	the	latest
version	of	iTunes	in	which	the	files	do	not	contain	a	file	extension.	The	backup	files	are
uniquely	named	with	a	40-character	hexadecimal	string.	These	filenames	signify	a	unique
identifier	for	each	data	set	copied	from	the	iPhone.

iPhone	backup	files

In	iOS,	files	are	categorized	into	12	domains.	All	of	the	application	files	are	classified	into
AppDomain	and	other	files	on	the	file	system	are	classified	into	11	system	domains
shown	in	the	following	screenshot.	The	list	of	system	domains	is	stored	in	a	property	list
file	located	under	/System/Library/Backup/Domains.plist	on	the	device.

The	40-character	hexadecimal	filename	in	the	backup	directory	is	the	SHA1	hash	value	of
the	file	path	appended	to	the	respective	domain	name	with	a	dash	(-)	symbol.

For	instance,	the	AddressBook	database	file	is	a	member	of	HomeDomain	and	is	located
under	Library/AddressBook/AddressBook.sqlitedb.	The	backup	file	name	of
AddressBook	is	31bb7ba8914766d4ba40d6dfb6113c8b614be442,	which	can	be	obtained	by
computing	the	SHA1	hash	value	of	the	following	string:	HomeDomain-
Library/AddressBook/AddressBook.sqlitedb.

System	domains	on	the	iPhone

Unencrypted	backup
To	create	an	unencrypted	backup,	perform	the	following	steps:

1.	 Connect	the	iPhone	to	the	forensic	workstation	using	a	USB	cable.
2.	 On	the	forensic	workstation,	launch	iTunes.
3.	 Click	on	the	iPhone	icon	displayed	in	the	upper-right	corner	of	the	iTunes	interface.	It

displays	the	iPhone	Summary	page.
4.	 In	the	iPhone	summary	page,	select	the	This	computer	checkbox	and	click	on	the

Back	Up	Now	button.

Extracting	unencrypted	backups
There	are	many	free	tools	available	to	analyze	data	from	unencrypted	backups.	These
tools	parse	the	manifest.mbdb	file,	restore	the	filenames,	and	create	the	file	structure	that
users	see	on	the	iPhone.	Some	of	the	popular	tools	include	iPhone	Backup	Extractor,
iPhone	Backup	Browser,	and	iPhone	Data	Protection	Tools.

iPhone	Backup	Extractor

iPhone	Backup	Extractor	is	a	free	tool	for	Mac	OS	X,	which	can	be	downloaded	from
http://supercrazyawesome.com/.	The	backup	extractor	expects	backup	files	to	be	located
in	the	default	location	~/Library/Application	Support/MobileSync/Backup/.	So,	you
will	need	to	copy	any	backups	you	wish	to	extract	to	the	default	location.	iPhone	Backup
Extractor	is	a	very	easy	tool	to	use.

To	extract	the	backup,	follow	these	steps:

1.	 Launch	the	app	and	click	on	the	Read	Backups	button.	It	displays	a	list	of	backups
available	on	the	forensic	workstation.	Select	the	backup	that	you	wish	to	extract	and
click	on	the	Choose	button,	as	shown	in	the	following	screenshot:

http://supercrazyawesome.com/

iPhone	Backup	Extractor—choosing	backups

2.	 When	you	choose	the	backup,	iPhone	Backup	Extractor	allows	you	to	extract	the
individual	applications	and	the	iOS	file	system	backup,	as	shown	in	the	following
screenshot:

iPhone	Backup	Extractor

3.	 Choose	the	files	you	would	like	to	extract	and	then	click	on	Extract.	It	prompts	for	a
destination	directory	to	save	the	extracted	files.

iPhone	Backup	Browser

iPhone	Backup	Browser	is	a	free	tool	for	Windows	and	can	be	downloaded	from
http://code.google.com/p/iphonebackupbrowser/.	The	tool	requires	Microsoft	.NET
Framework	4	and	Visual	C++	2010	runtime	to	be	installed	on	the	forensic	workstation.
The	backup	browser	expects	backup	files	to	be	located	in	the	default	location	as
mentioned	in	the	preceding	table.	iPhone	Backup	Browser	provides	a	GUI	to	view	the
backup	data,	as	shown	in	the	following	screenshot:

http://code.google.com/p/iphonebackupbrowser/

iPhone	Backup	Browser

iPhone	Data	Protection	Tools

iPhone	Data	Protection	Tools,	an	open	source	iOS	forensic	toolkit,	can	also	be	used	to
extract	the	backup	files.	To	analyze	data	from	the	unencrypted	backup	file,	set	up	iPhone
Data	Protection	Tools	as	explained	in	Chapter	3,	Data	Acquisition	from	iOS	Devices,	and
run	the	backup_tool.py	script	on	your	backup	directory	in	a	terminal	window,	as	follows:

$cd	iphone-dataprotection

$cd	python_scripts

$sudo	python	backup_tool.py	~/Library/Application\	

Support/MobileSync/Backup/6c1b7aca59e2eba6f4635cfe7c4b2de1bd812898/

Device	Name	:	Satishb3

Display	Name	:	Satishb3

Last	Backup	Date	:	2014-01-07	12:58:13

IMEI	:	012856001945212

Serial	Number	:	85137505EDG

Product	Type	:	iPhone2,1

Product	Version	:	6.1

iTunes	Version	:	11.1.3

Extract	backup	to	/Users/satishb3/Library/Application	

Support/MobileSync/Backup/6c1b7aca59e2eba6f4635cfe7c4b2de1bd812898_extract	

?	(y/n)

Type	the	letter	y	and	hit	Enter.	The	preceding	script	displays	a	number	of	messages
indicating	the	current	file	being	operated	on,	as	shown	in	the	following	command	lines:

Backup	is	not	encrypted

Writing	/Users/satishb3/Library/Application	

Support/MobileSync/Backup_extract/HomeDomain/Library/Preferences/com.apple.

voiceservices.plist

Writing	/Users/satishb3/Library/Application	

Support/MobileSync/Backup_extract/CameraRollDomain/Media/DCIM/100APPLE/IMG_

0038.JPG

Writing	/Users/satishb3/Library/Application	

Support/MobileSync/Backup_extract/SystemPreferencesDomain/SystemConfigurati

on/preferences.plist

Writing	/Users/satishb3/Library/Application	

Support/MobileSync/Backup_extract/HomeDomain/Library/Preferences/com.apple.

mobileipod.plist

[...]

Writing	/Users/satishb3/Library/Application	

Support/MobileSync/Backup/6c1b7aca59e2eba6f4635cfe7c4b2de1bd812898_extract/

HomeDomain/Library/Preferences/com.apple.springboard.plist

You	can	decrypt	the	keychain	using	the	following	command:

python	keychain_tool.py	-d	"/Users/satishb3/Library/Application	

Support/MobileSync/Backup/6c1b7aca59e2eba6f4635cfe7c4b2de1bd812898_extract/

KeychainDomain/keychain-backup.plist"	"/Users/satishb3/Library/Application	

Support/MobileSync/Backup/6c1b7aca59e2eba6f4635cfe7c4b2de1bd812898_extract/

Manifest.plist"

The	preceding	script	creates	the	6c1b7aca59e2eba6f4635cfe7c4b2de1bd812898_extract
folder	in	the	backup	directory	location	and	extracts	the	backup	files	into	it	by	restoring	the
original	filenames.	The	extracted	backup	files	are	stored	in	a	number	of	domain	directories
as	shown	in	the	following	screenshot.	Now,	you	should	be	able	to	completely	examine	the
artifacts	on	the	backup	files,	which	will	be	covered	in	detail	in	Chapter	5,	iOS	Data
Analysis	and	Recovery.	Pay	attention	to	the	directory	names	used	in	the	command	line	as
they	vary	for	each	device.

Extracted	iPhone	backup	files

Decrypting	the	keychain
For	unencrypted	backups,	all	the	backup	files	are	stored	unencrypted	except	the	keychain.
The	keychain	file	contents	are	encrypted	with	a	set	of	class	keys	in	the	Backup	keybag.
The	Backup	keybag	itself	is	protected	with	a	key	(0x835)	derived	from	the	iPhone
hardware	key	(UID	key).	So,	in	order	to	decrypt	the	keychain,	you	need	to	extract	the	key
0x835	from	the	device	using	the	demo_bruteforce.py	techniques	explained	in	Chapter	3,
Data	Acquisition	from	iOS	Devices.

The	iPhone	Data	Protection	tools	also	contain	python	scripts	to	decrypt	the	keychain	file
from	the	backup.	To	decrypt	the	keychain,	run	the	following	command	in	a	terminal
window	and	enter	your	device	key	0x835	when	prompted:

$sudo	python	keychain_tool.py	-d	"/Users/satishb3/Library/Application	

Support/MobileSync/Backup/6c1b7aca59e2eba6f4635cfe7c4b2de1bd812898_extract/

KeychainDomain/keychain-backup.plist"	"/Users/satishb3/Library/Application	

Support/MobileSync/Backup/6c1b7aca59e2eba6f4635cfe7c4b2de1bd812898_extract/

Manifest.plist"

This	backup	is	not	encrypted,	without	key	835	nothing	in	the	keychain	can	

be	decrypted

If	you	have	key835	for	device	6c1b7aca59e2eba6f4635cfe7c4b2de1bd812898	

enter	it	(in	hex)

33403aec43adea127459485bf5969502

The	script	extracts	generic	passwords,	Internet	passwords,	certificates,	and	private	keys
from	the	keychain	and	displays	them	in	a	table	as	shown	in	the	following	screenshot:

A	decrypted	keychain

Encrypted	backup
iTunes	provides	an	option	for	the	users	to	encrypt	their	backups	using	a	password.
Forensic	examiners	may	elect	to	create	an	encrypted	backup	to	protect	the	evidence.	It	is
pertinent	that	the	examiner	documents	the	password	should	this	method	be	used.

To	create	an	encrypted	backup,	perform	the	following	steps:

1.	 Connect	the	iPhone	to	the	forensic	workstation	using	a	USB	cable.
2.	 On	the	forensic	workstation,	launch	iTunes.
3.	 Click	on	the	iPhone	icon	displayed	in	the	upper-right	corner	of	the	iTunes	interface.	It

displays	the	iPhone	summary	page.
4.	 In	the	iPhone	summary	page,	select	the	This	computer	checkbox	and	select	the

Encrypt	iPhone	backup	option.	Selecting	the	option	prompts	you	to	enter	a
password,	as	shown	in	the	following	screenshot.

5.	 Set	a	password	and	click	on	the	Back	Up	Now	button.	It	creates	an	encrypted
backup.

iTunes—encrypted	backup

If	a	backup	is	password	protected,	the	password	is	set	on	the	device	itself	and	stored	in	the
keychain	file.	Also,	whenever	the	device	is	connected	to	iTunes,	it	automatically	chooses
the	Encrypt	iPhone	backup	option	regardless	whether	the	users	own	a	copy	of	iTunes
being	used	on	their	computer	or	someone	else’s.	So,	even	if	you	have	access	to	the
suspect’s	iPhone,	you	cannot	produce	an	unencrypted	backup	unless	you	know	the	backup
password.

Extracting	encrypted	backups
For	encrypted	backups,	the	backup	files	are	encrypted	using	the	AES256	algorithm	in	the
CBC	mode,	with	a	unique	key	and	a	null	IV	(initialization	vector).	The	unique	file	keys
are	protected	with	a	set	of	class	keys	from	the	Backup	keybag.	The	class	keys	in	the
Backup	keybag	are	protected	with	a	key	derived	from	the	password	set	in	iTunes	through
10,000	iterations	of	PBKDF2	(Password-Based	Key	Derivation	Function	2).	Both	open
source	and	commercial	tools	provide	support	for	an	encrypted	backup	file	parsing	if	the
password	is	known.	Some	tools	won’t	even	prompt	for	a	password,	which	make	them
useless	in	a	forensic	investigation.	iPhone	Data	Protection	Tools	is	capable	of	extracting
data	from	encrypted	backup	files	if	the	password	is	known.

iPhone	Data	Protection	Tools

iPhone	Data	Protection	Tools	contains	Python	scripts	to	decrypt	the	backup	when	the
backup	password	is	available.	To	decrypt	and	acquire	data	from	the	encrypted	backup,	in	a
terminal	window,	run	the	backup_tool.py	script	on	your	backup	directory	and	enter	the
backup	password	when	prompted,	as	shown	in	the	following	commands:

$cd	iphone-dataprotection

$cd	python_scripts

$sudo	python	backup_tool.py	~/Library/Application\	

Support/MobileSync/Backup/6c1b7aca59e2eba6f4635cfe7c4b2de1bd812898/

Device	Name	:	Satishb3

Display	Name	:	Satishb3

Last	Backup	Date	:	2014-01-15	16:34:13

IMEI	:	012856001945212

Serial	Number	:	85137505EDG

Product	Type	:	iPhone2,1

Product	Version	:	6.1

iTunes	Version	:	11.1.3

Extract	backup	to	/Users/satishb3/Library/Application	

Support/MobileSync/Backup/6c1b7aca59e2eba6f4635cfe7c4b2de1bd812898_extract	

?	(y/n)

Type	the	letter	y	and	hit	Enter.	The	script	displays	a	number	of	messages	indicating	the
current	file	being	operated	upon,	as	follows:

Backup	is	encrypted

Enter	backup	password:	

12345

Writing	/Users/satishb3/Library/Application	

Support/MobileSync/Backup/6c1b7aca59e2eba6f4635cfe7c4b2de1bd812898_extract/

HomeDomain/Library/Preferences/com.apple.voiceservices.plist

Writing	/Users/satishb3/Library/Application	

Support/MobileSync/Backup/6c1b7aca59e2eba6f4635cfe7c4b2de1bd812898_extract/

CameraRollDomain/Media/DCIM/100APPLE/IMG_0038.JPG

Writing	/Users/satishb3/Library/Application	

Support/MobileSync/Backup/6c1b7aca59e2eba6f4635cfe7c4b2de1bd812898_extract/

SystemPreferencesDomain/SystemConfiguration/preferences.plist

[...]

Writing	/Users/satishb3/Library/Application	

Support/MobileSync/Backup/6c1b7aca59e2eba6f4635cfe7c4b2de1bd812898_extract/

HomeDomain/Library/Preferences/com.apple.springboard.plist

You	can	decrypt	the	keychain	using	the	following	command:

python	keychain_tool.py	-d	"/Users/satishb3/Library/Application	

Support/MobileSync/Backup/6c1b7aca59e2eba6f4635cfe7c4b2de1bd812898_extract/

KeychainDomain/keychain-backup.plist"	"/Users/satishb3/Library/Application	

Support/MobileSync/Backup/6c1b7aca59e2eba6f4635cfe7c4b2de1bd812898_extract/

Manifest.plist"

The	script	creates	the	6c1b7aca59e2eba6f4635cfe7c4b2de1bd812898_extract	folder	in
the	backup	directory	location,	then	decrypts	and	extracts	the	backup	files	into	a	number	of
domain	directories	by	restoring	the	original	filenames.

Decrypting	the	keychain
Encrypted	backup	files	can	be	cracked	using	brute	force	attacks	in	both	the	command	line
and	GUI	tools.	For	encrypted	backups,	the	keychain	items	protected	with	the
ThisDeviceOnly	data	protection	class	are	encrypted	using	a	set	of	class	keys	that	are
protected	with	the	key	0x835.	All	other	keychain	items	are	encrypted	using	a	set	of	class
keys	that	are	protected	with	a	password	set	in	iTunes.	If	you	want	to	extract	the
ThisDeviceOnly	protected	items,	you	need	to	extract	a	key	0x835	from	the	device	using
the	demo_bruteforce.py	techniques	explained	in	Chapter	3,	Data	Acquisition	from	iOS
Devices.

iPhone	Data	Protection	Tools	contain	Python	scripts	to	decrypt	the	keychain	file	from	the
encrypted	backup.	To	decrypt	the	keychain,	run	the	following	command	in	a	terminal
window	and	enter	the	backup	password	when	prompted.	The	script	also	prompts	to	enter
the	key	0x835;	press	Enter	if	you	don’t	have	the	key	0x835.

$sudo	python	keychain_tool.py	-d	"/Users/satishb3/Library/Application	

Support/MobileSync/Backup/6c1b7aca59e2eba6f4635cfe7c4b2de1bd812898_extract/

KeychainDomain/keychain-backup.plist"	"/Users/satishb3/Library/Application	

Support/MobileSync/Backup/6c1b7aca59e2eba6f4635cfe7c4b2de1bd812898_extract/

Manifest.plist"

Once	completed,	the	script	extracts	generic	passwords,	Internet	passwords,	and	certificates
and	private	keys	from	the	keychain,	and	displays	them	in	a	table.

iPhone	Password	Breaker

iPhone	Password	Breaker	is	a	GPU-accelerated	commercial	tool	from	Elcomsoft
developed	for	the	Windows	platform.	The	tool	can	decrypt	the	encrypted	backup	file	when
the	backup	password	is	not	available.	The	tool	provides	an	option	to	launch	a	password
brute-force	attack	on	the	encrypted	backup	if	the	backup	password	is	not	available.	iPhone
Password	Breaker	tries	to	recover	the	plain-text	password	that	protects	the	encrypted
backup	using	dictionary	and	brute	force	attacks.	Passwords,	which	are	relatively	short	and
simple,	can	be	recovered	in	a	reasonable	time.	But	if	the	backup	is	protected	with	a	strong
and	complex	password,	breaking	it	can	take	forever.

To	brute	force	the	backup	password,	perform	the	following	steps:

1.	 Launch	the	iPhone	Password	Breaker	tool	and	the	tool’s	main	screen	will	appear,	as
shown	in	the	following	screenshot.

2.	 Navigate	to	File	|	Open	|	Backup.	A	list	of	available	device	backups	is	displayed	and
a	lock	symbol	is	shown	next	to	the	encrypted	device	backups,	as	shown	in	the
following	screenshot:

iPhone	Password	Breaker	-	Choose	backup

3.	 Configure	the	brute-force	pattern	in	the	Attacks	section	and	click	on	the	Start	button
to	start	the	brute	force	attack.	If	the	brute	force	attack	is	successful,	the	tool	displays
the	password	on	the	main	screen,	as	shown	in	the	following	screenshot:

iPhone	Password	Breaker—password	brute	force

iCloud	backup
iCloud	is	a	cloud	storage	and	cloud	computing	service	by	Apple	launched	in	October
2011.	The	service	allows	users	to	keep	data	such	as	calendars,	contacts,	reminders,	photos,
documents,	bookmarks,	applications,	notes,	and	more	in	sync	across	multiple	compatible
devices	(iOS	devices	running	with	iOS	5	or	later,	computers	with	Mac	OS	X	10.7.2	or
later,	and	Microsoft	Windows)	using	a	centralized	iCloud	account.	The	service	also	allows
users	to	wirelessly	and	automatically	back	up	their	iOS	devices	to	iCloud.	iCloud	also
provides	other	services	such	as	Find	My	iPhone—to	track	a	lost	phone	and	wipe	it
remotely,	Find	My	Friends—to	share	location	with	friends	and	notify	the	user	when	a
device	arrives	at	a	certain	location,	and	so	on.

Signing	up	with	iCloud	is	free	and	simple	to	do	with	an	Apple	ID.	When	you	sign	up	for
iCloud,	Apple	grants	you	access	to	5	GB	of	free	remote	storage.	If	you	need	more	storage,
you	can	purchase	the	upgrade	plan.	To	keep	your	data	secure,	Apple	enforces	users	to
choose	a	strong	password	when	creating	an	Apple	ID	to	use	with	iCloud.	The	password
must	have	a	minimum	of	eight	characters,	a	number,	an	uppercase	letter,	and	a	lowercase
letter.

iOS	devices	running	on	iOS	5	and	later	allow	users	to	back	up	the	device	settings	and	data
to	iCloud.	Data	backed	up	includes	photos,	videos,	documents,	application	data,	device
settings,	messages,	contacts,	calendar,	e-mail,	keychain,	and	so	on.	You	can	turn	on	iCloud
backup	on	your	device	by	navigating	to	Settings	|	iCloud	|	Storage	&	Backup,	as	shown
in	the	following	screenshot.	iCloud	can	automatically	back	up	your	data	when	your	phone
is	plugged	in,	locked,	and	connected	to	Wi-Fi.	This	is	to	say,	iCloud	backups	represent	a
fresh	and	near	real-time	copy	of	information	stored	on	the	device.

iCloud	backup	toggle	on	the	iPhone

You	can	also	initiate	an	iCloud	backup	from	a	computer	by	connecting	the	device	to
iTunes	and	choosing	the	iCloud	option.	iCloud	backups	are	incremental,	that	is,	once	the
initial	iCloud	backup	is	completed,	all	the	subsequent	backups	only	copy	the	files	that	are
changed	on	the	device.	iCloud	secures	your	data	by	encrypting	it	when	it	is	transmitted
over	the	Internet,	storing	it	in	an	encrypted	format	on	the	server,	and	using	secure	tokens
for	authentication.

Tip
iCloud	does	not	encrypt	Email	and	Notes	stored	on	the	server	to	be	consistent	with
standard	industry	practices.

Apple’s	built-in	apps	(for	example,	Email	and	Contacts)	use	a	secure	token	to	access
iCloud	services.	Use	of	secure	tokens	for	authentication	eliminates	the	need	to	store	the
iCloud	password	on	devices	and	computers.

Extracting	iCloud	backups
Online	backups	stored	on	the	iCloud	are	commonly	retrieved	when	the	original	iPhone	is
damaged	or	lost.	To	extract	a	backup	from	iCloud,	you	must	know	the	user’s	Apple	ID	and
password.	With	the	known	Apple	ID	and	password,	you	can	log	on	to	www.icloud.com
and	get	access	to	contacts,	notes,	e-mail,	calendar,	photos,	reminders,	and	more.	To	extract
the	complete	backup	from	iCloud,	you	can	use	Elcomsoft	iPhone	Password	Breaker.	As
iCloud	is	not	the	fastest	cloud	storage,	downloading	a	large	backup	with	iPhone	Password
Breaker	can	take	hours.	To	speed	up	the	investigation,	the	tool	provides	an	option	to
download	the	selected	files.

To	extract	the	iCloud	backup,	perform	the	following	steps:

1.	 Launch	the	iPhone	Password	Breaker.
2.	 Navigate	to	File	|	Apple	|	Get	Backup	from	iCloud.	It	displays	a	prompt	to	sign	in

with	your	Apple	ID,	as	shown	in	the	following	screenshot:

3.	 Successfully	signing	in	with	your	Apple	ID	lists	the	available	device	backups,	as
shown	in	the	following	screenshot:

http://www.icloud.com

4.	 Select	the	backup	you	need	and	click	on	Download.	It	prompts	you	for	a	destination
directory	to	save	the	extracted	files	into	a	number	of	domain	directories	by	restoring
the	original	filenames.	The	tool	also	provides	an	option	to	download	the	backup
without	restoring	the	original	filenames	so	that	you	can	use	third-party	software	for
analysis.

For	iCloud	backups,	the	keychain	file	contents	are	encrypted	with	a	set	of	class	keys	in	the
Backup	keybag.	The	Backup	keybag	itself	is	protected	with	a	key	(0x835)	derived	from
the	iPhone	hardware	key	(UID	key).	You	can	follow	the	techniques	explained	in	the
preceding	sections	to	decrypt	the	keychain	from	the	extracted	iCloud	backup.

Summary
iPhone	backups	contain	essential	information	that	may	be	your	only	source	of	evidence	for
the	iPhone.	Information	stored	in	iPhone	backups	includes	photos,	videos,	contacts,	e-
mail,	call	logs,	user	accounts	and	passwords,	applications,	device	settings,	and	so	on.	This
chapter	covered	techniques	to	create	backup	files	and	retrieve	data	from	iTunes	and
iCloud	backups	including	encrypted	backup	files,	wherever	possible.	Chapter	5,	iOS	Data
Analysis	and	Recovery,	goes	further	into	the	forensic	investigation	by	showing	the
examiner	how	to	analyze	the	data	recovered	from	the	backup	files.	Areas	containing	data
of	potential	evidentiary	value	will	be	explained	in	detail.

Chapter	5.	iOS	Data	Analysis	and
Recovery
A	key	aspect	in	iPhone	forensics	is	to	examine	and	analyze	the	data	acquired	from	an
iPhone	to	interpret	the	evidence.	Data	on	most	iOS	devices	is	encrypted	and	requires	that
the	data	partition	be	decrypted	prior	to	an	examination.	In	the	previous	chapters,	you
learned	various	techniques	to	acquire	data	from	an	iPhone.	The	raw	disk	image	obtained
during	physical	acquisition,	the	file	system	dump	or	the	logical/backup	file	contains
hundreds	of	data	files.	This	chapter	will	help	you	to	understand	how	data	is	stored	on	the
iPhone	and	will	walk	you	through	the	important	files	in	order	to	recover	the	most	data
possible.

Timestamps
Before	examining	the	data,	it	is	important	to	understand	the	different	timestamps	used	on
the	iPhone.	Timestamps	found	on	the	iPhone	are	presented	either	in	the	Unix	timestamp	or
Mac	absolute	time	format.	The	examiner	must	ensure	that	the	tools	properly	convert	the
timestamps	for	the	files.	Access	to	the	raw	SQLite	files	will	allow	the	examiner	to	verify
the	timestamps	manually.

Unix	timestamps
A	Unix	timestamp	is	the	number	of	seconds	that	offsets	the	Unix	epoch	time,	which	starts
on	January	1,	1970.	A	Unix	timestamp	can	be	converted	easily	using	the	date	command
on	a	Mac	workstation	or	using	an	online	Unix	epoch	convertor	on	a	Windows	workstation.
The	date	command	is	shown	as	follows:

$date	-r	1388538061

Wed	Jan	1	06:31:01	IST	2014

Mac	absolute	time
iOS	devices	adopted	the	use	of	Mac	absolute	time	with	iOS	5	for	most	of	the	data.	Mac
absolute	time	is	the	number	of	seconds	that	offsets	the	Mac	epoch	time,	which	starts	on
January	1,	2001.	The	difference	between	the	Unix	epoch	time	and	the	Mac	epoch	time	is
exactly	978,307,200	seconds.	To	convert	the	Unix	epoch	time	to	Mac	absolute	time,	add
978,307,200	to	it	and	calculate	it	as	a	Unix	timestamp.	For	example,	the	date	command
can	be	used	to	covert	Mac	absolute	time	is	shown	as	follows:

$date	-r	`echo	'389894124	+	978307200'|	bc`

Fri	May	10	21:25:24	IST	2013

Online	converters	prove	to	be	useful	to	convert	both	Mac	epoch	and	Unix	timestamps	for
iOS	devices.

SQLite	databases
SQLite	is	an	open	source,	in-process	library	that	implements	a	self-contained,	zero
configuration,	and	transactional	SQL	database	engine.	It’s	a	complete	database	with
multiple	tables,	triggers,	and	views	that	are	contained	in	a	single	cross-platform	file.	As
SQLite	is	portable,	reliable,	and	small,	it	is	a	popular	database	format	that	appears	in	many
mobile	platforms.

Apple	iOS	devices,	like	other	smartphones,	make	heavy	use	of	SQLite	databases	for	data
storage.	Many	of	the	built-in	applications	such	as	Phone,	Messages,	Mail,	Calendar,	and
Notes	store	data	in	SQLite	databases.	Apart	from	that,	third-party	applications	installed	on
the	device	also	leverage	SQLite	databases	for	data	storage.

SQLite	databases	are	created	with	or	without	a	file	extension.	They	typically	have
.sqlitedb	or	.db	file	extensions,	but	some	databases	are	given	other	extensions	as	well.
Data	in	SQLite	files	is	broken	up	into	tables	that	contain	the	actual	data.	To	access	the	data
stored	in	these	files,	you	need	a	tool	that	can	read	them.	Some	good	free	tools	are:

SQLite	Browser,	which	can	be	downloaded	from	https://github.com/rp-
/sqlitebrowser.
SQLite	command-line	client,	which	you	can	download	from	http://www.sqlite.org/.
SQLite	Professional	(https://www.sqlitepro.com/),	a	free	graphical	user	interface
(GUI)	from	Hankinsoft	Development	for	Mac	OS	X	users.	You	can	download	it	from
Mac’s	App	Store.
SQLite	Spy,	a	free	GUI	tool	for	Windows.	You	can	download	it	from
http://www.yunqa.de/delphi/doku.php/products/sqlitespy/index.

Mac	OS	X	includes	the	SQLite	command-line	utility	(sqlite3)	by	default.	This	command-
line	utility	can	easily	access	individual	files	and	issue	SQL	queries	against	a	database.	So,
in	the	following	sections	we	will	use	the	sqlite3	command-line	utility	to	retrieve	data
from	various	SQLite	databases.	Before	retrieving	the	data,	the	basic	commands	you	will
need	to	learn	are	explained	in	the	following	sections:

https://github.com/rp-/sqlitebrowser
http://www.sqlite.org/
https://www.sqlitepro.com/
http://www.yunqa.de/delphi/doku.php/products/sqlitespy/index

Connecting	to	a	database
Manual	examination	of	iOS	SQLite	database	files	is	possible	with	the	use	of	free	tools.
The	following	is	an	example	of	how	to	examine	a	database	using	native	Mac	commands	in
the	terminal.	Make	sure	your	device	image	is	mounted	as	read-only	to	prevent	changes
being	made	to	the	original	evidence.	To	connect	to	a	SQLite	database	from	the	command
line,	run	the	sqlite3	command	in	the	terminal	by	entering	your	database	file.	This	will
give	you	a	SQL	prompt	where	you	can	issue	SQL	queries:

$sqlite3	filename.sqlitedb	

SQLite	version	3.7.12	2012-04-03	19:43:07

Enter	".help"	for	instructions

Enter	SQL	statements	terminated	with	a	";

"

sqlite>	

To	disconnect,	use	the	.exit	command.	It	exits	the	SQLite	client	and	returns	to	the
terminal	prompt.

SQLite	special	commands
Once	you	connect	to	a	database,	there	are	a	number	of	built-in	SQLite	commands	known
as	dot	commands	that	can	be	used	to	obtain	information	from	the	database	files.	You	can
obtain	the	list	of	special	commands	by	issuing	the	.help	command	in	the	SQLite	prompt.
These	are	SQLite-specific	commands	and	do	not	require	a	semicolon	at	the	end	of	the
command.	Most	commonly	used	dot	commands	include	the	following:

.tables:	This	lists	all	of	the	tables	within	a	database.	The	following	example
displays	the	list	of	tables	found	inside	the	sms.db	database:

sqlite>	.tables

_SqliteDatabaseProperties		chat_message_join								attachment																	

handle																			chat																							message																		

chat_handle_join											message_attachment_join

.schema	table-name:	This	displays	the	SQL	CREATE	statement	used	to	construct	the
table.	The	following	example	displays	the	schema	for	the	handle	table,	which	is
found	inside	the	sms.db	database:

sqlite>	.schema	handle

CREATE	TABLE	handle	(ROWID	INTEGER	PRIMARY	KEY	AUTOINCREMENT	UNIQUE,	

id	TEXT	NOT	NULL,	country	TEXT,	service	TEXT	NOT	NULL,	

uncanonicalized_id	TEXT,	UNIQUE	(id,service));

.dump	table-name:	This	dumps	the	entire	content	of	a	table	into	SQL	statements.
The	following	example	displays	the	dump	of	the	handle	table,	which	is	found	inside
the	sms.db	database:

sqlite>	.dump	handle

PRAGMA	foreign_keys=OFF;

BEGIN	TRANSACTION;

CREATE	TABLE	handle	(ROWID	INTEGER	PRIMARY	KEY	AUTOINCREMENT	UNIQUE,	

id	TEXT	NOT	NULL,	country	TEXT,	service	TEXT	NOT	NULL,	

uncanonicalized_id	TEXT,	UNIQUE	(id,service));

INSERT	INTO	"handle"	

VALUES(7,'9951512182','in','SMS','9908923323');

COMMIT;

.output	file-name:	This	redirects	the	output	to	a	file	on	the	disk	instead	of	showing
it	on	the	screen.
.headers	on:	This	displays	the	column	title	whenever	you	issue	a	SELECT	statement.
.help:	This	displays	the	list	of	available	SQLite	dot	commands.
.exit:	This	disconnects	from	the	database	and	exits	the	SQLite	command	shell.
.mode	MODE:	This	sets	the	output	mode	where	MODE	can	be	csv,	HTML,	tabs,	and	so
on.

Tip
Make	sure	there	is	no	space	in	between	the	SQLite	prompt	and	the	dot	command,
otherwise	the	entire	command	will	be	ignored.

Standard	SQL	queries
In	addition	to	the	SQLite	dot	commands,	standard	SQL	queries	such	as	SELECT,	INSERT,
ALTER,	DELETE,	and	more	can	be	issued	to	SQLite	databases	on	the	command	line.	Unlike
the	SQLite	dot	commands,	the	standard	SQL	queries	expect	a	semicolon	at	the	end	of	the
command.

Most	of	the	databases	you	will	examine	will	contain	only	a	reasonable	number	of	records,
so	you	can	issue	a	SELECT	statement,	which	outputs	all	of	the	data	contained	in	the	table.
The	following	example	displays	the	values	in	the	handle	table,	which	is	found	inside	the
sms.db	database:

sqlite>	select	*	from	handle	limit	1;

7|9951512182|in|SMS|9908923323

Important	database	files
Raw	disk	images,	file	system	dumps	the	backup	that	you	extracted	as	per	the	instructions
in	Chapter	3,	Data	Acquisition	from	iOS	Devices,	and	Chapter	4,	Data	Acquisition	from
iOS	Backups,	will	contain	the	following	SQLite	databases	that	may	be	important	to	your
investigation.	The	files	shown	in	the	following	sections	are	extracted	from	an	iOS	6
device.	As	Apple	adds	new	features	to	the	built-in	applications	with	every	iOS	release,	the
format	of	the	files	may	vary	for	different	iOS	versions.	So,	you	may	need	to	modify	the
queries	listed	slightly	to	work	on	your	iOS	version.	More	information	regarding	important
database	files	can	be	found	at	http://www.zdziarski.com/blog/wp-
content/uploads/2013/05/iOS-Forensic-Investigative-Methods.pdf.

Address	book	contacts
The	address	book	contains	a	wealth	of	information	about	the	owner’s	personal	contacts.
With	the	exception	of	third-party	applications,	the	address	book	contains	contact	entries
for	all	of	the	contacts	stored	on	the	device.	The	address	book	database	is	a	HomeDomain	file
and	can	be	found	at
private/var/mobile/Library/AddressBook/AddressBook.sqlitedb.

AddressBook.sqlitedb	contains	several	tables,	of	which	three	are	of	particular	interest:

ABPerson:	This	contains	the	name,	organization,	notes,	and	more	for	each	contact.
ABMultiValue:	This	contains	phone	numbers,	e-mail	addresses,	website	URLs,	and
more	for	the	entries	in	the	ABPerson	table.	The	ABMultiValue	table	uses	a	record_id
file	to	associate	the	contact	information	with	a	rowid	from	the	ABPerson	table.
ABMultiValueLabel:	This	table	contains	labels	to	identify	the	kind	of	information
stored	in	the	ABMultiValue	table.

Some	of	the	data	stored	within	the	AddressBook.sqlitedb	file	could	be	from	third-party
applications.	The	examiner	should	manually	examine	the	application	file	folders	to	ensure
that	all	the	contacts	are	accounted	for	and	examined.

You	can	run	the	following	commands	to	dump	the	address	book	into	a	CSV	file	named
AddressBook.csv:

$sqlite3	AddressBook.sqlitedb	SQLite	version	3.7.12	2012-04-03	19:43:07

Enter	".help"	for	instructions

Enter	SQL	statements	terminated	with	a	";"

sqlite>.mode	csv

sqlite>.output	AddressBook.csv

sqlite>.headers	on

sqlite>	SELECT	p.rowid,	p.first,	p.middle,	p.last,	

datetime(p.creationDate+978307200,'unixepoch')	as			creationdate,

									case	when	m.label	in	(SELECT	rowid	from	ABMultiValueLabel)		

									then	(SELECT	value	from	ABMultiValueLabel	where	m.label=rowid)	

									else	

												m.label	end	as	Type,	m.value,	p.organization,	p.department,	

p.note,	p.birthday,	p.nickname,	p.jobtitle,datetime(p.modificationDate	+	

978307200,	'unixepoch')	as	modificationdate	

							FROM	ABPerson	p,ABMultiValue	m	

http://www.zdziarski.com/blog/wp-content/uploads/2013/05/iOS-Forensic-Investigative-Methods.pdf

							WHERE	p.rowid=m.record_id	and	m.value	not	null	

							ORDER	by	p.rowid	ASC;

sqlite>.exit

The	preceding	query	cross-references	the	data	across	the	three	tables	and	retrieves	the
contact	information	stored	in	the	database.	The	query	also	converts	the	Mac	absolute	time
into	a	readable	form	using	the	SQLite	datetime	function.

Address	book	images
In	addition	to	the	address	book’s	data,	each	contact	may	contain	an	image	associated	with
it.	This	image	is	displayed	on	the	screen	whenever	the	user	receives	an	incoming	call	from
a	particular	contact.	The	address	book	images	database	is	a	HomeDomain	file	and	can	be
found	at	/private/var/mobile/Library/AddressBook/AddressBookImages.sqlitedb.

The	ABFullSizeImage	table	in	the	AddressBookImages.sqlitedb	file	contains	images	in
binary	data.	To	extract	the	images,	use	SQLite’s	.output	and	.dump	commands	to	create	a
text	file	and	dump	the	database	into	this	file	in	a	SQL	text	format,	as	shown	in	the
following	command	lines:

$sqlite3	AddressBookImages.sqlitedb

SQLite	version	3.7.12	2012-04-03	19:43:07

Enter	".help"	for	instructions

Enter	SQL	statements	terminated	with	a	";"

sqlite>	.output	AddressBookImages.txt

sqlite>	.dump	ABFullSizeImage

sqlite>	.exit

The	text	file	contains	the	image	data	in	a	hexadecimal	encoding	format.	To	convert	this
output	back	to	binary	data	and	grab	the	images,	run	the	AddressBookImageGrabber.py
Python	script	on	the	dump	file,	as	shown	in	the	following	command.	The	Python	script
source	code	is	available	in	the	code	bundle	of	the	book.

$Python	AddressBookImageGrabber.py	AddressBookImages.txt

Writing	./AddressBookImages-Output/397.jpeg

Writing	./AddressBookImages-Output/129.jpeg

Writing	./AddressBookImages-Output/73.jpeg

Writing	./AddressBookImages-Output/508.jpeg	[...]

Writing	./AddressBookImages-Output/456.jpeg

Writing	./AddressBookImages-Output/141.jpeg

Total	93	images	are	extracted

Tip
Downloading	the	example	code

You	can	download	the	example	code	files	for	all	Packt	books	you	have	purchased	from
your	account	at	http://www.packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can
visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-mailed	directly	to
you.

The	script	will	create	a	directory	named	AddressBookImages-Output	and	place	the
extracted	JPEG	images	onto	it.	The	images	can	be	viewed	using	a	standard	image	viewer.

http://www.packtpub.com
http://www.packtpub.com/support

The	filename	of	each	image	will	be	the	record	identifier,	which	is	associated	with	the
AddressBook.sqlite	database	so	that	you	can	associate	each	image	with	a	contact.

Tip
Make	sure	you	are	using	Python	2.7	to	run	the	Python	scripts.

Call	history
Phone	or	FaceTime	calls	placed,	missed,	and	received	by	the	user	are	logged	in	the	call
history,	along	with	other	metadata	such	as	call	duration,	date/time,	and	more.	This	could
be	of	interest	to	an	examiner.	The	call	history	database	is	a	WirelessDomain	file	and	can
be	found	at	/private/var/wireless/Library/CallHistory/call_history.db.	The
database	contains	a	maximum	of	100	calls	listed	as	active	messages.	Any	calls	placed,
missed,	or	received	above	100	will	be	stored	in	the	database	and	the	oldest	record	will	be
removed.	However,	this	data	will	remain	in	the	SQLite	free	pages	and	can	be	recovered
through	manual	hex	examination.

The	Call	table	in	the	call_history.db	file	contains	the	call	history.	Each	record	in	the
call	table	indicates	the	phone	number	of	a	remote	party,	a	UNIX	timestamp	of	when	the
call	was	initiated,	the	duration	of	the	call	in	seconds,	a	status	flag	to	identify	whether	the
call	was	an	outgoing	call	(flag	5),	incoming	call	(flag	4),	blocked	call	(flag	8),	or
FaceTime	call	(flag	16),	an	identifier	that	is	associated	with	the	address	book	contacts	(-1
for	unknown	contact),	the	mobile	county	code	(MCC),	and	the	mobile	network	code
(MNC).	You	can	find	a	list	of	MCC/MNC	codes	at
http://en.wikipedia.org/wiki/Mobile_country_code.

FaceTime	status	flags	may	vary	depending	on	the	method	used	to	initiate	the	call.	For
example,	data	plans	utilize	different	flags	than	Wi-Fi	calls.	If	the	status	flag	starts	with	a	2,
it	is	likely	to	be	a	Wi-Fi	initiated	call.	If	it	starts	with	a	1,	as	defined	earlier,	it	represents	a
FaceTime	call	initiated	with	a	data	plan	on	the	device.	There	are	several	status	flags
available	for	FaceTime	calls	and	these	vary	between	iOS	devices.

You	can	run	the	following	commands	to	dump	the	call	history	into	a	CSV	file	named
callhistory.csv:

$sqlite3	call_history.db

SQLite	version	3.7.12	2012-04-03	19:43:07

Enter	".help"	for	instructions

Enter	SQL	statements	terminated	with	a	";"

sqlite>.mode	csv

sqlite>.output	callhistory.csv

sqlite>.headers	on

sqlite>	SELECT	rowid,	address,	datetime(date,'unixepoch','localtime')	as	

date,	duration	||	"	sec"	as	duration,	case	flags	

													when	4	then	"Incoming"	

													when	5	then	"Outgoing"	

													when	8	then	"Blocked"	

													when	16	then	"Facetime"	

													else	"Dropped"	

										end	as	flags,	id,	country_code,	network_code	

							FROM	call	

http://en.wikipedia.org/wiki/Mobile_country_code

							ORDER	BY	rowid	ASC;

sqlite>.exit

SMS	messages
The	Short	Message	Service	(SMS)	database	contains	text	and	multimedia	messages	that
were	sent	from	and	received	by	the	device,	along	with	the	phone	number	of	the	remote
party,	date	and	time,	and	other	carrier	information.	Starting	with	iOS	5,	iMessages	data	is
also	stored	in	the	SMS	database.	iMessage	allows	users	to	send	SMS	and	MMS	messages
over	a	cellular	or	Wi-Fi	network	to	other	iOS	or	OS	X	users,	thus	providing	an	alternative
to	SMS.	The	SMS	database	is	a	HomeDomain	file	and	can	be	found	at
/private/var/mobile/Library/SMS/sms.db.

You	can	run	the	following	commands	to	dump	the	SMS	database	into	a	CSV	file	named
sms.csv:

$sqlite3	sms.db

SQLite	version	3.7.12	2012-04-03	19:43:07

Enter	".help"	for	instructions

Enter	SQL	statements	terminated	with	a	";"

sqlite>.mode	csv

sqlite>.output	sms.csv

sqlite>.headers	on

sqlite>	SELECTm.rowid	as	rowid,datetime(date	+	978307200,	'unixepoch')	as	

date,h.id	as	"phone	number",	m.service	as	service,case	is_from_me

													when	0	then	"Received"

													when	1	then	"Sent"

													else	"Unknown"

									end	as	type,

									case

													when	date_read	>	0	

																	then	datetime(date_read+978307200,'unixepoch')

													when	date_delivered	>	0	

																	then	datetime(date_delivered+978307200,'unixepoch')

												else	NULL	

										end	as	"Date	Read/Sent",	text	

							FROM	message	m,	handle	hWHERE	h.rowid	=	m.handle_idORDER	BY	m.rowid	

ASC;

sqlite>.exit

SMS	Spotlight	cache
Spotlight	is	a	device-wide	search	feature,	which	allows	the	user	to	search	across	all	the
applications	on	the	device.	The	SMS	data	is	indexed	and	stored	in	a	database	for	a	quick
search.	The	SMS	Spotlight	cache	database	is	a	HomeDomain	file	and	can	be	found	at
/private/var/mobile/Library/Spotlight/com.apple.MobileSMS/SMSSeaerchIndex.sqlite

The	file	contains	both	active	and	deleted	SMS	messages.	The	following	screenshot	is	an
example	of	the	output	as	viewed	in	SQLite	Browser.	This	is	a	great	place	to	recover	SMS
messages	that	are	no	longer	present	in	the	SMS	database	file.	Note	that	the	SMS	Spotlight
cache	filename	may	vary	depending	on	the	version	of	the	iOS	device.

The	SMS	Spotlight	Cache	file

You	can	run	the	following	commands	to	dump	the	SMS	Spotlight	cache	database	into	a
CSV	file	named	smsspotlightcache.csv:

$sqlite3	smssearchindex.sqlite

SQLite	version	3.7.12	2012-04-03	19:43:07

Enter	".help"	for	instructions

Enter	SQL	statements	terminated	with	a	";"

sqlite>.mode	csv

sqlite>.output	smsspotlightcache.csv

sqlite>.headers	on

sqlite>	SELECT	*	FROM	Content;

sqlite>.exit

Calendar	events
Calendar	events	that	have	been	manually	created	by	the	user	or	synced	using	a	mail
application	or	other	third-party	applications	are	stored	in	the	calendar	database.	The
calendar	database	is	a	HomeDomain	file	and	can	be	found	at
/private/var/mobile/Library/Calendar/Calendar.sqlitedb.

