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ABSTRACT In this paper, a practical model predictive control (MPC) for tracking desired reference
trajectories is demonstrated for controlling a class of nonlinear systems subject to constraints, which
comprises diverse mechanical applications. Owing to the linear parameter-varying (LPV) formulation of
the associated nonlinear dynamics, the online MPC optimization problem is solvable as a single quadratic
programming (QP) problem of complexity similar to that of LTI systems. For offset-free tracking, based
on the notion of admissible reference, the controller ensures convergence to any admissible reference while
its deviation from the desired reference is penalized in the stage cost of the optimization problem. This
mechanism provides a safety feature under the physical limitations of the system. To guarantee stability and
recursive feasibility, a terminal cost as a tracking error penalty term and a terminal constraint associated with
both the terminal state and the admissible reference are included. We use tube-based concept to deal with
the uncertainty of the scheduling parameter over the prediction horizon. Therefore, the online optimization
problem is solved for only the nominal system corresponding to the current value of the scheduling parameter
and subject to tightened constraint sets. The proposed approach has been implemented successfully in
real-time onto a robotic manipulator, the experimental results illustrates its efficiency and practicality.

INDEX TERMS Constrained systems, linear parameter-varying systems, model predictive control, robust
stability, robotic manipulators.

I. INTRODUCTION
The ultimate goal of a control system is to achieve stability
and a desired level of performance for plants which often have
nonlinear (NL) dynamics, constrained levels of operation and
are subjected to disturbances and measurement noise.Model
predictive control (MPC) [1] is a paradigm that can system-
atically handle such complications. It is a control approach
which can optimize system performance online based on
predicting its future behavior over a so-called prediction
horizon (N ). However, unless the MPC optimization prob-
lem is formulated appropriately, computational complexity or
inherent conservatism could affect performance or even result
in infeasibility or instability.

The associate editor coordinating the review of this manuscript and

approving it for publication was Zheng Chen .

Linear parameter-varying (LPV) approach [2] is a promis-
ing framework for controlling nonlinear and time-varying
(TV) systems using linear control techniques. Numerous suc-
cessful industrial applications have proven its efficacy, see,
e.g., [3], [4]. A discrete-time LPV system is represented in
state-space form as