The	CalendarItem	table	in	the	Calendar.sqlitedb	file	contains	the	calendar	events
summary,	description,	start	date,	end	date,	and	more.	You	can	run	the	following	command
lines	to	dump	the	calendar	database	into	a	CSV	file	named	calendar.csv.	Note	that
reminders	and	tasks	are	often	saved	in	the	Calendar.sqlitedb	file.	These	files	may	not
contain	a	start	or	end	time	depending	on	the	event:

$	sqlite3	Calendar.sqlitedb	

SQLite	version	3.7.12	2012-04-03	19:43:07

Enter	".help"	for	instructions

Enter	SQL	statements	terminated	with	a	";"

sqlite>.mode	csv

sqlite>.output	calendar.csv	

sqlite>.headers	on

sqlite>	SELECT	rowid,summary,description,datetime(start_date	+	

978307200,'unixepoch')	as		start_date,datetime	(end_date	+	

978307200,'unixepoch')	as	end_date

								FROM	CalendarItem;

sqlite>.exit

E-mail	database
All	e-mail	or	mail	applications	on	the	device	are	stored	in	a	SQLite	database	file.	The
database	is	a	HomeDomain	file	and	can	be	found	at

/private/var/mobile/Library/Mail/Protected	Index.	The	database	file	has	no
extension	and	contains	locally	stored,	sent,	and	deleted	messages.

You	can	run	the	following	commands	to	obtain	e-mails	stored	in	the	mail	database:

$	sqlite3	Protected\	Index	

SQLite	version	3.7.12	2012-04-03	19:43:07

Enter	".help"	for	instructions

Enter	SQL	statements	terminated	with	a	";"

sqlite>.output	Email.csv

sqlite>.headers	on

sqlite>	SELECT	*	FROM	messages;

sqlite>.exit

In	addition	to	the	messages,	e-mail	attachments	are	also	often	stored	on	the	file	system
within	the	Mail	directory.

Notes
The	Notes	database	contains	the	notes	created	by	the	user	using	the	device’s	built-in	Notes
application.	Notes	is	the	simplest	application,	often	containing	the	most	sensitive	and
confidential	information.	The	Notes	database	is	a	HomeDomain	file	and	can	be	found	at
/private/var/mobile/Library/Notes/notes.sqlite.

The	Znote	and	Znotebody	tables	in	the	notes.sqlite	file	contain	the	notes	title,	content,
creation	date,	modification	date,	and	more.	You	can	run	the	following	commands	to	dump
the	Notes	database	into	a	CSV	file	named	notes.csv:

$sqlite3	notes.sqlite

SQLite	version	3.7.12	2012-04-03	19:43:07

Enter	".help"	for	instructions

Enter	SQL	statements	terminated	with	a	";"

sqlite>.mode	csv

sqlite>.output	notes.csv

sqlite>.headers	on

sqlite>	SELECT	datetime(zcreationdate+978307200,'unixepoch')	as	

zcreationdate,	datetime(zmodificationdate+978307200,'unixepoch')	as	

zmodificationdate,	ztitle,	zsummary,	zcontent	

							FROM	znote,	znotebody	

							WHERE	znotebody.z_pk=znote.z_pk	

							ORDER	BY	znote.z_pk	ASC;

sqlite>.exit

Safari	bookmarks
The	Safari	browser	used	on	an	Apple	device	allows	users	to	bookmark	their	favorite
websites.	The	bookmarks	database	is	a	HomeDomain	file	and	can	be	found	at
/private/var/mobile/Library/Safari/Bookmarks.db.

You	can	run	the	following	commands	to	view	the	bookmarks	stored	in	the	database:

$sqlite3	bookmarks.db

SQLite	version	3.7.12	2012-04-03	19:43:07

Enter	".help"	for	instructions

Enter	SQL	statements	terminated	with	a	";"

sqlite>.headers	on

sqlite>	select	title,	url	from	bookmarks;

sqlite>.exit

The	Safari	web	caches
The	Safari	browser	stores	the	recently	downloaded	and	cached	data	in	a	database.	The
database	is	a	HomeDomain	file	and	can	be	found	at
/private/var/mobile/Library/Caches/com.apple.mobilesafari/Cache.db.	The	file
contains	cached	URLs	and	the	web	server’s	responses	along	with	the	timestamps.

The	web	application	cache
Offline	data	cached	by	web	applications,	such	as	images,	HTML,	JavaScript,	style	sheets,
and	more	are	stored	in	a	database.	The	database	is	a	HomeDomain	file	and	can	be	found	at
/private/var/mobile/Library/Caches/com.apple.WebAppCache/ApplicationCache.db

The	WebKit	storage
Safari	stores	information	from	various	sites	in	the	WebKit	database	located	in	the
/private/var/mobile/Library/WebKit/LocalStorage/	directory.	The	directory	contains
unique	databases	for	each	website,	as	shown	in	the	following	screenshot:

The	LocalStorage	folder	contents

The	photos	metadata
A	manifestation	of	the	photos	in	the	device’s	photo	album	is	stored	in	a	database	located	at
/private/var/mobile/Media/PhotoData/Photos.sqlite.	The	photos	metadata	database
file	is	a	member	of	CameraRollDomain.

You	can	run	the	following	commands	to	view	the	photos	stored	in	the	database:

$sqlite3	Photos.sqlite

SQLite	version	3.7.12	2012-04-03	19:43:07

Enter	".help"	for	instructions

Enter	SQL	statements	terminated	with	a	";"

sqlite>.mode	csv

sqlite>.output	photos.csv

sqlite>.headers	on

sqlite>	SELECT	z_pk,	ztitle,	datetime(zdatecreated	+	978307200,'unixepoch')	

as	zdatecreated,	datetime(zmodificationdate+	978307200,'unixepoch')	as	

zmodificationdate,	zfilename,	zdirectory,	zwidth,	zheight	

								FROM	zgenericasset

								ORDER	BY	z_pk	ASC;

sqlite>.exit

Consolidated	GPS	cache
Geolocation	history	of	cell	towers	and	Wi-Fi	on	the	device	is	stored	in	one	of	the	two
possible	databases	that	are	located	at	/private/var/root/Caches/locationd/.	The
databases	are	either	consolidated.db	or	cache_encryptedA.db.	Both	database	files	are
members	of	RootDomain.	The	version	of	iOS	will	determine	which	database	is	used.	These
databases	contain	location	information	for	cell	towers	that	the	device	came	into	close
proximity	with	as	well	as	Wi-Fi	networks	that	were	available	for	the	device	to	connect	to.
These	databases	are	often	used	to	place	a	person	near	a	specific	location	as	this	data	is
cached	to	one	of	these	database	files	without	the	user’s	consent.

For	this	example,	we	will	examine	the	consolidated.db	file.	The	CompassCalibration
table	in	the	consolidated.db	file	contains	the	location	information	along	with	the
timestamps.	The	file,	when	opened	with	SQLite	Professional,	displays	the	data	as	shown
in	the	following	screenshot.	Note	that	the	cache_encryptedA.db	file	is	no	longer	backed
up	when	the	user	syncs	with	iTunes.

The	Consolidated.db	view	with	SQLite	Professional

Voicemail
The	voicemail	database	contains	metadata	about	each	voicemail	stored	on	the	device	that
includes	the	sender’s	phone	number,	callback	number,	timestamp	and	message	duration,
and	more.	The	voicemail	recordings	are	stored	as	AMR	audio	files	that	can	be	played	by	any
media	player	that	supports	the	AMR	codec	(for	example,	QuickTime	Player).	The
voicemail	database	is	a	HomeDomain	file	and	can	be	found	at

/private/var/mobile/Library/Voicemail/voicemail.db,	while	the	actual	voicemail
recordings	are	stored	in	the	/private/var/mobile/Library/Voicemail/	directory.

You	can	run	the	following	commands	to	view	the	list	of	voicemails	stored	in	the	database:

$sqlite3	voicemail.sqlite

SQLite	version	3.7.12	2012-04-03	19:43:07

Enter	".help"	for	instructions

Enter	SQL	statements	terminated	with	a	";"

sqlite>.headers	on

sqlite>	SELECT	*	FROM	voicemail;	

sqlite>	.exit

Property	lists
A	property	list,	commonly	referred	to	as	a	plist,	is	a	structured	data	format	used	to	store,
organize,	and	access	various	data	types	of	data	on	an	iOS	device	as	well	as	a	Mac	OS	X
device.	Plists	are	binary-formatted	files	and	can	be	viewed	using	a	Property	List	Editor,
which	is	capable	of	reading	or	converting	the	binary	format	to	ASCII.

Plist	files	may	or	may	not	have	a	.plist	file	extension.	To	access	the	data	stored	in	these
files,	you	need	a	tool	that	can	read	them.	Some	of	the	good	free	tools	include:

Plist	Editor	for	Windows,	which	can	be	downloaded	from
http://www.icopybot.com/plist-editor.htm
The	plutil	command-line	utility	on	Mac	OS	X

You	can	also	view	the	plist	files	using	XCode.	Mac	OS	X	includes	the	plutil	command-
line	utility	by	default.	The	command-line	utility	can	easily	convert	the	binary	formatted
files	into	human	readable	files.

The	following	example	displays	the	Safari	browser	History.plist	file:

$sudo	plutil	-convert	xml1	History.plist	-o	-

<?xml	version="1.0"	encoding="UTF-8"?>		

<!DOCTYPE	plist	PUBLIC	"-//Apple//DTD	PLIST	1.0//EN"		

"http://www.apple.com/DTDs/PropertyList-1.0.dtd">		

<plist	version="1.0">

<dict>

		<key>WebHistoryDates</key>

		<array>		

				<dict>		

						<key></key>		

						<string>http://www.securitylearn.net/</string>		

						<key>D</key>		

						<array>		

								<integer>1</integer>		

						</array>		

						<key>lastVisitedDate</key>		

						<string>411576251.8</string>		

						<key>title</key>		

						<string>securitylearn/</string>		

						<key>visitCount</key>		

						<integer>1</integer>		

				</dict>		

				<dict>		

						<key></key>		

						<string>http://www.google.com</string>		

						<key>D</key>		

						<array>		

						<integer>1</integer>		

						</array>		

						<key>lastVisitedDate</key>		

						<string>411571510.5</string>		

						<key>title</key>		

						<string>Google</string>		

http://www.icopybot.com/plist-editor.htm

						<key>visitCount</key>		

						<integer>1</integer>		

				</dict>		

		</array>		

		<key>WebHistoryFileVersion</key>		

		<integer>1</integer>		

</dict>		

</plist>

Important	plist	files
Raw	disk	images	or	the	backup	that	you	extracted	in	Chapter	3,	Data	Acquisition	from	iOS
Devices,	and	Chapter	4,	Data	Acquisition	from	iOS	Backups,	will	contain	the	following
plist	files	that	are	important	for	an	investigation.	The	files	shown	are	extracted	from	an
iOS	6	device.	The	file	locations	may	vary	for	your	iOS	version.

The	HomeDomain	plist	files
The	following	are	the	HomeDomain	plist	files,	which	contain	data	that	may	be	relevant	to
your	investigation:

/private/var/mobile/Library/Preferences/com.apple.mobilephone.plist:
This	contains	the	last	phone	number	entered	into	the	dialer	regardless	of	whether	it
was	dialed	or	not
/private/var/mobile/Library/Preferences/com.apple.mobilephone.speeddial.plist

This	contains	a	list	of	the	contacts	that	were	added	to	the	phone’s	favorite	list
/private/var/mobile/Library/Preferences/com.apple.accountsettings.plist:
This	contains	a	list	of	the	e-mail	accounts	configured	on	the	device
/private/var/mobile/Library/Preferences/com.apple.AppSupport.plist:	This
contains	the	country	code	used	for	the	App	Store	on	the	device
/private/var/mobile/Library/Preferences/com.apple.Maps.plist:	This
contains	the	last	latitude,	longitude,	and	address	pinned	in	the	Maps	application
/private/var/mobile/Library/Preferences/com.apple.mobilemail.plist:	This
contains	the	e-mail	fetching	dates	and	e-mail	signatures	used
/private/var/mobile/Library/Preferences/com.apple.mobiletimer.plist:
This	contains	a	list	of	world	clocks	used
/private/var/mobile/Library/Preferences/com.apple.Preferences.plist:
This	contains	the	keyboard	language	that	was	last	used	on	the	device
/private/var/mobile/Library/Preferences/com.apple.mobilesafari.plist:
This	contains	a	list	of	the	recent	searches	made	through	Safari
/private/var/mobile/Library/Preferences/Com.apple.springboard.plist:This
contains	a	list	of	applications	that	are	shown	in	the	interface	and	iOS	version
/private/var/mobile/Library/Preferences/com.apple.mobiletimer.plist:
This	contains	information	about	the	current	time	zone,	timers,	alarms,	and
stopwatches
/private/var/mobile/Library/Preferences/com.apple.weather.plist:	This
contains	the	cities	for	weather	reports,	date,	and	time	of	last	update
/private/var/mobile/Library/Preferences/com.apple.stocks.plist:	This
contains	a	list	of	the	stocks	tracked
/private/var/mobile/Library/Preferences/com.apple.preferences.network.plist

This	contains	the	status	of	Bluetooth	and	Wi-Fi	networks
/private/var/mobile/Library/Preferences/com.apple.conference.history.plist

This	contains	a	history	of	the	phone	numbers	and	other	accounts	that	were
conferenced	using	FaceTime
/private/var/mobile/Library/Preferences/com.apple.locationd.plist:	This

contains	a	list	of	application	identifiers	that	use	the	location	service	on	the	device
/private/var/mobile/Library/Safari/History.plist:	This	contains	the	web
browsing	history	of	Safari
/private/var/mobile/Library/Safari/SuspendState.plist:	This	contains	the
web	page	title	and	the	URL	of	all	suspended	web	pages	on	Safari
/private/var/mobile/Library/Maps/Bookmarks.plist:	This	contains	the
bookmarked	locations	within	the	Maps	application
/private/var/mobile/Library/Caches/com.apple.mobile.installation.plist:
This	contains	a	list	of	all	system	and	user	applications	loaded	onto	the	device	and
their	disk	paths
/private/var/mobile/Library/Caches/com.apple.UIKit.pboard/pasteboard:
This	contains	a	cached	copy	of	the	data	stored	on	the	device’s	clipboard

The	RootDomain	plist	files
The	following	RootDomain	files	listed	should	be	examined	for	relevance	to	your
investigation:

/private/var/root/Library/Preferences/com.apple.preferences.network.plist

This	contains	information	about	whether	the	airplane	mode	is	presently	enabled	on
the	device
/private/var/root/Library/Lockdown/pair_records:	This	directory	contains
property	lists	with	private	keys	used	in	order	to	pair	the	device	to	a	computer
/private/var/root/Library/Caches/locationd/clients.plist:	This	contains	the
location	settings	for	applications	and	system	services

The	WirelessDomain	plist	files
The	following	WirelessDomain	plist	file	contains	useful	information	to	identify	the	SIM
card	last	used	in	the	device:

/private/wireless/Library/Preferences/com.apple.commcenter.plist

The	SystemPreferencesDomain	plist	files
The	two	plist	files	containing	data	of	evidentiary	value	from	the
SystemPreferencesDomain	files	are	listed:

/private/var/preferences/SystemConfiguration/com.apple.network.identification.plist

This	contains	networking	information	of	the	cached	IP
/private/var/preferences/SystemConfiguration/com.apple.wifi.plist:	This
contains	a	list	of	previously	known	Wi-Fi	networks	and	the	last	time	each	one	was
connected	to

Other	important	files
Apart	from	SQLite	and	plist	files,	several	other	locations	may	contain	valuable
information	to	an	investigation.

The	others	sources	include	the	following:

Cookies
Keyboard	cache
Photos
Wallpaper
Snapshots
Recordings
Downloaded	applications

Cookies
Cookies	can	be	recovered	from
/private/var/mobile/Library/Cookies/Cookies.binarycookies.	This	file	is	a
standard	binary	file	that	contains	cookies	saved	when	web	pages	are	accessed	on	the
device.	This	information	can	be	a	good	indication	of	what	websites	the	user	has	been
actively	visiting.

To	convert	the	binary	cookie	to	human	readable	format,	run	the	BinaryCookieReader.py
Python	script	on	the	cookie	file,	as	shown	in	the	following	command.	The	Python	script
source	code	is	available	in	the	code	bundle	of	the	book.

$python	BinaryCookieReader.py	Cookies.binarycookies

Cookie	:	__utma=167051323.813879307.1359034257.1367989551.1386632713.9;	

domain=.testflightapp.com;	path=/;	expires=Wed,	09	Dec	2015;	

Cookie	:	__utmb=167051323.24.8.1386633092975;	domain=.testflightapp.com;	

path=/;	expires=Tue,	10	Dec	2013;	

Cookie	:	__utmz=167051323.1386632713.9.1.utmcsr=(direct)|utmccn=

(direct)|utmcm	d=(none);	domain=.testflightapp.com;	path=/;	expires=Tue,	10	

Jun	2014;	

Cookie	:	tfapp=1d29da4a798a90186f1d4bfce3ce2f23;	domain=.testflightapp.com;	

path=/;	expires=Thu,	09	Feb	2017;

Cookie	:	user_segment=Prospect;	domain=.testflightapp.com;	path=/;	

expires=Wed,	08	Jan	2014;	[...]

Keyboard	cache
Keyboard	cache	is	captured	and	saved	in	the	dynamic-text.dat	file.	The	file	is	located	at
/private/var/mobile/Library/Keyboard/dynamic-text.dat	and	contains	keyboard
cache,	which	comprises	of	text	entered	by	the	user.	This	text	is	cached	as	part	of	the
device’s	autocorrect	feature	and	was	designed	to	autocomplete	the	predictive	common
words.	The	file	keeps	a	list	of	approximately	600	words	per	language	used	on	the	iOS
device.

It	is	a	binary	file	and	can	be	viewed	using	a	hex	editor,	as	shown	in	the	following
screenshot.	This	file	may	contain	passwords	cached	by	the	iOS	device	and	can	be	used	to
achieve	brute	force	attacks	on	the	device	or	an	encrypted	backup	of	the	device.

Keyboard	cache	in	hex	editor

Photos
Photos	are	stored	in	a	directory	located	at	/private/var/mobile/Media/DCIM/,	which
contains	the	photos	taken	with	the	device’s	built-in	camera,	screenshots,	and
accompanying	thumbnails.	Some	third-party	applications	will	also	store	photos	taken	in
this	directory.	Every	photo	stored	in	the	DCIM	folder	contains	EXIF	(Exchangeable	Image
File	Format)	data.	EXIF	data	stored	in	the	photo	can	be	extracted	using	exiftool,	which
can	be	downloaded	from	http://www.sno.phy.queensu.ca/~phil/exiftool/.	EXIF	data	may
also	contain	the	geographical	information	when	a	photo	is	tagged	with	the	user’s	geo
location	if	the	user	has	enabled	location	permissions	on	the	iOS	device:

$exiftool	IMG_0107.JPG	

ExifTool	Version	Number									:	9.50

File	Name																							:	IMG_0107.JPG

Directory																							:	.

File	Size																							:	73	kB

File	Modification	Date/Time					:	2014:01:07	17:43:05+05:30

File	Access	Date/Time											:	2014:02:09	17:26:40+05:30

File	Inode	Change	Date/Time					:	2014:02:09	17:26:40+05:30

File	Permissions																:	rw-r--r--[...]

http://www.sno.phy.queensu.ca/~phil/exiftool/

Wallpaper
The	current	background	wallpaper	set	for	the	iOS	device	can	be	recovered	from	the
LockBackgroundThumbnail.jpg	file	found	in
/private/var/mobile/Library/SpringBoard/LockBackground.cpbitmap.	This	is
complemented	with	a	thumbnail	named	in	the	same	directory.	The	wallpaper	picture	may
contain	identifying	information	about	the	user,	which	could	help	in	a	missing	person’s
case	or	an	iOS	device	recovered	from	a	theft	investigation.

Snapshots
The	snapshots	directory	contains	screenshots	of	the	most	recent	states	of	built-in
applications	at	the	time	that	they	were	suspended.	This	directory	is	located	in
/private/var/mobile/Library/Caches/Snapshots/.	Every	time	an	application	is
suspended	to	the	background	by	pressing	the	Home	button,	a	snapshot	is	taken	to	produce
a	nice	shrinking	effect.	Third-party	applications	also	store	the	snapshot	cache	inside	their
application’s	folder.

Recordings
The	iPhone	allows	a	user	to	record	voice	memos	very	easily.	The	recorded	voice	memos
are	stored	in	the	/private/var/mobile/Media/Recordings/	directory.	Recordings	here
could	be	used	to	identify	a	person	based	upon	their	voice	and	may	also	contain
information	such	as	voice	reminders,	which	won’t	be	stored	in	the	calendar	database.
Recordings	provide	a	lot	of	information	to	the	examiner	as	they	are	user	created	and	often
not	deleted.

Downloaded	applications
Third-party	applications,	which	are	downloaded	and	installed	from	the	App	Store,	include
applications	such	as	Facebook,	WhatsApp,	Viber,	Wickr,	Skype,	and	GMail,	and	more	that
contain	a	wealth	of	information	useful	for	an	investigation.	Some	third-party	applications
use	the	Base64	encoding,	which	needs	to	be	converted	for	viewing	as	well	as	encryption.
Applications	that	encrypt	the	database	file	prevent	the	examiner	from	accessing	the	data
residing	in	the	tables.	Encryption	varies	amongst	these	applications	based	on	the
application	and	iOS	versions.

A	unique	subdirectory	GUI	is	created	for	each	application	installed	on	the	device	in	the
/private/var/mobile/Applications/	directory,	which	is	shown	in	the	following
example.	Also,	the	hierarchical	structure	of	the	Applications	directory	is	shown.	Most	of
the	files	stored	in	the	application’s	directory	are	in	the	SQLite	and	plist	format:

$tree	-L	2	/var/mobile/Applications/

/var/mobile/Applications/

|--	08E03CB2-26A5-4DAF-9843-3893AF4EDDF0

|			|--	Documents

|			|--	Library

|			|--	WordPress.app

|			|--	iTunesArtwork|			|--	iTunesMetadata.plist

|			`--	tmp

|--	0922F95C-7E40-4075-BC5A-06CE829BDD9E

|			|--	Documents

|			|--	Library

|			|--	Wickr.app

|			|--	iTunesArtwork

|			|--	iTunesMetadata.plist

|			`--	tmp

|--	11C7F3E9-A10E-405D-B6BB-2F86B1B2400F

|			|--	Documents

|			|--	Library

|			|--	photovault.app

|			`--	tmp

Recovering	deleted	SQLite	records
In	addition	to	the	recovering	techniques	covered	in	Chapter	3,	Data	Acquisition	from	iOS
Devices,	you	can	also	recover	the	deleted	records	from	a	SQLite	database.	SQLite
databases	store	the	deleted	records	within	the	database	itself.	So,	it	is	possible	to	recover
the	deleted	data	such	as	contacts,	SMS,	calendar,	notes,	e-mails	and	voicemails,	and	more
by	parsing	the	corresponding	SQLite	database.	If	a	SQLite	database	is	vacuumed	or
defragmented,	the	likelihood	of	recovering	the	deleted	data	is	minimal.	The	amount	of
cleanup	these	databases	require	heavily	relies	on	the	iOS	version,	the	device,	and	the
user’s	settings	on	the	device.

A	SQLite	database	file	comprises	one	or	more	fixed	size	pages,	which	are	used	just	once.
SQLite	uses	a	b-tree	layout	of	pages	to	store	indices	and	table	content.	Detailed
information	on	the	b-tree	layout	is	explained	at	http://sandbox.dfrws.org/2011/fox-
it/DFRWS2011_results/Report/Sqlite_carving_extractAndroidData.pdf.

To	carve	a	SQLite	database,	you	can	examine	the	data	in	raw	hex	or	use	sqliteparse.py,
a	Python	script	developed	by	Mari	DeGrazia.	The	Python	script	can	be	downloaded	from
http://www.arizona4n6.com/download/SQLite-Parser.zip.

The	following	example	recovers	the	deleted	records	from	the	notes.sqlitedb	file	and
dumps	the	output	to	the	output.txt	file.	To	validate	your	findings	from	running	the
script,	simply	examine	the	database	in	a	hex	viewer	to	ensure	nothing	is	overlooked:

$python	sqliteparse.py	-f	notes.sqlitedb	-r	-o	output.txt

In	addition	to	it,	performing	a	strings	dump	of	the	database	file	can	also	reveal	deleted
records	that	may	have	been	missed,	as	shown	in	the	following	command:

$strings	notes.sqlitedb

http://sandbox.dfrws.org/2011/fox-it/DFRWS2011_results/Report/Sqlite_carving_extractAndroidData.pdf
http://www.arizona4n6.com/download/SQLite-Parser.zip

Summary
This	chapter	covered	various	data	analysis	techniques	and	specified	the	locations	of	data
within	the	iOS	device’s	file	system.	We	also	explained	most	of	the	common	file	formats
used	in	the	iPhone	and	walked	you	through	important	files	to	recover	the	most	data
possible.	Most	open	source	and	commercial	tools	are	able	to	pull	deleted	data	from
common	database	files,	such	as	contacts,	calls,	SMS,	and	more,	but	they	often	overlook
the	third-party	application	database	files.	We	covered	techniques	to	recover	deleted
SQLite	records	that	prove	useful	in	most	iOS	device	investigations.	Again,	the	acquisition
method,	encoding,	and	encryption	schemas	can	affect	the	amount	of	data	you	can	recover
during	your	examination.	In	the	next	chapter,	we	will	discuss	iOS	forensic	tools,	which
will	help	you	acquire	and	analyze	data.

Chapter	6.	iOS	Forensic	Tools
Although	understanding	acquisition	methods	and	techniques	is	helpful,	a	forensic
examiner	often	needs	the	help	of	tools	to	accomplish	tasks	in	the	given	time.	Forensic
tools	not	only	save	time	but	also	make	the	process	a	lot	easier.	Currently,	there	are	many
commercial	tools	such	as	Elcomsoft	iOS	Forensic	Toolkit,	Cellebrite	UFED,	BlackLight,
Oxygen	Forensic	Suite,	AccessData	MPE+,	iXAM,	Lantern,	XRY,	SecureView,	Paraben
iRecovery	Stick,	and	so	on,	which	are	available	for	forensic	acquisition	and	analysis	of	an
iOS	device.	For	familiarity	purposes,	this	chapter	will	walk	you	through	the	usage	of	a	few
commercial	and	open	source	tools	and	provide	details	of	the	steps	required	to	perform
acquisitions	of	iOS	devices.

Elcomsoft	iOS	Forensic	Toolkit
Elcomsoft	iOS	Forensic	Toolkit	(EIFT)	is	a	set	of	tools	aimed	at	making	the	acquisition
of	iOS	devices	easier.	EIFT	is	a	combination	of	software	that	is	able	to	perform	forensic
acquisition	of	iOS	devices	running	any	version	of	iOS	(note:	some	iOS	versions	require
the	device	to	be	jailbroken).	EIFT	can	acquire	bit-for-bit	images	of	a	device’s	file	system,
extract	device	secrets	(passcodes,	passwords,	and	encryption	keys),	and	decrypt	the	file
system	image.	For	more	information	on	EIFT,	visit	http://www.elcomsoft.com/eift.html.

The	toolkit	was	initially	available	only	to	law	enforcement	agencies,	but	now	it	is
available	to	everyone.	The	toolkit	supports	both	Mac	OS	X	and	Windows	platforms	with
iTunes	10.6	or	later	installed.

http://www.elcomsoft.com/eift.html

Features	of	EIFT
The	following	are	the	features	of	EIFT:

Supports	physical	and	logical	acquisition.
Acquires	complete	bit-for-bit	device	images.
Quick	file	system	acquisition:	20-40	minutes	for	32	GB	models.
Supports	passcode	recovery	attacks.
Extracts	device	keys	required	to	decrypt	a	raw	disk	image	as	well	as	keychain	items.
Decrypts	a	raw	disk	image	and	keychain	items.
Zero-footprint:	this	operation	leaves	no	traces	and	alterations	to	device	contents.
Fully	accountable:	every	step	of	investigation	is	logged	and	recorded.

Usage	of	EIFT
Elcomsoft	iOS	Forensic	Toolkit	can	be	used	in	two	modes:	guided	mode	and	manual
mode.	The	USB	dongle	shipped	with	the	toolkit	must	be	connected	to	the	computer	while
the	toolkit	is	running.

Guided	mode
The	guided	mode	features	a	menu-based	user	interface	where	you	can	accomplish	typical
tasks	by	selecting	the	corresponding	menu	items.	You	can	start	the	guided	mode	by
double-clicking	on	the	Toolkit.cmd	(Windows)	or	Toolkit.command	(Mac	OS	X)	file	in
the	directory	where	you	have	copied	the	toolkit	files.	This	should	open	the	terminal
window	and	present	a	text-based	menu	as	shown	in	the	following	screenshot:

The	Elcomsoft	iOS	Forensic	Toolkit	welcome	screen

When	running	in	the	guided	mode,	the	toolkit	logs	all	the	activities	to	a	text	file.	Each	time
the	toolkit	is	started,	a	new	log	file	is	created	in	the	user’s	home	directory	and	the	output
of	all	the	invoked	commands	as	well	as	user	choices	are	written	to	that	file.

To	perform	the	physical	acquisition	of	iPhone	4	and	older	devices	with	EIFT,	follow	the
steps	provided:

1.	 Put	the	device	in	the	DFU	mode.	You	can	do	this	by	selecting	the	menu	item	1	and
following	the	onscreen	instructions.

2.	 After	the	device	has	been	put	in	the	DFU	mode,	load	the	ramdisk	with	the	acquisition
tools	by	selecting	menu	item	2	or	answer	y	to	the	prompt	that	follows	the	DFU
procedure.	It	automatically	detects	the	type	of	the	device	and	loads	the	compatible
ramdisk	onto	it.	When	ramdisk	is	successfully	loaded,	the	device	screen	will	show

the	Elcomsoft	logo.
3.	 Recover	the	device	passcode	by	selecting	menu	item	3.	The	toolkit	can	recover	a

simple	4-digit	passcode	in	less	than	20	minutes.	It	also	provides	options	to	perform
dictionary	(wordlist)	and	brute	force	attacks	on	complex	passwords,	as	shown	in	the
following	screenshot:

The	EIFT	passcode	recovery	options

4.	 Extract	the	encryption	keys	required	to	decrypt	files	and	keychain	items	by	selecting
menu	item	4.	You	will	be	prompted	to	supply	the	device	passcode,	if	known,	of	the
escrow	file	if	you	have	access	to	the	host	computer	and	a	filename	to	save	the	keys.	If
the	filename	is	not	supplied,	the	toolkit	extracts	the	keys	and	stores	it	in	the
keys.plist	file	in	the	user’s	home	directory.

5.	 After	extracting	the	keys,	to	decrypt	the	keychain	items,	select	menu	item	5.	The
toolkit	uses	the	keys	stored	in	the	keys.plist	file,	decrypts	the	keychain	items,	and
stores	it	in	the	keychain.txt	file	in	the	user’s	home	directory.

6.	 To	acquire	the	physical	image	of	the	device’s	file	system,	select	the	menu	item	6.	You
will	be	prompted	to	choose	the	device	partition	(system	and	user	data)	to	image,	as
shown	in	the	following	screenshot:

EIFT—selecting	partition	to	image	option

After	selecting	the	partition,	the	window	prompts	you	for	a	filename	to	save	the
image.	If	the	filename	is	not	supplied,	it	extracts	the	raw	file	system	from	the	device
and	stores	it	as	a	user.dmg	file	in	the	user’s	home	directory.	Best	practices	include
acquiring	both	the	user	and	system	partitions.

7.	 After	the	acquisition,	you	can	reboot	the	device	to	function	normally	by	selecting
menu	item	9.

8.	 To	decrypt	the	acquired	image,	select	menu	item	7.	You	will	be	prompted	to	provide
filenames	of	the	encrypted	image,	device	keys,	and	a	filename	to	save	the	decrypted
image.	If	the	filename	is	not	supplied,	it	decrypts	the	image	and	stores	it	as	user-
decrypted.dmg	in	the	user’s	home	directory.	The	toolkit	also	computes	the	SHA1
hash	of	the	decrypted	image	file.	EIFT	is	also	capable	of	performing	physical
acquisition	of	a	jailbroken	iPhone	4S	and	newer	devices	running	on	iOS	5/6/7.	At	the
time	of	writing	this,	EIFT	is	the	only	tool	that	supports	physical	acquisition	of	the
iPhone	4S	and	newer	devices	running	with	iOS	7.	EIFT	requires	the	OpenSSH
package	to	be	installed	on	the	device	to	perform	acquisition	on	newer	devices.
OpenSSH	runs	the	SSH	server	on	the	device	and	allows	you	to	copy	and	run	the
acquisition	tools.	Once	the	SSH	server	is	running	on	the	device,	you	can	follow	steps
3	to	8	to	acquire	a	raw	disk	image	from	an	iPhone	4S	and	newer	devices.

Manual	mode
The	manual	mode	lets	you	interact	with	tools	directly	using	the	command-line	interface.
This	mode	allows	greater	flexibility	and	is	recommended	if	you	are	comfortable	with
using	command-line	tools.	The	commands	required	to	accomplish	typical	tasks	in	the
manual	mode	are	well	documented	in	the	technical	guide	that	comes	with	the	toolkit.

The	toolkit	is	capable	of	performing	physical	and	logical	acquisition	of	the	device’s	file

system.	But	it	does	not	provide	options	to	analyze	the	acquired	data	and	recover	the
deleted	data.	However,	you	can	supply	the	.dmg	file	acquired	with	EIFT	to	Oxygen
Forensic	Suite,	Cellebrite	Physical	Analyzer,	and	other	tools	for	data	analysis	and
recovery.

EIFT-supported	devices
Elcomsoft	iOS	Forensic	Toolkit	Version	1.23	supports	most	iOS	devices,	however	some
must	be	jailbroken.	The	following	figure	is	taken	directly	from	the	help	document	that
comes	with	the	toolkit:

EIFT	supported	devices

Compatibility	notes
The	following	are	the	compatibilities	of	EIFT-supported	devices:

Support	for	iPhone	4S/5/5S/5C,	iPad	2	and	later	versions,	and	iPod	Touch	5th
generation	devices	is	currently	limited	to	jailbroken	devices.
iOS	versions	before	3.x	store	the	device	passcode	in	the	keychain.	On	these	devices,
the	passcode	is	recovered	instantly	during	the	encryption	key	and	keychain	data
recovery.
Devices	running	iOS	versions	before	3.x	do	not	have	data	protection	enabled	and
user	partition	is	not	encrypted.
If	a	device	was	shipped	with	iOS	3.x	installed	and	was	updated	to	iOS	4.x	without
reset	(which	erases	all	contents	and	settings),	that	is,	using	the	Update	option	in
iTunes	instead	of	Restore,	then	data	protection	is	not	enabled	and	the	user	partition	is
not	encrypted.

Oxygen	Forensic	Suite	2014
Oxygen	Forensic	Suite	2014	is	an	advanced	forensic	software	to	extract	and	analyze	data
from	cell	phones,	smartphones,	PDAs,	and	other	mobile	devices.	The	software	provides
logical	support	for	the	widest	range	of	mobile	devices	and	allows	fully	automated	forensic
acquisition	and	analysis.	Currently,	Oxygen	Forensic	Suite	2014	Version	6.1	supports
more	than	7,700	different	model	mobile	devices.

Oxygen	Forensic	Suite	2014	uses	proprietary	low-level	protocols	to	extract	data	from
smartphones.	Besides	data	extraction,	Oxygen	Forensic	Suite	also	gives	you	the
opportunity	to	import	a	backup/image	file	obtained	using	other	forensic	tools,	such	as
Cellebrite,	Elcomsoft,	XRY,	iTunes,	and	Lantern	Lite	for	data	analysis.	It	also	stores	the
database	of	all	the	analyzed	devices,	so	you	can	always	view	the	previously	extracted	data
or	use	a	powerful	multiphone	search	feature	to	find	the	required	details.

Oxygen	Forensic	Suite	2014	is	available	only	for	the	Windows	platform	and	requires
iTunes	to	be	installed	on	the	computer.	The	software	costs	$2,999	for	the	full	version,	and
a	freeware	version	is	also	available	with	limited	functionalities.	The	software	operates
with	original	and	jailbroken	devices	and	extracts	the	following	data:	phonebook	with
assigned	photos,	calendar	events	and	notes,	call	logs,	messages,	camera	snapshots,	video
and	music,	voice	mail,	passwords,	dictionaries,	geopositioning	data,	Wi-Fi	points	with
passwords	and	coordinates,	IP	connections,	locations,	navigation	applications,	device	data,
factory	installed,	third-party	applications	data,	and	so	on.	It	also	recovers	deleted	data
from	SQLite	databases	and	can	recover	calls,	messages,	e-mail	messages,	e-mail	accounts,
photo	thumbnails,	contact	photos,	and	so	on.	This	tool	does	not	support	physical
acquisition,	thus	a	full	forensic	image	cannot	be	obtained.	For	more	information,	visit
http://www.oxygen-forensic.com/de/compare/devices/software-for-iphone.

http://www.oxygen-forensic.com/de/compare/devices/software-for-iphone

Features	of	Oxygen	Forensic	Suite
The	following	are	the	features	of	Oxygen	Forensic	Suite:

It	supports	logical	acquisition.	Logical	acquisition	recovers	the	active	files	on	the
device.	Deleted	data	may	be	obtained	if	the	SQLite	database	is	recovered.	Physical
and	file	system	acquisition	are	not	supported	by	this	tool.	Both	of	these	acquisition
methods	provide	access	to	the	raw	file	system	data	of	the	iOS	device.
Password	recovery	from	a	keychain.
Read	backup/images	obtained	using	other	forensic	tools.
Timeline:	This	provides	a	single-place	access	to	all	the	user’s	activities	and
movements	arranged	by	date	and	time.
Zero-footprint	operation:	This	leaves	no	traces	and	alterations	to	device	contents.
It	supports	aggregated	contacts.	This	automatically	combines	accounts	from	different
sources	in	one	metacontact	for	each	person.	(Caution:	Make	sure	you	know	where	the
data	is	coming	from!	You	should	manually	examine	each	file	to	ensure	nothing	is
overlooked	and	that	the	data	is	being	reported	correctly.)
It	recovers	deleted	data	automatically.
It	provides	access	to	raw	files	for	manual	analysis.	(Note:	These	are	the	raw	database
files	associated	with	each	application,	not	the	raw	file	system	partitions.)
It	provides	an	intuitive	and	user-friendly	UI	to	browse	the	extracted	data.
It	provides	keyword	lists	and	a	regular	expression	library	in	order	to	search.
Report	generation	in	several	popular	formats—Microsoft	Excel,	PDF,	HTML,	and	so
on.

Usage	of	Oxygen	Forensic	Suite
The	acquisition	of	an	iOS	device	is	simple	and	straightforward	with	Oxygen	Forensic
Suite	2014.	The	software	helps	you	to	connect	a	device	in	several	mouse	clicks	and
downloads	all	the	available	device	information	in	just	a	few	minutes.

To	perform	the	acquisition	of	an	iOS	device	using	Oxygen	Forensic	Suite	2014,	follow	the
steps	provided:

1.	 Launch	Oxygen	Forensic	Suite	2014	and	click	on	the	Connect	new	device	button.
You	will	be	prompted	to	choose	the	connection	mode,	as	shown	in	the	following
screenshot:

Oxygen	Forensic	Suite—the	Connection	Mode	screen

2.	 Connect	the	iOS	device	to	the	computer	using	a	USB	cable	and	choose	the	Auto
device	connection	mode.	It	detects	the	connected	device	and	displays	the	device
information,	as	shown	in	the	following	screenshot.	You	can	also	manually	choose
your	device.

Oxygen	Forensic	Suite—the	device	information	screen

3.	 Click	on	Next.	It	prompts	you	to	fill	in	the	information	about	the	device	and	the	case.
Continuing	further,	it	prompts	you	to	select	the	data	types	to	be	extracted	from	the
device,	as	shown	in	the	following	screenshot:

4.	 Click	on	Next.	It	extracts	the	data	from	the	device	and	the	process	takes	a	few
minutes	depending	on	the	amount	of	data	stored	on	the	device.	Once	the	process	is
complete,	the	software	displays	a	summary	of	the	extracted	data,	as	shown	in	the
following	screenshot:

Oxygen	Forensic	Suite—the	extracted	data	summary	screen

5.	 After	the	download	process	is	complete,	you	can	use	the	automatic	forensic	report
generation	function	and	export	the	extracted	data	to	a	PDF	file.	The	device	data
report	appears	as	shown	in	the	following	screenshot.	You	can	also	open	the	device
image	in	Oxygen	for	a	manual	look	at	the	data.

Oxygen	Forensic	Suite	2014	supported	devices
Oxygen	Forensic	Suite	2014	Version	6.1	supports	logical	acquisition	of	all	iOS	devices.
Keep	in	mind	that	access	to	newer	devices	may	require	the	device	to	be	unlocked	or
jailbroken.

Cellebrite	UFED	Physical	Analyzer
As	per	the	vendor,	Cellebrite	UFED	(Universal	Forensic	Extraction	Device)	empowers
law	enforcement,	anti-terrorism,	and	security	organizations	to	capture	critical	forensic
evidence	from	mobile	phones,	smartphones,	PDAs,	and	portable	handset	varieties,
including	updates	for	newly	released	models.	The	tool	enables	forensically	sound	data
extraction,	decoding,	and	analysis	techniques	to	obtain	existing	and	deleted	data	from
different	mobile	devices.	As	of	February	2014,	UFED	supports	data	extraction	from	more
than	5,320	mobile	devices.

The	Cellebrite	UFED	Physical	Analyzer	application	can	be	used	to	perform	physical	and
advanced	logical	acquisitions	of	iOS	devices.	Advanced	logical	acquisitions	are	the	same
as	file	system	acquisitions	in	which	access	to	the	file	system	data	is	provided.	Physical
acquisition	on	iOS	devices	using	the	A5-A7	chip	(iPhone	4s	and	newer)	is	not	possible.
Thus,	the	advanced	logical	acquisition	method	is	the	best	support	and	will	pull	the	most
data	from	these	devices	if	they	are	unlocked	(even	if	they	are	not	jailbroken).	The
application	is	available	only	for	Windows	platforms.	Cellebrite	also	offers	a	30-day	free
trial	for	the	software.	For	more	information,	visit	http://www.cellebrite.com/mobile-
forensics/products/applications/ufed-physical-analyzer.

http://www.cellebrite.com/mobile-forensics/products/applications/ufed-physical-analyzer

Features	of	Cellebrite	UFED	Physical	Analyzer
The	following	are	the	features	of	Cellebrite	UFED	Physical	Analyzer:

Supports	physical	and	advanced	logical	acquisition	(file	system	acquisition)
Extracts	device	keys	required	to	decrypt	raw	disk	images	as	well	as	keychain	items
Decrypts	raw	disk	images	and	keychain	items
Reveals	device	passwords	(not	available	for	all	locked	devices)
Allows	to	open	an	encrypted	raw	disk	image	file	with	a	known	password
Supports	passcode	recovery	attacks
Advanced	analysis	and	decoding	of	extracted	applications	data
Reports	generation	in	several	popular	formats—Microsoft	Excel,	PDF,	HTML,	and
so	on.
Ability	to	dump	the	raw	file	system	partition	to	import	and	examine	it	in	another
forensic	tool

Usage	of	Cellebrite	UFED	Physical	Analyzer
To	perform	the	physical	acquisition	of	an	iPhone	4	and	older	devices	with	UFED	Physical
Analyzer,	follow	the	steps	provided.	Note	that	physical	acquisition	is	not	supported	for
newer	iOS	devices	(iPhone	4S	and	newer).

1.	 Launch	UFED	Physical	Analyzer	and	navigate	to	the	Extract	|	iOS	Device
Extraction	menu.	You	will	be	prompted	with	the	iOS	device	data	extraction	wizard,
as	shown	in	the	following	screenshot:

UFED	Physical	Analyzer—the	iOS	Device	Data	Extraction	Wizard	screen

2.	 Click	on	Physical	mode.	The	first	time	you	run	iOS	device	extraction,	you	will	be
prompted	to	download	and	install	the	iOS	support	package.

3.	 Follow	the	instructions	displayed	on	the	screen	to	turn	off	the	device	and	place	it	in
the	recovery	mode.	Once	the	tool	detects	the	device	in	the	recovery	mode,	it	displays
the	device	information,	as	shown	in	the	following	figure:

UFED	Physical	Analyzer—the	device	information	screen

4.	 Click	on	Next	and	put	the	device	in	the	DFU	mode.	When	the	device	is	detected	in
the	DFU	mode,	the	software	loads	the	acquisition	tools	onto	the	device.

5.	 Once	the	device	is	ready	for	extraction,	you	will	be	prompted	to	choose	the	desired
extraction	type.	Click	on	Physical	Extraction	and	choose	the	partition	you	wish	to
extract	and	the	location	where	you	want	to	save	the	extraction.

6.	 Continue	further	and	click	on	Recover	the	passcode	for	me	to	recover	the	passcode
prior	to	the	extraction.

7.	 Click	on	Continue.	The	tool	extracts	the	file	system	image	and	decrypts	it.

Supported	devices
UFED	Physical	Analyzer	Version	3.9	supported	iOS	devices	are	shown	in	the	following
table:

Model iOS	version Physical	acquisition Logical	acquisition

iPhone,	iPhone	3G,	iPod	Touch	1,	2 iOS	1/2/3/4 Yes Yes

iPhone	3GSiPod	Touch	3iPad	1 iOS	3/4/5 Yes Yes

iPhone	4iPod	Touch	4 iOS	4/5/6/7 Yes Yes

iPhone	4S,	5,	5C,	5SiPad	2,	3,	4,	iPad	mini,	and	iPod	Touch	5 iOS	5/6/7 No Yes

Paraben	iRecovery	Stick
As	per	the	vendor,	the	iRecovery	Stick	contains	specialized	investigation	software	on	a
USB	drive	that	allows	anyone	to	investigate	data	on	Apple	iOS	devices	such	as	an	iPhone,
iPad,	and	iPod	Touch.	The	iRecovery	Stick	acquires	a	user’s	data	directly	from	the	device
or	from	iTunes	backup	files.	The	iRecovery	Stick	also	recovers	deleted	data	from	SQLite
databases	and	can	recover	data	such	as	messages,	contacts,	call	history,	Internet	history,
and	calendar	events.	Note	that	this	is	not	a	physical	acquisition	but	is	simply	acquiring	and
parsing	raw	database	files	logically.

The	iRecovery	Stick	costs	$129	and	works	on	Windows	platforms.	For	better	recovery,
iRecovery	Stick	recommends	turning	off	the	antivirus	software	running	on	the	computer.
For	more	information,	visit	http://www.paraben.com/irecovery-stick.html.

http://www.paraben.com/irecovery-stick.html

Features	of	Paraben	iRecovery	Stick
The	following	are	the	features	of	Paraben	iRecovery	Stick:

It	supports	logical	acquisition
It	recovers	deleted	data	from	SQLite	files
It	is	easy	to	use	and	portable
It	is	inconspicuous.	It	resembles	a	commonly	used	USB	thumb	drive,	so	it	can	be
used	as	a	spy	device	and	no	one	would	suspect	that	the	device	is	used	to	recover	data
from	an	iPhone.
It	logs	the	recovery	process	based	on	the	plugin	activity	and	traffic	across	the
communication	port.
It	supports	data	analysis	and	reporting	in	several	formats,	such	as	Excel	and	PDF.

Usage	of	Paraben	iRecovery	Stick
The	iRecovery	Stick	is	a	USB	flash	drive	that	contains	the	recovery	software
iRecoveryStick.exe.

To	perform	the	acquisition	of	an	iOS	device	using	iRecovery	Stick,	follow	these	steps:

1.	 Connect	the	iOS	device	to	the	computer	using	a	USB	cable.	Launch	the	iRecovery
Stick	software	and	click	on	the	Start	Recovery	button.	You	will	be	prompted	to
choose	the	connected	device,	as	shown	in	the	following	screenshot:

iRecovery	Stick—the	Choose	connected	device	screen

2.	 Click	on	the	device	icon	and	it	starts	extracting	the	data	from	the	device.	The	data
extraction	process	takes	a	few	minutes	depending	on	the	amount	of	data	stored	on	the
device.

3.	 Once	the	process	is	complete,	the	software	displays	a	summary	of	extracted	data,	as
shown	in	the	following	screenshot:

iRecovery	Stick—the	extracted	data	summary

Devices	supported	by	Paraben	iRecovery	Stick
Paraben	iRecovery	Stick	Version	3.5	supports	logical	acquisition	of	all	iOS	devices.	The
amount	of	data	acquired	will	depend	on	how	much	data	is	present	on	the	iOS	device,
whether	the	device	was	locked,	and	whether	the	device	was	jailbroken.

Open	source	or	free	methods
Several	methods	are	available	to	acquire	and	analyze	iOS	devices	for	free.	Most	of	these
tools	have	been	built	by	practitioners	in	mobile	forensics	who	recognize	the	need	for
affordable	solutions	that	work	to	obtain	the	same	amount	of	data	as	commercial	kits.	Jon
Zdziarski	has	developed	several	scripts,	tools,	and	methods	to	acquire	data	from	iOS
devices.	Some	of	his	methods	such	as	physical	acquisition	scripts	are	restricted	to	law
enforcement.	Zdziarksi	released	his	instructions	to	acquire	data	from	iOS	devices	and	this
can	be	read	at	http://www.zdziarski.com/blog/wp-content/uploads/2013/05/iOS-Forensic-
Investigative-Methods.pdf.

There	are	other	tools	that	exist	so	you	can	logically	acquire	and	analyze	iOS	device
images	and	backup	files.	Some	of	these	tools	include	iFunBox,	iExplorer,	iBackupBot,
and	more.	Make	sure	that	you	test	these	tools	before	relying	on	them	for	a	forensic
investigation.	Again,	they	are	either	free	or	request	a	donation	for	use.	They	are	developed
by	the	community	for	examiners	to	use.	They	often	do	not	go	through	rigorous	amounts	of
testing	and	validation	and	may	miss	data	that	can	be	manually	extracted	by	the	examiner.
It	is	the	examiner’s	responsibility	to	learn	the	tool,	test	it,	and	know	its	flaws	in	order	to
recover	all	of	the	available	data.

http://www.zdziarski.com/blog/wp-content/uploads/2013/05/iOS-Forensic-Investigative-Methods.pdf

Summary
Forensic	tools	are	helpful	for	an	investigator	as	they	not	only	save	time	but	also	make	the
process	a	lot	easier.	This	chapter	introduced	you	to	several	available	iOS	forensic	tools
and	included	the	steps	to	perform	acquisition	of	an	iOS	device.	Examiners	should	take
further	steps	to	validate	and	understand	each	tool	that	might	be	used	as	part	of	an
investigation.	In	the	next	chapter,	we	will	dive	into	Android	forensics	and	provide
information	on	what	Android	is,	how	the	devices	store	data,	and	how	to	access	the	files
and	applications	that	are	required	for	forensic	examinations.

Chapter	7.	Understanding	Android
Before	we	take	a	dive	into	the	ocean	of	Android	let	us	first	spend	some	time	discussing	the
evolution	of	Android	or	what	we	call	The	Android	Story.	Back	in	2005,	Google	started
investing	money	in	start-up	companies,	which	it	thought	would	be	profitable	in	the	future.
Android	Inc.,	founded	in	2003	by	Andy	Rubin,	Rich	Miner,	Nick	Sears,	and	Chris	White,
was	one	such	company	acquired	by	Google	that	later	turned	out	to	be	the	best	deal	ever.
During	its	first	two	years,	Android	Inc.	operated	under	secrecy.	It	described	itself	as	a
company	“making	software	for	mobile	phones”.	Rubin	later	stayed	with	Google	to	pioneer
Android	as	an	operating	system	that	revolutionized	the	way	mobile	handsets	operate.	With
this	acquisition	it	was	clear	that	Google	was	eyeing	the	mobile	phone	market.	At	Google,
Rubin,	along	with	his	team,	developed	a	powerful	and	flexible	operating	system	built	on	a
Linux	kernel.	There	were	speculations	all	over	about	what	Google	was	trying	to	do.	Some
reported	that	Google	was	trying	to	incorporate	search	and	other	applications	into	mobile
handsets.	A	few	others	reported	that	Google	was	developing	its	own	mobile	handset.
Finally	in	2007,	Open	Handset	Alliance	(OHA),	a	group	of	technology	companies,
device	manufacturers,	chipset	makers,	and	wireless	carriers,	was	formed	with	the	main
objective	of	proposing	open	standards	for	the	mobile	platform.	Together	they	developed
Android,	the	first	open	and	free	mobile	platform	built	on	Linux	kernel	2.6.	Later	in	2008,
HTC	Dream	was	released	which	was	the	first	phone	to	run	the	Android	operating	system.
After	that,	it	was	a	dream	run	for	Android,	with	its	market	share	increasing	exponentially
over	the	next	few	years.	A	breakdown	on	the	history	of	Android	can	be	found	at
http://www.xcubelabs.com/the-android-story.php.	Several	versions	of	its	Linux-based
operating	system	have	been	released	in	alphabetical	order.

The	version	history	of	Android	can	be	found	at	http://faqoid.com/advisor/android-
versions.php,	an	overview	of	which	is	shown	in	the	following	table:

Version Version	name Release	year

Android	1.0 Apple	pie 2008

Android	1.1 Banana	bread 2009

Android	1.5 Cupcake 2009

Android	1.6 Donut 2009

Android	2.0 Eclair 2009

Android	2.2 Froyo 2010

Android	2.3 Gingerbread 2010

Android	3.0 Honeycomb 2011

Android	4.0 Ice	Cream	Sandwich 2011

http://www.xcubelabs.com/the-android-story.php
http://faqoid.com/advisor/android-versions.php

Android	4.1 Jelly	Bean 2012

Android	4.4 KitKat 2013

The	Android	model
To	effectively	understand	the	forensic	concepts	of	Android,	it	would	be	helpful	to	have	a
basic	understanding	of	the	Android	architecture.	Just	like	a	computer,	any	computing
system	that	interacts	with	the	user	and	performs	complicated	tasks	requires	an	operating
system	to	handle	the	tasks	effectively.	This	operating	system	(whether	it’s	a	desktop
operating	system	or	a	mobile	phone	operating	system)	takes	the	responsibility	to	manage
the	resources	of	the	system	and	to	provide	a	way	for	the	applications	to	talk	to	the
hardware	or	physical	components	to	accomplish	certain	tasks.	Android	is	currently	the
most	popular	mobile	operating	system	designed	to	power	mobile	devices.	You	can	find	out
more	about	this	at	http://developer.android.com/about/index.html.	Android	is	open	source
and	the	code	is	released	under	Apache	license.	Practically,	this	means	anyone	(especially
device	manufacturers)	can	access	it,	freely	modify	it,	and	use	the	software	according	to	the
requirements	of	any	device.	This	is	one	of	the	primary	reasons	for	its	wide	acceptance.
Notable	players	that	use	Android	include	Samsung,	HTC,	Sony,	LG,	and	so	on.

As	with	any	other	platform,	Android	consists	of	a	stack	of	layers	running	one	above	the
other.	To	understand	the	Android	ecosystem,	it’s	essential	to	have	a	basic	understanding	of
what	these	layers	are	and	what	they	do.	The	following	figure	summarizes	the	various
layers	involved	in	the	Android	software	stack	(https://viaforensics.com/wp-
content/uploads/2009/08/Android-Forensics-Andrew-Hoog-viaForensics.pdf):

http://developer.android.com/about/index.html
https://viaforensics.com/wp-content/uploads/2009/08/Android-Forensics-Andrew-Hoog-viaForensics.pdf

Android	architecture

Each	of	these	layers	performs	several	operations	that	support	specific	operating	system
functions	(http://www.android-app-market.com/android-architecture.html).	Each	layer
provides	services	to	the	layers	lying	on	top	of	it.

http://www.android-app-market.com/android-architecture.html

The	Linux	kernel	layer
Android	OS	is	built	on	top	of	the	Linux	kernel	with	some	architectural	changes	made	by
Google.	There	are	several	reasons	for	choosing	the	Linux	kernel.	Most	importantly,	Linux
is	a	portable	platform	that	can	be	compiled	easily	on	different	hardware.	The	kernel	acts	as
an	abstraction	layer	between	the	software	and	hardware	present	on	the	device.	Consider
the	case	of	a	camera	click.	What	happens	when	you	click	a	photo	using	the	camera	button
on	your	device?	At	some	point,	the	hardware	instruction	(pressing	a	button)	has	to	be
converted	to	a	software	instruction	(to	take	a	picture	and	store	it	in	the	gallery).	The	kernel
contains	drivers	to	facilitate	this	process.	When	the	user	clicks	on	the	button,	the
instruction	goes	to	the	corresponding	camera	driver	in	the	kernel,	which	sends	the
necessary	commands	to	the	camera	hardware,	similar	to	what	occurs	when	a	key	is
pressed	on	a	keyboard.	In	simple	words,	the	drivers	in	the	kernel	command	control	the
underlying	hardware.	As	shown	in	the	preceding	figure,	the	kernel	contains	drivers	related
to	Wi-Fi,	Bluetooth,	USB,	audio,	display,	and	so	on.

The	Linux	kernel	is	responsible	for	managing	the	core	functionality	of	Android,	such	as
process	management,	memory	management,	security,	and	networking.	Linux	is	a	proven
platform	when	it	comes	to	security	and	process	management.	Android	has	taken	leverage
of	the	existing	Linux	open	source	OS	to	build	a	solid	foundation	for	its	ecosystem.	Each
version	of	Android	has	a	different	version	of	the	underlying	Linux	kernel.	The	current
KitKat	Android	version	is	rumored	to	use	Linux	kernel	3.8
(http://www.phonearena.com/news/Android-4.4-KitKat-update-release-date-features-and-
rumors_id47661).

http://www.phonearena.com/news/Android-4.4-KitKat-update-release-date-features-and-rumors_id47661

Libraries
The	next	layer	in	the	Android	architecture	consists	of	Android’s	native	libraries.	The
libraries	are	written	in	the	C	or	C++	language	and	help	the	device	to	handle	different	kinds
of	data.	For	example,	the	SQLite	libraries	are	useful	for	storing	and	retrieving	the	data
from	a	database.	Other	libraries	include	Media	Framework,	WebKit,	Surface	Manager,
SSL,	and	so	on.	The	Media	Framework	library	acts	as	the	main	interface	to	provide	a
service	to	the	other	underlying	libraries.	The	WebKit	library	provides	web	pages	in	web
browsers	and	the	surface	manager	maintains	the	graphics.	In	the	same	layer,	we	have
Android	Runtime,	which	consists	of	Dalvik	virtual	machine	(DVM)	and	core	libraries.
The	Android	runtime	is	responsible	for	running	applications	on	Android	devices.	The	term
“runtime”	refers	to	the	lapse	in	time	from	when	an	application	is	launched	until	it	is	shut
down.

Dalvik	virtual	machine
All	the	applications	that	you	install	on	the	Android	device	are	written	in	the	Java
programming	language.	When	a	Java	program	is	compiled,	we	get	bytecode.	JVM	is	a
virtual	machine	(a	virtual	machine	is	an	application	that	acts	as	an	operating	system,	that
is,	it	is	possible	to	run	a	Windows	OS	on	a	Mac	or	vice	versa	by	using	a	virtual	machine)
that	can	execute	this	bytecode.	But	Android	uses	something	called	Dalvik	virtual
machine	(DVM)	to	run	its	applications.

DVM	runs	Dalvik	bytecode,	which	is	Java	bytecode	converted	by	the	Dex	compiler
(http://markfaction.wordpress.com/2012/07/15/stack-based-vs-register-based-virtual-
machine-architecture-and-the-dalvik-vm/).	Thus,	the	.class	files	are	converted	to	dex
files	using	the	dx	tool.	Dalvik	bytecode	when	compared	with	Jave	bytecode	is	more
suitable	for	low-memory	and	low-processing	environments.	Also,	note	that	JVM’s
bytecode	consists	of	one	or	more	.class	files	depending	on	the	number	of	Java	files	that
are	present	in	an	application,	but	Dalvik	bytecode	is	composed	of	only	one	dex	file.	Each
Android	application	runs	its	own	instance	of	Dalvik	virtual	machine.	This	is	a	crucial
aspect	of	Android	security	and	will	be	addressed	in	detail	in	Chapter	8,	Android	Forensic
Setup	and	Pre	Data	Extraction	Techniques.	The	following	figure	provides	an	insight	into
how	Android’s	DVM	differs	from	Java’s	JVM.

JVM	versus	DVM

http://markfaction.wordpress.com/2012/07/15/stack-based-vs-register-based-virtual-machine-architecture-and-the-dalvik-vm/

The	application	framework	layer
The	application	framework	is	the	layer	responsible	for	handling	the	basic	functioning	of	a
phone,	such	as	resource	management,	handling	calls,	and	so	on.	This	is	the	block	with
which	the	applications	installed	on	the	device	directly	talk	to	it.	The	following	are	some	of
the	important	blocks	in	the	application	framework	layer:

Telephony	Manager:	This	block	manages	all	the	voice	calls
Content	Provider:	This	block	manages	the	sharing	of	data	between	different
applications
Resource	Manager:	This	block	helps	manage	various	resources	used	in	applications

The	applications	layer
This	is	the	topmost	layer	where	the	user	can	interact	directly	with	the	device.	There	are
two	kinds	of	applications—preinstalled	applications	and	user-installed	applications.
Preinstalled	applications,	such	as	Dialer,	Web	Browser,	Contacts,	and	more	come	along
with	the	device.	User-installed	applications	can	be	downloaded	from	different	places,	such
as	Google	Play	Store,	Amazon	Marketplace,	and	so	on.	Everything	that	you	see	on	your
phone	(contacts,	mail,	camera,	and	so	on)	is	an	application.

Android	security
Android	was	designed	with	a	specific	focus	on	security.	Android	as	a	platform	offers	and
enforces	certain	features	that	safeguard	the	user	data	present	on	the	mobile	through
multilayered	security.	There	are	certain	safe-defaults	that	will	protect	the	user	and	certain
offerings	that	can	be	leveraged	by	the	development	community	to	build	secure
applications.	The	following	are	issues	which	are	kept	in	mind	while	incorporating	the
Android	security	controls:

Protecting	user-related	data
Safeguarding	the	system	resources
Making	sure	one	application	cannot	access	the	data	of	another	application

The	next	few	concepts	help	us	understand	more	about	Android’s	security	features	and
offerings.	A	detailed	explanation	on	Android	security	can	be	found	at
http://source.android.com/devices/tech/security/.

http://source.android.com/devices/tech/security/

Secure	kernel
Linux	has	evolved	as	a	trusted	platform	over	the	years,	and	Android	has	leveraged	this
fact	by	using	it	as	its	kernel.	The	user-based	permission	model	of	Linux	has	in	fact	worked
well	for	Android.	As	mentioned	earlier,	there	is	a	lot	of	specific	code	built	into	the	Linux
kernel.	With	each	Android	version	release,	the	kernel	version	has	also	changed.	The
following	table	shows	Android	versions	and	their	corresponding	kernel	versions:

Android	version Linux	kernel	version

1 2.6.25

1.5 2.6.27

1.6 2.6.29

2.2 2.6.32

2.3 2.6.35

3 2.6.36

4 3.0.1

4.1 3.0.31

4.2 3.4.0

4.2 3.4.39

4.4 3.8

Linux	kernel	versions	used	in	Android

The	permission	model
As	shown	in	the	following	screenshot,	any	Android	application	must	be	granted
permissions	to	access	sensitive	functionality,	such	as	the	Internet,	dialer,	and	so	on,	by	the
user.	This	provides	an	opportunity	for	the	user	to	know	in	advance	what	functionality	on
the	device	the	application	is	trying	to	access.	Simply	put,	it	requires	the	user’s	permission
to	perform	any	kind	of	malicious	activity	(stealing	data,	compromising	the	system,	and	so
on).

This	model	helps	the	user	to	prevent	attacks,	but	if	the	user	is	unaware	and	gives	away	a
lot	of	permissions,	it	leaves	them	in	trouble	(remember	when	it	comes	to	installing
malware	on	any	device,	the	weakest	link	is	always	the	user).

The	permission	model	in	Android

Application	sandbox
In	Linux	systems,	each	user	is	assigned	a	unique	user	ID	(UID),	and	users	are	segregated
so	that	one	user	can	access	the	data	of	another	user.	However,	all	applications	under	a
particular	user	are	run	with	the	same	privileges.	Similarly	in	Android,	each	application
runs	as	a	unique	user.	In	other	words,	a	UID	is	assigned	to	each	application	and	is	run	as	a
separate	process.	This	concept	ensures	an	application	sandbox	at	the	kernel	level.	The
kernel	manages	the	security	restrictions	between	the	applications	by	making	use	of
existing	Linux	concepts,	such	as	UID	and	GID.	If	an	application	attempts	to	do	something
malicious,	say	to	read	the	data	of	another	application,	this	is	not	permitted	as	the
application	does	not	have	the	user	privileges.	Hence,	the	operating	system	protects	an
application	from	accessing	the	data	of	another	application.

Secure	interprocess	communication
Android	offers	a	secure	interprocess	communication	through	which	one’s	activity	in	an
application	can	send	messages	to	another	activity	in	the	same	application	or	a	different
application.	To	achieve	this,	Android	provides	interprocess	communication	(IPC)
mechanisms:	intents,	services,	content	providers,	and	so	on.

Application	signing
It	is	mandatory	that	all	the	installed	applications	be	digitally	signed.	Developers	can	place
their	applications	in	Google’s	Play	Store	only	after	signing	the	applications.	The	private
key	with	which	the	application	is	signed	is	held	by	the	developer.	Using	the	same	key,	a
developer	can	provide	updates	to	their	application,	share	data	between	the	applications,
and	so	on.

Android	file	hierarchy
In	order	to	perform	forensic	analysis	on	any	system	(desktop	or	mobile),	it’s	important	to
understand	the	underlying	file	hierarchy.	A	basic	understanding	of	how	Android	organizes
its	data	in	files	and	folders	helps	a	forensic	analyst	narrow	down	their	research	to	specific
issues.	Just	like	any	other	operating	system,	Android	uses	several	partitions.	This	chapter
provides	an	insight	into	some	of	the	most	significant	partitions	and	the	content	stored	in
them.

It’s	worth	mentioning	again	that	Android	uses	the	Linux	kernel.	Hence,	if	you	are	familiar
with	Unix-like	systems,	you	will	very	well	understand	the	file	hierarchy	in	Android.	For
those	who	are	not	very	well	acquainted	with	the	Linux	model,	here	is	some	basic
information:	in	Linux,	the	file	hierarchy	is	a	single	tree	with	the	top	of	the	tree	being
denoted	as	/	(called	the	“root”).	This	is	different	from	the	concept	of	organizing	files	in
drives	(as	with	Windows).	Whether	the	file	system	is	local	or	remote,	it	will	be	present
under	the	root.	The	Android	file	hierarchy	is	a	customized	version	of	this	existing	Linux
hierarchy.	Based	on	the	device	manufacturer	and	the	underlying	Linux	version,	the
structure	of	this	hierarchy	may	have	a	few	insignificant	changes.	The	following	is	a	list	of
important	folders	that	are	common	to	most	Android	devices.	Some	of	the	folders	listed	are
only	visible	through	root	access.

/boot:	As	the	name	suggests,	this	partition	has	the	information	and	files	required	for
the	phone	to	boot.	It	contains	the	kernel	and	RAM	disk,	and	so	without	this	partition
the	phone	cannot	start	its	processes.	Data	residing	in	RAM	is	rich	in	value	and	should
be	captured	during	a	forensic	acquisition.
/system:	This	partition	contains	system-related	files	other	than	kernel	and	RAM	disk.
This	folder	should	never	be	deleted	as	that	will	make	the	device	unbootable.	The
contents	of	this	partition	can	be	viewed	by	using	the	following	command:

shell@Android:/	$	cd	/system

cd	/system

shell@Android:/system	$	ls

ls

CSCVersion.txt

SW_Configuration.xml

app

bin

build.prop

cameradata

csc

csc_contents

etc

fonts

framework

hdic

lib

media

recovery-from-boot.p

sipdb

tts

usr

vendor

voicebargeindata

vsc

wakeupdata

wallpaper

xbi

/recovery:	This	is	designed	for	backup	purposes	and	allows	the	device	to	boot	into
the	recovery	mode.	In	the	recovery	mode,	you	can	find	tools	to	repair	your	phone
installation.
/data:	This	is	the	partition	that	contains	the	data	of	each	application.	Most	of	the	data
belonging	to	the	user,	such	as	the	contacts,	SMS,	and	dialed	numbers,	is	stored	in	this
folder.	This	folder	has	significant	importance	from	a	forensic	point	of	view	as	it	holds
valuable	data.	The	contents	of	the	data	folder	can	be	viewed	using	the	following
command:

C:\Android-sdk-windows\platform-tools>adb.exe	shell

root@Android:/	#	cd	/data

cd	/data

root@Android:/data	#	ls

ls

anr

app

app-private

backup

camera

dalvik-cache

data

dontpanic

drm

local

lost+found

misc

property

resource-cache

system

system.notfirstrun

user

/cache:	This	is	the	folder	used	to	store	frequently	accessed	data	and	some	of	the	logs
for	faster	retrieval.	The	cache	partition	is	also	important	to	the	forensic	investigation
as	the	data	residing	here	may	no	longer	be	present	in	the	/data	partition.
/misc:	As	the	name	suggests,	this	folder	contains	information	about	miscellaneous
settings.	These	settings	mostly	define	the	state	of	the	device,	that	is	On/Off.
Information	about	hardware	settings,	USB	settings,	and	so	on,	can	be	accessed	from
this	folder.

Android	file	system
Understanding	the	file	system	is	one	essential	part	of	forensic	methodologies.	Knowledge
about	properties	and	the	structure	of	a	file	system	proves	to	be	useful	during	forensic
analysis.	File	system	refers	to	the	way	data	is	stored,	organized,	and	retrieved	from	a
volume.	A	basic	installation	may	be	based	on	one	volume	split	into	several	partitions;	here
each	partition	can	be	managed	by	a	different	file	system.	As	is	true	in	Linux,	Android
utilizes	mount	points	and	not	drives	(that	is	C:	or	E:).	Each	file	system	defines	its	own
rules	for	managing	the	files	on	the	volume.	Depending	on	these	rules,	each	file	system
offers	a	different	speed	for	file	retrieval,	security,	size,	and	so	on.	Linux	uses	several	file
systems,	and	so	does	Android.	From	a	forensic	point	of	view,	it’s	important	to	understand
what	file	systems	are	used	by	Android	and	to	identify	the	file	systems	that	are	of
significance	to	the	investigation.	For	example,	the	file	system	that	stores	the	user’s	data	is
of	primary	concern	to	us	as	against	a	file	system	used	to	boot	the	device.

Viewing	file	systems	on	an	Android	device
The	file	systems	supported	by	the	Android	kernel	can	be	determined	by	checking	the
contents	of	the	file	filesystems	in	the	proc	folder.	The	content	of	this	file	can	be	viewed
by	using	the	following	command:

shell@Android:/	$	cat	/proc/filesystems

cat	/proc/filesystems

nodev			sysfs

nodev			rootfs

nodev			bdev

nodev			proc

nodev			cgroup

nodev			tmpfs

nodev			binfmt_misc

nodev			debugfs

nodev			sockfs

nodev			usbfs

nodev			pipefs

nodev			anon_inodefs

nodev			devpts

								ext2

								ext3

								ext4

nodev			ramfs

								vfat

								msdos

nodev			ecryptfs

nodev			fuse

								fuseblk

nodev			fusectl

								exfat	

In	the	preceding	output,	the	first	column	tells	us	whether	the	file	system	is	mounted	on	the
device.	The	ones	with	the	nodev	property	are	not	mounted	on	the	device.	The	second
column	lists	all	the	file	systems	present	on	the	device.	A	simple	mount	command	displays
different	partitions	available	on	the	device,	as	follows:

shell@Android:/	$	mount

mount

rootfs	/	rootfs	ro,relatime	0	0

tmpfs	/dev	tmpfs	rw,nosuid,relatime,mode=755	0	0

devpts	/dev/pts	devpts	rw,relatime,mode=600	0	0

proc	/proc	proc	rw,relatime	0	0

sysfs	/sys	sysfs	rw,relatime	0	0

none	/acct	cgroup	rw,relatime,cpuacct	0	0

tmpfs	/mnt/asec	tmpfs	rw,relatime,mode=755,gid=1000	0	0

tmpfs	/mnt/obb	tmpfs	rw,relatime,mode=755,gid=1000	0	0

none	/dev/cpuctl	cgroup	rw,relatime,cpu	0	0

/dev/block/mmcblk0p9	/system	ext4	ro,noatime,barrier=1,data=ordered	0	0

/dev/block/mmcblk0p3	/efs	ext4	

rw,nosuid,nodev,noatime,barrier=1,journal_async_commit,data=ordered	0	0

/dev/block/mmcblk0p8	/cache	ext4	

rw,nosuid,nodev,noatime,barrier=1,journal_async_commit,data=ordered	0	0

/dev/block/mmcblk0p12	/data	ext4	

rw,nosuid,nodev,noatime,barrier=1,journal_async

_commit,data=ordered,noauto_da_alloc,discard	0	0

/sys/kernel/debug	/sys/kernel/debug	debugfs	rw,relatime	0	0

/dev/fuse	/storage/sdcard0	fuse	

rw,nosuid,nodev,noexec,relatime,user_id=1023,gro

up_id=1023,default_permissions,allow_other	0	0

The	next	few	sections	provide	a	brief	overview	of	the	important	file	systems.

The	root	file	system	(rootfs)	is	one	of	the	main	components	of	Android	and	contains	all
the	information	required	to	boot	the	device.	When	the	device	starts	the	boot	process,	it
needs	access	to	many	core	files	and	thus	mounts	the	root	file	system.	As	shown	in	the
preceding	mount	command-line	output,	this	file	system	is	mounted	at	/	(root	folder).
Hence,	this	is	the	file	system	on	which	all	the	other	file	systems	are	slowly	mounted.	If
this	file	system	is	corrupt,	the	device	cannot	be	booted.

The	sysfs	file	system	mounts	the	/sys	folder,	which	contains	information	about	the
configuration	of	the	device.	The	following	output	shows	various	folders	under	the	sys
directory	in	an	Android	device:

shell@Android:/	$	cd	/sys

cd	/sys

shell@Android:/sys	$	ls

ls

block

bus

class

dev

devices

firmware

fs

kernel

module

power

Since	the	data	present	in	these	folders	is	mostly	related	to	configuration,	this	is	not	usually
of	much	significance	to	a	forensic	investigator.	But	there	could	be	some	circumstances
where	we	might	want	to	check	if	a	particular	setting	was	enabled	on	the	phone,	and
analyzing	this	folder	could	be	useful	under	such	conditions.	Note	that	each	folder	consists
of	a	large	number	of	files.	Capturing	this	data	through	forensic	acquisition	is	the	best
method	to	ensure	this	data	is	not	changed	during	examination.

The	devpts	file	system	presents	an	interface	to	the	terminal	session	on	an	Android	device.
It	is	mounted	at	/dev/pts.	Whenever	a	terminal	connection	is	established,	for	instance,
when	an	adb	shell	is	connected	to	an	Android	device,	a	new	node	is	created	under
/dev/pts.	The	following	is	the	output	showing	this	when	the	adb	shell	is	connected	to	the
device:

shell@Android:/	$	ls	-l	/dev/pts

ls	-l	/dev/pts

crw-------	shell				shell				136,			0	2013-10-26	16:56	0

The	cgroup	file	system	stands	for	control	groups.	Android	devices	use	this	file	system	to
track	their	job.	They	are	responsible	for	aggregating	the	tasks	and	keeping	track	of	them.
This	data	is	generally	not	very	useful	during	forensic	analysis.

The	proc	file	system	contains	information	about	kernel	data	structures,	processes,	and
other	system-related	information	under	the	/proc	directory.	For	instance,	the	/sys
directory	contains	files	related	to	kernel	parameters.	Similarly,	/proc/filesystems
displays	the	list	of	available	file	systems	on	the	device.	The	following	command	shows	all
information	about	the	CPU	of	the	device:

shell@Android:/	$	cat	/proc/cpuinfo

cat	/proc/cpuinfo

Processor							:	ARMv7	Processor	rev	0	(v7l)

processor							:	0

BogoMIPS								:	1592.52

processor							:	3

BogoMIPS								:	2786.91

Features								:	swp	half	thumb	fastmult	vfp	edsp	neon	vfpv3	tls

CPU	implementer	:	0x41

CPU	architecture:	7

CPU	variant					:	0x3

CPU	part								:	0xc09

CPU	revision				:	0

Chip	revision			:	0011

Hardware								:	SMDK4x12

Revision								:	000c

Serial										:	****************

Similarly,	there	are	many	other	useful	files	that	provide	valuable	information	when	you
traverse	through	them.

The	tmpfs	file	system	is	a	temporary	storage	facility	on	the	device	that	stores	the	files	in
RAM	(volatile	memory).	The	main	advantage	of	using	RAM	is	faster	access	and	retrieval.
But	once	the	device	is	restarted	or	switched	off,	this	data	will	not	be	accessible	anymore.
Hence,	it’s	important	for	a	forensic	investigator	to	examine	the	data	in	RAM	before	a
device	reboot	happens	or	extract	the	data	via	RAM	acquisition	methods.

Extended	File	System	–	EXT
Extended	File	System	(EXT),	which	was	introduced	in	1992	specifically	for	the	Linux
kernel,	was	one	of	the	first	file	systems	and	used	the	virtual	file	system.	EXT2,	EXT3,	and
EXT4	are	the	subsequent	versions.	Journaling	is	the	main	advantage	of	EXT3	over	EXT2.
With	EXT3,	in	case	of	an	unexpected	shutdown,	there	is	no	need	to	verify	the	file	system.
the	EXT4	file	system,	the	fourth	extended	file	system,	has	gained	significance	with	mobile
devices	implementing	dual-core	processors.	The	YAFFS2	file	system	is	known	to	have	a
bottleneck	on	dual-core	systems.	With	the	Gingerbread	version	of	Android,	the	YAFFS
file	system	was	swapped	for	EXT4.	The	following	are	the	mount	points	that	use	EXT4	on
Samsung	Galaxy	S3	mobile:

/dev/block/mmcblk0p9	/system	ext4	ro,noatime,barrier=1,data=ordered	0	0

/dev/block/mmcblk0p3	/efs	ext4	

rw,nosuid,nodev,noatime,barrier=1,journal_async_commit,data=ordered	0	0

/dev/block/mmcblk0p8	/cache	ext4	

rw,nosuid,nodev,noatime,barrier=1,journal_async_commit,data=ordered	0	0

/dev/block/mmcblk0p12	/data	ext4	

rw,nosuid,nodev,noatime,barrier=1,journal_async_commit,data=ordered,noauto_

da_alloc,discard	0	0

VFAT	is	an	extension	to	the	FAT16	and	FAT32	file	systems.	Microsoft’s	FAT32	file
system	is	supported	by	most	Android	devices.	It	is	supported	by	almost	all	the	major
operating	systems,	including	Windows,	Linux,	and	Mac	OS.	This	enables	these	systems	to
easily	read,	modify,	and	delete	the	files	present	on	the	FAT32	portion	of	the	Android
device.	Most	of	the	external	SD	cards	are	formatted	using	the	FAT32	file	system.	Observe
the	following	output,	which	shows	that	the	mount	points	/sdcard	and	/secure/asec	use
the	VFAT	file	system.

shell@Android:/sdcard	$	mount

mount

rootfs	/	rootfs	rw	0	0

tmpfs	/dev	tmpfs	rw,nosuid,relatime,mode=755	0	0

devpts	/dev/pts	devpts	rw,relatime,mode=600,ptmxmode=000	0	0

proc	/proc	proc	rw,relatime	0	0

sysfs	/sys	sysfs	rw,relatime	0	0

tmpfs	/mnt/asec	tmpfs	rw,relatime,mode=755,gid=1000	0	0

tmpfs	/mnt/obb	tmpfs	rw,relatime,mode=755,gid=1000	0	0

/dev/block/nandd	/system	ext4	

rw,nodev,noatime,user_xattr,barrier=0,data=ordered	0	0

/dev/block/nande	/data	ext4	

rw,nosuid,nodev,noatime,user_xattr,barrier=0,journal_checksum,data=ordered,

noauto_da_alloc	0	0

/dev/block/nandh	/cache	ext4	

rw,nosuid,nodev,noatime,user_xattr,barrier=0,journal_checksum,data=ordered,

noauto_da_alloc	0	0

/dev/block/vold/93:64	/mnt/sdcard	vfat	

rw,dirsync,nosuid,nodev,noexec,relatime,uid=1000,gid=1015,fmask=0702,dmask=

0702,allow_utime=0020,codepage=cp437,iocharset=ascii,shortname=mixed,utf8,e

rrors=remount-ro	0	0

/dev/block/vold/93:64	/mnt/secure/asec	vfat	

rw,dirsync,nosuid,nodev,noexec,relatime,uid=1000,gid=1015,fmask=0702,dmask=

0702,allow_utime=0020,codepage=cp437,iocharset=ascii,shortname=mixed,utf8,e

rrors=remount-ro	0	0

tmpfs	/mnt/sdcard/.Android_secure	tmpfs	ro,relatime,size=0k,mode=000	0	0

/dev/block/dm-0	/mnt/asec/com.kiloo.subwaysurf-1	vfat	

ro,dirsync,nosuid,nodev,relatime,uid=1000,fmask=0222,dmask=0222,codepage=cp

437,iocharset=ascii,shortname=mixed,utf8,errors=remount-ro	0	0

Yet	Another	Flash	File	System	2	(YAFFS2)	is	an	open	source,	single-threaded	file
system	released	in	2002.	It	is	mainly	designed	to	be	fast	when	dealing	with	NAND	flash.
YAFFS2	utilizes	OOB	(out	of	band)	and	that	is	often	not	captured	or	decoded	correctly
during	forensic	acquisition,	which	makes	analysis	difficult.	This	will	be	discussed	more	in
Chapter	9,	Android	Data	Extraction	Techniques.	YAFFS2	was	the	most	popular	release	at
one	point	and	is	still	widely	used	in	Android	devices.	YAFFS2	is	a	log-structured	file
system.	Data	integrity	is	guaranteed	even	in	case	of	sudden	power	outage.	In	2010,	there
was	an	announcement	stating	that	in	releases	after	Gingerbread,	devices	were	going	to
move	from	YAFFS2	to	EXT4.	Currently	YAFFS2	is	not	supported	in	newer	kernel
versions,	but	certain	mobile	manufacturers	might	still	continue	to	support	it.

Flash	Friendly	File	System	(F2FS)	was	released	in	February	2013	to	support	Samsung
devices	running	the	Linux	3.8	kernel	(http://www.linux.org/threads/flash-friendly-file-
system-f2fs.4477/).	F2FS	relies	on	log-structured	methods	that	optimize	NAND	flash
memory.	The	offline	support	features	are	a	highlight	of	this	file	system.	Yet,	the	file
system	is	still	transient	and	being	updated.

Robust	File	System	(RFS)	supports	NAND	flash	memory	on	Samsung	devices.	RFS	can
be	summarized	as	a	FAT16	(or	FAT32)	file	system	where	journaling	is	enabled	through	a
transaction	log.	Many	users	complain	that	Samsung	should	stick	with	EXT4.	RFS	has
been	known	to	have	lag	times	that	slow	down	the	features	of	Android.

http://www.linux.org/threads/flash-friendly-file-system-f2fs.4477/

Summary
Understanding	the	underlying	features,	file	systems,	and	capabilities	of	an	Android	device
proves	useful	in	a	forensic	investigation.	Unlike	iOS,	several	variants	of	Android	exist	as
many	devices	run	the	Android	operating	system	and	each	may	have	different	file	systems
and	unique	features.	The	fact	that	Android	is	open	and	customizable	also	changes	the
playing	field	of	digital	forensics.	A	forensic	examiner	must	be	prepared	to	expect	the
unexpected	when	handling	an	Android	device.	In	the	next	chapter,	we	will	discuss
methods	for	accessing	the	data	stored	on	Android	devices.

Chapter	8.	Android	Forensic	Setup	and
Pre	Data	Extraction	Techniques
Having	an	established	forensic	environment	before	the	start	of	an	examination	is
important	as	it	ensures	that	the	data	is	protected	while	the	examiner	maintains	control	of
the	workstation.	This	chapter	will	explain	the	process	and	considerations	when	setting	up
a	digital	forensic	examination	environment.	It	is	paramount	that	the	examiner	maintains
control	of	the	forensic	environment	at	all	times.	This	prevents	the	introduction	of	cross
contaminants	that	could	effect	the	forensic	investigation.	This	chapter	aims	to	cover	the
minimum	basic	requirements	that	should	be	in	place	to	start	a	forensic	investigation	of	an
Android	mobile	device.

A	forensic	environment	setup
Setting	up	a	proper	lab	environment	is	an	essential	part	of	a	forensic	process.	Android
forensic	setup	usually	involves	the	following:

Start	with	a	fresh	or	forensically	sterile	computer	environment.	This	means	that	other
data	is	not	present	on	the	system	or	is	contained	in	a	manner	that	it	cannot
contaminate	the	present	investigation.
Install	basic	software	necessary	to	connect	to	the	device.	Android	forensic	tools	and
methodologies	will	work	on	Windows,	Linux,	and	OS	X	platforms.
Obtain	access	to	the	device.	An	examiner	must	be	able	to	enable	settings	or	bypass
them	in	order	to	allow	the	data	to	be	extracted	from	the	Android	device.
Issue	commands	to	the	device	through	the	methods	defined	in	this	chapter	and	in
Chapter	9,	Android	Data	Extraction	Techniques.

The	following	sections	provide	guidance	on	setting	up	a	basic	Android	forensic
workstation.

Android	Software	Development	Kit
The	Android	Software	Development	Kit	(SDK)	helps	the	development	world	to	build,
test,	and	debug	applications	to	run	on	Android.	This	is	achieved	by	providing	necessary
tools	to	create	the	applications.	But	along	with	this,	it	also	provides	valuable
documentation	and	other	tools	that	can	be	of	great	help	during	the	investigation	of	an
Android	device.	A	good	understanding	of	the	Android	SDK	will	help	you	to	get	to	grips
with	the	particulars	of	a	device	and	the	data	on	the	device.

The	Android	SDK	consists	of	software	libraries,	APIs,	tools,	emulators,	and	other
reference	material.	It	can	be	downloaded	for	free	from	http://developer.android.com/.
During	a	forensic	investigation,	the	SDK	helps	connect	to	and	access	the	data	on	the
Android	device.	The	Android	SDK	is	updated	very	frequently	so	it’s	important	to	verify
that	your	workstation	also	remains	updated.	The	Android	SDK	can	run	on	Windows,
Linux,	and	OS	X.

http://developer.android.com/

Android	SDK	installation
A	working	installation	of	The	Android	SDK	is	a	must	during	the	investigation	of	a
forensic	device.	Most	websites	recognize	the	operating	system	on	the	computer	and	will
prompt	you	to	download	the	correct	Android	SDK.	The	following	is	a	step-by-step
procedure	to	install	the	Android	SDK	on	a	Windows	7	machine:

1.	 Before	you	install	the	Android	SDK,	make	sure	your	system	has	Java	Development
Kit	installed	because	the	Android	SDK	relies	on	Java	SE	Development	Kit	(JDK).
JDK	can	be	downloaded	from
http://www.oracle.com/technetwork/java/javase/downloads/index.html.

2.	 Download	the	latest	version	of	the	Android	SDK	from	http://developer.android.com/.
The	installer	version	of	the	SDK	is	recommended	for	this	purpose.

3.	 Run	the	installer	file,	which	was	downloaded	in	step	2.	A	wizard	window	will	be
shown,	as	seen	in	the	following	screenshot.	After	this,	run	through	the	routine	Next
steps	that	you	encounter.

Android	SDK	Tools	setup	wizard

4.	 The	installation	location	is	the	user’s	choice	and	must	be	remembered	for	future
access.	In	this	example,	we	will	install	it	in	the	C:\	folder.	Click	on	the	Install	button

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://developer.android.com/

and	choose	the	location	(say,	C:\android-sdk).	The	necessary	files	will	be	extracted
to	this	folder.

5.	 Open	the	directory	(C:\android-sdk)	and	double-click	on	SDK	Manager.exe	to	begin
the	update	process.	Make	sure	that	you	select	Android	SDK	Platform	tools	and	any
one	release	platform	version	of	Android	as	shown	in	the	following	screenshot.	Some
of	the	items	in	the	list	are	chosen	by	default.	For	instance,	it	is	necessary	to	install	the
USB	driver	in	order	to	work	with	Android	devices	in	Windows.	In	our	example,
Google	USB	Driver	is	selected.	Similarly,	you	can	find	other	items	under	the	Extras
section.	Accept	the	license	and	install	it,	as	shown	in	the	following	screenshot:

Android	SDK	License

This	completes	the	Android	SDK	installation	and	you	can	update	the	system’s
environment	variables	(Path)	by	pointing	to	the	executable	files.	The	installation	of	the
Android	SDK	on	OS	X	and	Linux	may	vary.	Make	sure	that	you	follow	all	the	steps
provided	with	the	SDK	download	for	full	functionality.

Android	Virtual	Device
Once	the	Android	SDK	is	installed	along	with	the	release	platform,	you	can	create	an
Android	Virtual	Device	(also	called	an	emulator/AVD),	which	is	often	used	by
developers	when	creating	new	applications.	However,	an	emulator	has	significance	from	a
forensic	perspective	too.	Emulators	are	useful	when	trying	to	understand	how	applications
behave	and	execute	on	a	device.	This	could	be	helpful	to	confirm	certain	findings	that	are
unearthed	during	a	forensic	investigation.	Also,	while	working	on	a	device	which	is
running	on	an	older	platform,	you	can	design	an	emulator	with	the	same	platform.
Furthermore,	before	installing	a	forensic	tool	on	a	real	device,	the	emulator	can	be	used	to
find	out	how	a	forensic	tool	works	and	changes	content	on	an	Android	device.	To	create	a
new	AVD	(on	the	Windows	workstation),	perform	the	following	steps:

1.	 Open	the	command	prompt	(cmd.exe).	To	start	the	AVD	manager	from	the	command
line,	navigate	to	the	path	where	the	SDK	is	installed	and	call	the	android	tool	with
the	avd	option	as	shown	in	the	following	command	line.	This	would	automatically
open	the	AVD	manager.

C:\android-sdk\tools>android	avd

Tip
Alternately,	the	AVD	manager	can	also	be	started	using	the	graphical	AVD	manager.
To	start	this,	navigate	to	the	location	where	the	SDK	is	installed	(C:\android-sdk)	in
our	example	and	double-click	on	AVD	Manager.

The	Android	Virtual	Device	Manager	window	is	as	shown	in	the	following
screenshot:

Android	Virtual	Device	Manager

2.	 Click	on	New	in	the	AVD	Manager	window	to	create	a	new	virtual	device.	Click	on
Edit	to	change	the	configuration	of	an	existing	virtual	device	as	shown	in	the
following	screenshot:

Virtual	device	configuration

3.	 Enter	the	details	as	per	the	following	information:

AVD	Name:	This	option	is	used	to	provide	any	name	for	the	virtual	device,	for
example,	ForensicsAVD.
Device:	This	option	is	used	to	select	any	device	from	the	available	options	based
on	the	screen	size.
Target:	This	option	helps	you	to	select	the	platform	of	the	device.	Note	that

only	the	versions	that	were	selected	and	installed	during	the	SDK	installation
will	be	shown	here	to	be	selected.	For	our	example,	the	Android	4.4	platform	is
selected.
Similarly,	you	can	select	hardware	features	to	customize	the	emulator,	for
example,	the	size	of	internal	storage	memory,	SD	card,	and	so	on.

4.	 A	confirmation	message	is	shown	once	the	device	is	successfully	created.	Now,	select
the	AVD	and	click	on	Start.	This	will	prompt	you	with	the	launch	options.	Select	any
option	and	click	on	Launch.

5.	 This	should	launch	the	emulator.	Note	that	this	could	take	a	few	minutes	or	even
longer	depending	on	the	workstation’s	CPU	and	RAM.	The	emulator	does	consume	a
significant	amount	of	resources	on	the	system.	After	a	successful	launch,	the	AVD
will	be	running	as	shown	in	the	following	screenshot:

The	Android	emulator

With	emulator,	you	can	configure	e-mail	accounts,	install	applications,	surf	the	Internet,
send	text	messages,	and	more.	From	a	forensic	perspective,	analysts	and	security
researchers	can	leverage	the	functionality	of	an	emulator	to	understand	the	file	system,
data	storage,	and	so	on.	The	data	created	when	working	on	an	emulator	is	stored	in	your
home	directory,	in	a	folder	named	.android.	For	instance,	in	our	example,	the	details
about	the	ForensicsAVD	emulator	that	we	created	earlier	are	stored	under
C:\Users\Rohit\.android\avd\ForensicsAVD.avd.	Among	the	various	files	present
under	this	directory,	the	following	are	the	files	that	are	of	interest	for	a	forensic	analyst:

cache.img:	This	is	the	disk	image	of	the	/cache	partition	(remember	that	we
discussed	the	/cache	partition	of	an	Android	device	in	Chapter	7,	Understanding
Android).
sdcard.img:	This	is	the	disk	image	of	the	SD	card	partition.
Userdata-qemu.img:	This	is	the	disk	image	of	the	/data	partition.	The	/data
partition	contains	valuable	information	about	the	device	user.

Connecting	an	Android	device	to	a	workstation
Forensic	acquisition	of	an	Android	device	using	open	source	tools	requires	connecting	the
device	to	a	forensic	workstation.	Forensic	acquisition	of	any	device	should	be	conducted
on	a	forensically	sterile	workstation.	This	means	that	the	workstation	is	strictly	used	for
forensics	and	not	for	personal	use.	Also,	note	that	anytime	a	device	is	plugged	into	a
computer,	changes	can	be	made	to	the	device.	The	examiner	must	have	full	control	of	all
interactions	with	the	Android	device	at	all	times.

The	following	steps	should	be	performed	by	the	examiner	in	order	to	connect	the	device
successfully	to	a	workstation.	Note	that	write	protection	may	prevent	the	successful
acquisition	of	the	device	since	commands	may	need	to	be	pushed	to	the	device	in	order	to
pull	information.	All	the	following	steps	should	be	validated	on	a	test	device	prior	to
attempting	them	on	real	evidence.

Identifying	the	device	cable
The	physical	USB	interface	of	an	Android	device	allows	it	to	connect	to	a	computer	to
share	data,	such	as	songs,	videos,	and	photos.	This	USB	interface	might	change	from
manufacturer	to	manufacturer	and	also	from	device	to	device.	For	example,	some	devices
use	mini-USB	while	some	others	use	micro-USB.	Apart	from	this,	some	manufacturers
use	their	own	proprietary	formats,	such	as	EXT-USB,	EXT	micro-USB,	and	so	on.	The
first	step	in	acquiring	an	Android	device	is	to	determine	what	kind	of	device	cable	is
required.

Installing	the	device	drivers
In	order	to	identify	the	device	properly,	the	computer	may	need	certain	drivers	to	be
installed.	Without	necessary	drivers,	the	computer	may	not	identify	and	work	with	the
connected	device.	But	the	issue	is,	that	since	Android	is	allowed	to	be	modified	and
customized	by	the	manufacturers,	there	is	no	single	generic	driver	that	would	work	for	all
the	Android	devices.	Each	manufacturer	writes	its	own	proprietary	drivers	and	distributes
them	along	with	the	phone.	So,	it’s	important	to	identify	specific	device	drivers,	which
need	to	be	installed.	Of	course,	some	of	the	Android	forensic	toolkits	(which	we	are	going
to	discuss	in	the	following	chapters)	do	come	with	some	generic	drivers	or	a	set	of	most-
used	drivers;	they	may	not	work	with	all	the	models	of	Android	phones.	Some	Windows
operating	systems	are	able	to	autodetect	and	install	the	drivers	once	the	device	is	plugged
in	but	more	often	than	not,	it	fails.	The	device	drivers	for	each	manufacturer	can	be	found
on	their	respective	websites.

Accessing	the	connected	device
If	you	haven’t	done	so	already,	connect	the	Android	device	to	the	computer	directly	using
the	USB	cable.	The	Android	device	will	appear	as	a	new	drive	and	you	can	access	the	files
on	the	external	storage.	Some	older	Android	devices	may	not	be	accessible	unless	the
Turn	on	USB	Storage	option	is	enabled	on	the	phone	as	shown	in	the	following
screenshot:

USB	mass	storage

In	some	Android	phones	(especially	with	HTC),	the	device	may	expose	more	than	one
functionality	when	connected	with	a	USB	cable.	For	instance,	as	shown	in	the	following
screenshot,	when	an	HTC	device	is	connected,	it	presents	a	menu	with	four	options.	The
default	selection	is	Charge	only.	When	the	Disk	drive	option	is	selected,	it	is	mounted	as
a	disk	drive.

HTC	mobile	USB	options

When	the	device	is	mounted	as	a	disk	drive,	you	will	be	able	to	access	the	SD	card	present
on	the	device.	From	a	forensic	point	of	view,	the	SD	card	has	significant	value	as	it	may
contain	files	that	are	important	for	an	investigation.	However,	the	core	application	data
stored	under	/data/data	will	remain	on	the	device	and	cannot	be	accessed	through	these
methods.

Android	Debug	Bridge
Android	Debug	Bridge	(adb)	is	one	of	the	crucial	components	in	Android	forensics.
Although	we	will	learn	about	adb	in	detail	in	the	coming	chapters,	we	will	focus	on	a
basic	introduction	about	adb	for	now.	Android	Debug	Bridge	(adb)	is	a	command-line	tool
that	allows	you	to	communicate	with	the	Android	device	and	control	it.	You	can	access	the
adb	tool	under	<sdk>/platform-tools/.	Before	we	discuss	anything	about	adb,	we	need
to	have	an	understanding	about	the	USB	debugging	option.	The	primary	function	of	this
option	is	to	enable	communication	between	the	Android	device	and	a	workstation	on
which	the	Android	SDK	is	installed.

On	a	Samsung	phone,	you	can	access	this	under	Settings	|	Developer	Options,	as	shown
in	the	following	screenshot.	Other	Android	phones	may	have	different	environments	and
configuration	features.	The	examiner	may	have	to	force	the	developer	options	by
accessing	the	build	mode.	These	steps	are	all	device	specific	and	can	be	determined	by
researching	the	device	or	reading	the	instructions	provided	by	your	forensic	tool	of	choice.

The	USB	debugging	option	in	Samsung	mobiles

When	the	USB	debugging	option	is	selected,	the	device	will	run	adb	daemon	(adbd)	in	the
background	and	will	continuously	look	for	a	USB	connection.	The	daemon	will	usually

run	under	a	nonprivileged	shell	user	account	and	thus	will	not	provide	access	to	complete
data.	However,	on	rooted	phones,	adbd	will	run	under	the	root	account	and	thus	provide
access	to	all	the	data.	It	is	not	recommended	to	root	a	device	to	gain	full	access	unless	all
other	forensic	methods	fail.	Should	the	examiner	elect	to	root	an	Android	device,	the
methods	must	be	well	documented	and	tested	prior	to	attempting	it	on	real	evidence.
Rooting	will	be	discussed	at	the	end	of	this	chapter.

On	the	workstation	where	the	Android	SDK	is	installed,	adbd	will	run	as	a	background
process.	Also,	on	the	same	workstation	a	client	program	will	run,	which	can	be	invoked
from	a	shell	by	issuing	the	adb	command.	When	the	adb	client	is	started,	it	first	checks	if
an	adb	daemon	is	already	running.	If	the	response	is	negative,	it	initiates	a	new	process	to
start	the	adb	daemon.	The	adb	client	program	communicates	with	local	adbd	over	port
5037.

Accessing	the	device	using	adb
Once	the	environment	setup	is	complete	and	the	Android	device	is	in	USB	debugging
mode,	connect	the	Android	device	with	the	correct	USB	cable	to	the	forensic	workstation
and	start	using	adb.

Detecting	connected	devices
The	following	adb	command	provides	a	list	of	all	the	devices	connected	to	the	forensic
workstation.	This	would	also	list	the	emulator	if	it	is	running	at	the	time	of	issuing	the
command.	Also,	remember	that	if	necessary	drivers	are	not	installed,	then	the	following
command	would	show	a	blank	message.	If	you	encounter	that	situation,	download	the
necessary	drivers	from	the	manufacturer	and	install	them.

C:\android-sdk\platform-tools>adb.exe	devices

List	of	devices	attached

4df16ac8115e5f06								device

Killing	the	local	adb	server
The	following	command	kills	the	local	adb	service:

C:\android-sdk\platform-tools>adb.exe	kill-server

After	killing	the	local	adb	service,	issue	the	adb	devices	command	and	observe	that	the
server	is	started,	as	shown	in	the	following	command	lines:

C:\android-sdk\platform-tools>adb.exe	devices

*	daemon	not	running.	starting	it	now	on	port	5037	*

*	daemon	started	successfully	*

List	of	devices	attached

4df16ac8115e5f06								device

Accessing	the	adb	shell
This	command	allows	forensic	examiners	to	access	the	shell	on	an	Android	device	and
interact	with	the	device.	The	following	is	the	command	to	access	the	adb	shell	and	execute
a	basic	ls	command	to	see	the	contents	of	the	current	directory:

C:\android-sdk\platform-tools>adb.exe	shell

shell@android:/	$	ls

ls

acct

cache

config

d

data

default.prop

dev

efs

etc

factory

fstab.smdk4x12

init

init.bt.rc

init.goldfish.rc

init.rc

init.smdk4x12.rc

init.smdk4x12.usb.rc

....

The	Android	emulator	can	be	used	by	forensic	examiners	to	execute	and	understand	adb
commands	before	using	them	on	the	device.	In	Chapter	9,	Android	Data	Extraction
Techniques,	we	are	going	to	explain	more	about	leveraging	adb	to	install	applications,
copy	files	and	folders	from	the	device,	view	device	logs,	and	so	on.

Handling	an	Android	device
Handling	an	Android	device	in	a	proper	manner	prior	to	the	forensic	investigation	is	a
very	important	task.	Care	should	be	taken	to	make	sure	that	our	unintentional	actions	don’t
result	in	data	modification	or	any	other	unwanted	happenings.	The	following	sections
throw	light	on	certain	issues	which	need	to	be	considered	while	handling	the	device	in	the
initial	stages	of	forensic	investigation.

With	the	improvements	in	technology,	the	concept	of	device	locking	has	effectively
changed	over	the	last	few	years.	Most	users	now	have	a	passcode	locking	mechanism
enabled	on	their	device	due	to	the	increase	in	general	security	awareness.	Before	we	look
at	some	of	the	techniques	to	bypass	the	locked	Android	devices,	it	is	important	not	to	miss
an	opportunity	to	disable	the	passcode	when	there	is	a	chance.

When	an	Android	device,	which	is	to	be	analyzed,	is	first	accessed,	check	if	the	device	is
still	active	(unlocked).	If	so,	change	the	settings	of	the	device	to	enable	greater	access	to
the	device.	So,	when	the	device	is	still	active,	consider	performing	the	following	tasks:

Enabling	USB	debugging:	Once	the	USB	debugging	option	is	enabled,	it	gives
greater	access	to	the	device	through	the	adb	connection.	This	is	of	great	significance
when	it	comes	to	extracting	data	from	the	device.	The	location	to	enable	USB
debugging	might	change	from	device	to	device	but	it’s	usually	under	Developer
Options	in	Settings.	Most	methods	for	physically	acquiring	Android	devices	require
USB	debugging	to	be	enabled.
Enabling	the	“Stay	awake”	setting:	If	the	Stay	awake	option	is	selected	and	the
device	is	connected	for	charging,	then	the	device	never	locks.	Again,	if	the	device
locks,	the	acquisition	could	be	halted.
Increasing	screen	timeout:	This	is	the	time	for	which	the	device	will	be	effectively
active	once	it	is	unlocked.	The	location	to	access	this	setting	varies	depending	upon
the	model	of	the	device.	On	a	Samsung	Galaxy	S3	phone,	you	can	access	the	same
under	Settings	|	Display	|	Screen	Timeout.

Apart	from	this,	as	mentioned	in	Chapter	1,	Introduction	to	Mobile	Forensics,	the	device
needs	to	be	isolated	from	the	network	to	make	sure	that	remote	wipe	options	do	not	work
on	the	device.	The	Android	Device	Manager	allows	the	phone	to	be	remotely	wiped	or
locked.	This	can	be	done	by	signing	in	to	the	Google	account,	which	is	configured	on	the
mobile.	More	details	about	this	are	mentioned	in	the	following	section.	If	the	Android
device	is	not	set	up	to	allow	remote	wiping,	the	device	can	only	be	locked	using	the
Android	Device	Manager.	Also,	there	are	several	Mobile	Device	Management	(MDM)
software	products	available	on	the	market,	which	allow	users	to	remotely	lock	or	wipe	the
Android	device.	Some	of	these	may	not	require	specific	settings	to	be	enabled	on	the
device.

Using	the	available	remote	wipe	software,	it	is	possible	to	delete	all	the	data	including	e-
mails,	applications,	photos,	contacts,	and	other	files	including	those	found	on	the	SD	card.
To	isolate	the	device	from	the	network,	you	can	put	the	device	in	airplane	mode	and
disable	Wi-Fi	as	an	extra	precaution.	Enabling	airplane	mode	and	disabling	Wi-Fi	works

well	as	the	device	will	not	be	able	to	communicate	over	a	cellular	network	and	cannot	be
accessed	via	Wi-Fi.	Removing	the	SIM	card	from	the	phone	is	also	an	option	but	that	does
not	effectively	stop	the	device	from	communicating	over	Wi-Fi	or	some	cellular	networks.
To	place	the	device	in	airplane	mode,	press	and	hold	the	Power/Off	button	and	select
airplane	mode.

All	these	steps	can	be	done	when	the	Android	device	is	not	locked.	However,	during	the
investigation,	we	commonly	encounter	devices	that	are	locked.	Hence,	it’s	important	to
understand	how	to	bypass	the	lock	code	if	it	is	enabled	on	an	Android	device.

Screen	lock	bypassing	techniques
Due	to	the	increase	in	user	awareness	and	the	ease	of	functionality,	there	has	been	an
exponential	increase	in	the	usage	of	passcode	options	to	lock	Android	devices.	Hence,
bypassing	the	device’s	screen	lock	during	a	forensic	investigation	is	becoming
increasingly	important.	The	screen	lock	bypass	techniques	discussed	have	their
applicability	based	on	the	situation.	Note	that	some	of	these	methods	are	used	to	make
changes	to	the	device.	Make	sure	that	you	test	and	validate	all	the	steps	listed	on	non-
evidentiary	Android	devices.	The	examiner	must	have	authorization	to	make	the	required
changes	to	the	device,	document	all	steps	taken,	and	be	able	to	describe	the	steps	taken	if	a
courtroom	testimony	is	required.

Currently,	there	are	three	types	of	screen	lock	mechanisms	offered	by	Android.	Although
there	are	some	devices	which	have	voice	lock	and	face	lock	options,	we	will	limit	our
discussion	to	the	following	three	options	since	these	are	most	widely	used	on	all	Android
devices:

Pattern	Lock:	The	user	sets	a	pattern	or	design	on	the	phone	and	the	same	must	be
drawn	to	unlock	the	device.	Android	was	the	first	smartphone	to	introduce	a	pattern
lock.
PIN	code:	This	is	the	most	common	lock	option	and	is	found	on	many	mobile
phones.	The	PIN	code	is	a	4-digit	number	that	needs	to	be	entered	to	unlock	the
device.
Passcode	(alphanumeric):	This	is	an	alphanumeric	passcode.	Unlike	the	PIN,	which
takes	four	digits,	the	alphanumeric	passcode	takes	more	than	just	digits.

The	following	section	details	some	of	the	techniques	to	bypass	these	Android	lock
mechanisms.	Depending	on	the	situation,	these	techniques	might	help	an	investigator	to
bypass	the	screen	lock.

Using	adb	to	bypass	the	screen	lock
If	USB	debugging	appears	to	be	enabled	on	the	Android	device,	it	is	wise	to	take
advantage	of	it	by	connecting	with	adb	using	USB,	as	discussed	in	the	earlier	sections.
The	examiner	should	connect	the	device	to	the	forensic	workstation	and	issue	the	adb
devices	command.	If	the	device	shows	up,	it	implies	that	USB	debugging	is	enabled.	If	the
Android	device	is	locked,	the	examiner	must	attempt	to	bypass	the	screen	lock.	The
following	are	the	two	methods	that	may	allow	the	examiner	to	bypass	the	screen	lock
when	USB	debugging	is	enabled.

Deleting	the	gesture.key	file
This	is	how	the	process	is	done:

1.	 Connect	the	device	to	the	forensic	workstation	(a	Windows	machine	in	our	example)
using	a	USB	cable.

2.	 Open	the	command	prompt	and	execute	the	following	instructions:

adb.exe	shell

cd	/data/system

rm	gesture.key

3.	 Reboot	the	device.	If	the	pattern	lock	still	appears,	just	draw	any	random	design	and
observe	that	the	device	should	unlock	without	any	trouble.

This	method	works	when	the	device	is	rooted.	This	method	may	not	be	successful	on
unrooted	devices.	Rooting	an	Android	device	should	not	be	performed	without
proper	authorization	as	the	device	is	altered.

Updating	the	settings.db	file
To	update	the	settings.db	file,	perform	the	following	steps:

1.	 Connect	the	device	to	the	forensic	workstation	using	a	USB	cable.
2.	 Open	the	command	prompt	and	execute	the	following	instructions:

adb.exe	shellcd	/data/data/com.android.providers.settings/databases

sqlite	settings.db

sqlite>update	system	set	value=0	where	name='lock_pattern_autolock';

sqlite>update	system	set	value=0	where	name=	

'lockscreen.lockedoutpermenantly';

3.	 Exit	and	reboot	the	device.
4.	 The	Android	device	should	be	unlocked.	If	not,	attempt	to	remove	gesture.key	as

explained	earlier.

Checking	for	the	modified	recovery	mode	and	adb
connection
In	Android,	recovery	refers	to	the	dedicated	partition	where	the	recovery	console	is
present.	The	two	main	functions	of	recovery	are	to	delete	all	user	data	and	install	updates.
For	instance,	when	you	factory	reset	your	phone,	recovery	boots	up	and	deletes	all	the
data.	Similarly,	when	updates	are	to	be	installed	on	the	phone,	it	is	done	in	the	recovery
mode.	There	are	many	enthusiastic	Android	users	who	install	custom	ROM	through	a
modified	recovery	module.	This	modified	recovery	module	is	mainly	used	to	make	the
process	of	installing	custom	ROM	easy.	Recovery	mode	can	be	accessed	in	different	ways
depending	on	the	manufacturer	of	the	device,	which	is	easily	available	on	the	Internet.
Usually,	this	is	done	by	holding	different	keys	together	such	as	the	volume	button	and
power	button.	Once	in	recovery	mode,	connect	the	device	to	the	workstation	and	try	to
access	the	adb	connection.	If	the	device	has	a	recovery	mode	which	is	not	modified,	the
examiner	may	not	be	able	to	access	the	adb	connection.	The	modified	recovery	versions	of
the	device	present	the	user	with	different	options	and	can	be	easily	noticed.

Flashing	a	new	recovery	partition
There	are	mechanisms	available	to	flash	the	recovery	partition	of	an	Android	device	with
a	modified	image.	The	Fastboot	utility	would	facilitate	this	process.	Fastboot	is	a
diagnostic	protocol	that	comes	with	the	SDK	package,	used	primarily	to	modify	the	flash
file	system	through	a	USB	connection	from	a	host	computer.	For	this,	you	need	to	start	the
device	in	the	boot	loader	mode	in	which	only	the	most	basic	hardware	initialization	is
performed.	Once	the	protocol	is	enabled	on	the	device,	it	will	accept	a	specific	set	of
commands	that	are	sent	to	it	via	the	USB	cable	using	a	command	line.	Flashing	or
rewriting	a	partition	with	a	binary	image	stored	on	the	computer	is	one	such	command	that
is	allowed.	Once	the	recovery	is	flashed,	boot	the	device	in	recovery	mode,	mount	the
/data	and	/system	partitions,	and	use	adb	to	remove	the	gesture.key	file.	Reboot	the
phone	and	you	should	be	able	to	bypass	the	screen	lock.

Smudge	attack
In	rare	cases,	a	smudge	attack	may	be	used	to	deduce	the	password	of	a	touchscreen
mobile	device.	The	attack	relies	on	identifying	the	smudges	left	behind	by	the	user’s
fingers.	While	this	may	present	a	bypass	method,	it	must	be	said	that	a	smudge	attack	is
unlikely	since	most	Android	devices	are	touchscreen	and	smudges	will	also	be	present
from	using	the	device.	However,	it	has	been	demonstrated	that	under	proper	lighting,	the
smudges	that	are	left	behind	can	be	easily	detected	as	shown	in	the	following	screenshot
(http://www.securitylearn.net/tag/android-passcode-bypass/).	By	analyzing	the	smudge
marks,	we	can	discern	the	pattern	that	is	used	to	unlock	the	screen.	This	attack	is	more
likely	to	work	while	discerning	the	pattern	lock	on	the	Android	device.	In	some	cases,	PIN
codes	can	also	be	recovered	depending	upon	the	cleanliness	of	the	screen.	So,	during	a
forensic	investigation,	care	should	be	taken	when	the	device	is	first	handled	to	make	sure
that	the	screen	is	not	touched.

Smudges	visible	on	a	device	under	proper	lighting	(source:
https://viaforensics.com/wpinstall/wp-content/uploads/smudge.png)

http://www.securitylearn.net/tag/android-passcode-bypass/

Using	the	primary	Gmail	account
If	you	know	the	username	and	password	of	the	primary	Gmail	address	that	is	configured
on	the	device,	you	can	change	the	PIN,	password,	or	swipe	on	the	device.	After	making	a
certain	number	of	failed	attempts	to	unlock	the	screen,	Android	provides	an	option	named
Forgot	Pattern	or	Forgot	Password	as	shown	in	the	following	screenshot.	Tap	on	that
link	and	sign	in	using	the	Gmail	username	and	password	and	this	will	allow	you	to	create
a	new	pattern	lock	or	passcode	for	the	device.

Forgot	pattern	option	on	an	Android	device

Other	techniques
All	of	the	earlier	mentioned	techniques	and	the	commercial	tools	available	prove	to	be
useful	to	the	forensic	examiner	trying	to	get	access	to	the	data	on	the	Android	devices.
However,	there	could	be	situations	where	none	of	these	techniques	work.	To	obtain	a
complete	physical	image	of	the	device,	techniques	such	as	chip-off	and	JTAG	may	be
required	when	commercial	and	open	source	solutions	fail.	A	short	description	of	these
techniques	is	mentioned.

While	the	chip-off	technique	removes	the	memory	chip	from	a	circuit	and	tries	to	read	it,
the	JTAG	technique	involves	probing	the	JTAG	Test	Access	Ports	(TAPs)	and	soldering
connectors	to	the	JTAG	ports	in	order	to	read	data	from	the	device	memory.	The	chip-off
technique	is	more	destructive	because	once	the	chip	is	removed	from	the	device,	it	is
difficult	to	restore	the	device	back	to	its	original	functional	state.	Also,	expertise	is	needed
to	carefully	remove	the	chip	from	the	device	by	desoldering	the	chip	from	the	circuit
board.	The	heat	required	to	remove	the	chip	can	also	damage	or	destroy	the	data	stored	on
that	chip.	Hence,	this	technique	should	be	looked	upon	only	when	the	data	is	not
retrievable	by	open	source	or	commercial	tools	or	the	device	is	damaged	beyond	repair.
When	using	the	JTAG	technique,	JTAG	ports	help	an	examiner	to	access	the	memory	chip
to	retrieve	a	physical	image	of	the	data	without	needing	to	remove	the	chip.	To	turn	off	the
screen	lock	on	a	device,	an	examiner	can	identify	where	the	lock	code	is	stored	in	the
physical	memory	dump,	turn	off	the	locking,	and	copy	that	data	back	to	the	device.
Commercial	tools,	such	as	Cellebrite	Physical	Analyzer,	can	accept	.bin	files	from	chip-
off	and	JTAG	acquisitions	and	crack	the	lock	code	for	the	examiner.	Once	the	code	is
either	manually	removed	or	cracked,	the	examiner	can	analyze	the	device	using	normal
techniques.

Both	the	chip-off	and	JTAG	techniques	require	extensive	research	and	experience	to	be
tried	on	a	real	device.	A	great	resource	for	JTAG	and	chip-off	on	devices	can	be	found	at
http://www.forensicswiki.org/wiki.

http://www.forensicswiki.org/wiki

Gaining	root	access
As	a	mobile	device	forensic	examiner,	it	is	essential	to	know	everything	that	relates	to
twisting	and	tweaking	the	device.	This	would	help	you	to	understand	the	internal	working
of	the	device	in	detail	and	comprehend	many	issues	that	you	may	face	during	your
investigation.	Rooting	Android	phones	has	become	a	common	phenomenon	and	you	can
expect	to	encounter	rooted	phones	during	forensic	examinations.	The	examiner,	where
applicable,	may	also	need	to	root	the	device	in	order	to	acquire	data	for	the	forensic
examination.	Hence,	it’s	important	to	know	the	ins	and	outs	of	rooted	devices	and	how
they	are	different	from	the	other	phones.	The	following	sections	cover	information	about
Android	rooting	and	other	related	concepts.

What	is	rooting?
The	default	administrative	account	in	Unix-like	operating	systems	is	called	“root”.	So,	in
Linux,	the	root	user	has	the	power	to	start/stop	any	system	service,	edit/delete	any	file,
change	the	privileges	of	other	users,	and	so	on.	We	have	already	learned	that	Android	uses
the	Linux	kernel	and	hence	most	of	the	concepts	present	in	Linux	are	applicable	to
Android	as	well.	However,	when	you	buy	an	Android	phone,	it	does	not	let	you	log	in	as	a
root	user	by	default.	Rooting	an	Android	phone	is	all	about	gaining	access	on	the	device	to
perform	actions	that	are	not	normally	allowed	on	the	device.	Manufacturers	want	the
devices	to	function	in	a	certain	manner	for	normal	users.	Rooting	a	device	may	void	a
warranty	since	root	opens	the	system	to	vulnerabilities	and	provides	the	user	with
superuser	capabilities.	Imagine	a	malicious	application	having	access	to	an	entire
Android	system	with	root	access.	Remember	that	in	Android,	each	application	is	treated	as
a	separate	user	and	issues	a	UID.	Thus,	the	applications	have	access	to	limited	resources
and	the	concept	of	application	isolation	is	enforced.	Essentially,	rooting	an	Android	device
allows	superuser	capabilities	and	provides	open	access	to	the	Android	device.

Rooting	an	Android	device
Even	though	the	hardware	manufacturers	try	to	put	enough	restrictions	to	restrict	access	to
the	root,	hackers	have	always	found	different	ways	to	get	access	to	the	root.	The	process
of	rooting	varies	depending	on	the	underlying	device	manufacturer.	But	rooting	any	device
usually	involves	exploiting	a	security	bug	in	the	device’s	firmware	and	then	copying	the
su	(superuser)	binary	to	a	location	in	the	current	process’s	path	(/system/xbin/su)	and
granting	it	executable	permissions	with	the	chmod	command.

For	the	sake	of	simplicity,	imagine	that	an	Android	device	has	three	to	four	partitions,
which	run	programs	not	entirely	related	to	Android	(Android	being	one	among	them).

The	boot	loader	is	present	in	the	first	partition	and	is	the	first	program	that	runs	when	the
phone	is	powered	on.	The	primary	job	of	this	boot	loader	is	to	boot	other	partitions	and
load	the	Android	partition,	commonly	referred	to	as	ROM	by	default.	To	see	the	boot
loader	menu,	a	specific	key	combination	is	required	such	as	holding	the	power	button	and
pressing	the	volume	up	button.	This	menu	provides	options	for	you	to	boot	into	other
partitions	such	as	the	recovery	partition.

The	recovery	partition	deals	with	installing	upgrades	to	the	phone,	which	are	written
directly	to	the	Android	ROM	partition.	This	is	the	mode	that	you	see	when	you	install	any
official	update	on	the	device.	Device	manufacturers	make	sure	that	only	official	updates
are	installed	through	the	recovery	partition.	Thus,	bypassing	this	restriction	would	allow
you	to	install/flash	any	unlocked	Android	ROM.	Modified	recovery	programs	are	those
that	not	only	allow	an	easier	rooting	process	but	also	provide	various	options,	which	are
not	seen	in	the	normal	recovery	mode.	The	following	screenshot	shows	the	normal
recovery	mode:

Normal	Android	system	recovery	mode

The	following	screenshot	shows	the	modified	recovery	mode:

Modified	recovery	mode

The	most	used	recovery	program	in	the	Android	world	is	the	Clockwork	recovery,	also
called	ClockworkMod.	Hence,	most	of	the	rooting	methods	begin	by	flashing	a	modified
recovery	to	the	recovery	partition.	After	that,	you	can	issue	an	update,	which	can	root	the
device.	However,	you	don’t	need	to	perform	all	the	actions	manually	as	software	is
available	for	most	of	the	models,	which	could	root	your	phone	with	a	single	click.

Rooting	a	device	has	both	advantages	and	disadvantages	associated	with	it.

The	following	are	the	advantages:

Rooting	allows	modification	of	the	software	on	the	device	to	the	deepest	level.	For
example,	you	can	overclock	or	underclock	the	device’s	CPU
(http://techbeasts.com/2014/01/17/what-is-cpu-underclocking-overclocking-and-
how-to-underclock-overclock/).
Bypass	restrictions	imposed	on	the	device	by	carriers,	manufacturers,	and	so	on.
For	extreme	customization,	new	customized	ROMs	could	be	downloaded	and
installed.

The	following	are	the	disadvantages:

Rooting	a	device	must	be	done	with	extreme	care	as	errors	may	result	in	irreparable
damage	to	the	software	on	the	phone	turning	the	device	into	a	useless	brick.
Rooting	might	void	the	warranty	of	a	device.
Rooting	results	in	increased	exposure	to	malware	and	other	attacks.	Malware	with
access	to	the	entire	Android	system	can	create	havoc.

Once	the	device	is	rooted,	applications	such	as	the	Superuser	app	are	available	to	provide
and	deny	root	privileges.	This	app	helps	you	to	grant	and	manage	superuser	rights	on	the
device,	as	shown	in	the	following	screenshot:

http://techbeasts.com/2014/01/17/what-is-cpu-underclocking-overclocking-and-how-to-underclock-overclock/

Application	requesting	root	access

Root	access	–	adb	shell
A	normal	Android	phone	does	not	allow	you	to	access	certain	directories	and	files	on	the
device.	For	example,	try	to	access	the	/data/data	folder	on	an	Android	device,	which	is
not	rooted.	You	will	see	the	following	message:

C:\android-sdk\platform-tools>adb.exe	shell

shell@android:/	$	cd	/data/data

cd	/data/data

shell@android:/data/data	$	ls

ls

opendir	failed,	Permission	denied

255|shell@android:/data/data	$

On	a	rooted	phone,	you	can	run	the	adb	shell	as	a	root	by	issuing	the	following	command:

C:\android-sdk\platform-tools>adb.exe	root

restarting	adbd	as	root

C:\android-sdk\platform-tools>adb.exe	shell

root@android:/	#	cd	/data/data

cd	/data/data

root@android:/data/data	#	ls

ls

com.adobe.flashplayer

com.adobe.reader

com.aldiko.android

com.android.backupconfirm

com.android.browser

Thus,	rooting	a	phone	enables	you	to	access	folders	and	data,	which	are	otherwise	not
accessible.	Also,	note	that	#	symbolizes	root	or	superuser	access	while	$	reflects	a	normal
user,	as	shown	in	the	preceding	command	lines.

Summary
A	proper	forensic	workstation	setup	is	required	prior	to	conducting	investigations	on	an
Android	device.	Using	open	source	methods	to	acquire	and	analyze	Android	devices
requires	the	installation	of	specific	software	on	the	forensic	workstation.	If	the	method	of
forensic	acquisition	requires	the	Android	device	to	be	unlocked,	the	examiner	needs	to
determine	the	best	method	to	gain	access	to	the	device.	Various	screen	lock	bypass
techniques	explained	in	this	chapter	help	an	examiner	to	bypass	the	passcode	under
different	circumstances.	Depending	on	the	forensic	acquisition	method	and	scope	of	the
investigation,	rooting	the	device	should	provide	complete	access	to	the	files	present	on	the
device.	Some	commercial	tools,	such	as	Micro	Systemation	XRY,	provide	a	root	that	the
examiner	must	use	in	order	to	access	specific	areas	of	the	device	memory.	Now	that	the
basic	concepts	are	covered	on	gaining	access	to	an	Android	device,	we	will	cover
acquisition	techniques	and	describe	how	the	data	is	being	pulled	using	each	method	in
Chapter	9,	Android	Data	Extraction	Techniques.

Chapter	9.	Android	Data	Extraction
Techniques
By	using	any	of	the	passcode	bypass	techniques	explained	in	Chapter	8,	Android	Forensic
Setup	and	Pre	Data	Extraction	Techniques,	an	examiner	can	try	to	access	a	locked	device.
Once	the	device	is	accessible,	the	next	task	is	to	extract	the	information	present	on	the
device.	This	can	be	achieved	by	applying	various	data	extraction	techniques	on	the
Android	device.	This	chapter	helps	you	to	identify	the	sensitive	locations	present	on	an
Android	device	and	explains	various	logical	and	physical	techniques	that	can	be	applied	to
the	device	in	order	to	extract	the	necessary	information.

Imaging	an	Android	Phone
Imaging	a	device	is	one	of	the	most	important	steps	in	mobile	device	forensics.	The	rule	of
thumb	when	dealing	with	a	forensic	examination	is	to	ensure	that	the	data	present	on	the
device	is	not	modified	in	any	way,	wherever	possible.	As	explained	in	Chapter	1,
Introduction	to	Mobile	Forensics,	all	the	changes	by	the	examiner	from	the	previous
testing	and	validation	should	be	well	documented.	When	possible,	it’s	imperative	to	obtain
a	physical	image	of	the	Android	device	before	performing	any	techniques	to	extract	the
data	directly	from	the	device.	In	forensics,	this	process	of	obtaining	a	physical	or	logical
acquisition	is	commonly	called	imaging	the	device.	A	physical	image	is	preferred	as	it	is
a	bit-by-bit	copy	of	the	Android	device	memory.

It	is	important	to	understand	that	a	bit-by-bit	image	is	not	similar	to	copying	and	pasting
the	contents	on	the	device.	If	we	copy	and	paste	the	contents	on	a	device	it	will	only	copy
the	available	files	such	as	visible	files,	hidden	files,	and	system-related	files.	This	method
is	considered	a	logical	image.	With	this	method,	deleted	files	and	files	that	are	not
accessible	are	not	copied	by	the	copy	command.	Deleted	files	can	be	recovered	(based	on
the	circumstances)	using	certain	techniques,	which	we	are	going	to	see	in	the	following
chapters.	Hence,	you	need	to	take	a	1:1	bit-by-bit	image	of	the	device	memory	to	obtain
all	of	the	data.

Let’s	first	revisit	how	imaging	is	done	on	a	desktop	computer	as	it	helps	us	to	correlate
and	realize	the	problems	associated	with	imaging	Android	devices.	Let’s	assume	that	a
desktop	computer,	which	is	not	powered	on,	is	seized	from	a	suspect	and	sent	for	forensic
examination.	In	this	case,	a	typical	forensic	examiner	would	remove	the	hard	disk,	connect
it	to	a	write	blocker	and	obtain	a	bit-by-bit	forensic	image	using	any	of	the	available	tools.
The	original	hard	disk	is	then	safely	protected	during	the	forensic	imaging	of	the	data.
With	an	Android	device,	all	the	areas	that	contain	data	cannot	be	easily	removed.	Also,	if
the	device	is	active	at	the	time	of	receiving	it	for	examination,	it	is	not	possible	to	analyze
the	device	without	making	any	changes	to	it	because	any	interaction	would	change	the
state	of	the	device.

An	Android	device	may	have	two	file	storage	areas,	internal	and	external	storage.	Internal
storage	refers	to	the	built-in	non-volatile	memory.	External	storage	refers	to	the	removable
storage	medium	such	as	a	micro	SD	card.	However,	it’s	important	to	note	that	some
devices	do	not	have	a	removable	storage	medium	such	as	an	SD	card,	but	they	divide	the
available	permanent	storage	space	into	internal	and	external	storage.	Hence,	it’s	not
always	true	that	external	storage	is	something	that	is	removable.	When	a	removable	SD
card	is	present,	a	forensic	image	of	the	memory	card	has	to	be	obtained.	As	discussed	in
Chapter	7,	Understanding	Android,	these	removable	cards	are	generally	formatted	with
the	FAT	32	file	system.	Some	mobile	device	acquisition	methods	will	acquire	the	SD	card
through	the	Android	device.	This	process,	while	useful,	will	be	slow	due	to	the	speed
limitations	of	the	USB	phone	cables.

Data	extraction	techniques
Data	residing	on	an	Android	device	may	be	an	integral	part	of	civil,	criminal,	or	internal
investigations	done	as	part	of	a	corporate	company’s	internal	probe.	While	dealing	with
investigations	involving	Android	devices,	the	forensic	examiner	needs	to	be	mindful	of	the
issues	that	need	to	be	taken	care	of	during	the	forensic	process;	this	includes	determining
if	root	access	is	permitted	(via	consent	or	legal	authority)	and	what	data	can	be	extracted
and	analyzed	during	the	investigation.	For	example,	in	a	criminal	case	involving	stalking,
the	court	may	only	allow	for	the	SMS,	call	logs,	and	photos	to	be	extracted	and	analyzed
on	the	Android	device	belonging	to	the	suspect.	In	this	case,	it	may	make	the	most	sense
to	logically	capture	just	those	specific	items.	However,	it	is	best	to	obtain	a	full	physical
data	extraction	of	the	device	and	only	examine	the	areas	admissible	by	the	court.	You
never	know	where	your	investigation	may	lead	and	it	is	best	to	obtain	as	much	data	off	the
device	immediately	rather	than	wish	you	had	a	full	image	should	the	scope	of	consent
change.

The	data	extraction	techniques	on	an	Android	device	can	be	classified	into	three	types:

Manual	data	extraction
Logical	data	extraction
Physical	data	extraction

The	extraction	methods	for	each	of	these	types	will	be	described	in	detail	in	the	following
sections.	Some	methods	may	require	the	device	be	rooted	in	order	to	fully	access	the	data.
Each	method	has	different	implications	and	success	rates	will	depend	on	the	tool,	method
used,	and	device	make	and	model.

Manual	data	extraction
This	method	of	extraction	involves	the	examiner	utilizing	the	normal	user	interface	of	the
mobile	device	to	access	content	present	in	the	memory.	The	examiner	will	browse	through
the	device	normally	by	accessing	different	menus	to	view	the	details	such	as	call	logs,	text
messages,	and	IM	chats.	The	content	of	each	screen	is	captured	by	taking	pictures	and	can
be	presented	as	evidence.	The	main	drawback	with	this	type	of	examination	is	that	only
those	files	that	are	accessible	by	the	operating	system	(in	the	UI	mode)	can	be
investigated.	Care	must	be	taken	when	manually	examining	the	device	as	it’s	easy	to	press
the	wrong	button	and	erase	or	add	data.	Manual	extraction	should	be	used	as	a	last	resort
to	verify	findings	extracted	using	one	of	the	other	methods.	Certain	circumstances	may
warrant	the	examiner	to	conduct	manual	examination	as	the	first	step.	This	may	include
life	or	death	situations	or	missing	persons	where	a	quick	scan	of	the	device	may	lead	the
police	to	the	individual.

Using	root	access	to	acquire	an	Android	device
Android,	by	default,	does	not	provide	access	to	the	internal	directories	and	system-related
files.	This	restricted	access	is	to	ensure	the	security	of	the	device.	For	instance,	the
/data/data	folder	is	not	accessible	on	a	non-rooted	device.	This	folder	is	especially	of
interest	to	us	because	it	stores	most	of	the	user-created	data	and	many	applications	write
valuable	data	into	this	folder.	Hence,	to	obtain	an	image	of	the	device,	we	need	to	root	the
Android	device.	Rooting	a	device	gives	us	the	superuser	privileges	and	access	to	all	the
data.	It	is	important	to	realize	that	this	book	has	been	stressing	that	all	the	steps	taken
should	be	forensically	sound	and	not	make	changes	to	the	device	whenever	possible.
Rooting	an	Android	device	will	make	changes	to	it	and	should	be	tested	on	any	device	that
the	examiner	has	not	previously	investigated.	Rooting	is	common	for	Android	devices,	but
getting	root	access	could	alter	the	device	in	a	manner	that	renders	the	data	changed	or
worse	yet—wiped.	Some	Android	devices,	such	as	the	Nexus	4	and	5,	may	force	the	data
partition	to	be	wiped	prior	to	allowing	root	access.	This	negates	the	need	to	root	the	device
in	order	to	gain	access	because	all	the	user	data	is	lost	during	the	process.	Just	remember
that	while	rooting	provides	access	to	more	data	when	successfully	done,	it	can	also	wipe
the	data	or	destroy	the	phone.	Hence,	you	must	ensure	you	have	consent	or	legal	rights	to
manipulate	the	Android	device	prior	to	proceeding	with	the	root.	As	rooting	techniques
have	been	discussed	in	Chapter	8,	Android	Forensic	Setup	and	Pre	Data	Extraction
Techniques,	we	will	proceed	with	the	example	assuming	that	the	device	is	rooted.	The
following	is	a	step-by-step	process	to	obtain	a	forensic	image	of	a	rooted	Android	device.

Install	the	Android	Terminal	Emulator	application.	The	Android	Terminal	Emulator
application	helps	you	to	access	the	Linux	command	shell.	Android	Terminal	Emulator	can
be	downloaded	from	https://github.com/jackpal/Android-Terminal-Emulator/wiki.	Once
installed,	you	can	run	most	of	the	Linux	commands	on	the	device.	It	is	recommended	to
install	it	through	adb	instead	of	connecting	to	the	Internet	to	install	it	from	the	Google
Play	store.	The	following	screenshot	shows	the	installation	of	the	Android	Terminal
Emulator	application	on	a	Mac	running	v10.9.2:

Once	Android	Terminal	Emulator	is	installed,	the	partitions	can	be	acquired	from	the
Android	device	using	the	following	steps:

Using	the	dd	command:	The	dd	command	can	be	used	to	create	a	raw	image	of	the
device.	This	command	helps	us	to	create	a	bit-by-bit	image	of	the	Android	device	by
copying	low-level	data.
Inserting	a	new	SD	card:	Insert	a	new	SD	card	into	the	device	in	order	to	copy	the

https://github.com/jackpal/Android-Terminal-Emulator/wiki

image	file	to	this	card.	Make	sure	this	SD	card	is	wiped	and	does	not	contain	any
other	data.
Executing	the	command:	The	file	system	of	an	Android	device	is	stored	in	different
locations	within	the	/dev	partition.	A	simple	mount	command	on	a	Samsung	Galaxy
S3	phone	returns	the	following	output:

shell@Android:/	$	mount

mount

rootfs	/	rootfs	ro,relatime	0	0

tmpfs	/dev	tmpfs	rw,nosuid,relatime,mode=755	0	0

devpts	/dev/pts	devpts	rw,relatime,mode=600	0	0

proc	/proc	proc	rw,relatime	0	0

sysfs	/sys	sysfs	rw,relatime	0	0

none	/acct	cgroup	rw,relatime,cpuacct	0	0

tmpfs	/mnt/asec	tmpfs	rw,relatime,mode=755,gid=1000	0	0

tmpfs	/mnt/obb	tmpfs	rw,relatime,mode=755,gid=1000	0	0

none	/dev/cpuctl	cgroup	rw,relatime,cpu	0	0

/dev/block/mmcblk0p9	/system	ext4	ro,noatime,barrier=1,data=ordered	0	0

/dev/block/mmcblk0p3	/efs	ext4	

rw,nosuid,nodev,noatime,barrier=1,journal_async_c

ommit,data=ordered	0	0

/dev/block/mmcblk0p8	/cache	ext4	

rw,nosuid,nodev,noatime,barrier=1,journal_async

_commit,data=ordered	0	0

/dev/block/mmcblk0p12	/data	ext4	

rw,nosuid,nodev,noatime,barrier=1,journal_async

_commit,data=ordered,noauto_da_alloc,discard	0	0

/sys/kernel/debug	/sys/kernel/debug	debugfs	rw,relatime	0	0

/dev/fuse	/storage/sdcard0	fuse	

rw,nosuid,nodev,noexec,relatime,user_id=1023,group_id=1023,default_perm

issions,allow_other	0	0

From	the	preceding	output,	we	can	identify	the	blocks	where	the	/system,	/data,	and
/cache	partitions	are	mounted.	Although	it’s	important	to	image	all	the	files,	most	of	the
data	is	present	in	the	/data	and	/system	partitions.	When	time	allows,	all	partitions
should	be	acquired	for	completeness.	Once	this	is	done,	execute	the	following	command
to	image	the	device:

dd	if=/dev/block/mmcblk0p12	of=/sdcard/tmp.image

In	the	preceding	example,	the	data	partition	of	a	Samsung	Galaxy	SIII	was	used	(where	if
is	the	input	file	and	of	is	the	output	file).

The	preceding	command	will	make	a	bit-by-bit	image	of	the	mmcblk0p12	file	(data
partition)	and	copy	the	image	file	to	an	SD	card.	Once	this	is	done,	the	dd	image	file	can
be	analyzed	using	the	available	forensic	software.

Tip
The	examiner	must	ensure	that	the	SD	card	has	enough	storage	space	to	contain	the	data
partition	image.	Other	methods	are	available	to	acquire	data	from	the	rooted	devices.

Logical	data	extraction
Logical	data	extraction	techniques	extract	the	data	present	on	the	device	by	accessing	the
file	system.	These	techniques	are	significant	because	they	provide	valuable	data,	work	on
most	devices,	and	are	easy	to	use.	Once	again,	the	concept	of	rooting	comes	into	picture
while	extracting	the	data.	Logical	techniques	do	not	actually	require	root	access	for	data
extraction.	However,	having	root	access	on	a	device	allows	you	to	access	all	the	files
present	on	a	device.	This	means	that	some	data	may	be	extracted	on	a	non-rooted	device
while	root	access	will	open	the	device	and	provide	access	to	all	the	files	present	on	the
device.	Hence,	having	root	access	on	a	device	would	greatly	influence	the	amount	and
kind	of	data	that	can	be	extracted	through	logical	techniques.	Logical	extraction	can	be
performed	on	a	device	in	two	ways:

Using	adb	pull	commands
Using	content	providers

The	following	sections	explain	each	of	these	options	and	how	the	data	can	be	extracted.

Using	the	adb	pull	command
As	seen	earlier,	adb	is	a	command-line	tool	that	helps	you	communicate	with	the	device	to
retrieve	information.	Using	adb,	you	can	extract	data	from	all	the	files	on	the	device	or
only	the	relevant	files	in	which	you	are	interested.	To	access	an	Android	device	through
adb,	it’s	necessary	that	the	USB	debugging	option	is	enabled.	If	the	device	is	locked	and
USB	debugging	is	not	enabled,	try	to	bypass	the	screen	lock	using	the	techniques
mentioned	in	Chapter	8,	Android	Forensic	Setup	and	Pre	Data	Extraction	Techniques.

As	a	forensic	examiner,	it’s	important	to	know	how	the	data	is	stored	on	the	Android
device	and	to	understand	where	important	and	sensitive	information	is	stored	so	that	the
data	can	be	extracted	accordingly.	Application	data	often	contains	a	wealth	of	user	data
that	may	be	relevant	to	the	investigation.	All	files	pertaining	to	applications	of	interest
should	be	examined	for	relevance,	as	will	be	explained	in	Chapter	10,	Android	Data
Recovery	Techniques.	The	application	data	can	be	stored	in	one	of	the	following	locations:

Shared	preferences:	Data	is	stored	in	key-value	pairs	in	a	lightweight	XML	format.
Shared	preference	files	are	stored	in	the	shared_pref	folder	of	the	application	/data
directory.
Internal	storage:	Data	stored	here	is	private	and	is	present	in	the	device’s	internal
memory.	Files	saved	to	the	internal	storage	are	private	and	cannot	be	accessed	by
other	applications.
External	storage:	This	stores	data	that	is	public	in	the	device’s	external	memory,
which	does	not	usually	enforce	security	mechanisms.	This	data	is	available	under	the
/sdcard	directory.
SQLite	database:	This	data	is	available	in	the	/data/data/PackageName/database.
They	are	usually	stored	with	a	.db	file	extension.	The	data	present	in	a	SQLite	file
can	be	viewed	using	a	SQLite	browser
(http://sourceforge.net/projects/SQLitebrowser/)	or	by	executing	the	necessary

http://sourceforge.net/projects/SQLitebrowser/

SQLite	commands	on	the	respective	files.

Every	Android	application	stores	the	data	on	the	device	using	any	of	the	preceding	data
storage	options.	So,	the	Contacts	application	would	store	all	the	information	about	the
contact	details	in	the	/data/data	folder	under	its	package	name.	Note	that	/data/data	is
a	part	of	your	device’s	internal	storage	where	all	the	apps	are	installed	under	normal
circumstances.	Some	application	data	will	reside	on	the	SD	card	and	in	the	/data/data
partition.	Using	adb,	we	can	pull	the	data	present	in	this	partition	for	further	analysis	using
the	adb	pull	command.	Once	again,	it’s	important	to	note	that	this	directory	is	accessible
only	on	a	rooted	phone.

Extracting	the	/data	directory	on	a	rooted	device
On	a	rooted	phone,	a	pull	command	on	/data	can	be	executed	as	follows:

C:\android-sdk-windows\platform-tools>adb.exe	pull	/data	C:\temp

pull:	/data/data/com.kiloo.subwaysurf/app_sslcache/www.chartboost.com.443	-

>	C:\temp/data/com.kiloo.subwaysurf/app_sslcache/www.chartboost.com.443

pull:	/data/data/com.mymobiler.android/lib/libpng2.so	->	

C:\temp/data/com.mymobiler.android/lib/libpng2.so

pull:	/data/system.notfirstrun	->	C:\temp/system.notfirstrun

732	files	pulled.	0	files	skipped.

2436	KB/s	(242711369	bytes	in	97.267s)

As	shown	in	the	following	screenshot,	the	complete	/data	directory	on	the	Android
device	was	copied	to	the	local	directory	on	the	machine.	The	entire	data	directory	was
extracted	in	97	seconds.	The	extraction	time	will	vary	depending	on	the	amount	of	data
residing	in	/data.

The/data	directory	extracted	to	a	forensic	workstation

On	a	non-rooted	device,	a	pull	command	on	the	/data	directory	does	not	extract	the	files
as	shown	in	the	following	output,	since	the	shell	user	does	not	have	permission	to	access
those	files:

C:\android-sdk-windows\platform-tools>adb.exe	pull	/data	C:\temp

pull:	building	file	list…

0	files	pulled.	0	files	skipped.

The	data	copied	from	a	rooted	phone	through	the	preceding	process	maintains	the
directory	structure,	thus	allowing	an	investigator	to	browse	through	the	necessary	files	to
gain	access	to	the	information.	By	analyzing	the	data	of	the	respective	applications,	a
forensic	expert	can	gather	critical	information	that	can	influence	the	outcome	of	the
investigation.	Note	that	examining	the	folders	natively	on	your	forensic	workstation	will
alter	the	dates	and	times	of	the	content.	The	examiner	should	make	a	copy	of	the	original
output	to	use	for	a	date/time	comparison.

Using	SQLite	Browser
SQL	Browser	is	a	tool	that	can	help	during	the	course	of	analyzing	the	extracted	data.
SQLite	Browser	allows	you	to	explore	the	database	files	with	the	following	extensions:
.sqlite,	.sqlite3,	.sqlitedb,	.db,	and	.db3.	The	main	advantage	of	using	SQLite
Browser	is	that	it	shows	the	data	in	a	table	form.	Navigate	to	File	|	Open	Database	to
open	a	.db	file	using	SQLite	Browser.	As	shown	in	the	following	screenshot,	there	are
three	tabs:	Database	Structure,	Browse	Data,	and	Execute	SQL.	The	Browse	Data	tab
allows	you	to	see	the	information	present	in	different	tables	within	the	.db	files.	We	will
be	mostly	using	this	tab	during	our	analysis.	Alternately,	Oxygen	Forensic	SQLite
Database	Viewer	can	also	be	used	for	the	same	purpose.	Recovering	deleted	data	from
database	files	is	possible	and	will	be	explained	in	Chapter	10,	Android	Data	Recovery
Techniques.

SQLite	Browser

The	following	sections	throw	light	on	identifying	important	data	and	manually	extracting

various	details	from	an	Android	phone.

Extracting	device	information
Knowing	the	details	of	your	Android	device,	such	as	the	model,	version,	and	more,	will
aid	in	your	investigation.	For	example,	when	the	device	is	physically	damaged	and
prohibits	the	examination	of	the	device	information,	you	can	grab	the	details	about	the
device	by	viewing	the	build.prop	file	present	in	the	/system	folder,	as	follows:

shell@android:/system	$	cat	build.prop

cat	build.prop

#	begin	build	properties

#	autogenerated	by	buildinfo.sh

ro.build.id=JZO54K

ro.build.display.id=JZO54K.I9300XXEMH4

ro.build.version.incremental=I9300XXEMH4

ro.build.version.sdk=16

ro.build.version.codename=REL

ro.build.version.release=4.1.2

ro.build.date=Tue	Sep	17	17:26:31	KST	2013

ro.build.date.utc=1379406391

..

ro.product.model=GT-I9300

ro.product.brand=samsung

ro.product.name=m0xx

ro.product.device=m0

ro.product.board=smdk4x12

ro.product.cpu.abi=armeabi-v7a

ro.product.cpu.abi2=armeabi

ro.product_ship=true

ro.product.manufacturer=samsung

..

ro.build.description=m0xx-user	4.1.2	JZO54K	I9300XXEMH4	rel

ro.build.fingerprint=samsung/m0xx/m0:4.1.2/JZO54K/I9300XXEM

..

ro.build.PDA=I9300XXEMH4

ro.build.hidden_ver=I9300XXEMH4

..

ro.sec.fle.encryption=true

..	

ro.com.google.gmsversion=4.1_r6

dalvik.vm.dexopt-flags=m=y

net.bt.name=Android

dalvik.vm.stack-trace-file=/data/anr/traces.txt

Extracting	call	logs
Accessing	the	call	logs	of	a	phone	is	often	required	during	the	investigation	to	confirm
certain	events.	The	information	about	call	logs	is	stored	in	the	contacts2.db	file	located
at	/data/data/com.android.providers.contacts/databases/.	As	mentioned	earlier,
you	can	use	SQLite	Browser	to	see	the	data	present	in	this	file	after	extracting	it	to	a	local
folder	on	the	forensic	workstation.	As	shown	in	the	following	screenshot,	by	using	the	adb
pull	command,	the	necessary	.db	files	can	be	extracted	to	a	folder	on	the	forensic
workstation,	as	shown	in	the	following	screenshot:

The	contacts2.db	file	copied	to	a	local	folder

Note	that	applications	used	to	make	calls	can	store	call	log	details	in	the	respective
application	folder.	All	communication	applications	must	be	examined	for	call	log	details,
as	follows:

C:\android-sdk-windows\platform-tools>adb.exe	pull	

/data/data/com.android.providers.contacts	C:\temp

pull:	building	file	list…

..

pull:	/data/data/com.android.providers.contacts/databases/contacts2.db	->	

C:\temp/databases/contacts2.db

pull:	/data/data/com.android.providers.contacts/databases/profile.db	->	

C:\temp/databases/profile.db

pull:	/data/data/com.android.providers.contacts/databases/profile.db-

journal	->C:\temp/databases/profile.db-journal

6	files	pulled.	0	files	skipped.

70	KB/s	(644163	bytes	in	8.946s)

Now,	open	the	contacts2.db	file	using	SQLite	Browser	(navigating	to	File	|	Open
Database)	and	browse	through	the	data	present	in	different	tables.	The	calls	table	present
in	the	contacts2.db	file	provides	information	about	the	call	history.	The	following
screenshot	highlights	the	call	history	along	with	the	name,	number,	duration,	and	date.

Extracting	SMS/MMS
During	the	course	of	investigation,	a	forensic	examiner	may	be	asked	to	retrieve	the	text

messages	that	are	sent	by	and	delivered	to	a	particular	mobile	device.	Hence,	it	is
important	to	understand	where	the	details	are	stored	and	how	to	access	the	data.	The
mmssms.db	file	which	is	present	under	the
/data/data/com.android.providers.telephony/databases	location	contains	the
necessary	details.	As	with	call	logs,	the	examiner	must	ensure	that	applications	capable	of
messaging	are	examined	for	relevant	message	logs,	as	follows:

C:\android-sdk-windows\platform-tools>adb.exe	pull	

/data/data/com.android.providers.telephony	C:\temp

pull:	building	file	list…

..	

->	C:\temp/databases/telephony.db-journal

pull:	/data/data/com.android.providers.telephony/databases/mmssms.db	->	

C:\temp/databases/mmssms.db

pull:	/data/data/com.android.providers.telephony/databases/telephony.db	->	

C:\temp/databases/telephony.db

5	files	pulled.	0	files	skipped.

51	KB/s	(160951	bytes	in	3.045s)

The	phone	number	can	be	seen	under	the	address	column	and	the	corresponding	text
message	can	be	seen	under	the	body	column,	as	shown	in	the	following	screenshot:

Calls	table	in	the	contacts2.db	file

Extracting	browser	history
Browser	history	information	is	one	task	that	is	often	required	to	be	reconstructed	by	a
forensic	examiner.	Apart	from	the	default	Android	Browser,	there	are	different	browser
applications	that	can	be	used	on	an	Android	phone,	such	as	Firefox	Mobile,	Google
Chrome,	and	so	on.	All	of	these	browsers	store	their	browser	history	in	the	SQLite	.db
format.	For	our	example,	we	are	extracting	data	from	the	default	Android	browser	to	our
forensic	workstation.	This	data	is	located	at	/data/data/com.android.browser.	The	file
named	browser2.db	contains	the	browser	history	details.	The	following	screenshot	shows
the	browser	data	as	represented	by	Oxygen	Forensic	SQLite	Database	Viewer.	Note	that
the	trial	version	will	hide	certain	information.

The	browser2.db	file	in	Oxygen	Forensic	SQLite	Viewer

Analysis	of	social	networking/IM	chats
Social	networking	and	IM	chat	applications	such	as	Facebook,	Twitter,	and	WhatsApp
reveal	sensitive	data,	which	could	be	helpful	during	the	investigation	of	any	case.	The
analysis	is	pretty	much	the	same	as	with	any	other	Android	application.	Download	the
data	to	a	forensic	workstation	and	analyze	the	.db	files	to	find	out	if	you	can	unearth	any
sensitive	information.	For	example,	let’s	look	at	the	Facebook	application	and	try	to	see
what	data	can	be	extracted.	First,	we	extract	the	/data/data/com.facebook.katana	folder
and	navigate	to	the	databases	folder.	The	fb.db	file	present	under	this	folder	contains
information	which	is	associated	to	the	user’s	account.	The	friends_data	table	contains
information	about	the	friend’s	names	along	with	their	phone	numbers,	e-mail	IDs,	and	date
of	birth,	as	shown	in	the	following	screenshot.	Similarly,	other	files	can	be	analyzed	to
find	out	if	any	sensitive	information	can	be	gathered.

The	fb.db	file	in	SQLite	browser

Similarly,	by	analyzing	the	data	present	in	the	/data/data	folder,	information	about	geo
location,	calendar	events,	user	notes,	and	more	can	be	grabbed.

Using	content	providers
In	Android,	the	data	of	one	application	cannot	be	accessed	by	another	application	under
normal	circumstances.	However,	Android	provides	a	mechanism	through	which	data	can
be	shared	with	other	applications.	This	is	precisely	achieved	through	the	use	of	content
providers.	Content	providers	present	data	to	external	applications	in	the	form	of	one	or
more	tables.	These	tables	are	no	different	from	the	tables	found	in	a	relational	database.
They	can	be	used	by	the	applications	to	share	data	usually	through	the	URI	addressing
scheme.	They	are	used	by	other	applications	that	access	the	provider	using	a	provider-
client	object.	During	the	installation	of	an	app,	the	user	determines	whether	or	not	the	app
can	gain	access	to	the	requested	data	(content	providers).	For	instance,	contacts,
SMS/MMS,	calendar,	and	so	on,	are	examples	of	content	providers.

Hence,	by	taking	advantage	of	this,	we	can	create	an	app	that	can	grab	all	the	information
from	all	the	available	content	providers.	This	is	precisely	how	most	of	the	commercial
forensic	tools	work.	The	advantage	of	this	method	is	it	can	be	used	on	both	rooted	and
non-rooted	devices.	For	our	example,	we	are	using	AFLogical,	which	takes	advantage	of
the	content-provider	mechanism	to	gain	access	to	the	information.	This	tool	extracts	the
data	and	saves	it	to	an	SD	card	in	CSV	format.	The	following	steps	extract	the	information
from	an	Android	device	using	AFLogical	Open	Source	Edition	1.5.2:

1.	 Download	AFLogical	OSE	1.5.2	from	https://github.com/viaforensics/android-
forensics/downloads.

Note
The	AFLogical	LE	edition	is	capable	of	extracting	a	larger	set	of	information	and
requires	registration	with	viaForensics	using	an	active	law	enforcement	or
government	agency	e-mail.	AFLogical	OSE	can	pull	all	available	MMSes,	SMSes,
contacts,	and	call	logs.

2.	 Ensure	USB	debugging	mode	is	enabled	and	connect	the	device	to	the	workstation.
3.	 Verify	that	the	device	is	identified	by	issuing	the	following	command:

C:\android-sdk-windows\platform-tools>adb.exe	devices

List	of	devices	attached

4df16ac3115d6p18								device

4.	 Save	the	AFLogical	OSE	app	in	the	home	directory	and	issue	the	following
command	to	install	it	on	the	device:

C:\android-sdk-windows\platform-tools>adb.exe	

install	AFLogical-OSE_1.5.2.apk

1479	KB/s	(28794	bytes	in	0.019s)

								pkg:	/data/local/tmp/AFLogical-OSE_1.5.2.apk

Success

5.	 Once	the	application	is	installed,	you	can	run	it	directly	from	the	device	and	click	on

https://github.com/viaforensics/android-forensics/downloads

the	Capture	button	present	at	the	bottom	of	the	app,	as	shown	in	the	following
screenshot:

The	AFLogical	OSE	app

6.	 The	app	starts	extracting	data	from	the	respective	content	providers	and	once	the
process	is	complete,	a	message	will	be	displayed,	as	shown	in	the	following
screenshot:

Message	displayed	after	the	extraction	is	complete

7.	 The	extracted	data	is	saved	to	the	SD	card	of	the	device	in	a	directory	named
forensics.	The	extracted	information	is	stored	in	CSV	files,	as	shown	in	the
following	figure.	The	CSV	files	can	be	viewed	using	any	editor.

Files	extracted	using	AFLogical	OSE

8.	 The	info.xml	file	present	in	the	same	directory	provides	information	about	the
device	including	the	IMEI	number,	IMSI	number,	Android	version,	information
about	installed	applications,	and	so	on.

Other	tools	that	can	help	during	investigation	to	logically	extract	data	will	be	covered	in
Chapter	11,	Android	App	Analysis	and	Overview	of	Forensic	Tools.

Physical	data	extraction
Android	data	extraction	through	physical	techniques	(hardware-based)	mainly	involves
two	methods:	JTAG	and	chip-off.	These	techniques	are	usually	hard	to	implement	and
require	great	precision	and	experience	to	try	them	on	real	devices	during	the	course	of	an
investigation.	The	following	sections	provide	an	overview	of	these	techniques.

JTAG
JTAG	(Joint	Test	Action	Group)	involves	using	advanced	data	acquisition	methods,
which	involve	connecting	to	specific	ports	on	the	device	and	instructing	the	processor	to
transfer	the	data	stored	on	the	device.	By	using	this	method,	a	full	physical	image	of	a
device	can	be	acquired.	It	is	always	recommended	to	first	try	out	the	logical	techniques
mentioned	earlier	as	they	are	easy	to	implement	and	require	less	effort.	Examiners	must
have	proper	training	and	experience	prior	to	attempting	JTAG	as	the	device	may	be
damaged	if	handled	improperly.

The	JTAG	process	usually	involves	the	following	forensic	steps:

1.	 In	JTAG,	the	device	Test	Access	Ports	(TAPs)	are	used	to	access	the	CPU	of	the
device.	Identifying	the	TAPs	is	the	primary	and	most	important	step.	TAPs	are
identified	and	the	connection	is	traced	to	the	CPU	to	find	out	which	pad	is
responsible	for	each	function.	Although	device	manufacturers	document	resources
about	the	JTAG	schematics	of	a	particular	device,	they	are	not	released	for	general
viewing.	A	good	site	for	JTAG	on	an	Android	device	is
http://www.forensicswiki.org/wiki/JTAG_Forensics.

2.	 Wire	leads	are	then	soldered	to	appropriate	connecter	pins	and	the	other	end	is
connected	to	the	device	that	can	control	the	CPU,	as	shown	in	the	following	image
(published	by	www.binaryintel.com).	JTAG	jigs	can	be	used	to	forgo	soldering	for
certain	devices.	The	use	of	a	jig	or	JTAG	adapter	negates	the	need	to	solder,	as	it
connects	the	TAPs	to	the	CPU.

http://www.forensicswiki.org/wiki/JTAG_Forensics
http://www.binaryintel.com

The	JTAG	setup

3.	 Once	the	preceding	steps	are	complete,	power	must	be	applied	to	boot	the	CPU.	The
voltage	that	must	be	applied	depends	on	the	specifications	released	by	the	hardware
manufacturer.	Do	not	apply	a	voltage	beyond	the	number	mentioned	in	the
specification.

4.	 After	applying	the	power,	a	full	binary	memory	dump	of	the	NAND	flash	can	be
extracted.

5.	 Analyze	the	extracted	data	using	the	forensic	techniques	and	tools	learned	in	this
book.	A	raw	.bin	file	will	be	obtained	during	the	acquisition	and	most	forensic	tools
support	ingestion	and	analysis	of	this	image	format.

It	is	also	important	to	understand	that	the	JTAG	technique	should	not	result	in	loss	of
functionality	of	the	device.	If	reassembled	properly,	the	device	should	function	without
any	problems.	Although	the	JTAG	technique	is	effective	in	extracting	the	data,	only
experienced	and	qualified	personnel	should	attempt	it.	Any	error	in	soldering	the	JTAG
pads	or	applying	a	different	voltage	could	damage	the	device	entirely.

Chip-off
Chip-off,	as	the	name	suggests,	is	a	technique	where	the	NAND	flash	chip(s)	are	removed
from	the	device	and	examined	to	extract	the	information.	Hence,	this	technique	will	work
even	when	the	device	is	passcode-protected	and	USB	debugging	is	not	enabled.	Unlike	the
JTAG	technique	where	the	device	functions	normally	after	examination,	the	chip-off
technique	usually	results	in	destruction	of	the	device,	that	is,	it	is	more	difficult	to	reattach
the	NAND	flash	to	the	device	after	examination.	The	process	of	reattaching	the	NAND
flash	to	the	device	is	called	re-balling	and	requires	training	and	practice.

Chip-off	techniques	usually	involve	the	following	forensic	steps:

1.	 All	of	the	chips	on	the	device	must	be	researched	to	determine	which	chip	contains
user	data.	Once	determined,	the	NAND	flash	is	physically	removed	from	the	device.
This	can	be	done	by	applying	heat	to	desolder	the	chip	as	shown	in	the	following
image	(published	by	www.binaryintel.com).	This	is	a	very	delicate	process	and	must
be	done	with	great	care	as	it	may	result	in	damaging	the	NAND	flash.

The	chip-off	technique

2.	 The	chip	is	then	cleaned	and	repaired	to	make	sure	that	the	connectors	are	present
and	functioning.

3.	 Using	specialized	hardware	device	adapters,	the	chip	can	now	be	read.	This	is	done
by	inserting	the	chip	into	the	hardware	device,	which	supports	the	specific	NAND
flash	chip.	In	this	process,	raw	data	is	acquired	from	the	chip	resulting	in	a	.bin	file.

4.	 The	data	acquired	can	now	be	analyzed	using	forensic	techniques	and	the	tools
described	earlier.

The	chip-off	technique	is	most	helpful	when	the	device	is	damaged	severely,	locked,	or
otherwise	inaccessible.	However,	the	application	of	this	technique	requires	not	only
expertise	but	also	costly	equipment	and	tools.	There	is	always	a	risk	of	damaging	the
NAND	flash	while	removing	it	and	hence	it	is	recommended	to	try	out	the	logical
techniques	first	to	extract	any	data.

http://www.binaryintel.com

Imaging	a	memory	(SD)	card
There	are	many	tools	available	that	can	image	a	memory	card.	The	following	example
uses	WinHex	to	create	a	raw	disk	image	of	the	SD	card.	The	following	is	a	step-by-step
process	to	image	a	memory	card	using	the	WinHex	software.

Connecting	the	memory	card:	Remove	the	SD	card	from	the	memory	slot	and	use	a
card	reader	to	connect	the	memory	card	to	the	forensic	workstation.
Write	protect	the	card:	Open	the	disk	using	WinHex.	Navigate	to	Options	|	Edit
Mode	and	select	the	write-protected	mode,	as	shown	in	the	following	screenshot.
This	is	to	make	sure	that	the	device	is	write	protected	and	no	data	can	be	written	on
it.

WinHex	view	of	Edit	Mode	(left)	and	WinHex	Read-only	Mode	enabled	(right)

Calculating	the	hash	value:	Calculate	the	hash	value	of	the	memory	card	to	make
sure	that	no	changes	are	made	at	any	point	during	the	investigation.	Navigate	to
Tools	|	Compute	hash	and	choose	any	hashing	algorithm.
Creating	the	image	of	the	disk:	Navigate	to	File	|	Create	Disk	Image,	as	shown	in
the	following	screenshot.	Select	the	Raw	image	option	(.dd)	to	create	an	image.	This
completes	the	imaging	of	the	memory	card.

The	WinHex	disk	image	option

Summary
Imaging	a	device	is	one	of	the	primary	steps	to	ensure	that	the	data	on	the	device	is	not
modified.	Once	the	device	is	accessible,	an	examiner	can	extract	the	data	using	manual,
logical,	or	physical	data	extraction	techniques.	Logical	techniques	extract	the	data	by
accessing	the	file	system.	While	the	physical	techniques	access	a	larger	set	of	data,	they
are	complex	and	require	great	expertise	to	perform.	Manual	extraction	should	be
performed	to	validate	data	or	only	when	one	tool	is	used	to	create	the	image.	Once	the
data	is	acquired,	examination	and	manual	extraction	follows,	as	described	in	the	next
chapter.

Chapter	10.	Android	Data	Recovery
Techniques
While	the	data	extraction	and	analysis	techniques	provide	information	about	various
details	such	as	call	logs,	text	messages,	and	other	cellular	functions,	not	all	techniques	can
provide	information	about	the	deleted	data.	It	is	rare	to	find	a	smartphone	today	that
doesn’t	contain	data	the	user	intended	to	delete.	The	probability	that	the	deleted	data
contains	sensitive	information	(which	is	why	the	data	is	deleted	in	the	first	place)	is	high.
Hence,	data	recovery	is	a	crucial	aspect	of	mobile	forensics	as	it	helps	to	unearth	the
deleted	items.	This	chapter	aims	to	cover	various	techniques,	which	can	be	used	by	a
forensic	analyst	to	recover	the	data	from	an	Android	device.

Data	recovery
Data	recovery	is	one	of	the	most	significant	and	powerful	aspects	of	forensic	analysis.	The
ability	to	recover	deleted	data	can	be	crucial	to	crack	many	civil	and	criminal	cases.	From
a	normal	user’s	point	of	view,	recovering	data	that	has	been	deleted	would	usually	refer	to
the	operating	system’s	built-in	solutions	such	as	the	Recycle	Bin	in	Windows.	While	it’s
true	that	data	can	be	recovered	from	these	locations,	due	to	an	increase	in	user	awareness,
these	options	don’t	often	work.	For	instance,	on	a	desktop	computer,	people	now	use	Shift
+	Delete	as	a	way	to	delete	a	file	completely	from	their	desktop.

Data	recovery	is	the	process	of	retrieving	deleted	data	from	a	device	when	it	cannot	be
accessed	normally.	Consider	the	scenario	where	a	mobile	phone	has	been	seized	from	a
terrorist.	Wouldn’t	it	be	of	greatest	importance	to	know	which	items	were	deleted	by	the
terrorist?	Access	to	any	deleted	SMS	messages,	pictures,	dialed	numbers,	application	data,
and	more	can	be	of	critical	importance	as	they	often	reveal	sensitive	information.	With
Android,	it	is	possible	to	recover	most	of	the	deleted	data	if	the	device	files	are	properly
acquired.	However,	if	proper	care	is	not	taken	while	handling	the	device,	the	deleted	data
could	be	lost	forever.	To	ensure	that	the	deleted	data	is	not	overwritten,	it	is	recommended
to	keep	the	following	points	in	mind:

Do	not	use	the	phone	for	any	activity	after	seizing	it.	The	deleted	data	exists	on	the
device	until	the	space	is	needed	by	some	other	incoming	data.	Hence,	the	phone	must
not	be	used	for	any	sort	of	activity	so	as	to	prevent	the	data	from	being	overwritten.
Even	when	the	phone	is	not	used,	without	any	intervention	from	our	end,	data	can	be
overwritten.	For	instance,	an	incoming	SMS	would	automatically	occupy	the	space,
which	could	overwrite	the	data	marked	for	deletion.	To	prevent	occurrence	of	such
events,	the	examiner	should	follow	the	forensic	handling	methods	described	in	the
previous	chapters.	The	easiest	solution	is	to	place	the	device	in	airplane	mode,
disable	all	connectivity	options	on	the	device,	or	turn	the	device	off.	This	prevents	the
delivery	of	any	new	messages.

Recovering	the	deleted	files
All	Android	file	systems	have	metadata	containing	information	about	the	hierarchy	of
files,	filenames,	and	so	on.	Deletion	will	not	really	erase	the	data	but	remove	the	file
system	metadata.	When	text	messages	or	any	other	files	are	deleted	from	the	device,	they
are	just	made	invisible	to	the	user	but	the	files	are	still	present	on	the	device.	Essentially,
the	files	are	simply	marked	for	deletion,	but	reside	on	the	file	system	until	being
overwritten.	Recovering	deleted	data	from	an	Android	device	involves	two	scenarios:
recovering	data	that	is	deleted	from	the	SD	card,	such	as	pictures,	videos,	application	data,
and	more,	and	recovering	data	that	is	deleted	from	the	internal	memory	of	the	device.	The
following	sections	cover	the	techniques	that	can	be	used	to	recover	deleted	data	from	both
the	SD	card	and	internal	memory	of	the	Android	device.

Recovering	deleted	data	from	an	SD	card
Data	present	on	SD	cards	can	reveal	a	lot	of	information	for	forensic	investigators.	SD
cards	are	capable	of	storing	pictures	and	videos	taken	by	the	phone’s	camera,	voice
recordings,	application	data,	cached	files,	and	more.	Essentially,	anything	that	can	be
stored	on	a	computer	hard	drive	can	be	stored	on	an	SD	card	as	much	as	the	available
space	allows.	Recovering	the	deleted	data	from	an	external	SD	card	is	a	straightforward
process.	SD	cards	can	be	mounted	as	an	external	mass	storage	device	and	forensically
acquired	using	standard	digital	forensic	methods	as	discussed	in	Chapter	9,	Android	Data
Extraction	Techniques.	The	device	should	never	be	mounted	on	a	computer	to	copy	the
files	as	the	unallocated	space	will	be	missed.	As	mentioned	in	the	previous	chapters,	SD
cards	in	Android	devices	often	use	the	FAT32	file	system.	The	main	reason	for	this	is	that
the	FAT32	file	system	is	widely	supported	in	most	operating	systems	including	Windows,
Linux,	and	Mac	OS	X.	The	maximum	file	size	on	a	FAT32	formatted	drive	is	around	4
GB.	With	increasingly	high	resolution	formats	now	available,	this	limit	is	commonly
reached.	Apart	from	this,	FAT32	can	be	used	on	partitions	that	are	less	than	32	GB	in	size.
Hence,	the	exFAT	file	system,	which	overcomes	these	problems,	is	now	being	used	in
some	of	the	devices.

To	recover	the	deleted	files	from	an	SD	card,	you	can	use	any	of	the	available	forensic
tools	such	as	the	Remo	Recover	for	Android	tool.	The	following	is	a	step-by-step
process	to	recover	the	deleted	files	from	an	SD	card	using	Remo	Recovery	for	Android:

1.	 Download	the	software	from	http://www.remosoftware.com/remo-recover-for-
android.	Next,	install	the	software	and	launch	it.	From	the	main	screen,	select	the
appropriate	file	recovery	mode.	The	tool	tries	to	recognize	the	Android	device	and
displays	the	following	screen,	once	the	device	is	successfully	detected.	Note,	the
Android	device	must	be	able	to	connect	via	USB	debugging	or	the	device	may	not	be
detected.

http://www.remosoftware.com/remo-recover-for-android

Android	recovery—device	detection

2.	 The	tool	presents	you	with	a	list	of	storage	devices	available,	as	shown	in	the
following	screenshot.	Select	the	storage	device	from	the	list	and	proceed.

The	list	of	storage	devices	available

3.	 Select	the	type	of	file	to	be	recovered	or	select	all	and	proceed	further.
4.	 Once	the	recovery	process	is	complete,	a	list	of	the	extracted	files	will	be	provided	as

shown	in	the	following	screenshot:

Recovered	files	list

Examiners	must	understand	that	Android	devices	might	use	space	on	the	SD	card	to	cache
application	data,	therefore	it	is	important	to	make	sure	that	as	much	data	as	possible	is
obtained	from	the	device	prior	to	removing	the	SD	card.	It	is	recommended	to	acquire	the
SD	card	through	the	device	as	well	as	separately	to	ensure	all	data	is	obtained.	To	achieve
the	SD	card	image,	dd	through	adb	can	be	used	while	the	device	is	running	to	obtain	an
image	of	the	SD	card	of	the	device	if	the	device	cannot	be	powered	off	due	to	possible
evidence	running	in	the	memory.	A	memory	capture	can	be	obtained	on	the	Android
device	should	data	actively	be	running	in	the	memory	be	relevant	to	the	investigation.
Tools	such	as	LiME	can	be	used	to	complete	the	memory	capture.	LiME	can	be	accessed
on	the	following	site:	https://code.google.com/p/lime-forensics/.

It	is	also	recommended	to	check	if	the	device	has	any	backup	applications	or	files
installed.	The	initial	release	of	Android	did	not	include	a	mechanism	for	the	users	to	back
up	their	personal	data.	Hence,	several	backup	applications	were	used	extensively	by	the
users.	By	using	the	apps,	users	have	the	ability	to	back	up	their	data	either	to	the	SD	card
or	to	the	cloud.	For	example,	the	Super	Backup	app	contains	the	options	to	back	up	call
logs,	contacts,	SMS,	and	more	as	shown	in	the	following	screenshot:

https://code.google.com/p/lime-forensics/

The	Super	Backup	Android	app

Upon	detection	of	a	backup	application,	the	forensic	examiners	must	attempt	to	determine
where	the	data	is	stored.	The	data	saved	in	a	backup	may	contain	important	information
and	thus	looking	for	any	third-party	backup	app	on	the	device	would	be	very	helpful.

Recovering	data	deleted	from	internal	memory
Recovering	files	which	are	deleted	from	Android’s	internal	memory	(such	as	SMS,
contacts,	app	data,	and	more)	is	not	supported	by	all	analytical	tools	and	may	require
manual	carving.	Unlike	some	media	containing	common	file	systems	such	as	SD	cards,
the	file	system	may	not	be	recognized	and	mounted	by	forensic	tools.	Also,	the	examiner
cannot	get	access	to	the	raw	partitions	of	the	internal	memory	of	an	Android	phone	unless
the	phone	is	rooted.	The	following	are	some	of	the	other	issues	the	examiner	may	face
when	attempting	to	recover	data	from	the	internal	memory	on	Android	devices:

To	get	access	to	the	internal	memory	you	can	try	to	root	the	phone.	However,	the
rooting	process	might	involve	writing	some	data	to	the	/data	partition	and	this
process	could	overwrite	the	data	of	value	on	the	device.
Unlike	SD	cards,	the	internal	file	system	here	is	not	FAT32	(which	is	widely
supported	by	forensic	tools).	The	internal	file	system	could	be	YAFFS2	(in	older
devices),	EXT3,	EXT4,	RFS,	or	something	proprietary	built	to	run	on	Android.
Therefore,	many	of	the	recovery	tools	designed	for	use	with	Windows	file	systems
won’t	work.
Application	data	on	Android	devices	is	commonly	stored	in	the	SQLite	format.	While
most	forensic	tools	provide	access	to	the	database	files,	they	may	have	to	be	exported
and	viewed	in	a	native	browser.	The	examiner	must	examine	the	raw	data	to	ensure
that	the	deleted	data	is	not	overlooked	by	the	forensic	tool.

The	discussed	reasons	make	it	difficult,	but	not	impossible,	to	recover	the	deleted	data

from	the	internal	memory.	The	internal	memory	of	Android	devices	holds	a	bulk	of	the
user	data	and	the	possible	keys	to	your	investigation.	As	previously	mentioned,	the	device
must	be	rooted	in	order	to	access	the	raw	partitions.	Most	of	the	Android	recovery	tools	on
the	market	do	not	highlight	the	fact	that	they	work	only	on	rooted	phones.	Let	us	now	see
how	we	can	recover	deleted	data	from	an	Android	phone.

Recovering	deleted	files	by	parsing	SQLite	files
Android	uses	SQLite	files	to	store	most	data.	Data	related	to	text	messages,	e-mails,	and
certain	app	data	is	stored	in	SQLite	files.	SQLite	databases	can	store	deleted	data	within
the	database	itself.	Files	marked	for	deletion	by	the	user	no	longer	appear	in	the	active
SQLite	database	files.	Therefore,	it	is	possible	to	recover	the	deleted	data	such	as	text
messages,	contacts,	and	more.	There	are	two	areas	within	a	SQLite	page	that	can	contain
deleted	data:	unallocated	blocks	and	free	blocks.	Most	of	the	commercial	tools	that
recover	deleted	data	scan	the	unallocated	blocks	and	free	blocks	of	the	SQLite	pages.
Parsing	the	deleted	data	can	be	done	using	the	available	forensic	tools	such	as	Oxygen
Forensics	SQLite	Viewer.	The	trial	version	of	the	SQLite	Viewer	can	be	used	for	this
purpose;	however,	there	are	certain	limitations	on	the	amount	of	data	that	you	can	recover.
You	can	write	your	own	script	to	parse	the	files	for	deleted	content	and	for	that	you	need
to	have	a	good	understanding	about	the	SQLite	file	format.	The	link
http://www.sqlite.org/fileformat.html	is	a	good	place	to	start	with.	If	you	do	not	want	to
reinvent	and	want	to	reuse	the	existing	scripts,	you	can	try	the	available	open	source
Python	scripts	(http://az4n6.blogspot.in/2013/11/python-parser-to-recover-deleted-
sqlite.html)	to	parse	the	SQLite	files	for	deleted	records.

For	our	example,	we	will	recover	deleted	SMSes	from	an	Android	device.	Recovering
deleted	SMSes	from	an	Android	phone	is	quite	often	requested	as	part	of	forensic	analysis
on	a	device	mainly	because	text	messages	contain	data,	which	can	reveal	a	lot	of
information.	There	are	different	ways	to	recover	deleted	text	messages	on	an	Android
device.	First,	we	need	to	understand	where	the	messages	are	being	stored	on	the	device.	In
Chapter	9,	Android	Data	Extraction	Techniques,	we	explained	the	important	locations	on
the	Android	device	where	user	data	is	stored.	Here	is	a	quick	recap	of	this:

Every	application	stores	its	data	under	the	/data/data	folder	(again,	this	requires
root	access	to	acquire	data)
The	files	under	the	location
/data/data/com.android.providers.telephony/databases	contain	details	about
SMS/MMS

Under	the	preceding	mentioned	location,	text	messages	are	stored	in	a	SQLite	database
file,	which	is	named	mmssms.db.	Deleted	text	messages	can	be	recovered	by	examining
this	file.	Here	are	the	steps	to	recover	deleted	SMSes	using	the	mmssms.db	file:

1.	 On	the	Android	device,	enable	the	USB	debugging	mode	and	connect	the	device	to
the	forensic	workstation.	Using	the	adb	command-line	tool,	extract	the	databases
folder	present	under	the	location	/data/data/	by	issuing	the	adb	pull	command:

C:\android-sdk-windows\platform-tools>adb.exe	pull	

http://www.sqlite.org/fileformat.html
http://az4n6.blogspot.in/2013/11/python-parser-to-recover-deleted-sqlite.html

/data/data/com.android.providers.telephony/databases	C:\temp

pull:	building	file	list…

pull:	/data/data/com.android.providers.telephony/databases/mmssms.db-

journal	->	C:\temp/mmssms.db-journal

pull:	

/data/data/com.android.providers.telephony/databases/telephony.db-

journal	->	C:\temp/telephony.db-journal

pull:	/data/data/com.android.providers.telephony/databases/mmssms.db	->	

C:\temp/mmssms.db

pull:	/data/data/com.android.providers.telephony/databases/telephony.db	

->	C:\temp/telephony.db

4	files	pulled.	0	files	skipped.

53	KB/s	(160848	bytes	in	2.958s)

Once	the	files	are	extracted	to	the	local	machine,	use	the	Oxygen	Forensics	SQLite
Viewer	tool	to	open	the	mmssms.db	file.

2.	 Click	on	the	table	named	sms	and	observe	the	current	message	under	the	Tables	data
tab	in	the	tool.

3.	 One	way	to	view	the	deleted	data	is	by	clicking	on	the	Blocks	containing	deleted
data	tab,	as	shown	in	the	following	screenshot:

Recovering	deleted	SMS	messages

Similarly,	other	data	residing	on	Android	devices	which	store	data	in	SQLite	files	can	be
recovered	by	parsing	for	deleted	content.	When	the	preceding	method	doesn’t	provide
access	to	the	deleted	data,	the	examiner	should	look	at	the	file	in	raw	hex	file	for	data
marked	as	deleted,	which	can	be	manually	carved	and	reported.

Recovering	files	using	file-carving	techniques
File	carving	is	an	extremely	useful	method	in	forensics	because	it	allows	for	data	that	has
been	deleted	or	hidden	to	be	recovered	for	analysis.	In	simple	terms,	file	carving	is	the
process	of	reassembling	computer	files	from	fragments	in	the	absence	of	file	system
metadata.	In	file	carving,	specified	file	types	are	searched	for	and	extracted	across	the
binary	data	to	create	a	forensic	image	of	a	partition	or	an	entire	disk.	File	carving	recovers
files	from	the	unallocated	space	in	a	drive	based	merely	on	file	structure	and	content
without	any	matching	file	system	metadata.	Unallocated	space	refers	to	the	part	of	the
drive	that	no	longer	holds	any	file	information	as	pointed	by	the	file	system	structures
such	as	the	file	table.

Files	can	be	recovered	or	reconstructed	by	scanning	the	raw	bytes	of	the	disk	and
reassembling	them.	This	can	be	done	by	examining	the	header	(the	first	few	bytes)	and
footer	(the	last	few	bytes)	of	a	file.

File-carving	methods	are	categorized	based	on	the	underlying	technique	in	use.	The
header-footer	carving	method	relies	on	recovering	the	files	based	on	the	header	and	footer
information.	For	instance,	the	JPEG	files	start	with	0xffd8	and	end	with	0xffd9.	The
locations	of	the	header	and	footer	are	identified	and	everything	between	those	two
endpoints	is	carved.	Similarly,	the	carving	method	based	on	the	file	structure	uses	the
internal	layout	of	a	file	to	reconstruct	the	file.	But	the	traditional	file-carving	techniques
such	as	the	ones	we’ve	already	explained	may	not	work	if	the	data	is	fragmented.	To
overcome	this,	new	techniques	such	as	smart	carving	use	the	fragmentation	characteristics
of	several	popular	file	systems	to	recover	the	data.

Once	the	phone	is	imaged,	it	can	be	analyzed	using	tools	such	as	Scalpel.	Scalpel	is	a
powerful	open	source	utility	to	carve	files.	This	tool	analyzes	the	block	database	storage
and	identifies	the	deleted	files	and	recovers	them.	Scalpel	is	file	system	independent	and	is
known	to	work	on	various	file	systems	including	FAT,	NTFS,	EXT2,	EXT3,	HFS,	and
more.	The	following	steps	explain	how	to	use	Scalpel	on	an	Ubuntu	workstation:

1.	 Install	Scalpel	on	the	Ubuntu	workstation	using	the	command	sudo	apt-get
install	scalpel.

2.	 The	scalpel.conf	file	present	under	the	/etc/scalpel	directory	contains
information	about	the	supported	file	types,	as	shown	in	the	following	screenshot:

The	scalpel	configuration	file

This	file	needs	to	be	modified	in	order	to	mention	the	files	that	are	related	to
Android.	A	sample	scalpel.conf	file	can	be	downloaded	from	the	link
https://viaforensics.com/resources/tools/#android.	You	can	also	uncomment	the	files
and	save	the	conf	file	to	select	file	types	of	your	choice.	Once	this	is	done,	replace
the	original	conf	file	with	the	one	that	is	downloaded.

3.	 Scalpel	needs	to	be	run	along	with	the	preceding	configuration	file	on	the	dd	image
being	examined.	You	can	run	the	tool	using	the	command	shown	in	the	following
screenshot,	by	inputting	the	configuration	file	and	the	dd	file.	Once	the	command	is
run,	the	tool	starts	to	carve	the	files	and	build	them	accordingly.

https://viaforensics.com/resources/tools/#android

Running	the	Scalpel	tool	on	a	dd	file

4.	 The	output	folder	specified	in	the	preceding	command	now	contains	lists	of	folders
based	on	the	file	types,	as	shown	in	the	following	screenshot.	Each	of	these	folders
contains	data	based	on	the	folder	name.	For	instance,	jpg	2-0	contains	files	related
to	the	.jpg	extension	that	has	been	recovered.

Output	folder	after	running	the	Scalpel	tool

5.	 As	shown	in	the	preceding	screenshot,	each	folder	contains	recovered	data	from	the
Android	device,	such	as	images,	PDF	files,	ZIP	files,	and	more.	While	some	pictures
are	recovered	completely,	some	are	not	recovered	to	a	full	extent,	as	shown	in	the
following	screenshot:

Recovered	data	using	the	Scalpel	tool

Applications	such	as	DiskDigger	can	be	installed	on	Android	devices	to	recover	different
types	of	files	from	both	the	internal	memory	and	SD	cards.	Applications	such	as
DiskDigger	include	support	for	JPG	files,	MP3	and	WAV	audio,	MP4	and	3GP	video,	raw
camera	formats,	Microsoft	Office	files	(DOC,	XLS,	and	PPT),	and	more.	However,	as
mentioned	earlier,	the	application	requires	root	privileges	on	the	Android	device	in	order
to	recover	the	content	from	the	internal	memory.	Thus,	file-carving	techniques	play	a	very
important	role	in	recovering	important	deleted	files	from	the	device’s	internal	memory.

You	can	also	restore	the	contacts	on	the	device	using	the	Restore	Contacts	option	through
the	Google	account	configured	on	the	device.	This	would	work	if	the	user	of	the	device
has	previously	synced	their	contacts	using	the	Sync	Settings	option	available	in	Android.
This	option	synchronizes	the	contacts	and	other	details	and	would	store	them	in	the	cloud.
A	forensic	examiner	with	legal	authority	or	proper	consent	can	restore	the	deleted	contacts
if	they	can	get	access	to	the	Google	account	configured	on	the	device.	Once	the	account	is
accessed,	perform	the	following	steps	to	restore	the	data:

1.	 Log	in	to	the	Gmail	account.
2.	 Click	on	Gmail	in	the	top-left	corner	and	select	Contacts,	as	shown	in	the	following

screenshot:

The	Contacts	menu	in	Gmail

3.	 Click	on	More,	which	is	present	above	the	contacts	list.
4.	 Click	on	Restore	Contacts	and	the	following	screen	appears:

The	Restore	Contacts	dialog	box

5.	 Now,	you	can	restore	the	contact	list	to	the	state	that	it	was	in	at	any	point	within	the
past	30	days	using	this	technique.

Summary
Recovery	of	the	deleted	data	on	Android	devices	depends	on	various	factors	which	heavily
rely	on	access	to	the	data	residing	in	the	internal	memory	and	SD	card.	While	the	recovery
of	deleted	items	from	external	storage	such	as	an	SD	card	is	easy,	recovery	of	deleted
items	from	the	internal	memory	takes	considerable	effort.	SQLite	file	parsing	and	file-
carving	techniques	are	two	methods	to	recover	deleted	data	extracted	from	an	Android
device.	The	next	chapter	discusses	Android	forensic	tools	that	can	be	helpful	in	extracting
and	acquiring	data	from	Android	devices.	Both	open	source	and	commercial	methods	will
be	discussed.

Chapter	11.	Android	App	Analysis	and
Overview	of	Forensic	Tools
Third-party	applications	are	commonly	used	by	smartphone	users.	Android	users
download	and	install	several	apps	from	app	stores	such	as	Android	Market	and	Google
Play.	During	forensic	investigations,	it	is	often	helpful	to	perform	an	analysis	of	these	apps
to	retrieve	valuable	data	and	to	detect	any	malware.	For	instance,	a	photo	vault	app	might
lock	sensitive	images	present	on	the	device.	Hence,	it	would	be	of	great	significance	to
have	the	knowledge	to	identify	the	passcode	for	the	photo	vault	app.	While	the	data
extraction	and	data	recovery	techniques	discussed	in	earlier	chapters	provide	access	to
valuable	data,	app	analysis	would	help	us	to	gain	information	about	the	specifics	of	an
application,	such	as	preferences	and	permissions.	This	chapter	covers	the	techniques	to
reverse	engineer	an	Android	application	and	also	throws	light	on	some	available	forensic
tools	that	may	be	extremely	helpful	during	forensic	acquisition	and	analysis.

Android	app	analysis
On	Android,	everything	the	user	interacts	with	is	an	application.	While	some	apps	are
preinstalled	by	the	device	manufacturer,	some	apps	are	downloaded	and	installed	by	the
user.	Depending	on	the	type	of	application,	most	of	these	apps	store	sensitive	information
on	the	internal	memory	or	the	SD	card	on	the	device.	Using	the	forensic	techniques
described	earlier,	it	is	possible	to	get	access	to	the	data	stored	by	these	applications.
However,	a	forensic	examiner	needs	to	develop	the	necessary	skills	to	convert	the
available	data	into	useful	data.	This	is	achieved	when	you	have	a	comprehensive
understanding	of	how	the	application	handles	data.

The	examiner	may	need	to	deal	with	applications	that	stand	as	a	barrier	to	accessing
required	information.	For	instance,	take	the	case	of	the	gallery	on	a	phone	locked	by	an
app	locker	application.	In	this	case,	in	order	to	access	the	pictures	and	videos	stored	on	the
gallery,	you	first	need	to	enter	the	passcode	to	the	app	locker.	Hence,	it	would	be
interesting	to	know	how	the	app	locker	app	stores	the	password	on	the	device.	You	might
look	into	the	sqlite	database	files,	but	if	they	are	encrypted,	then	it’s	hard	to	even	predict
that	it’s	a	password.	Reverse	engineering	applications	would	be	helpful	in	such	cases
where	you	want	to	better	understand	the	application	and	how	the	application	stores	the
data.

Reverse	engineering	Android	apps
To	state	it	in	simple	terms,	reverse	engineering	is	the	process	of	retrieving	source	code
from	an	executable.	Reverse	engineering	an	Android	app	is	done	in	order	to	understand
the	functioning	of	the	app,	data	storage,	security	mechanisms	in	place,	and	more.	Before
we	proceed	to	learn	how	to	reverse	engineer	an	Android	app,	here	is	a	quick	recap	of	the
Android	apps:

All	the	applications	that	are	installed	on	the	Android	device	are	written	in	the	Java
programming	language.
When	a	Java	program	is	compiled,	we	get	bytecode.	This	is	sent	to	a	dex	compiler,
which	converts	it	into	a	Dalvik	bytecode.
Thus,	the	class	files	are	converted	to	dex	files	using	dx	tool.	Android	uses	something
called	Dalvik	virtual	machine	(DVM)	to	run	its	applications.
JVM’s	bytecode	consists	of	one	or	more	class	files	depending	on	the	number	of	Java
files	that	are	present	in	an	application.	Regardless,	a	Dalvik	bytecode	is	composed	of
only	one	dex	file.

Thus,	the	dex	files,	XML	files,	and	other	resources	that	are	required	to	run	an	application,
are	packaged	into	an	Android	package	file	(an	APK	file).	These	APK	files	are	simply	a
collection	of	items	within	a	ZIP	file.	Therefore,	if	you	rename	an	APK	extension	file	as
.zip,	then	you	will	be	able	to	see	the	contents	of	the	file.	But	before	that,	you	need	to	get
access	to	the	APK	file	of	the	application	that	is	installed	on	the	phone.	Here	is	how	the
APK	file	corresponding	to	an	application	can	be	accessed.

Extracting	an	APK	file	from	an	Android	device
Apps	that	come	preinstalled	with	the	phone	are	stored	in	the	/system/app	directory.
Third-party	applications	that	are	downloaded	by	the	user	are	stored	in	the	/data/app
folder.	The	following	method	helps	you	to	gain	access	to	the	APK	files	on	the	device	and
works	on	both	rooted	and	non-rooted	devices:

1.	 Identify	the	package	name	of	the	app	by	issuing	the	following	command:

C:\android-sdk-windows\platform-tools>adb.exe	shell	pm	list	packages

package:android

package:android.googleSearch.googleSearchWidget

package:com.android.MtpApplication

package:com.android.Preconfig

package:com.android.apps.tag

package:com.android.backupconfirm

package:com.android.bluetooth

package:com.android.browser

package:com.android.calendar

package:com.android.certinstaller

package:com.android.chrome

...

As	shown	in	the	preceding	command	lines,	the	list	of	package	names	is	displayed.
Try	to	find	a	match	between	the	app	in	question	and	the	package	name.	Usually,	the
package	names	are	very	much	related	to	the	app	names.	Alternatively,	you	can	use
the	Android	Market	or	Google	Play	to	identify	the	package	name	easily.	The	URL	for
an	app	in	Google	Play	contains	the	package	name	as	shown	in	the	following
screenshot:

Facebook	App	in	Google	Play	Store

2.	 Identify	the	full	path	name	of	the	APK	file	for	the	desired	package	by	issuing	the
following	command:

C:\android-sdk-windows\platform-tools>adb.exe	shell	pm	path	

com.android.chrome

package:/data/app/com.android.chrome-2.apk

3.	 Pull	the	APK	file	from	the	Android	device	to	the	forensic	workstation	using	the	adb
pull	command:

C:\android-sdk-windows\platform-tools>adb.exe	pull	

/data/app/com.android.chrome-2.apk	C:\temp

3493	KB/s	(30943306	bytes	in	8.649s)

You	can	also	use	applications	such	as	ES	Explorer	to	get	the	APK	file	of	an	Android
application.	Now	let’s	analyze	the	contents	of	an	APK	file.	An	Android	package	is	a
container	for	an	Android	app’s	resources	and	executables.	It’s	a	zipped	file	that	contains
the	following	files:

AndroidManifest.xml:	This	contains	information	about	the	permissions	and	more
classes.dex:	This	is	the	class	file	converted	to	a	dex	file	by	the	dex	compiler
Res:	The	application’s	resources,	such	as	the	image	files,	sound	files,	and	more,	are
present	in	this	directory
Lib:	This	contains	native	libraries	that	the	application	may	use
META-INF:	This	contains	information	about	the	application’s	signature	and	signed
checksums	for	all	the	other	files	in	the	package.

Once	the	APK	file	is	obtained,	you	can	proceed	to	reverse	engineer	the	Android
application.

Steps	to	reverse	engineer	Android	apps
The	APK	files	can	be	reverse	engineered	in	different	ways	to	get	the	original	code.	The
following	is	one	method	that	uses	the	dex2jar	and	JD-GUI	tools	to	gain	access	to	the
application	code.	For	our	example,	we	will	examine	the	com.twitter.android-1.apk	file.
The	following	are	the	steps	to	successfully	reverse	engineer	the	APK	file:

1.	 Rename	the	apk	extension	with	zip	to	see	the	contents	of	the	file.	Rename	the
com.twitter.android-1.apk	file	to	twitter.android-1.zip,	and	extract	the
contents	of	the	file	using	any	file	archiver	application.	The	following	screenshot
shows	the	files	extracted	from	the	original	file	twitter.android-1.zip:

Extracted	files	of	an	APK	file

2.	 The	classes.dex	file	discussed	in	the	earlier	sections	can	be	accessed	after
extracting	the	contents	of	the	APK	file.	This	dex	file	needs	to	be	converted	to	a	class
file	of	Java.	This	can	be	done	using	the	dex2jar	tool.

3.	 Download	the	dex2jar	tool	from	https://code.google.com/p/dex2jar/,	and	drop	the
classes.dex	file	into	the	dex2jar	tools	directory	and	issue	the	following	command:

C:\Users\Rohit\Desktop\Training\Android\dex2jar-0.0.9.15>d2j-

dex2jar.bat	classes.dex

dex2jar	classes.dex	->	classes-dex2jar.jar

4.	 The	preceding	command,	when	successfully	run,	creates	a	new	file	classes-
dex2jar.jar	in	the	same	directory	as	shown	in	the	following	screenshot:

https://code.google.com/p/dex2jar/

The	classes-dex2jar.jar	file	created	by	the	dex2jar	tool

5.	 To	view	the	contents	of	this	jar	file,	you	can	use	a	tool	such	as	JD-GUI.	As	shown	in
the	following	screenshot,	the	files	present	in	an	Android	application	and	the
corresponding	code	can	be	seen:

The	JD-GUI	tool

Once	we	get	access	to	the	code,	it	is	easy	to	analyze	how	the	application	stores	the	values,
permissions,	and	more	information	that	may	be	helpful	to	bypass	certain	restrictions.
When	malware	is	found	on	a	device,	this	method	to	decompile	and	analyze	the	application
may	prove	useful,	as	it	will	show	what	is	being	accessed	by	the	malware	and	clues	to
where	the	data	is	being	sent.	The	method	in	the	preceding	screenshot	is	the	best	way	to
determine	how	malware	is	affecting	the	Android	device.

Forensic	tools	overview
It	is	important	for	an	examiner	to	understand	how	a	forensic	tool	acquires	and	analyzes
data	to	ensure	nothing	is	missed	and	that	the	data	is	being	decoded	correctly.	While
manual	extraction	and	analysis	is	useful,	a	forensic	examiner	may	need	the	help	of	tools	to
accomplish	the	tasks	involved	in	mobile	device	forensics.	Forensic	tools	not	only	save
time,	but	also	make	the	process	a	lot	easier.	The	following	section	describes	four
important	tools	that	are	widely	used	during	forensic	acquisition	and	the	analysis	of	an
Android	device.

The	AFLogical	tool
AFLogical	is	an	Android	forensics	tool	developed	by	viaForensics.	This	tool	performs
logical	acquisition	of	any	Android	device	running	either	Android	1.5	or	later	versions.	It
allows	the	extracted	data	to	be	saved	to	the	examiner’s	SD	Card	in	CSV	format.	There	are
two	editions	in	this	tool:	AFLogical	Open	Source	Edition	(OSE)	and	AFLogical	Law
Enforcement	(LE).

AFLogical	Open	Source	Edition
AFLogical	Open	Source	Edition	is	free	open	source	software.	It	pulls	all	available	MMS,
SMS,	contacts,	and	call	logs	from	the	Android	device.	AFLogical	OSE	is	also	built	into
Santoku-Linux,	the	open	source,	community-driven	OS	dedicated	to	mobile	forensics,
mobile	malware,	and	mobile	security.	The	concepts	behind	AFLogical	OSE	were
mentioned	in	Chapter	9,	Android	Data	Extraction	Techniques.	This	edition	can	also	be
used	on	Santoku-Linux	by	performing	the	following	steps:

1.	 Navigate	to	Santoku	|	Device	Forensics	|	AFLogical	OSE,	as	shown	in	the
following	screenshot:

AFLogical	in	Santoku	Linux

2.	 To	install	AFLogical	OSE	onto	the	device,	connect	the	Android	device	via	USB.	If
you	are	using	Santoku-Linux	in	a	VM,	make	sure	you	connect	the	Android	device	to
the	guest	VM.

3.	 Install	the	application	to	your	device	as	follows:

aflogical-ose

634	KB/s	(28794	bytes	in	0.044s)

pkg:	/data/local/tmp/AFLogical-OSE_1.5.2.apk

Success

Starting:	Intent	{	

cmp=com.viaforensics.android.aflogical_ose/com.viaforensics.android.For

ensicsActivity	}

Press	enter	to	pull	/sdcard/forensics	into	~/aflogical-data/

4.	 On	the	Android	device,	select	the	items	you	wish	to	extract	and	click	on	Capture.
5.	 Next,	press	Enter	in	the	Linux	workstation.	This	will	extract	the	data	from	your

Android	device	to	the	mounted	SD	card	in	~/aflogical-data.
6.	 The	data	is	stored	in	a	folder	labeled	with	the	date	and	time	of	the	extraction,	as

shown	in	the	following	screenshot	referenced	from	https://santoku-linux.com/:

https://santoku-linux.com/

The	AFLogical	results

7.	 The	extracted	data,	such	as	call	logs,	SMS,	contacts,	and	more,	can	be	accessed	by
browsing	this	folder.

AFLogical	Law	Enforcement	(LE)
According	to	viaForensics,	to	download	AFLogical	LE,	you	must	register	with
viaForensics	using	an	active	law	enforcement	or	government	agency	e-mail.	This	edition
is	able	to	pull	all	logical	data	from	an	Android	device,	including	the	following:

Browser	bookmarks
Browser	searches
Calendar	attendees
Calendar	events
Calendar	extended	properties
Calendar	reminders
Calendars
CallLog	calls
Contact	methods
Contact	extensions
Contact	groups
Contact	organizations
Contact	phones
Contact	settings
External	image	media
External	image	thumb	media
External	media	external	videos
IM	account
IM	accounts
IM	chats
IM	contacts	provider	(IM	contacts)
IM	invitations
IM	messages
IM	providers
IM	provider	settings
Internal	image	media
Internal	image	thumb	media
Internal	Videos	and	Maps-Friends
Maps-Friends	contacts
Maps-Friends	extra
MMS
MmsPartsProvider	(MMSParts)
Notes
People
Phone	storage	deleted	by	people	(HTC	Incredible)
Search	history
SMS
Social	contracts	activities

Cellebrite	–	UFED
Currently,	Cellebrite	UFED	offers	several	products	that	support	data	acquisition	and
analysis	of	Android	devices.	Cellebrite	is	a	popular	commercial	tool	that	provides	the
examiner	with	both	logical	and	physical	acquisition	support	as	well	as	an	analytical
platform	to	examine	data.	Cellebrite	Physical	Analyzer,	the	analytical	platform,	allows
the	examiner	to	keyword	search,	bookmark,	carve	data,	and	create	customized	reports	to
support	their	investigation.

Physical	extraction
The	following	steps	need	to	be	followed	to	extract	information	from	a	Samsung	Android
device	using	UFED	Touch.	Before	the	extraction	process	starts,	make	sure	that	the	phone
is	fully	charged.

1.	 In	the	UFED	Touch	menu,	select	Physical	Extraction,	as	shown	in	the	following
screenshot:

The	UFED	Touch	main	menu

2.	 In	the	vendor	list,	select	the	name	of	the	device	manufacturer	as	shown	in	the
following	screenshot	(for	example,	Samsung):

The	UFED	touch—vendor	list	screen

3.	 In	the	model	menu,	select	the	model	of	the	device.	Select	Physical	Extraction.
4.	 Select	the	location	where	you	want	to	save	the	extraction—removable	drive	or	the

forensic	workstation.

5.	 Follow	the	instructions	exactly	as	listed	on	UFED	Touch.	Make	sure	you	use	the
exact	cable,	and	remove	the	battery	when	prompted.

6.	 The	phone	will	enter	download	mode	and	display	a	logo.	Next,	connect	the	phone	to
UFED	Touch	and	press	continue.

7.	 Connect	the	external	drive	(to	save	the	extracted	data)	to	the	target	port	of	UFED
Touch.

8.	 This	will	prompt	UFED	Touch	to	automatically	move	to	the	extraction	screen.	At	this
stage,	you	might	be	prompted	to	perform	some	of	the	phone	connection	steps.	Do	so
if	prompted.

9.	 Once	the	process	is	complete,	the	extracted	data	can	be	viewed	and	analyzed	using
the	UFED	Physical	Analyzer	application	as	shown	in	the	following	screenshot:

The	UFED	Physical	Analyzer	application

MOBILedit
As	per	the	vendor,	the	MOBILedit	forensic	tool	can	be	used	to	view,	search,	or	retrieve
data	from	a	phone,	including	call	history,	phonebook,	text	messages,	multimedia
messages,	files,	calendars,	notes,	reminders,	and	application	data	such	as	Skype,	Dropbox,
Evernote,	and	more.	It	will	also	retrieve	phone	information	such	as	IMEI,	operating
systems,	firmware	including	SIM	details	(IMSI),	ICCID,	and	location	area	information.
Depending	on	the	circumstances,	MOBILedit	is	also	able	to	retrieve	deleted	data	from
phones	and	bypass	the	passcode,	PIN,	and	phone	backup	encryption.	The	setup	file	can	be
downloaded	from	www.mobiledit.com	and	can	be	installed	easily.	Once	installed,	perform
the	following	steps	to	extract	information	from	an	Android	phone	using	the	MOBILedit
software:

1.	 Ensure	that	USB	debugging	is	enabled	on	the	device	and	connect	the	Android	device
to	the	forensic	workstation	using	a	USB	cable.	MOBILedit	attempts	to	detect	the
device,	and	to	install	the	Connector	app	on	the	device,	as	shown	in	the	following
screenshot:

The	MOBILedit	connection	wizard

2.	 MOBILedit	then	presents	you	with	options	to	back	up	certain	data.	Once	this	is	done,
the	tool	displays	statistics	and	the	application	data	that	can	be	used	for	analysis,	as
shown	in	the	following	screenshot:

http://www.mobiledit.com

The	MOBILedit	tool	results

3.	 Under	the	Navigation	tab,	click	on	any	item	to	view	the	results.	For	instance,	click
on	the	Phonebook	link	to	view	all	the	contacts	stored	within	the	phone	book
including	phone	numbers,	e-mail	addresses,	and	more.	Similarly,	you	can	view	the
information	about	call	logs	by	clicking	on	the	Call	Logs	option,	as	shown	in	the
following	screenshot:

The	MOBILedit	tool—Call	logs	option

MMS,	calendar,	files	on	the	SD	card,	and	more,	can	be	viewed	by	navigating	through	the
available	options.

Autopsy
Should	manual	examination	or	file	carving	be	required,	it	is	best	to	use	a	forensic	tool	that
provides	access	to	the	raw	files	on	the	Android	device.	Autopsy,	the	GUI-based	upon	the
Sleuth	Kit,	runs	on	a	Windows	forensic	workstation	and	can	be	downloaded	from
http://www.sleuthkit.org/autopsy/.	Autopsy	currently	provides	analytical	support	for
Android	devices.	Both	open	source	and	Law	Enforcement	modules	are	available	for
Autopsy.	These	modules	provide	additional	file	carving	and	parsing	support	for
applications	and	files	found	on	Android	devices	and	SD	cards.	For	example,	the	open
mobile	forensics	module	provides	mobile	device	parsing	capabilities	to	pull	out	artifacts
such	as	calls,	SMS,	chats,	pictures,	and	more.

http://www.sleuthkit.org/autopsy/

Analyzing	an	Android	in	Autopsy
In	this	example,	we	will	be	using	a	physical	image	of	the	Samsung	Galaxy	SIII.	This
device	was	physically	extracted	using	Cellebrite	UFED	Touch.	The	following	steps	should
be	performed	to	correctly	mount	an	Android	image	and	to	start	your	examination:

1.	 Download	and	install	the	current	version	of	Autopsy	from	www.thesleuthkit.org.
2.	 Launch	Autopsy	and	select	the	option	to	create	a	new	case	as	shown	in	the	following

screenshot:

The	Autopsy	tool	screen

3.	 Fill	out	the	case	information	and	click	on	Finish.
4.	 Select	Image	File	and	navigate	to	the	physical	image	of	the	Android	device	as	shown

in	the	following	screenshot.	If	more	than	one	image	file	is	provided	for	the	Android,
simply	select	the	first	one.

http://www.thesleuthkit.org

Autopsy	image	loading

5.	 Select	the	ingest	modules	you	wish	to	run	against	the	Android	device.	The	module
selections	are	shown	in	the	following	screenshot.	Note	that	Law	Enforcement
modules	are	not	listed	and	are	provided	only	to	those	working	in	Law	Enforcement
and	the	Federal	Government.	The	following	screenshot	shows	the	ingest	modules:

Autopsy	ingest	modules

6.	 Select	Next	and	Finish,	and	Autopsy	will	begin	to	parse	and	load	the	Android	image
file.	Unlike	other	forensic	tools,	Autopsy	provides	results	as	quickly	as	they	are
recovered	to	save	the	preprocessing	time	and	allow	the	examiner	direct	access	to	the
data	involved	in	their	investigation.	The	results	appear	as	shown	in	the	following
screenshot:

Autopsy	results

Summary
Reverse	engineering	Android	apps	is	the	process	of	retrieving	source	code	from	an	APK
file.	By	using	certain	tools	such	as	dex2jar,	Android	apps	can	be	reverse	engineered	in
order	to	understand	the	functionality	of	the	app	and	data	storage,	define	malware,	and
more.	Forensic	tools,	such	as	AFLogical,	Cellebrite,	MOBILedit,	and	Autopsy,	are	just	a
few	of	the	tools	that	are	helpful	to	an	examiner.	They	not	only	save	time	but	also	effort.	A
step-by-step	explanation	of	using	these	was	covered	in	this	chapter.	Unlike	Android
devices,	data	stored	on	Windows	Mobile	devices	is	difficult	to	extract	and	analyze.	The
next	chapter	provides	a	glance	at	performing	forensics	on	Windows	Mobile	devices.

Chapter	12.	Windows	Phone	Forensics
Windows	mobile	devices	are	becoming	more	widely	used	and	may	be	encountered	during
forensic	investigations.	Locating	and	interpreting	digital	evidence	present	on	these	devices
requires	specialized	knowledge	of	the	Windows	Phone	operating	system	and	may	not
always	be	possible.	Commercial	forensic	and	open	source	tools	provide	limited	support
for	acquiring	user	data	from	Windows	devices.	As	Windows	mobile	devices	are	relatively
new,	most	forensic	practitioners	are	unfamiliar	with	the	data	formats,	embedded	databases
used,	and	so	on.	This	chapter	provides	an	overview	of	Windows	Phone	forensics,
describing	various	methods	of	acquiring	and	examining	data	on	Windows	mobile	devices.

Windows	Phone	OS
Windows	Phone	is	a	proprietary	mobile	operating	system	developed	by	Microsoft.	It	was
launched	as	a	successor	to	Windows	Mobile,	but	does	not	provide	backward	compatibility
with	the	earlier	platform.	Windows	Phone	was	first	launched	in	October	2010	with
Windows	Phone	7.	The	version	history	of	the	Windows	Phone	operating	system	then
continued	with	the	release	of	Windows	Phone	7.5,	Windows	Phone	7.8,	and	Windows
Phone	8.	Although	the	market	share	of	this	operating	system	is	limited,	there	is	certainly	a
case	for	optimism	based	on	the	following	two	reasons:

The	computer	operating	system	market	is	still	heavily	dominated	by	Windows.	This
gives	Windows	Phone	OS	greater	flexibility	to	provide	users	with	a	computer
environment	with	which	they	are	familiar.
Microsoft’s	decision	to	acquire	Nokia	could	be	a	significant	factor	in	improving	its
market	share	of	mobile	operating	systems.

The	following	sections	will	describe	more	about	Windows	Phone	7,	its	features,	and	the
underlying	security	model.	We	believe	the	data	is	stored	similarly	on	Windows	Phone	8,
so	the	methods	defined	in	the	following	sections	should	work	on	both	operating	systems.

Unlike	Android	and	iOS,	Windows	Phone	comes	with	a	new	interface,	which	uses	so-
called	tiles	for	apps	instead	of	icons,	as	shown	in	the	following	figure.	These	tiles	can	be
designed	and	updated	by	the	user.	Similar	to	other	mobile	platforms,	Windows	Phone
allows	for	the	installation	of	third-party	apps.	The	apps	can	be	downloaded	from	Windows
Phone	Marketplace,	which	is	managed	by	Microsoft.

The	Windows	Phone	home	screen

Security	model
The	security	model	of	Windows	Phone	is	designed	to	make	sure	that	the	user	data	present
on	the	device	is	safe	and	secure.	The	following	sections	are	a	brief	explanation	of	the
concepts	on	which	Windows	Phone	security	is	built.

Windows	chambers
The	Windows	Phone	OS	7.0	is	heavily	built	on	the	principles	of	least	privilege	and
isolation.	To	achieve	this,	Windows	Phone	introduced	the	concept	of	chambers.	Each
chamber	has	an	isolation	boundary	within	which	a	process	can	run.	Depending	on	the
security	policy	of	a	specific	chamber,	a	process	running	in	that	chamber	has	the	privilege
to	access	the	OS	resources	and	capabilities
(https://www.msec.be/mobcom/ws2013/presentations/david_hernie.pdf).	There	are	four
types	of	security	chambers.	The	following	is	a	brief	description	of	each	one	of	them:

Trusted	Computing	Base	(TCB):	Processes	here	have	unrestricted	access	to	most	of
the	Windows	Phone	7	resources.	This	chamber	has	the	privilege	to	modify	policies
and	enforce	the	security	model.	The	kernel	runs	in	this	chamber.
Elevated	Rights	Chamber	(ERC):	This	chamber	is	less	privileged	than	the	TCB
chamber.	It	has	the	privileges	to	access	all	resources	except	the	security	policy.	This
chamber	is	mainly	used	for	services	and	user-mode	drivers,	which	provide
functionality	intended	for	use	by	other	applications	on	the	phone.
Standard	Rights	Chamber	(SRC):	This	is	the	default	chamber	for	preinstalled
applications,	such	as	Microsoft	Outlook	Mobile	2010.
Least	Privileged	Chamber	(LPC):	This	is	the	default	chamber	for	all	the
applications	that	are	downloaded	and	installed	through	the	Marketplace	Hub	(also
known	as	the	Windows	Phone	Marketplace).

https://www.msec.be/mobcom/ws2013/presentations/david_hernie.pdf

Capability-based	model
Capabilities	are	defined	as	the	resources	on	the	phone	(camera,	location	information,
microphone,	and	more),	which	are	associated	with	security,	privacy,	and	cost.	The	LPC
has	a	minimal	set	of	access	rights	by	default.	However,	this	can	be	expanded	by	requesting
more	capabilities	during	the	installation.	Capabilities	are	granted	during	the	app
installation	and	cannot	be	modified	or	elevated	during	runtime.

To	install	an	app	on	a	Windows	phone,	you	need	to	sign	in	to	Marketplace	with	a
Windows	Live	ID.	During	installation,	apps	are	required	to	ask	the	user	for	permission
before	using	certain	capabilities,	an	example	of	which	is	shown	in	the	following
screenshot:

Windows	app	requesting	user	permissions

This	is	similar	to	the	permission	model	in	Android.	This	gives	the	user	the	freedom	to
learn	about	all	the	capabilities	that	an	application	has	before	installing	the	application.	The
list	of	all	capabilities	is	included	in	the	application	manifest	file	WMAppManifest.xml,
which	can	be	accessed	through	visual	studio	or	other	methods	defined	at
http://developer.nokia.com/community/wiki/How_to_access_Application_Manifest_%28WMAppManifest.xml%29_file_at_runtime

App	sandboxing
Apps	in	Windows	Phone	run	in	a	sandboxed	environment.	This	means	every	application

http://developer.nokia.com/community/wiki/How_to_access_Application_Manifest_%28WMAppManifest.xml%29_file_at_runtime

on	Windows	Phone	7	runs	in	its	own	chamber.	Applications	are	isolated	from	each	other
and	cannot	access	the	data	of	other	applications.	If	any	app	needs	to	save	information	to
the	device,	it	can	do	so	using	the	isolated	storage,	which	is	restricted	from	access	by	other
applications.	Also,	the	third-party	applications	installed	on	Windows	Phone	cannot	run	in
the	background,	that	is,	when	the	user	switches	to	a	different	application,	the	previously
used	application	is	shut	down	(although	the	application	state	is	preserved).	This	ensures
that	the	application	cannot	perform	activities	such	as	communicating	over	the	Internet
when	the	user	is	not	using	the	application.	These	restrictions	also	make	the	Windows
Phone	less	susceptible	to	malware.

Windows	Phone	file	system
The	Windows	Phone	7	file	system	is	more	or	less	similar	to	the	file	systems	used	in
Windows	XP,	Windows	Vista,	or	Windows	7.	From	the	root	directory,	one	can	reach
different	files	and	folders	available	on	the	device.	From	a	forensic	perspective,	the
following	are	some	of	the	folders	that	can	yield	valuable	data.	All	the	mentioned
directories	are	located	in	the	root	directory.

Application	Data:	This	directory	contains	data	of	preinstalled	apps	on	the	phone
such	as	Outlook,	Maps,	and	Internet	Explorer.
Applications:	This	directory	contains	the	apps	installed	by	the	user.	The	isolated
storage,	which	is	allocated	or	used	by	each	app,	is	also	located	in	this	folder.
My	Documents:	This	directory	holds	different	Office	documents	such	as	Word,
Excel,	or	PowerPoint.	The	directory	also	includes	configuration	files	and	multimedia
files,	such	as	music	or	videos.
Windows:	This	directory	contains	files	related	to	the	Windows	Phone	7	operating
system.

Windows	Phone	also	maintains	Windows	registry,	a	database	that	stores	environment
variables	on	the	operating	system.	The	Windows	registry	is	basically	a	directory	that
stores	settings	and	options	for	the	Microsoft	operating	system.

Data	acquisition
Acquiring	data	from	a	Windows	Phone	is	challenging	for	forensic	examiners,	as	physical
and	logical	methods	defined	in	previous	chapters	are	not	commonly	supported.	One	of	the
most	common	techniques	in	data	acquisition	is	to	install	an	application	or	agent	on	the
device,	which	extracts	as	much	data	as	possible	from	the	device.	This	could	result	in
certain	changes	on	the	device	but	nevertheless,	it	is	still	forensically	sound	if	the	examiner
follows	standard	protocols.	These	protocols	include	proper	testing	to	ensure	no	user	data	is
changed,	validation	of	the	method	on	a	test	device,	and	documenting	all	steps	taken	during
the	acquisition	process.	For	this	acquisition	method	to	work,	the	app	needs	to	be	installed
with	the	privileges	of	Standard	Rights	Chamber.	This	may	require	the	examiner	to	copy
the	manufacturer’s	DLLs,	which	have	higher	privileges	into	the	user	app.	This	allows	the
app	to	access	methods	and	resources	that	are	usually	limited	to	native	apps.

Most	examiners	rely	on	forensic	tools	and	methods	to	acquire	mobile	devices.	Again,
these	practices	are	not	readily	available	for	Windows	Mobile	devices.	Keep	in	mind	that	to
deploy	and	run	an	app	on	Windows	Phone,	both	the	phone	and	the	developer	must	be
registered	and	unlocked	by	Microsoft.	This	restriction	can	be	bypassed	by	unlocking	the
device	using	tools	such	as	ChevronWP7.	This	tool	basically	allows	the	bypassing	of
Marketplace	procedure	and	allows	you	to	sideload	(run	unsigned	applications	without	the
restrictions	listed)	an	unpublished	application.

Sideloading	using	ChevronWP7
As	explained	earlier,	in	order	to	install	the	app	that	provides	access	to	the	file	system	of
the	phone,	we	first	need	to	unlock	the	device	(similar	to	jailbreaking	on	iOS	devices).	This
method	will	only	work	on	a	Windows	Phone	that	is	not	locked	with	a	passcode.	This	can
be	done	using	the	ChevronWP7	tool	by	performing	the	following	steps:

1.	 Download	ChevronWP7.exe	and	ChevronWP7.cer	files.	Note	that	these	files	are	often
removed	and	are	not	always	available	on	the	same	site.	One	location	that	currently
has	the	files	available	for	download	is
http://www.4shared.com/file/HQGmwIRx/ChevronWP7.htm?locale=en.

2.	 Install	ChevronWP7.cer	on	the	Windows	Phone.	Note	that	the	methods	for	installing
ChevronWP7	may	require	techniques	not	standard	to	forensic	practices.	Thus,	all
methods	must	be	tested	on	a	sample	Windows	Phone	to	ensure	user	data	is	not	lost	in
the	process	of	attempting	to	extract	the	data.	One	method	for	installing	ChevronWP7
includes	sending	it	to	an	e-mail	and	accessing	it.	This	method	should	be	used	as	a	last
resort	when	all	other	acquisition	methods	fail.

3.	 Connect	the	phone	to	your	computer	and	make	sure	that	the	device	is	not	passcode-
locked.	If	the	device	is	locked	and	the	password	is	known,	enter	the	password	only
when	prompted	by	the	computer.	Do	not	guess	the	password	on	the	Windows	Phone
as	multiple	incorrect	guesses	may	wipe	the	user	data.

4.	 Run	ChevronWP7.exe	and	check	both	the	boxes	shown	in	the	following	screenshot
and	click	on	Unlock.	This	enables	the	developer	unlock	on	the	device	and	also
enables	you	to	install	any	third-party	app	without	a	Marketplace	developer	account.

http://www.4shared.com/file/HQGmwIRx/ChevronWP7.htm?locale=en

The	ChevronWP7	tool

To	execute	native	code	in	a	user	app,	the	Windows.Phone.interopService	DLL	is	used.
This	DLL	provides	the	method	RegisterComDLL,	which	can	import	native	manufacturer
DLLs.	Hence	by	including	this	DLL	in	a	user	app,	it	is	possible	to	execute	native	code
within	the	app	and	get	access	to	the	entire	file	system	of	the	phone,	including	the	isolated
storage.

Extracting	the	data
On	an	unlocked	device	(again,	similar	to	a	jailbroken	iOS	device),	it	is	possible	to	run	an
app	that	can	extract	the	user	data	present	in	the	phone.	The	app	TouchXperience,	which
comes	along	with	the	Windows	Mobile	Device	Manager	(WPDM),	can	be	used	for	this
purpose.	Windows	Mobile	Device	Manager	is	the	management	software	for	Windows
Phone	7.	The	client	app	TouchXperience	extracts	data	such	as	the	file	system	from	the
mobile	device,	and	WPDM	retrieves	this	data	and	converts	it	into	a	human	readable
graphical	format.	The	following	are	the	steps	which	will	help	a	forensic	examiner	extract
user	data	present	on	an	unlocked	Windows	Phone	device:

1.	 Download	Windows	Phone	SDK	7.1	and	the	Zune	software	on	the	forensic
workstation	and	install	it	(http://www.microsoft.com/en-us/download/details.aspx?
id=27570).

2.	 Download	the	Windows	Phone	Device	Manager	on	the	workstation,	and	launch
WPDeviceManager.exe	(http://touchxperience.com/windows-phone-device-
manager/).

3.	 Connect	the	device	to	the	workstation,	and	it	should	be	detected	automatically.	If	it	is
not	detected,	make	sure	a	passcode	is	not	set	on	the	device.	If	it	is,	this	process	may
fail	if	the	passcode	is	unknown.

4.	 Windows	Phone	Device	Manager	will	automatically	install	the	TouchXperience	app
when	the	phone	is	connected	for	the	first	time.	Make	sure	you	set	what	the	software
is	allowed	to	do	on	the	device	(that	is,	make	sure	not	to	change	the	user	data,	not
update	date/time	settings,	or	anything	else	that	will	modify	the	user	data).	Make	sure
to	document	that	TouchXperience	was	installed	in	order	to	extract	data	from	the
Windows	Phone	as	standard	forensic	methods	provide	little	support	for	these	devices.

5.	 Thereafter,	the	following	screen	is	presented,	which	provides	access	to	a	vast	amount
of	files	present	on	the	device:

http://www.microsoft.com/en-us/download/details.aspx?id=27570
http://touchxperience.com/windows-phone-device-manager/

Windows	Phone	Device	Manager

The	home	screen	displays	information	about	the	model	of	the	phone,	OS	version,	and
more.	Click	on	Manage	applications	to	see	the	information	about	installed	apps	on	the
device,	as	shown	in	the	next	screenshot.	WPDM	also	provides	other	functionality,	such	as
media	management,	synchronization	of	files	and	folders,	and	more.	From	a	forensic	point
of	view,	the	File	Explorer	is	the	most	interesting	part	of	this	software.	It	provides	read,
write,	and	executable	access	to	most	of	the	files	present	on	the	Windows	Phone	7	device.

Have	a	look	at	the	following	screenshot:

Windows	Phone	Device	Manager—The	Manage	Applications	screen

Using	this	acquisition	technique,	you	can	acquire	two	types	of	data:	system	data	and
application	data.	System	data	is	mainly	the	data	that	is	required	to	run	the	phone,	and
application	data	is	the	data	created	and	used	by	different	applications	installed	on	the
device.	While	system	data	may	not	contain	data	relevant	to	your	investigation,	application
data	is	very	much	valuable.	Regardless,	all	data	should	be	acquired	from	any	smartphone
as	the	examination	must	be	complete	and	capture	all	data	contained	on	the	device	when
possible.	The	following	sections	discuss	the	steps	to	be	followed	to	extract	application
data	from	a	Windows	Phone	device.	The	application	data	will	contain	the	bulk	of	the	user-
created	data	and	will	provide	the	most	value	to	your	investigation.

Extracting	SMS
All	the	incoming	and	outgoing	short	messages	(SMSes)	in	Windows	Phone	7	are	stored	in
the	file	named	store.vol,	which	is	present	under	the	directory	\Application
Data\Microsoft\Outlook\Stores\DeviceStore,	as	shown	in	the	next	screenshot.
However,	it	is	not	possible	to	copy	this	file	directly	because	this	file	is	always	in	use.
When	the	file	is	renamed	(say	store.vol.txt	or	store.bkp),	it	automatically	creates	a
copy	of	the	file.	Once	the	copy	is	made,	this	file	can	now	be	examined	using	a	normal	text
editor.	Note	that	this	file	can	also	exist	in	the	\APPDATA\Local\Unistore	directory.	Have	a
look	at	the	following	screenshot:

The	store.vol	file	in	Windows	Phone

Extracting	e-mail
Windows	Phone	7	devices	use	Outlook	as	their	standard	e-mail	client.	This	can	be	used	to
synchronize	with	various	e-mail	services	such	as	Google,	YahooMail,	and	more.	Any	data
that	belongs	to	Outlook	is	stored	under	the	directory	\Application
Data\Microsoft\Outlook\Stores\DeviceStore\data,	as	shown	in	the	following
screenshot:

Windows	Phone:	extracting	e-mail

As	shown	in	the	next	screenshot,	there	are	different	folders	present	that	contain	different
data.	For	example,	folder	3	contains	pictures	of	the	user’s	contacts	(e-mail	receivers).	This
folder	is	being	used	as	an	example.	This	folder	will	not	be	consistently	named	folder	3
across	Windows	Phone	devices.	Have	a	look	at	the	following	screenshot:

Windows	Phone:	folder	3

Although	the	files	are	present	with	the	.dat	extension,	by	renaming	them	to	.jpg,	we	can
view	the	pictures	as	shown	in	the	following	screenshot:

Windows	Phone:	renaming	data	files	to	JPG	files

Similarly,	folder	4	contains	information	about	e-mail	messages.	By	renaming	the	files	to
HTML,	we	can	view	the	content	of	the	e-mail	messages.	Again,	each	folder	should	be
examined	for	relevance	as	they	may	contain	e-mail	messages,	attachments,	contacts,	and
more.

Extracting	application	data
The	Applications	folder	contains	all	the	applications	installed	on	the	phone.	Each
application	has	its	own	directory,	which	is	identified	with	a	unique	application	ID.	Inside
the	application	ID	folder,	there	are	other	important	folders,	such	as	Cookies,	History,
IsolatedStore,	and	more.	Most	of	the	crucial	information	is	usually	present	in	the
IsolatedStore	folder.	For	example,	as	shown	in	the	next	screenshot,	the	IsolatedStore
folder	in	Facebook	contains	the	following	data:

Contents	of	the	IsolatedStore	folder

By	analyzing	these	folders,	a	forensic	analyst	can	gather	a	lot	of	information	that	could	aid
in	the	investigation.	The	following	are	some	of	the	findings	from	our	Facebook	app
analysis	example:

The	file	userid.settings	shown	in	the	following	screenshot	contains	the	user’s
profile	name	and	a	link	to	the	user’s	profile	and	profile	picture.
All	the	pictures	used	by	the	Facebook	app	are	stored	in	the	Images	folder	present	in
the	directory	IsolatedStore.	To	view	the	images,	change	the	extension	of	the	files	to
JPG.
The	DataCache.userID	folder	contains	most	of	the	information	about	the	Facebook
account.	By	parsing	this	folder,	information	about	friends,	friend	requests,	messages,
and	more	can	be	obtained.	This	is	straightforward	as	all	the	files,	once	extracted,	can
be	manually	examined	for	relevance	to	the	investigation.

The	DataCache.UserID	folder	of	the	Facebook	app

Similarly,	by	examining	the	Internet	Explorer	app,	a	forensic	examiner	can	gather
information	about	the	sites	visited	by	the	user.	All	this	data	can	be	found	under	the
Application	Data\Microsoft\Internet	Explorer	folder.	By	analyzing	the	Maps
application,	information	about	the	user	location	and	other	details	can	be	obtained.	The	call
logs	can	be	recovered	from	\APPDATA\Local\UserData\Phone	on	most	devices.	Keep	in
mind	that	the	location	may	vary	depending	on	the	OS	and	the	Windows	device.	However,
the	directory	containing	the	data	(phone,	store.vol,	and	so	on)	remains	the	same.	A	great
source	for	conducting	forensics	on	a	Windows	Phone	device	can	be	found	at
http://cheeky4n6monkey.blogspot.com/2014/06/monkeying-around-with-windows-phone-
80.html.

http://cheeky4n6monkey.blogspot.com/2014/06/monkeying-around-with-windows-phone-80.html

Summary
Acquiring	data	from	Windows	Phone	devices	is	challenging	as	they	are	secure,	and	as
commercial	forensic	tools	and	open	source	methods	do	not	provide	easy	solutions	for
forensic	examiners.	chip-off,	JTAG,	and	the	methods	defined	in	this	book	are	some	of	the
methods	that	provide	access	to	user	data	on	Windows	Phone	devices.	The	biggest
challenge	is	getting	access	to	the	device,	acquiring	the	data,	and	extracting	the	raw	files
for	analysis.	Once	the	data	is	available,	all	the	information	about	SMS,	e-mail,	application
data,	and	more	can	be	analyzed	by	the	examiner.	Again,	the	device	must	not	contain	a
passcode,	must	be	unlocked	(jailbroken/rooted),	and	will	be	modified	by	the	examiner	in
order	to	extract	the	data	using	the	methods	defined	in	this	chapter.	While	some	may
challenge	us	and	say	these	methods	are	not	common	in	forensic	practices,	they	must
realize	that	these	methods	may	be	the	only	way	to	obtain	user	data	from	Windows	Phone
devices.	In	the	next	chapter,	we	will	cover	BlackBerry	forensics,	which,	while
challenging,	is	more	supported	by	commercial	and	open	source	methods.

Chapter	13.	BlackBerry	Forensics
BlackBerry	devices	come	with	the	Research	in	Motion	(RIM)	software	implementation
of	proprietary	wireless	protocols.	BlackBerry	devices	pose	a	significant	challenge	to
forensic	examinations	due	to	the	lack	of	physical	parsing	support	and	device	encryption.
This	chapter	will	cover	the	various	security	features	that	come	with	BlackBerry	devices,
the	available	techniques	to	extract	data	from	a	device,	and	the	best	methods	to	analyze	the
data	extracted.

BlackBerry	OS
BlackBerry	OS	is	a	proprietary	mobile	operating	system	developed	by	the	Canadian
company	RIM	used	on	all	BlackBerry	devices	until	BlackBerry	10,	which	introduced
QNX.	BlackBerry	RIM	is	now	referred	to	as	BlackBerry	Limited.	The	initial	BlackBerry
operating	system	is	known	to	support	specialized	functions,	such	as	trackball,	trackwheel,
trackpad,	and	more.	BlackBerry	OS	was	initially	released	in	1999	for	the	device	Pager
BlackBerry	580.	BlackBerry	QNX	(OS	10)	uses	a	Linux	variant	that	was	initially
introduced	with	the	BlackBerry	Playbook	and	is	now	used	on	BlackBerry	devices.	With
QNX,	BlackBerry	World	and	Balance	were	introduced	along	with	other	features	more
comparable	to	Android	and	iPhone
(http://searchitchannel.techtarget.com/feature/Introduction-to-the-BlackBerry).

The	following	table	provides	information	about	the	version	history	of	BlackBerry	OS:

Version Release	year

1 1999

3.6 2002

5 2008

6 2010

7 2011

7.1 2012

10 2013

10.1 2013

10.2 2013

BlackBerry	OS	versions

The	BlackBerry	OS	offers	native	support	for	corporate	mail	through	MIDP,	which	allows
wireless	syncing	with	Microsoft	Exchange,	Lotus	Domino	and	e-mail,	contacts,	calendar,
notes,	and	more,	while	used	along	with	the	BlackBerry	Enterprise	Server.	This	OS
additionally	supports	WAP	1.2.	With	the	advent	of	Android	and	iOS,	the	market	share	of
BlackBerry	OS	has	steadily	decreased	over	the	years.	Nevertheless	there	are	more	than	70
million	BlackBerry	users	worldwide	and	these	devices	are	frequently	encountered	during
forensic	investigations,	especially	for	internal	corporate	investigations.	The	BlackBerry
Enterprise	Server	(BES)	consists	of	software	that	facilitates	corporate	messaging	to
allow	the	syncing	of	corporate	e-mail	with	the	user’s	device.	A	BES	administrator	of	an	IT
department	normally	manages	BES	services.	The	BlackBerry	Internet	Service	(BIS)	is	a
service	that	allows	the	user	to	configure	up	to	10	e-mail	accounts	to	sync	to	the

http://searchitchannel.techtarget.com/feature/Introduction-to-the-BlackBerry

BlackBerry	device.

BlackBerry	allows	the	installation	of	third-party	apps	from	BlackBerry	World,	which	is
the	app	distribution	service.	BlackBerry	apps	are	developed	using	a	Java	Development
Environment	(JDE)	or	RIM’s	Mobile	Data	System	(MDS).	If	the	application	can	run
independently	of	a	BlackBerry	solution,	such	as	BIS	or	BES,	a	Java	application	would
serve	the	purpose.	If	the	application	requires	e-mail	for	functionality	or	needs	support
from	a	BlackBerry	device	to	help	it	operate,	MDS	is	usually	preferred	to	develop	the
application.

Security	features
There	are	two	types	of	BlackBerry	users—consumers	who	buy	and	use	the	device,	and
enterprise	users	who	are	provided	with	the	BlackBerry	device	by	their	employers.	The
consumer	devices	are	usually	configured	to	use	the	BIS,	whereas	the	enterprise	user
devices	are	configured	to	use	BES.	In	a	BES	environment,	security	is	usually	enforced	by
the	enterprise	through	appropriate	settings	and	application	controls.

Although	BlackBerry	uses	a	proprietary	operating	system,	its	third-party	application
framework	is	mostly	based	on	Java.	Third-party	apps	that	are	not	signed	have	very	limited
access	to	this	restrictive	functionality.	Even	in	the	case	of	signed	applications,	user
permission	is	needed	to	perform	important	actions	such	as	calling	a	number,	accessing	a
contact,	and	more.	BlackBerry	apps	are	written	in	Java	and	then	compiled	into	COD	files.
But	before	compiling	the	apps,	they	are	preverified	for	certain	security	checks	and	are
tagged	to	confirm	that	the	checks	have	been	carried	out.	When	the	Java	Virtual	Machine
(JVM)	present	on	BlackBerry	loads	the	class,	it	can	cross-check	and	perform	its	own
verification	much	faster.	Any	changes	to	the	code	after	the	preverification	can	be	easily
detected	at	runtime	and	JVM	will	prevent	their	execution.	This	makes	BlackBerry	a	secure
platform	that	is	less	susceptible	to	malware	when	compared	to	other	smart	devices.

In	order	for	an	application	to	get	full	access	to	all	the	APIs,	the	application	must	be	signed
by	RIM.	When	the	developers	first	register	with	RIM,	they	receive	a	developer	key.	Using
the	signing	tool	provided	by	RIM,	the	SHA1	hash	of	the	application	can	be	sent	to	RIM.
Upon	receiving	this,	RIM	generates	a	signature,	which	is	then	sent	back	to	the	developer
and	added	to	the	application.	When	the	signed	application	is	loaded	onto	a	BlackBerry
device,	the	JVM	links	the	COD	file	with	the	API	libraries	and	checks	that	the	application
has	the	required	signatures.	If	the	required	signature	is	not	present,	JVM	will	refuse	to	link
the	application	to	the	respective	APIs,	and	hence,	the	application	will	fail	at	runtime.	This
way,	BlackBerry	ensures	security	for	the	device	through	the	code-signing	process.

The	security	strength	of	BlackBerry	can	be	attributed	to	the	granular	control	that	it
provides	through	the	IT	policies	present	on	the	BES.	It	is	important	to	note	that	many	of
the	security	controls	that	are	enabled	with	BES	devices	are	not	present	in	consumer
devices	that	use	BIS.	BES	devices	come	with	various	security	features,	as	follows:

Data	protection:	All	the	data	that	is	sent	between	the	BES	and	a	BlackBerry	device
is	encrypted	using	BlackBerry	transport	layer	encryption.	Before	the	BlackBerry
device	sends	a	message,	it	compresses	and	encrypts	the	message	using	the	device
transport	key.	When	the	BES	receives	a	message	from	the	BlackBerry	device,	the
BlackBerry	Dispatcher	decrypts	the	message	using	the	device	transport	key	and	then
decompresses	the	message.	The	BlackBerry	uses	AES	or	Triple	DES	as	the
symmetric	key	cryptographic	algorithm	for	encrypting	data.	By	default,	the	BES	uses
the	strongest	algorithm	that	both	the	BES	and	BlackBerry	devices	support	for	the
BlackBerry	transport	layer	encryption.	More	information	on	data	protection	can	be
found	at
http://btsc.webapps.blackberry.com/btsc/viewdocument.do;jsessionid=E8567E865DBC9668D3F8740BEB9D65E6?

http://btsc.webapps.blackberry.com/btsc/viewdocument.do;jsessionid=E8567E865DBC9668D3F8740BEB9D65E6?externalId=KB13160&sliceId=1&cmd=displayKC&docType=kc&noCount=true&ViewedDocsListHelper=com.kanisa.apps.common.BaseViewedDocsListHelperImpl

externalId=KB13160&sliceId=1&cmd=displayKC&docType=kc&noCount=true&ViewedDocsListHelper=com.kanisa.apps.common.BaseViewedDocsListHelperImpl
Protection	of	data	and	encryption	keys	on	the	device:	If	the	content	protection
option	is	turned	on,	BlackBerry	devices	can	be	configured	to	encrypt	data	stored	on
the	device.	By	default,	a	locked	BlackBerry	device	was	created	to	use	AES-256
encryption	to	encrypt	stored	data	and	an	ECC	public	key	to	encrypt	data	that	is	sent
to	the	locked	BlackBerry	device
(http://docs.blackberry.com/en/admin/deliverables/25763/Encrypting_user_data_on_a_locked_BB_device_834471_11.jsp
Also,	BlackBerry	is	designed	to	protect	the	encryption	keys	that	are	stored	on	the
device.	The	device	encrypts	the	encryption	keys	when	the	device	is	locked.
Better	control	over	the	device:	You	can	use	an	IT	policy	to	control	a	BlackBerry
device.	The	IT	policy	usually	consists	of	multiple	policy	rules	that	manage	the
security	and	behavior	of	the	BES.	For	example,	using	the	IT	policy	rules,	the
following	security	features	on	a	BlackBerry	device	can	be	controlled:

Encryption	of	data	transmitted	between	the	BlackBerry	server	and	the	device
Connections	that	use	Bluetooth	wireless	technology
Protection	of	user	data	stored	on	the	BlackBerry	device
Control	of	protected	device	resources,	such	as	the	camera	or	GPS,	that	are
available	to	third-party	applications

In	addition	to	all	this,	the	BES	administrator	can	also	reset	user	passwords	for	the
BlackBerry	device	and	initialize	a	remote	wipe,	which	must	be	considered	during
forensic	investigations.

BlackBerry	security	is	a	huge	hurdle	for	forensic	examiners.	While	a	BES	administrator
can	be	used	to	reset	a	device	password,	which	may	allow	an	examiner	to	access	the
device,	they	can	also	remotely	wipe	the	device.	Thus,	following	steps	similar	to	those	for
Android	and	iOS,	the	examiner	must	place	the	device	in	airplane	mode	and	disable	all
remote	connections	to	the	device.	A	BlackBerry	wipe	initiated	via	the	BES	can	exist	for	an
extended	period	of	time.	This	means	that	even	if	the	battery	is	removed	from	the	device
and	the	BlackBerry	boots,	the	wipe	could	immediately	be	sent	to	a	connected	BlackBerry.
While	Android	and	iOS	proved	to	be	easier	to	access	when	locked,	a	locked	BlackBerry
device	is	more	difficult.	The	level	of	protection	on	these	devices	may	render	the	extracted
data	encrypted	even	after	a	JTAG	or	chip-off	extraction.	Physical	support,	to	include	both
acquisition	and	analysis,	is	limited	for	BlackBerry	devices.	As	described	in	the	following
sections,	most	of	the	data	is	obtained	by	simply	obtaining	a	backup	of	the	device.

http://docs.blackberry.com/en/admin/deliverables/25763/Encrypting_user_data_on_a_locked_BB_device_834471_11.jsp

Data	acquisition
While	the	sales	of	BlackBerry	devices	is	on	the	decline,	they	are	still	encountered	during
forensic	investigations.	Commercial	forensic	tools	provide	limited	support	for	BlackBerry
devices	in	comparison	to	other	smartphones.	Even	worse,	open	source	methods	are	not
available	for	data	acquisition	of	BlackBerry	devices.	Hence	it	is	important	for	the
examiners	to	understand	all	possible	methods	of	data	extraction	available	for	these
devices.	The	following	sections	discuss	the	various	steps	involved	in	acquiring	data	from	a
BlackBerry	device.

Standard	acquisition	methods
Standard	forensic	acquisition	methods	can	be	applied	to	BlackBerry	devices.	However,
encrypted	and	locked	devices	may	not	be	possible	to	acquire,	and	it	will	be	even	more
difficult	(if	not	impossible)	to	analyze	whether	the	password	or	encryption	keys	are
present.	The	level	of	acquisition	support	available	depends	on	the	forensic	kit,	the	device
model,	and	the	security	level	currently	being	used	on	the	BlackBerry	device.	As	explained
in	previous	chapters,	logical	and	physical	(to	include	file	system)	acquisition	methods	are
possible	on	BlackBerry	devices.	The	Cellebrite	UFED	Touch	provides	the	greatest	level	of
physical	acquisition	support	for	BlackBerry	devices	(at	the	time	of	writing	this).	The
following	two	images	show	the	different	support	provided	by	the	Cellebrite	UFED	Touch
on	two	different	models	of	BlackBerry.

Note	that	one	model	has	full	acquisition	support	while	the	other	only	offers	logical
acquisition.

The	BlackBerry	Z10	support	in	Cellebrite	UFED	Touch

The	following	image	shows	that	the	BlackBerry	Z10	device	can	only	be	logically	acquired
using	the	Cellebrite	UFED	Touch.	When	attempting	to	acquire	a	BlackBerry	8300	using
the	UFED	Touch,	logical,	physical,	and	file	system	acquisition	support	is	possible,	as
shown	in	the	following	image:

The	BlackBerry	Curve	support	in	Cellebrite	UFED	Touch

The	device	passcode	must	be	known	for	physical	acquisition.	This	is	one	of	the	major
differences	between	BlackBerry’s	physical	acquisition	and	Android	and	iOS.	Keep	in
mind	even	if	a	BlackBerry	device	is	physically	acquired,	any	tool	currently	available	to
forensic	examiners	may	not	support	the	analysis	portion.	These	challenges	will	be
discussed	in	the	analysis	section.	Logical	support	for	BlackBerry	devices	is	more	common
and	is	supported	by	most	commercial	forensic	tools	to	include	Oxygen	Forensics,
Microsystemation	XRY,	Cellebrite	UFED	Touch,	and	more.	Most	BlackBerry	support
provided	by	commercial	forensic	tools	applies	to	devices	using	BlackBerry	OS	(Java-
based)	and	not	QNX	(BlackBerry	10	OS).

A	physical	acquisition	of	a	BlackBerry	device	will	capture	a	complete	binary	image	of	the
BlackBerry	device.	This	method	of	acquisition	normally	requires	the	BlackBerry	to	be
powered	off	and	intercepts	the	data	prior	to	the	device	booting.	File	system	acquisitions
may	be	possible	using	commercial	tools	if	the	device	passcode	is	known.	This	method	of
acquisition	normally	captures	data	from	the	device	and	the	SD	card.	As	mentioned,	even	if
a	physical	or	file	system	acquisition	is	supported	and	successful,	the	examiner	should
always	obtain	a	logical	acquisition	to	avoid	situations	where	physical	data	parsing	is	not
supported	by	the	forensic	analysis	tool.	One	of	the	biggest	errors	in	BlackBerry	forensics
occurs	when	an	examiner	obtains	only	a	physical	image,	returns	the	device	to	the
user/suspect,	and	then	realizes	the	data	is	encrypted	or	cannot	be	parsed	by	their	analytical
tool.	Make	sure	you	do	not	find	yourself	in	this	position	by	taking	the	time	to	acquire	the
device	using	all	possible	methods.	The	following	screenshot	shows	security	prompts	that
the	examiner	may	encounter	during	the	acquisition	and/or	analysis	of	a	BlackBerry
device:

The	encrypted	backup	file	password	prompt

The	preceding	screenshot	shows	the	prompt	for	the	user	to	enter	the	password	for	the
encrypted	backup	file	when	attempting	to	open	the	image	in	Cellebrite	Physical	Analyzer.
All	forensic	tools	that	attempt	to	parse	the	image	or	backup	file	for	analysis	will	require
the	password.	Without	the	password,	the	examiner	cannot	access	the	image.

The	following	screenshot	shows	the	prompt	to	open	the	image	file	in	Oxygen	Forensics
Suite.

The	encrypted	backup	file	password	prompt	in	Oxygen	Forensics	Suite

Creating	a	BlackBerry	backup
With	BlackBerry	devices,	a	significant	amount	of	data	can	be	extracted	using	the
BlackBerry	Desktop	Manager	(BDM)	or	BlackBerry	Link	(BlackBerry	10	devices),
which	can	be	downloaded	for	free.	This	method	of	acquiring	data	from	a	BlackBerry
device	sometimes	proves	to	obtain	and	provide	data	for	examiners	to	analyze.	Again,	the
passcode	must	be	known	for	the	examiner	to	create	a	backup	of	a	BlackBerry	device.
Acquiring	this	logical	backup	is	recommended	because	it	can	provide	a	form	of	validation
for	the	data	acquired	through	forensic	tools.	The	backup	file	exists	as	a	BBB	or	IPD	file
and	contains	different	types	of	data	stored	on	the	BlackBerry	device,	including	call	logs,
calendar	items,	contacts,	pictures,	e-mail,	and	more.

A	BlackBerry	Backup	(BBB)	file	is	created	when	BDM	v7.0	and	later	versions	or	a	Mac
computer	is	used	to	create	the	backup	file.	The	BBB	file	will	either	be	a	ZIP	container
comprised	of	an	IPD	file	or	DAT	files,	depending	on	the	method	to	create	the	backup	file.
A	BBB	file	that	contains	an	IPD	file	has	the	same	file	header	as	a	ZIP	file.	In	Hex,	this	file
header	is	0x504B.	An	Inter@ctive	Pager	Backup	(IPD)	is	created	when	BDM	v6.0	or
earlier	is	used	to	create	the	backup	file.	Commercial	forensic	tools	may	also	create
BlackBerry	backup	files	and	use	the	IPD	format.	Shafik	Punja	maintains	a	blog,	highly
dedicated	to	his	work	on	BlackBerry,	that	provides	a	deeper	look	into	BlackBerry	backup
files	(http://qubytelogic.blogspot.com/).

It	is	important	to	note	here	that,	by	default,	the	BDM	is	configured	to	synchronize	some
data	between	the	device	and	the	computer.	Hence,	it	is	important	to	disable	this	feature	in
order	to	prevent	any	changes	of	data	on	the	device.	In	a	forensic	process,	even	a	minor
change,	such	as	altering	the	time	zones	on	a	device,	would	make	it	difficult	for	an
investigator	to	analyze	when	specific	events	exactly	occurred	and	will	be	even	more
difficult	to	defend	in	court.	Hence	it	is	necessary	to	disable	the	synchronization	process	in
the	BDM	by	disabling	the	options	as	shown	in	the	following	screenshot.	The	option
Update	device	data	and	time	is	selected	by	default,	so	it	is	necessary	to	explicitly
deselect	this	option.	It	is	the	examiner’s	job	to	ensure	that	total	control	is	maintained
during	the	entire	forensic	process.	This	means	that	the	forensic	workstation	is	sterile	and
free	of	old	data	and	that	the	tools	are	not	set	to	automatically	read/write	data	to	and	from
the	BlackBerry	device.	If	the	BDM	requires	the	device	be	connected	in	order	to	select	the
options,	it	is	wise	to	attempt	the	settings	with	a	test	BlackBerry	device	of	the	same	model
as	your	evidence.

http://qubytelogic.blogspot.com/

BlackBerry	Desktop	Manager

The	following	is	the	step-by-step	procedure	to	create	a	backup	of	the	BlackBerry	device
using	BlackBerry	Desktop	Manager:

1.	 On	the	forensic	workstation,	install	BlackBerry	Desktop	Software.	Certain	versions
of	BDM	may	be	required	to	connect	with	older	BlackBerry	devices.

Note
Download	link:	http://in.BlackBerry.com/software/desktop.html

2.	 Connect	the	BlackBerry	device	to	the	workstation	and	observe	that	the	device	is
detected.

3.	 Click	on	Back	up	under	Device,	as	shown	in	the	following	screenshot:

http://in.BlackBerry.com/software/desktop.html

4.	 Select	Backup	type	as	Full	(all	device	data	and	settings)	to	perform	a	full	backup,
as	shown	in	the	following	screenshot:

Full	backup	option	in	BlackBerry

5.	 As	shown	in	the	preceding	screenshot,	the	File	name	and	location	to	save	the	backup

file	must	be	selected.	You	are	recommended	to	name	the	file	accordingly	to	reflect
the	naming	convention	implemented	by	your	organization	or	to	simply	use	the	device
name	and	serial	number.	This	will	ensure	that	the	backup	file	can	easily	be	associated
back	to	the	original	device.	Once	this	is	complete,	click	on	Back	up.

BlackBerry	analysis
BlackBerry	devices	are	still	used	by	employees	of	major	corporations	due	to	the	great
security	features.	eDiscovery	cases	often	require	the	examiner	to	be	well	versed	in
extracting	and	analyzing	data	from	computers,	servers,	and	smartphones	such	as
BlackBerry	devices.	Commercial	tools	are	available	for	the	analysis	of	BlackBerry
devices.	The	method	of	acquisition	will	determine	the	amount	of	analysis	possible	by	the
examiner.	For	example,	a	physical	acquisition	may	have	been	obtained,	but	the	forensic
tool	does	not	automatically	parse	the	data	in	the	image	file.	This	requires	the	examiner	to
manually	carve	and	reconstruct	the	data.	BlackBerry	devices	are	one	of	the	most
complicated	smartphones	to	understand	and	consistently	reconstruct	by	manual
examination.	The	previous	section	provided	some	steps	to	successfully	extracting	data
from	BlackBerry	devices.	The	acquisition	steps	should	be	followed	to	ensure	that	data	is
not	missed.	Multiple	acquisitions	may	be	required	in	order	to	extract	and	recover	the	user
data	from	a	BlackBerry	device.	The	methodologies	and	forensic	tools	required	to	analyze
data	from	BlackBerry	backup	files	and	forensic	images	differ,	and	they	are	defined	in	the
following	sections.

BlackBerry	backup	analysis
BlackBerry	backup	files	can	be	found	natively	on	hard	drives	or	other	external	media
during	a	forensic	investigation	or	may	exist	as	the	forensic	image	created	by	the	examiner
in	order	to	complete	their	forensic	investigation.	Sometimes,	the	backup	file	contains	more
usable	data	than	a	physical	image.	Again,	it	all	depends	on	the	device	model,	the	method
of	acquisition	and	the	forensic	tool	used	for	analysis.	As	previously	mentioned,
BlackBerry	backup	files	exist	as	IPD	and	BBB	files	and	are	created	by	the	BDM	or	the
BlackBerry	Link	software.	When	created	by	a	user,	the	BlackBerry	backup	files	are
commonly	stored	in	the	My	Documents	folder	on	a	Windows	platform.	The	backup	file
contains	various	databases	(tables)	present	on	the	BlackBerry	device.	It	is	named	by
default	in	the	format	Backup	(yyyy-mm-dd).ipd.

Best	practices	suggest	searching	for	IPD	and	BBB	files	across	digital	media	suspected	of
containing	BlackBerry	backup	files	since	the	user	can	modify	the	filename	of	the	backup.
If	the	BlackBerry	backup	file	was	recovered	from	a	hard	drive	or	other	digital	media,	the
following	two	formats	may	exist:

Loaderbackup	(yyyy-mm-dd).ipd

AutoBackup	((yyyy-mm-dd).ipd

The	Loaderbackup	file	is	created	automatically	when	the	device	OS	is	being	updated.	This
ensures	that	required	data	is	readily	available	should	the	device	crash	during	the	upgrade.
The	Autobackup	file	is	created	when	the	user	elects	to	have	the	device	set	to	back	up	on	a
regular	or	scheduled	basis	or	when	the	device	is	synced	with	a	PC.

A	full	backup	of	a	BlackBerry	device	should	contain	details	such	as	address	book,	e-mail,
SMS,	call	logs,	and	more.	However,	the	backup	file	may	not	contain	all	the	application
data	because	the	third-party	applications	may	not	always	provide	access	to	their	data.	A
backup	file	contains	the	following	information:

File	header:	The	header	contains	information	about	the	RIM	signature,	database
version,	number	of	databases	in	the	current	file,	and	so	on,	as	shown	in	the	following
table:

Name Length	(in	bytes) Offset

RIM	signature 37 0x0

Line	break 1 0x25

Database	version 1 0x26

Number	of	databases 2 0x27~0x28

Database	separator 1 0x29

Database	name	blocks:	These	are	present	after	the	header	information.	In	each
block,	the	name	length	and	name	are	stored.

Database	records:	These	are	present	after	database	name	blocks	and	contain	real
data.	They	contain	information	about	database	ID,	record	length,	database	version,
database	record	handle,	database	unique	ID,	and	so	on.
Database	record	fields:	These	contain	record	data	length,	record	type,	and	record
data.

Once	you	have	access	to	the	BlackBerry	backup	file,	use	any	of	the	available	tools
discussed	in	the	Forensic	tools	for	BlackBerry	analysis	section	to	read	the	information
present	in	the	file.

BlackBerry	forensic	image	analysis
The	method	of	obtaining	the	forensic	image	of	a	BlackBerry	device,	whether	logical,
physical,	or	file	system,	may	limit	the	tools	available	to	analyze	the	data.	For	example,	a
raw	image	created	using	JTAG	or	chip-off	should	be	ingestible	and	parsed	by	any	forensic
tool	that	provides	physical	analysis	support	for	that	model	of	BlackBerry,	as	long	as	the
device	was	unlocked	or	the	passcode	is	known.	It	is	best	to	use	more	than	one	tool	during
your	forensic	analysis	to	verify	the	results	of	the	forensic	image.

BlackBerry	file	systems	are	difficult	to	reconstruct	due	to	the	proprietary	format
developed	by	RIM.	Unlike	other	smartphone	devices,	BlackBerry	file	systems	vary	greatly
per	model.	Commercial	tools	will	attempt	to	reconstruct	the	file	systems,	but	the	support	is
low	and	may	not	be	accurate.	It	is	best	to	validate	your	findings	using	logical,	file	system,
or	backup	file	acquisition	and	analysis	to	ensure	your	findings	are	correct.

Once	an	examiner	gains	experience	analyzing	BlackBerry	devices,	the	files	of	interest
become	more	apparent	regardless	of	the	image	format.	A	physical	dump	and	backup	file
may	actually	contain	the	same	amount	of	data	readily	available	to	the	examiner.	The	tool
of	choice	to	examine	the	data	will	determine	the	amount	of	access	you	have	to	that	file.	As
explained	in	previous	chapters,	deleted	data	can	reside	in	database	files	just	as	Android
and	iOS,	BlackBerry	databases/tables	may	contain	deleted	data.	If	your	forensic	tool	does
not	provide	access	to	the	native	file	for	export	or	for	examination	in	Hex,	you	will	miss
this	deleted	data.

The	following	screenshot	shows	the	file	system	representation	of	a	BlackBerry	backup	file
in	Cellebrite	Physical	Analyzer.	Notice	that	the	Address	Book	is	being	examined	in	raw
hex.	This	method	of	analysis	is	preferred	to	validate	your	logical	results	or	the	data
provided	in	the	tool	report.

Cellebrite	Physical	Analyzer—Address	Book	examination

BlackBerry	data,	stored	in	databases/tables,	is	often	proprietary,	which	causes
difficulties	when	attempting	to	interpret	data	using	the	tool	and	manually	by	the	examiner.
When	compared	to	other	smartphone	devices,	there	doesn’t	appear	to	be	a	clear	standard
for	data	on	BlackBerry	devices.	For	example,	status	flags	associated	with	the	e-mail	app
have	been	found	to	be	inconsistent	among	different	devices.	Commonly,	a	status	flag	is
consistent	within	a	table	for	a	specific	model.	This	has	been	found	to	be	untrue	for
BlackBerry.	For	examiners,	this	makes	validation	of	your	tool	difficult.	BlackBerry
timestamps	are	commonly	in	a	simple	date	format,	which	is	compatible	with	Java	and	is
supported	to	parse	by	most	forensic	tools.

There	are	a	variety	of	BlackBerry	timestamp	types	that	are	defined	in	detail	at
http://www.swiftforensics.com/2012/03/blackberry-date-formats.html.	When	examining
SMS	messages,	the	examiner	should	use	more	than	one	tool	to	ensure	the	data	is	parsed
properly.	Currently,	there	is	no	standard	for	how	SMS	messages	are	stored	on	BlackBerry
devices.	The	SMS	messages	may	be	encrypted,	compressed,	or	exist	as	a	proprietary	7-bit
format.	Several	factors	weigh	on	the	format	to	store	the	SMS	message	content,	including
device	security	settings,	device	model,	administrator	settings,	and	more.

Unlike	other	smartphones,	third-party	application	data	cannot	be	stored	internally	on	the

http://www.swiftforensics.com/2012/03/blackberry-date-formats.html

BlackBerry	device	memory	if	the	application	uses	SQLite	database	storage,	which
applications	commonly	do.	All	third-party	application	data	will	reside	on	the	SD	card	(or
eMMC)	associated	to	the	BlackBerry	device	in	an	application	folder.	More	information	on
using	SQLite	on	BlackBerry	devices	can	be	found	at
http://blog.softartisans.com/2011/03/29/using-sqlite-in-blackberry-applications/.	These
folders	and	database	files	must	be	examined	for	relevance	to	the	investigation,	as	defined
in	previous	chapters.	Due	to	the	unknown	nature	of	RIM	and	the	proprietary	methods	to
store	user	data,	it	is	recommended	that	the	examiner	examine	any	database/table	recovered
from	the	BlackBerry	device	that	may	be	of	interest	to	the	investigation.	Manual
examination	is	time-consuming,	but	it	will	ensure	that	data	is	not	overlooked.

http://blog.softartisans.com/2011/03/29/using-sqlite-in-blackberry-applications/

Encrypted	BlackBerry	backup	files
During	your	forensic	examinations,	it	is	likely	that	an	encrypted	BlackBerry	backup	file
will	require	analysis.	Elcomsoft	developed	the	Phone	Password	Breaker,	which	allows	the
examiner	to	use	various	brute	force	and	dictionary	attacks	to	crack	encrypted	backup	files.

The	following	is	the	step-by-step	procedure	to	crack	an	encrypted	BlackBerry	backup	file
using	Elcomsoft	Phone	Password	Breaker:

1.	 On	the	forensic	workstation,	install	Elcomsoft	Phone	Password	Breaker.	The	full	and
demo	version	can	be	found	at	http://www.elcomsoft.com/eppb.html.

Elcomsoft	Phone	Password	Breaker

2.	 Navigate	to	the	backup	file.
3.	 Select	the	attack	method.	Several	options	are	available	and	dictionaries	can	be	added

to	increase	the	success	rate	of	the	attack,	as	shown	in	the	following	screenshot:

http://www.elcomsoft.com/eppb.html

The	Elcomsoft	Phone	Password	Breaker	attack	options

4.	 If	cracked,	the	password	will	be	displayed	and	can	be	used	to	access	the	encrypted
backup	file	with	the	use	of	a	forensic	tool.	It	is	important	to	use	a	forensic	tool	that
will	prompt	you	for	the	password.	Some	will	simply	fail	or	finish	with	errors	and
provide	no	access	to	the	encrypted	data,	as	shown	in	the	following	screenshot:

Elcomsoft	Phone	Password	Breaker

Forensic	tools	for	BlackBerry	analysis
Several	forensic	tools	are	available	to	parse	data	from	BlackBerry	backup	files	and
forensic	images	of	BlackBerry	devices.	The	best	tools	should	provide	access	to	the	raw
database	files	to	ensure	that	data	not	supported	by	the	forensic	tool	could	be	manually
parsed	by	the	examiner	and	to	avoid	deleted	data	not	being	recovered.	Knowing	where	to
find	the	data	on	devices	takes	practice	and	the	examiner	should	be	trained	on	examining
data	from	BlackBerry	devices.

Some	forensic	tools	available	include	Cellebrite	Physical	Analyzer,	Oxygen	Forensics
Suite,	Microsystemation	XRY,	AccessData	MPE+,	and	several	others.	Some	tools	are
specifically	designed	to	analyze	BlackBerry	backup	files.	Common	tools	that	provide
support	for	backup	files	include	Oxygen	Forensics	IPD	Viewer,	Elcomsoft	BlackBerry
Backup	Explorer,	and	BlackBerry	Backup	Extractor.	Bulk	Extractor,	created	by	Dr.
Simson	Garfinkle,	is	a	free	tool	that	can	parse	data	from	raw	BlackBerry	image	files
(physical	dumps)	even	if	the	password	is	unknown.

Bulk	Extractor	scans	the	image	file	and	pulls	useful	information	(calls,	URLs,	e-mail
addresses,	and	more)	without	parsing	the	file	system	and	provides	the	results	to	the
examiner.	Bulk	Extractor	can	be	downloaded	from
http://digitalcorpora.org/downloads/bulk_extractor/.	An	example	of	a	Bulk	Extractor
output	for	telephone	numbers	is	shown	in	the	following	screenshot:

Telephone	numbers	parsed	by	Bulk	Extractor

The	following	is	a	step-by-step	procedure	to	view	the	information	present	in	an	IPD	file
using	BlackBerry	Backup	Extractor.	This	tool	provides	access	to	the	native	files	for
further	examination.	A	tool	such	as	BlackBerry	Backup	Extractor	may	be	helpful	when
your	commercial	forensic	tool	does	not	provide	access	to	the	actual	files	recovered	from

http://digitalcorpora.org/downloads/bulk_extractor/

the	BlackBerry	backup	file.

1.	 Download	and	install	BlackBerry	Backup	Extractor	on	the	forensic	workstation
(http://www.blackberryconverter.com/).

2.	 Click	on	the	Open	backup…	button	to	load	the	IPD	backup	file	into	the	software	as
shown	in	the	following	screenshot:

BlackBerry	Backup	Extractor

3.	 Select	the	folder	where	the	data	will	be	saved	and	extracted.	When	the	process
begins,	the	tools	display	information	about	the	number	of	databases	currently	being
extracted.

4.	 Once	the	extraction	is	complete,	you	will	find	information	about	sent	e-mails,
received	e-mails,	contacts,	SMS,	calendar	appointments,	and	more,	as	shown	in	the
following	screenshot:

http://www.blackberryconverter.com/

E-mail	extracted	from	backup

The	contacts,	call	logs,	and	other	data	extracted	by	the	tool	can	be	navigated	to	and
examined	for	relevance	as	shown	in	the	following	screenshot.	Again,	BlackBerry	Backup
Extractor	does	not	provide	an	analytical	platform	to	view	all	of	the	extracted	data	in	a
normalized	manner;	therefore,	manual	review	of	the	results	is	required.

Contacts	extracted	from	backup

Other	information	that	can	be	crucial	during	investigations,	such	as	browser	URLs,
browser	data	cache,	and	so	on,	are	also	extracted	as	shown	in	the	following	screenshot:

Other	useful	data	extracted	from	the	backup

The	BlackBerry	backup	file	contains	a	2-byte	hexadecimal	value	that,	when	converted	to
decimal,	reveals	the	number	of	database	files	contained	within	that	backup	file.	The	two
bytes	of	interest	are	the	third	and	fourth	bytes	following	the	file	header	of	the	IPD	backup
file.	As	shown	in	the	following	screenshot,	the	IPD	file	is	being	examined	in	a	Hex	viewer
to	determine	the	number	of	database	files	contained	within	the	IPD	file.	The	third	and
fourth	bytes	(00	6D)	are	going	to	be	converted	for	database	verification	purposes.	In	the
following	screenshot,	Hex	6D	is	converted	to	decimal,	which	is	109.	Therefore,	there	are
109	databases	contained	within	this	IPD	file.	It	is	important	for	the	forensic	tool	to	display
109	databases/tables	for	the	examiner	to	analyze.

The	Hex	view	of	IPD	file

Some	forensic	tools	will	convert	this	number	for	you,	which	is	true	with	Oxygen	Forensics
IPD	Viewer,	as	shown	in	the	next	screenshot.	Oxygen	Forensics	Suite	is	one	of	the	most
powerful	commercial	forensic	tools	to	parse	data	from	BlackBerry	backup	files.	This	suite
of	tools	offers	both	a	backup	file	parser	as	well	as	an	IPD	Viewer.	Some	forensic	tools
omit	empty	databases,	provide	partial	support	for	backup	files,	or	require	the	examiner	to

manually	convert	and	verify	the	number	of	tables.	To	verify	the	number	of
databases/tables	in	a	BlackBerry	backup	file,	Elcomsoft	IPD	Viewer	can	be	used	by
performing	the	following	steps:

1.	 Install	Oxygen	Forensics	Suite	(license	required)	on	your	forensic	workstation.
2.	 Select	BlackBerry	IPD	Viewer	and	navigate	to	the	backup	file.	Have	a	look	at	the

following	screenshot:

Oxygen	Forensics	Suite	BlackBerry	IPD	Viewer

3.	 If	encrypted,	enter	the	password.	If	you	do	not	know	the	password,	the	data	cannot	be
decrypted	for	examination.	Keep	in	mind	that	you	will	need	this	password	every	time
you	open	the	image	file	for	examination,	as	shown	in	the	following	screenshot:

Oxygen	Forensics	Suite	BlackBerry	IPD	Viewer—the	encrypted	file

4.	 The	decrypted	data	will	be	provided	for	examination.	Note	that	the	number	of
databases	contained	within	this	backup	file	was	107	as	shown	in	the	following
screenshot:

The	Oxygen	Forensics	Suite	BlackBerry	IPD	Viewer	results

Summary
Forensic	support	for	BlackBerry	devices	is	limited	when	compared	to	other	smartphone
devices.	Open	source	tools	supporting	BlackBerry	physical	acquisition	are	not	currently
available,	and	bypassing	a	locked	device	is	complicated	and	often	renders	the	data
encrypted	and	unusable.	Unlike	iOS	and	Android	devices,	our	most	successful	data
extractions	of	BlackBerry	devices	usually	come	from	the	file	system	image	or	backup	file.
Information	such	as	e-mail,	SMS,	contacts,	and	more	can	be	extracted	from	BlackBerry
backup	files.	Sometimes,	the	most	useful	information	is	the	data	extracted	from	a	backup
file,	which	provides	access	to	the	most	data	for	analysis.

Index
A

acquisition	via	a	custom	ramdisk
about	/	Acquisition	via	a	custom	ramdisk
forensic	environment	setup	/	The	forensic	environment	setup
forensic	toolkit,	creating	/	Creating	and	loading	the	forensic	toolkit
device	communication,	establishing	/	Establishing	communication	with	the
device
passcode,	bypassing	/	Bypassing	the	passcode
data	partition,	imaging	/	Imaging	the	data	partition
data	partition,	decrypting	/	Decrypting	the	data	partition
deleted	data,	recovering	/	Recovering	the	deleted	data

acquisition	via	jail	breaking
performing	/	Acquisition	via	jailbreaking

Activation	Lock,	iOS	security
about	/	Activation	Lock

adb
about	/	Using	the	adb	pull	command

adb	pull	command
used,	for	logical	data	extraction	/	Using	the	adb	pull	command

AddressBook.sqlitedb
about	/	Address	book	contacts
ABPerson	/	Address	book	contacts
ABMultiValue	/	Address	book	contacts
ABMultiValueLabel	/	Address	book	contacts

AddressBookImages.sqlitedb	file
about	/	Address	book	images

Address	Space	Layout	Randomization	(ASLR),	iOS	security
about	/	Address	Space	Layout	Randomization

AFLogical	/	Using	content	providers
about	/	The	AFLogical	tool
editions	/	The	AFLogical	tool
OSE	/	The	AFLogical	tool
LE	/	The	AFLogical	tool

AFLogical	LE
about	/	AFLogical	Law	Enforcement	(LE)
logical	data,	extracting	from	device	/	AFLogical	Law	Enforcement	(LE)

AFLogical	OSE
about	/	AFLogical	Open	Source	Edition
installing	/	AFLogical	Open	Source	Edition

AFLogical	OSE	1.5.2
downloading	/	Using	content	providers

Alpine	/	1.x	–	the	first	iPhone
Android

about	/	Android
Android	app

analysis	/	Android	app	analysis
Android	apps

reverse	engineering	/	Reverse	engineering	Android	apps,	Steps	to	reverse
engineer	Android	apps

Android	Debug	Bridge	(adb)
about	/	Android	Debug	Bridge
used,	for	accessing	device	/	Accessing	the	device	using	adb

Android	device
accessing,	adb	used	/	Accessing	the	device	using	adb
connected	devices,	detecting	/	Detecting	connected	devices
local	adb	server,	killing	/	Killing	the	local	adb	server
adb	shell,	accessing	/	Accessing	the	adb	shell
handling	/	Handling	an	Android	device
rooting	/	Rooting	an	Android	device
root	access	/	Root	access	–	adb	shell
imaging	/	Imaging	an	Android	Phone
data	extraction	techniques	/	Data	extraction	techniques

Android	device,	connecting	to	workstation
device	cable,	identifying	/	Identifying	the	device	cable
device	drivers,	installing	/	Installing	the	device	drivers

Android	file	hierarchy
/boot	/	Android	file	hierarchy
/system	/	Android	file	hierarchy
/recovery	/	Android	file	hierarchy
/data	/	Android	file	hierarchy
/cache	/	Android	file	hierarchy
/misc	/	Android	file	hierarchy

Android	file	system
about	/	Android	file	system
viewing,	on	Android	device	/	Viewing	file	systems	on	an	Android	device
Extended	File	System	(EXT)	/	Extended	File	System	–	EXT

Android	model
about	/	The	Android	model
Linux	kernel	layer	/	The	Linux	kernel	layer
libraries	/	Libraries
Dalvik	virtual	machine	/	Dalvik	virtual	machine
dalvik	virtual	machine	/	Dalvik	virtual	machine
application	framework	layer	/	The	application	framework	layer
applications	layer	/	The	applications	layer

Android	SDK

about	/	Android	Software	Development	Kit
downloading	/	Android	Software	Development	Kit
installing	/	Android	SDK	installation

Android	security
about	/	Android	security
secure	kernel	/	Secure	kernel
permission	model	/	The	permission	model
application	sandbox	/	Application	sandbox
secure	interprocess	communication	/	Secure	interprocess	communication
application	signing	/	Application	signing

Apex	/	4.x	–	Game	Center	and	multitasking
APK	file

extracting	from	Android	device	/	Extracting	an	APK	file	from	an	Android
device

AppDomain	/	Record
application	framework	layer,	Android	model

about	/	The	application	framework	layer
telephony	manager	/	The	application	framework	layer
content	provider	/	The	application	framework	layer
resource	manager	/	The	application	framework	layer

Application	sandbox	/	Application	sandbox
applications	layer,	Android	model

about	/	The	applications	layer
App	sandboxing

about	/	App	sandboxing
App	Store	/	2.x	–	App	Store	and	3G

about	/	App	Store
archiving	phase,	Mobile	phone	evidence	extraction	process

about	/	The	archiving	phase
Autopsy

about	/	Autopsy
download	link	/	Autopsy
Android,	analyzing	/	Analyzing	an	Android	in	Autopsy

AVD
about	/	Android	Virtual	Device
creating	/	Android	Virtual	Device

B
b-tree	layout	/	Recovering	deleted	SQLite	records
backup	analysis,	BlackBerry

about	/	BlackBerry	backup	analysis
backup	file,	BlackBerry

file	header	/	BlackBerry	backup	analysis
database	name	blocks	/	BlackBerry	backup	analysis
database	records	/	BlackBerry	backup	analysis
database	record	fields	/	BlackBerry	backup	analysis

backup	structure,	iTunes
about	/	Understanding	the	backup	structure
info.plist	file	/	info.plist
manifest.plist	file	/	manifest.plist
status.plist	file	/	status.plist
manifest.mbdb	file	/	manifest.mbdb

BigBear	/	2.x	–	App	Store	and	3G
BlackBerry	analysis

about	/	BlackBerry	analysis
backup	analysis	/	BlackBerry	backup	analysis
forensic	image	analysis	/	BlackBerry	forensic	image	analysis
encrypted	BlackBerry	backup	file	/	Encrypted	BlackBerry	backup	files
forensic	tools	/	Forensic	tools	for	BlackBerry	analysis

BlackBerry	backup
creating	/	Creating	a	BlackBerry	backup

BlackBerry	Backup	(BBB)	file	/	Creating	a	BlackBerry	backup
BlackBerry	Backup	Extractor	/	Forensic	tools	for	BlackBerry	analysis

using	/	Forensic	tools	for	BlackBerry	analysis
URL	/	Forensic	tools	for	BlackBerry	analysis
installing	/	Forensic	tools	for	BlackBerry	analysis

BlackBerry	backup	file
about	/	Forensic	tools	for	BlackBerry	analysis

BlackBerry	Desktop	Manager	(BDM)	/	Creating	a	BlackBerry	backup
BlackBerry	Desktop	Software

installing	/	Creating	a	BlackBerry	backup
URL	/	Creating	a	BlackBerry	backup

BlackBerry	Enterprise	Server	(BES)	/	BlackBerry	OS
BlackBerry	Internet	Service	(BIS)	/	BlackBerry	OS
BlackBerry	Limited	/	BlackBerry	OS
BlackBerry	Link	/	Creating	a	BlackBerry	backup
BlackBerry	OS

about	/	BlackBerry	OS,	BlackBerry	OS
URL	/	BlackBerry	OS
version	history	/	BlackBerry	OS

security	features	/	Security	features
data	acquisition	/	Data	acquisition

BlackBerry	RIM	/	BlackBerry	OS
BlackBerry	security

about	/	Security	features
BlackBerry	timestamp	types

URL	/	BlackBerry	forensic	image	analysis
Boot	ROM	/	Normal	mode
browser	history

extracting	/	Extracting	browser	history
Bulk	Extractor

about	/	Forensic	tools	for	BlackBerry	analysis
URL	/	Forensic	tools	for	BlackBerry	analysis

C
Calendar.sqlitedb	file

about	/	Calendar	events
call	logs

extracting	/	Extracting	call	logs
call_history.db	file

about	/	Call	history
capabilities

about	/	Capability-based	model
capabilities-based	model,	Windows	Phone

about	/	Capability-based	model
CelleBrite

about	/	Cellebrite	–	UFED
CelleBrite	Physical	Analyzer

about	/	Cellebrite	–	UFED
Cellebrite	Physical	Analyzer	/	BlackBerry	forensic	image	analysis
CelleBrite	UFED

about	/	Cellebrite	–	UFED
Cellebrite	UFED

about	/	Cellebrite	UFED	Physical	Analyzer
URL	/	Cellebrite	UFED	Physical	Analyzer
features	/	Features	of	Cellebrite	UFED	Physical	Analyzer
usage	/	Usage	of	Cellebrite	UFED	Physical	Analyzer
physical	acquisition	of	iOS,	performing	/	Usage	of	Cellebrite	UFED	Physical
Analyzer
supported	devices	/	Supported	devices

Cellebrite	UFED	Touch	/	Standard	acquisition	methods
BlackBerry	Z10	support	/	Standard	acquisition	methods
BlackBerry	Curve	support	/	Standard	acquisition	methods

cgroup	file	system	/	Viewing	file	systems	on	an	Android	device
chambers

about	/	Windows	chambers
ChevronWP7

about	/	Data	acquisition
used,	for	sideloading	/	Sideloading	using	ChevronWP7

Chip-off
about	/	Chip-off
process	/	Chip-off

chip-off	method
about	/	Chip-off

chip-off	technique,	screen	lock	bypassing	techniques	/	Other	techniques
ClockworkMod	/	Rooting	an	Android	device
Clockwork	recovery	/	Rooting	an	Android	device

Cocoa	Touch	layer,	iOS
about	/	The	Cocoa	Touch	layer

code	signing,	iOS	security
about	/	Code	signing

codesign_allocate	tool	path
verifying	/	Verifying	the	codesign_allocate	tool	path

COD	files	/	Security	features
Connector	app	/	MOBILedit
consolidated.db	file

about	/	Consolidated	GPS	cache
consolidated	GPS	cache

about	/	Consolidated	GPS	cache
content	providers

used,	for	data	extraction	/	Using	content	providers
cookies

about	/	Cookies
Core	OS	layer,	iOS

about	/	The	Core	OS	layer
Core	Services	layer,	iOS

about	/	The	Core	Services	layer
custom	ramdisk

building	/	Building	a	custom	ramdisk
booting	/	Booting	the	custom	ramdisk

Cydia	application	/	Acquisition	via	jailbreaking

D
.dump	table-name	command	/	SQLite	special	commands
/data	directory

extracting,	on	rooted	device	/	Extracting	the	/data	directory	on	a	rooted	device
extracting,	on	non-rooted	device	/	Extracting	the	/data	directory	on	a	rooted
device

Dalvik	bytecode	/	Reverse	engineering	Android	apps
Dalvik	Virtual	Machine	(DVM)	/	Reverse	engineering	Android	apps
data	acquisition

about	/	Data	acquisition
sideloading,	ChevronWP7	used	/	Sideloading	using	ChevronWP7
data,	extracting	/	Extracting	the	data

data	acquisition,	BlackBerry
about	/	Data	acquisition
standard	acquisition	methods	/	Standard	acquisition	methods
BlackBerry	backup,	creating	/	Creating	a	BlackBerry	backup

data	acquisition	methods
about	/	Data	acquisition	methods
physical	acquisition	/	Physical	acquisition
logical	acquisition	/	Logical	acquisition
manual	acquisition	/	Manual	acquisition

data	execution	prevention	(DEP),	iOS	security
about	/	Data	execution	prevention

data	extraction,	Windows	Phone	device
performing	/	Extracting	the	data
SMS,	extracting	/	Extracting	SMS
e-mail,	extracting	/	Extracting	e-mail
application	data,	extracting	/	Extracting	application	data

data	extraction	techniques,	Android	device
types	/	Data	extraction	techniques
manual	data	extraction	/	Manual	data	extraction
logical	data	extraction	/	Logical	data	extraction
physical	data	extraction	/	Physical	data	extraction

data	protection,	iOS	security
about	/	Data	protection

data	recovery
about	/	Data	recovery
performing	/	Data	recovery
deleted	files,	recovering	/	Recovering	the	deleted	files
deleted	data,	recovering	from	SD	card	/	Recovering	deleted	data	from	an	SD
card
deleted	data,	recovering	from	internal	memory	/	Recovering	data	deleted	from
internal	memory

deleted	files,	recovering	by	parsing	SQLite	files	/	Recovering	deleted	files	by
parsing	SQLite	files
files,	recovering	using	file	carving	techniques	/	Recovering	files	using	file-
carving	techniques

data	storage,	Android	device
shared	preferences	/	Using	the	adb	pull	command
internal	storage	/	Using	the	adb	pull	command
external	storage	/	Using	the	adb	pull	command
SQLite	database	/	Using	the	adb	pull	command

data	synchronization	/	iTunes	backup
data	wipe,	iOS	security

about	/	Data	wipe
deleted	SQLite	records

recovering	/	Recovering	deleted	SQLite	records
device	information

extracting	/	Extracting	device	information
device	locking	/	Handling	an	Android	device
devpts	file	system	/	Viewing	file	systems	on	an	Android	device
dex2jar	tool	/	Steps	to	reverse	engineer	Android	apps
DFU	mode,	iOS	devices

about	/	DFU	mode
enabling	/	DFU	mode
verifying	/	DFU	mode

differential	backup
about	/	Understanding	the	backup	structure

DiskDigger	/	Recovering	files	using	file-carving	techniques
disk	layout,	iOS	devices

system	partition	/	Disk	layout
about	/	Disk	layout
user	data	partition	/	Disk	layout
mounted	partitions,	viewing	/	Disk	layout
raw	disk	images,	viewing	/	Disk	layout

document	and	reporting	phase,	Mobile	phone	evidence	extraction	process
about	/	The	document	and	reporting	phase

dot	commands
about	/	SQLite	special	commands
.tables	/	SQLite	special	commands
.schema	table-name	/	SQLite	special	commands
.dump	table-name	/	SQLite	special	commands
.output	file-name	/	SQLite	special	commands
.headers	on	/	SQLite	special	commands
.help	/	SQLite	special	commands
.exit	/	SQLite	special	commands
.mode	MODE	/	SQLite	special	commands

downloaded	applications
about	/	Downloaded	applications

DVM
about	/	Dalvik	virtual	machine

E
.exit	command	/	SQLite	special	commands
e-mail	database

about	/	E-mail	database
eDiscovery

about	/	BlackBerry	analysis
Effaceable	Storage	/	Recovering	the	deleted	data
EIFT

about	/	Elcomsoft	iOS	Forensic	Toolkit
URL	/	Elcomsoft	iOS	Forensic	Toolkit
features	/	Features	of	EIFT
usage	/	Usage	of	EIFT
guided	mode	/	Guided	mode
manual	mode	/	Manual	mode

EIFT-supported	devices
about	/	EIFT-supported	devices
compatibilities	/	Compatibility	notes

Elcomsoft	BlackBerry	Backup	Explorer	/	Forensic	tools	for	BlackBerry	analysis
Elcomsoft	IPD	Viewer

using	/	Forensic	tools	for	BlackBerry	analysis
Elcomsoft	Phone	Password	Breaker	/	Encrypted	BlackBerry	backup	files
Elevated	Rights	Chamber	(ERC)

about	/	Windows	chambers
encrypted	backup,	iTunes

creating	/	Encrypted	backup
extracting	/	Extracting	encrypted	backups
extracting,	iPhone	Data	Protection	Tools	used	/	iPhone	Data	Protection	Tools
keychain,	decrypting	/	Decrypting	the	keychain

encrypted	BlackBerry	backup	file
about	/	Encrypted	BlackBerry	backup	files
cracking	/	Encrypted	BlackBerry	backup	files

encryption,	iOS	security
about	/	Encryption

Escrow	keybag	/	Pairing	records
ES	Explorer	/	Extracting	an	APK	file	from	an	Android	device
evidence

about	/	Potential	evidence	stored	on	mobile	phones
rules	/	Authentic
securing	/	Securing	the	evidence
preserving	/	Preserving	the	evidence
documenting	/	Documenting	the	evidence

evidence	intake	phase,	Mobile	phone	evidence	extraction	process
about	/	The	evidence	intake	phase

Extended	File	System	(EXT)
about	/	Extended	File	System	–	EXT

F
Fastboot	utility	/	Flashing	a	new	recovery	partition
file	carving

about	/	Recovering	files	using	file-carving	techniques
used,	for	recovering	files	/	Recovering	files	using	file-carving	techniques

file	system,	iPhone
HFSX	/	File	system

Find	My	Friends	service	/	iCloud	backup
Find	My	iPhone	service	/	iCloud	backup
Flash	Friendly	File	System	(F3FS)	/	Extended	File	System	–	EXT
forensic	best	practices

evidence,	securing	/	Securing	the	evidence
evidence,	preserving	/	Preserving	the	evidence
evidence,	documenting	/	Documenting	the	evidence
all	changes,	documenting	/	Documenting	all	changes

forensic	environment
setting	up	/	A	forensic	environment	setup
Android	SDK	/	Android	Software	Development	Kit
Android	SDK	installation	/	Android	SDK	installation
AVD	/	Android	Virtual	Device
Android	device,	connecting	to	workstation	/	Connecting	an	Android	device	to	a
workstation
connected	device,	accessing	/	Accessing	the	connected	device
Android	Debug	Bridge	(adb)	/	Android	Debug	Bridge
Android	device,	accessing	with	adb	/	Accessing	the	device	using	adb
Android	device,	handling	/	Handling	an	Android	device

forensic	environment	setup,	acquisition	via	a	custom	ramdisk
performing	/	The	forensic	environment	setup
ldid	tool,	downloading	/	Downloading	and	installing	the	ldid	tool
ldid	tool,	installing	/	Downloading	and	installing	the	ldid	tool
codesign_allocate	tool	path,	verifying	/	Verifying	the	codesign_allocate	tool	path
OSXFuse,	installing	/	Installing	OSXFuse
Python	modules,	installing	/	Installing	Python	modules
iPhone	Data	Protection	Tools,	downloading	/	Downloading	iPhone	Data
Protection	Tools
IMG3FS	tool,	building	/	Building	the	IMG3FS	tool
redsn0w,	downloading	/	Downloading	redsn0w

forensic	image	analysis,	BlackBerry
about	/	BlackBerry	forensic	image	analysis

forensic	toolkit,	acquisition	via	a	custom	ramdisk
creating	/	Creating	and	loading	the	forensic	toolkit
loading	/	Creating	and	loading	the	forensic	toolkit
iOS	firmware	file,	downloading	/	Downloading	the	iOS	firmware	file

kernel,	modifying	/	Modifying	the	kernel
custom	ramdisk,	building	/	Building	a	custom	ramdisk
custom	ramdisk,	booting	/	Booting	the	custom	ramdisk

forensic	tools
overview	/	Forensic	tools	overview
AFLogical	tool	/	The	AFLogical	tool
MOBILedit	/	MOBILedit
Autopsy	/	Autopsy

forensic	tools,	for	BlackBerry	analysis
about	/	Forensic	tools	for	BlackBerry	analysis
Cellebrite	Physical	Analyzer	/	Forensic	tools	for	BlackBerry	analysis
Oxygen	Forensics	Suite	/	Forensic	tools	for	BlackBerry	analysis
Microsystemation	XRY	/	Forensic	tools	for	BlackBerry	analysis
AccessData	MPE+	/	Forensic	tools	for	BlackBerry	analysis

G
Game	Center	/	4.x	–	Game	Center	and	multitasking
Global	Positioning	System	(GPS)	/	2.x	–	App	Store	and	3G
guided	mode,	EIFT

about	/	Guided	mode
physical	acquisition	of	iPhone	4,	performing	/	Guided	mode

H
.headers	on	command	/	SQLite	special	commands
.help	command	/	SQLite	special	commands
Heavenly	/	1.x	–	the	first	iPhone
hex	dump

about	/	Hex	dump
HFS	Plus	file	system

about	/	The	HFS	Plus	file	system
URL	/	The	HFS	Plus	file	system

HFS	Plus	volume
about	/	The	HFS	Plus	volume
structure	/	The	HFS	Plus	volume

HFS	volumes	/	The	HFS	Plus	file	system
HFSX

about	/	File	system
Hierarchical	File	System	(HFS)

about	/	The	HFS	Plus	file	system
HomeDomain	/	Record
HomeDomain	plist	files

about	/	The	HomeDomain	plist	files

I
iBackupBot	/	Open	source	or	free	methods
iBEC	loader

about	/	DFU	mode
iBoot

about	/	Normal	mode
iCloud	/	5.x	–	Siri	and	iCloud

about	/	iCloud	backup
Find	My	iPhone	service	/	iCloud	backup
Find	My	Friends	service	/	iCloud	backup

iCloud	backup
performing	/	iCloud	backup
extracting	/	Extracting	iCloud	backups

identification	phase,	Mobile	phone	evidence	extraction	process
about	/	The	identification	phase
legal	authority	/	The	legal	authority
examinations	goals	/	The	goals	of	the	examination
make	and	model,	identifying	/	The	make,	model,	and	identifying	information	for
the	device
removable	data	storage	/	Removable	and	external	data	storage
potential	evidence	sources	/	Other	sources	of	potential	evidence

ideviceinfo	command-line	tool
about	/	iPhone	models
URL	/	iPhone	models

iExplorer	/	Open	source	or	free	methods
iFunBox	/	Open	source	or	free	methods
imaging	process,	memory	(SD)	card

memory	card,	connecting	/	Imaging	a	memory	(SD)	card
memory	card,	protecting	/	Imaging	a	memory	(SD)	card
hash	value,	calculating	/	Imaging	a	memory	(SD)	card
disk	image,	creating	/	Imaging	a	memory	(SD)	card

imaging	the	device
about	/	Imaging	an	Android	Phone

IM	chats	analysis
about	/	Analysis	of	social	networking/IM	chats

IMG3FS	tool
building	/	Building	the	IMG3FS	tool

info.plist	file
about	/	info.plist
content	/	info.plist

Innsbruck	/	7.x	–	the	iPhone	5S	and	beyond
Inter@active	Pager	Backup	(IPD)	/	Creating	a	BlackBerry	backup
iOS

about	/	iOS,	iPhone	operating	system
differences,	with	Mac	OS	X	/	iPhone	operating	system

iOS	acquisition	methods
open	source	methods	/	Open	source	or	free	methods

iOS	architecture
about	/	The	iOS	architecture
layers	/	The	iOS	architecture
Cocoa	Touch	layer	/	The	Cocoa	Touch	layer
Media	layer	/	The	Media	layer
Core	Services	layer	/	The	Core	Services	layer
Core	OS	layer	/	The	Core	OS	layer

iOS	data	analysis	and	recovery
timestamps	/	Timestamps
SQLite	databases	/	SQLite	databases
property	list	/	Property	lists
cookies	/	Cookies
keyboard	cache	/	Keyboard	cache
photos	directory	/	Photos
wallpaper	directory	/	Wallpaper
snapshots	directory	/	Snapshots
recordings	directory	/	Recordings
downloaded	applications	/	Downloaded	applications
deleted	SQLite	records,	recovering	/	Recovering	deleted	SQLite	records

iOS	devices
iPhone	/	iPhone	models
iPad	/	iPad	models
disk	layout	/	Disk	layout
operating	modes	/	Operating	modes	of	iOS	devices
physical	acquisition	/	Physical	acquisition

iOS	firmware	file
downloading	/	Downloading	the	iOS	firmware	file

iOS	history
about	/	iOS	history
iPhone	OS	1.x	/	1.x	–	the	first	iPhone
App	Store	/	2.x	–	App	Store	and	3G
iPhone	3G	/	2.x	–	App	Store	and	3G
iPad	/	3.x	–	the	first	iPad
game	center	/	4.x	–	Game	Center	and	multitasking
multitasking	/	4.x	–	Game	Center	and	multitasking
Siri	/	5.x	–	Siri	and	iCloud
iCloud	/	5.x	–	Siri	and	iCloud
Apple	Maps	/	6.x	–	Apple	Maps
iPhone	5S	/	7.x	–	the	iPhone	5S	and	beyond

iOS	security

about	/	iOS	security
features	/	iOS	security
passcodes	/	Passcode
code	signing	/	Code	signing
sandboxing	/	Sandboxing
encryption	/	Encryption
data	protection	/	Data	protection
Address	Space	Layout	Randomization	(ASLR)	/	Address	Space	Layout
Randomization
privilege	separation	/	Privilege	separation
stack	smashing	protection	/	Stack	smashing	protection
data	execution	prevention	(DEP)	/	Data	execution	prevention
data	wipe	/	Data	wipe
Activation	Lock	/	Activation	Lock

iPad	hardware
about	/	iPad	hardware
internal	images	/	iPad	hardware

iPad	models
iOS	versions	/	iPad	models
specifications	and	features	/	iPad	models

IPD	file
information,	viewing	with	BlackBerry	Backup	Extractor	/	Forensic	tools	for
BlackBerry	analysis

iPhone
about	/	iPhone	models
models	/	iPhone	models
model,	identifying	/	iPhone	models
examining	/	iPhone	models
model	number	/	iPhone	models
firmware	version	/	iPhone	models
specifications	and	features	/	iPhone	models
file	system	/	File	system

iPhone	Backup	Browser
unencrypted	backup,	extracting	/	iPhone	Backup	Browser
about	/	iPhone	Backup	Browser

iPhone	Backup	Extractor
about	/	iPhone	Backup	Extractor
unencrypted	backup,	extracting	/	iPhone	Backup	Extractor

iPhone	backups
iTunes	backup	/	iTunes	backup
iCloud	backup	/	iCloud	backup

iPhone	Data	Protection	Tools
about	/	Acquisition	via	a	custom	ramdisk,	iPhone	Data	Protection	Tools
installing	/	Downloading	iPhone	Data	Protection	Tools

unencrypted	backup,	extracting	/	iPhone	Data	Protection	Tools
encrypted	backup,	extracting	/	iPhone	Data	Protection	Tools

iPhone	hardware
about	/	iPhone	hardware
internal	images	/	iPhone	hardware

iPhone	OS
about	/	iPhone	operating	system

iPhone	Password	Breaker
about	/	iPhone	Password	Breaker
backup	password,	brute	forcing	/	iPhone	Password	Breaker

iPhone	Software	Development	Kit	(SDK)	/	2.x	–	App	Store	and	3G
iRecovery	Stick

about	/	Paraben	iRecovery	Stick
URL	/	Paraben	iRecovery	Stick
features	/	Features	of	Paraben	iRecovery	Stick
usage	/	Usage	of	Paraben	iRecovery	Stick
acquisition	of	iOS	device,	performing	/	Usage	of	Paraben	iRecovery	Stick
supported	devices	/	Devices	supported	by	Paraben	iRecovery	Stick

isolation	phase,	Mobile	phone	evidence	extraction	process
about	/	The	isolation	phase

iTunes
about	/	iTunes	backup
auto-syncing,	disabling	/	iTunes	backup

iTunes	backup
performing	/	iTunes	backup
records,	pairing	/	Pairing	records
backup	structure	/	Understanding	the	backup	structure
unencrypted	backup,	creating	/	Unencrypted	backup
encrypted	backup,	creating	/	Encrypted	backup

IV	(initialization	vector)	/	Extracting	encrypted	backups

J
jailbreaking

about	/	Jailbreaking
URL	/	Jailbreaking

Java	Development	Environment	(JDE)	/	BlackBerry	OS
Java	Virtual	Machine	(JVM)	/	Security	features
JD-GUI	tool	/	Steps	to	reverse	engineer	Android	apps
Joint	Test	Action	Group	(JTAG)	method	/	Chip-off
JTAG

about	/	JTAG
process	/	JTAG

JTAG	technique,	screen	lock	bypassing	techniques	/	Other	techniques

K
Kernel	Address	Space	Layout	Randomization	/	Acquisition	via	jailbreaking
Kernel	Address	Space	Protection	/	Acquisition	via	jailbreaking
keyboard	cache

about	/	Keyboard	cache
Kirkwood	/	3.x	–	the	first	iPad

L
ldid	tool

downloading	/	Downloading	and	installing	the	ldid	tool
installing	/	Downloading	and	installing	the	ldid	tool

Least	Privileged	Chamber	(LPC)
about	/	Windows	chambers

libraries,	Android	model
about	/	Libraries

LiME
about	/	Recovering	deleted	data	from	an	SD	card

Linux	kernel	layer,	Android	model
about	/	The	Linux	kernel	layer

lockdown	certificates	/	Pairing	records
logical	acquisition	method

about	/	Logical	acquisition
logical	data	extraction

about	/	Logical	data	extraction
performing	/	Logical	data	extraction
performing,	adb	pull	command	used	/	Using	the	adb	pull	command
/data	directory,	extracting	on	rooted	device	/	Extracting	the	/data	directory	on	a
rooted	device
/data	directory,	extracting	on	non-rooted	device	/	Extracting	the	/data	directory
on	a	rooted	device
performing,	SQLite	Browser	used	/	Using	SQLite	Browser
device	information,	extracting	/	Extracting	device	information
call	logs,	extracting	/	Extracting	call	logs
SMS/MMS,	extracting	/	Extracting	SMS/MMS
browser	history,	extracting	/	Extracting	browser	history
social	networking	analysis	/	Analysis	of	social	networking/IM	chats
IM	chats	analysis	/	Analysis	of	social	networking/IM	chats
performing,	content	providers	used	/	Using	content	providers

logical	extraction	process
about	/	Logical	extraction

Low-Level	boot	loader	(LLB)	/	Normal	mode

M
.mode	MODE	command	/	SQLite	special	commands
M2Crypto

about	/	Installing	Python	modules
installing	/	Installing	Python	modules

Mac	absolute	time
about	/	Mac	absolute	time

Mac	OS	X	10.8
iPhone	model,	obtaining	/	iPhone	models
iPhone	iOS	version,	obtaining	/	iPhone	models

manifest.mbdb	file
about	/	manifest.mbdb
header	/	Header
records	/	Record

manifest.plist	file
about	/	manifest.plist
content	/	manifest.plist

manual	acquisition	method
about	/	Manual	acquisition

manual	data	extraction
about	/	Manual	data	extraction
Android	device,	rooting	/	Using	root	access	to	acquire	an	Android	device

manual	extraction	process
about	/	Manual	extraction

manual	mode,	EIFT
about	/	Manual	mode

MCC/MNC	codes
reference	link	/	Call	history

Media	layer,	iOS
about	/	The	Media	layer

memory	(SD)	card
imaging	/	Imaging	a	memory	(SD)	card
imaging,	WinHex	used	/	Imaging	a	memory	(SD)	card
imaging	process	/	Imaging	a	memory	(SD)	card

Mercurial	source	code	management	system
installing	/	Installing	Python	modules

micro	read	/	Micro	read
Microsoft	.NET	Framework	4	/	iPhone	Backup	Browser
Mobile	Data	System	(MDS)	/	BlackBerry	OS
Mobile	Device	Management	(MDM)	/	Handling	an	Android	device
MOBILedit

about	/	MOBILedit
URL	/	MOBILedit

used,	for	extracting	information	from	Android	phone	/	MOBILedit
Mobile	forensic	approaches

about	/	Practical	mobile	forensic	approaches
mobile	operating	systems	overview	/	Mobile	operating	systems	overview
Mobile	forensic	tool	leveling	system	/	Mobile	forensic	tool	leveling	system
data	acquisition	methods	/	Data	acquisition	methods

Mobile	forensics
about	/	Mobile	forensics
challenges	/	Mobile	forensic	challenges

Mobile	forensic	tool	leveling	system
about	/	Mobile	forensic	tool	leveling	system
manual	extraction	/	Manual	extraction
logical	extraction	/	Logical	extraction
hex	dump	/	Hex	dump
chip-off	/	Chip-off
micro	read	/	Micro	read

mobile	operating	systems
overview	/	Mobile	operating	systems	overview
Android	/	Android
iOS	/	iOS
Windows	phone	/	Windows	phone
BlackBerry	OS	/	BlackBerry	OS

Mobile	phone	evidence	extraction	process
about	/	Mobile	phone	evidence	extraction	process
evidence	intake	phase	/	The	evidence	intake	phase
identification	phase	/	The	identification	phase
preparation	phase	/	The	preparation	phase
isolation	phase	/	The	isolation	phase
processing	phase	/	The	processing	phase
verification	phase	/	The	verification	phase
document	and	reporting	phase	/	The	document	and	reporting	phase
presentation	phase	/	The	presentation	phase
archiving	phase	/	The	archiving	phase

mobile	phones
evidence	/	Potential	evidence	stored	on	mobile	phones

model	number,	iPhone	/	iPhone	models
mount	command	/	Disk	layout

N
NAND

about	/	Physical	acquisition
normal	mode,	iOS	devices

about	/	Normal	mode
Notes	database

about	/	Notes

O
.output	file-name	command	/	SQLite	special	commands
operating	modes,	iOS	devices

about	/	Operating	modes	of	iOS	devices
normal	mode	/	Normal	mode
recovery	mode	/	Recovery	mode
DFU	mode	/	DFU	mode

OSXFuse
installing	/	Installing	OSXFuse

over	the	air	(OTA)	software	updates	/	5.x	–	Siri	and	iCloud
Oxygen	Forensics	IPD	Viewer	/	Forensic	tools	for	BlackBerry	analysis
Oxygen	Forensics	SQLite	Viewer

about	/	Recovering	deleted	files	by	parsing	SQLite	files
Oxygen	Forensics	Suite

installing	/	Forensic	tools	for	BlackBerry	analysis
Oxygen	Forensic	Suite	2014

about	/	Oxygen	Forensic	Suite	2014
URL	/	Oxygen	Forensic	Suite	2014
features	/	Features	of	Oxygen	Forensic	Suite
usage	/	Usage	of	Oxygen	Forensic	Suite
acquisition	of	iOS,	performing	/	Usage	of	Oxygen	Forensic	Suite
supported	devices	/	Oxygen	Forensic	Suite	2014	supported	devices

P
passcodes,	iOS	security

about	/	Passcode
PBKDF2	(Password-Based	Key	Derivation	Function	2)	/	Extracting	encrypted
backups
photos	directory

about	/	Photos
photos	metadata

about	/	The	photos	metadata
physical	acquisition,	iOS	devices

about	/	Physical	acquisition
physical	acquisition	method

about	/	Physical	acquisition
physical	data	extraction

performing	/	Physical	data	extraction
JTAG	/	JTAG
Chip-off	technique	/	Chip-off

plist
about	/	Property	lists

Plist	Editor	for	Windows
URL	/	Property	lists

plutil	command-line	utility,	Mac	OS	X
about	/	Property	lists

preparation	phase,	Mobile	phone	evidence	extraction	process
about	/	The	preparation	phase

presentation	phase,	Mobile	phone	evidence	extraction	process
about	/	The	presentation	phase

privilege	separation,	iOS	security
about	/	Privilege	separation

processing	phase,	Mobile	phone	evidence	extraction	process
about	/	The	processing	phase

proc	file	system	/	Viewing	file	systems	on	an	Android	device
property	list	/	Pairing	records

about	/	Property	lists
Property	List	Editor

about	/	Property	lists
Property	List	Editor	application	/	Understanding	the	backup	structure
PyCrypto	/	Installing	Python	modules
Python	modules

installing	/	Installing	Python	modules

Q
QuickTime	Player

about	/	Voicemail

R
re-balling

about	/	Chip-off
read-only	memory	(ROM)	/	Normal	mode
recordings	directory

about	/	Recordings
recovery	loop

about	/	Recovery	mode
recovery	mode,	iOS	devices

about	/	Recovery	mode
redsn0w	tool

about	/	Recovery	mode
downloading	/	Downloading	redsn0w

Remo	Recover	for	Android	tool
used,	for	recovering	deleted	files	from	SD	card	/	Recovering	deleted	data	from
an	SD	card
about	/	Recovering	deleted	data	from	an	SD	card
downloading	/	Recovering	deleted	data	from	an	SD	card

Research	in	Motion	(RIM)
about	/	BlackBerry	OS

reverse	engineering,	Android	apps
APK	file,	extracting	from	Android	device	/	Extracting	an	APK	file	from	an
Android	device
performing	/	Steps	to	reverse	engineer	Android	apps

Robust	File	System	(RFS)	/	Extended	File	System	–	EXT
root	/	What	is	rooting?
root	access

gaining	/	Gaining	root	access
RootDomain	plist	files

about	/	The	RootDomain	plist	files
rootfs	file	system	/	Viewing	file	systems	on	an	Android	device
rooting

about	/	What	is	rooting?
Android	device	/	Rooting	an	Android	device
Clockwork	recovery	/	Rooting	an	Android	device
ClockworkMod	/	Rooting	an	Android	device
advantages	/	Rooting	an	Android	device
disadvantages	/	Rooting	an	Android	device
adb	shell,	running	/	Root	access	–	adb	shell

rules,	evidence
admissible	/	Admissible
authentic	/	Authentic
complete	/	Complete

reliable	/	Reliable
believable	/	Believable

S
.schema	table-name	command	/	SQLite	special	commands
Safari	bookmarks	database

about	/	Safari	bookmarks
Safari	web	caches

about	/	The	Safari	web	caches
Samsung	Android	device

data	extracting,	UFED	used	/	Physical	extraction
sandboxing,	iOS	security

about	/	Sandboxing
Scalpel

about	/	Recovering	files	using	file-carving	techniques
using,	on	Ubuntu	workstation	/	Recovering	files	using	file-carving	techniques

screen	lock	bypassing	techniques
about	/	Screen	lock	bypassing	techniques
pattern	lock	/	Screen	lock	bypassing	techniques
PIN	code	/	Screen	lock	bypassing	techniques
alphanumeric	passcode	/	Screen	lock	bypassing	techniques
adb,	used	/	Using	adb	to	bypass	the	screen	lock
gesture.key	file,	deleting	/	Deleting	the	gesture.key	file
settings.db	file,	updating	/	Updating	the	settings.db	file
modified	recovery	mode,	checking	/	Checking	for	the	modified	recovery	mode
and	adb	connection
adb	connection,	checking	/	Checking	for	the	modified	recovery	mode	and	adb
connection
recovery	partition,	flashing	/	Flashing	a	new	recovery	partition
smudge	attack	/	Smudge	attack
Gmail	account,	using	/	Using	the	primary	Gmail	account
JTAG	/	Other	techniques
chip-off	technique	/	Other	techniques

secure	boot	chain	/	Normal	mode
secure	ROM	/	Normal	mode
security	chambers

about	/	Windows	chambers
Trusted	Computing	Base	(TCB)	/	Windows	chambers
Elevated	Rights	Chamber	(ERC)	/	Windows	chambers
Standard	Rights	Chamber	(SRC)	/	Windows	chambers
Least	Privileged	Chamber	(LPC)	/	Windows	chambers

security	features,	BlackBerry
about	/	Security	features

security	model,	Windows	Phone	OS
about	/	Security	model

Siri	/	5.x	–	Siri	and	iCloud

Sleuth	Kit	/	Autopsy
SMS/MMS

extracting	/	Extracting	SMS/MMS
SMS	database

about	/	SMS	messages
SMS	Spotlight	cache

about	/	SMS	Spotlight	cache
smudge	attack	/	Smudge	attack
snapshots	directory

about	/	Snapshots
social	networking	analysis

about	/	Analysis	of	social	networking/IM	chats
SQLite

about	/	SQLite	databases
sqlite3	command-line	utility	/	SQLite	databases
SQLite	Browser

URL	/	SQLite	databases
used,	for	logical	data	extraction	/	Using	SQLite	Browser

SQLite	command-line	client
URL	/	SQLite	databases

SQLite	commands
about	/	SQLite	special	commands

SQLite	databases
about	/	SQLite	databases
connecting	to	/	Connecting	to	a	database
commands	/	SQLite	special	commands
standard	SQL	queries	/	Standard	SQL	queries
address	book	contacts	/	Address	book	contacts
address	book	images	/	Address	book	images
call	history	/	Call	history
SMS	database	/	SMS	messages
SMS	Spotlight	cache	/	SMS	Spotlight	cache
calendar	events	/	Calendar	events
e-mail	database	/	E-mail	database
notes	database	/	Notes
Safari	bookmarks	/	Safari	bookmarks
Safari	web	caches	/	The	Safari	web	caches
web	application	cache	/	The	web	application	cache
WebKit	storage	/	The	WebKit	storage
photos	metadata	/	The	photos	metadata
consolidated	GPS	cache	/	Consolidated	GPS	cache
voicemail	database	/	Voicemail

SQLite	files
using	/	Recovering	deleted	files	by	parsing	SQLite	files

URL	/	Recovering	deleted	files	by	parsing	SQLite	files
SQLite	Professional

URL	/	SQLite	databases
SQLite	Spy

URL	/	SQLite	databases
stack	smashing	protection,	iOS	security

about	/	Stack	smashing	protection
standard	acquisition	methods

about	/	Standard	acquisition	methods
Standard	Rights	Chamber	(SRC)

about	/	Windows	chambers
standard	SQL	queries

SELECT	/	Standard	SQL	queries
INSERT	/	Standard	SQL	queries
DELETE	/	Standard	SQL	queries
ALTER	/	Standard	SQL	queries

status.plist	file
about	/	status.plist
content	/	status.plist

Sundance	/	6.x	–	Apple	Maps
Super	Backup	app

about	/	Recovering	deleted	data	from	an	SD	card
System	keybag	/	Bypassing	the	passcode,	Pairing	records
system	partition,	iOS	device	disk	layout

about	/	Disk	layout
SystemPreferencesDomain	plist	files

about	/	The	SystemPreferencesDomain	plist	files

T
.tables	command	/	SQLite	special	commands
Telluride	/	5.x	–	Siri	and	iCloud
Test	Access	Ports	(TAPs)	/	Chip-off
tiles	/	Windows	Phone	OS
timestamps

about	/	Timestamps
Unix	timestamp	/	Unix	timestamps
Mac	absolute	time	/	Mac	absolute	time

tmpfs	file	system	/	Viewing	file	systems	on	an	Android	device
Trusted	Computing	Base	(TCB)

about	/	Windows	chambers

U
UFED	Touch

used,	for	extracting	data	from	Samsung	Android	device	/	Physical	extraction
unencrypted	backup,	iTunes

creating	/	Unencrypted	backup
extracting	/	Extracting	unencrypted	backups
extracting,	iPhone	Backup	Extractor	used	/	iPhone	Backup	Extractor
extracting,	iPhone	Backup	Browser	used	/	iPhone	Backup	Browser,	iPhone	Data
Protection	Tools
keychain,	decrypting	/	Decrypting	the	keychain

Unique	Device	Identifier	(UDID)	/	Bypassing	the	passcode,	Understanding	the
backup	structure
Unix	timestamp

about	/	Unix	timestamps
user	data	partition,	iOS	device	disk	layout

about	/	Disk	layout

V
verification	phase,	Mobile	phone	evidence	extraction	process

about	/	The	verification	phase
extracted	data,	comparing	to	handset	data	/	Comparing	extracted	data	to	the
handset	data
results,	comparing	using	multiple	tools	/	Using	multiple	tools	and	comparing	the
results
hash	values,	using	/	Using	hash	values

VFAT	/	Extended	File	System	–	EXT
viaForensics	/	The	AFLogical	tool
Visual	C++	2010	runtime	/	iPhone	Backup	Browser
voicemail	database

about	/	Voicemail
volume	structure,	HFS	Plus

volume	header	/	The	HFS	Plus	volume
allocation	file	/	The	HFS	Plus	volume
extents	overflow	file	/	The	HFS	Plus	volume
catalog	file	/	The	HFS	Plus	volume
attribute	file	/	The	HFS	Plus	volume
startup	file	/	The	HFS	Plus	volume
alternate	volume	header	file	/	The	HFS	Plus	volume

W
wallpaper	directory

about	/	Wallpaper
web	application	cache

about	/	The	web	application	cache
WebKit	storage,	Safari

about	/	The	WebKit	storage
Wildcat	/	3.x	–	the	first	iPad
Windows	phone

about	/	Windows	phone
Windows	Phone	Device	Manager

downloading	/	Extracting	the	data
Windows	Phone	file	system

about	/	Windows	Phone	file	system
Application	Data	directory	/	Windows	Phone	file	system
Applications	directory	/	Windows	Phone	file	system
My	Documents	directory	/	Windows	Phone	file	system
Windows	directory	/	Windows	Phone	file	system

Windows	Phone	OS
about	/	Windows	Phone	OS
security	model	/	Security	model
chambers	/	Windows	chambers
capabilities-based	model	/	Capability-based	model
App	sandboxing	/	App	sandboxing

Windows	Phone	SDK	7.1
downloading	/	Extracting	the	data

Windows	registry	/	Windows	Phone	file	system
WinHex

used,	for	imaging	memory	(SD)	card	/	Imaging	a	memory	(SD)	card
WirelessDomain	plist	files

about	/	The	WirelessDomain	plist	files

Y
Yet	Another	Flash	File	System	2(YAFFS2)	/	Extended	File	System	–	EXT

Z
Zune	software

downloading	/	Extracting	the	data

	Practical Mobile Forensics
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Support files, eBooks, discount offers, and more
	Why subscribe?
	Free access for Packt account holders
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Downloading the color images of the book
	Errata
	Piracy
	Questions
	1. Introduction to Mobile Forensics
	Mobile forensics
	Mobile forensic challenges
	Mobile phone evidence extraction process
	The evidence intake phase
	The identification phase
	The legal authority
	The goals of the examination
	The make, model, and identifying information for the device
	Removable and external data storage
	Other sources of potential evidence
	The preparation phase
	The isolation phase
	The processing phase
	The verification phase
	Comparing extracted data to the handset data
	Using multiple tools and comparing the results
	Using hash values
	The document and reporting phase
	The presentation phase
	The archiving phase
	Practical mobile forensic approaches
	Mobile operating systems overview
	Android
	iOS
	Windows phone
	BlackBerry OS
	Mobile forensic tool leveling system
	Manual extraction
	Logical extraction
	Hex dump
	Chip-off
	Micro read
	Data acquisition methods
	Physical acquisition
	Logical acquisition
	Manual acquisition
	Potential evidence stored on mobile phones
	Rules of evidence
	Admissible
	Authentic
	Complete
	Reliable
	Believable
	Good forensic practices
	Securing the evidence
	Preserving the evidence
	Documenting the evidence
	Documenting all changes
	Summary
	2. Understanding the Internals of iOS Devices
	iPhone models
	iPhone hardware
	iPad models
	iPad hardware
	File system
	The HFS Plus file system
	The HFS Plus volume
	Disk layout
	iPhone operating system
	iOS history
	1.x – the first iPhone
	2.x – App Store and 3G
	3.x – the first iPad
	4.x – Game Center and multitasking
	5.x – Siri and iCloud
	6.x – Apple Maps
	7.x – the iPhone 5S and beyond
	The iOS architecture
	The Cocoa Touch layer
	The Media layer
	The Core Services layer
	The Core OS layer
	iOS security
	Passcode
	Code signing
	Sandboxing
	Encryption
	Data protection
	Address Space Layout Randomization
	Privilege separation
	Stack smashing protection
	Data execution prevention
	Data wipe
	Activation Lock
	App Store
	Jailbreaking
	Summary
	3. Data Acquisition from iOS Devices
	Operating modes of iOS devices
	Normal mode
	Recovery mode
	DFU mode
	Physical acquisition
	Acquisition via a custom ramdisk
	The forensic environment setup
	Downloading and installing the ldid tool
	Verifying the codesign_allocate tool path
	Installing OSXFuse
	Installing Python modules
	Downloading iPhone Data Protection Tools
	Building the IMG3FS tool
	Downloading redsn0w
	Creating and loading the forensic toolkit
	Downloading the iOS firmware file
	Modifying the kernel
	Building a custom ramdisk
	Booting the custom ramdisk
	Establishing communication with the device
	Bypassing the passcode
	Imaging the data partition
	Decrypting the data partition
	Recovering the deleted data
	Acquisition via jailbreaking
	Summary
	4. Data Acquisition from iOS Backups
	iTunes backup
	Pairing records
	Understanding the backup structure
	info.plist
	manifest.plist
	status.plist
	manifest.mbdb
	Header
	Record
	Unencrypted backup
	Extracting unencrypted backups
	iPhone Backup Extractor
	iPhone Backup Browser
	iPhone Data Protection Tools
	Decrypting the keychain
	Encrypted backup
	Extracting encrypted backups
	iPhone Data Protection Tools
	Decrypting the keychain
	iPhone Password Breaker
	iCloud backup
	Extracting iCloud backups
	Summary
	5. iOS Data Analysis and Recovery
	Timestamps
	Unix timestamps
	Mac absolute time
	SQLite databases
	Connecting to a database
	SQLite special commands
	Standard SQL queries
	Important database files
	Address book contacts
	Address book images
	Call history
	SMS messages
	SMS Spotlight cache
	Calendar events
	E-mail database
	Notes
	Safari bookmarks
	The Safari web caches
	The web application cache
	The WebKit storage
	The photos metadata
	Consolidated GPS cache
	Voicemail
	Property lists
	Important plist files
	The HomeDomain plist files
	The RootDomain plist files
	The WirelessDomain plist files
	The SystemPreferencesDomain plist files
	Other important files
	Cookies
	Keyboard cache
	Photos
	Wallpaper
	Snapshots
	Recordings
	Downloaded applications
	Recovering deleted SQLite records
	Summary
	6. iOS Forensic Tools
	Elcomsoft iOS Forensic Toolkit
	Features of EIFT
	Usage of EIFT
	Guided mode
	Manual mode
	EIFT-supported devices
	Compatibility notes
	Oxygen Forensic Suite 2014
	Features of Oxygen Forensic Suite
	Usage of Oxygen Forensic Suite
	Oxygen Forensic Suite 2014 supported devices
	Cellebrite UFED Physical Analyzer
	Features of Cellebrite UFED Physical Analyzer
	Usage of Cellebrite UFED Physical Analyzer
	Supported devices
	Paraben iRecovery Stick
	Features of Paraben iRecovery Stick
	Usage of Paraben iRecovery Stick
	Devices supported by Paraben iRecovery Stick
	Open source or free methods
	Summary
	7. Understanding Android
	The Android model
	The Linux kernel layer
	Libraries
	Dalvik virtual machine
	The application framework layer
	The applications layer
	Android security
	Secure kernel
	The permission model
	Application sandbox
	Secure interprocess communication
	Application signing
	Android file hierarchy
	Android file system
	Viewing file systems on an Android device
	Extended File System – EXT
	Summary
	8. Android Forensic Setup and Pre Data Extraction Techniques
	A forensic environment setup
	Android Software Development Kit
	Android SDK installation
	Android Virtual Device
	Connecting an Android device to a workstation
	Identifying the device cable
	Installing the device drivers
	Accessing the connected device
	Android Debug Bridge
	Accessing the device using adb
	Detecting connected devices
	Killing the local adb server
	Accessing the adb shell
	Handling an Android device
	Screen lock bypassing techniques
	Using adb to bypass the screen lock
	Deleting the gesture.key file
	Updating the settings.db file
	Checking for the modified recovery mode and adb connection
	Flashing a new recovery partition
	Smudge attack
	Using the primary Gmail account
	Other techniques
	Gaining root access
	What is rooting?
	Rooting an Android device
	Root access – adb shell
	Summary
	9. Android Data Extraction Techniques
	Imaging an Android Phone
	Data extraction techniques
	Manual data extraction
	Using root access to acquire an Android device
	Logical data extraction
	Using the adb pull command
	Extracting the /data directory on a rooted device
	Using SQLite Browser
	Extracting device information
	Extracting call logs
	Extracting SMS/MMS
	Extracting browser history
	Analysis of social networking/IM chats
	Using content providers
	Physical data extraction
	JTAG
	Chip-off
	Imaging a memory (SD) card
	Summary
	10. Android Data Recovery Techniques
	Data recovery
	Recovering the deleted files
	Recovering deleted data from an SD card
	Recovering data deleted from internal memory
	Recovering deleted files by parsing SQLite files
	Recovering files using file-carving techniques
	Summary
	11. Android App Analysis and Overview of Forensic Tools
	Android app analysis
	Reverse engineering Android apps
	Extracting an APK file from an Android device
	Steps to reverse engineer Android apps
	Forensic tools overview
	The AFLogical tool
	AFLogical Open Source Edition
	AFLogical Law Enforcement (LE)
	Cellebrite – UFED
	Physical extraction
	MOBILedit
	Autopsy
	Analyzing an Android in Autopsy
	Summary
	12. Windows Phone Forensics
	Windows Phone OS
	Security model
	Windows chambers
	Capability-based model
	App sandboxing
	Windows Phone file system
	Data acquisition
	Sideloading using ChevronWP7
	Extracting the data
	Extracting SMS
	Extracting e-mail
	Extracting application data
	Summary
	13. BlackBerry Forensics
	BlackBerry OS
	Security features
	Data acquisition
	Standard acquisition methods
	Creating a BlackBerry backup
	BlackBerry analysis
	BlackBerry backup analysis
	BlackBerry forensic image analysis
	Encrypted BlackBerry backup files
	Forensic tools for BlackBerry analysis
	Summary
	Index

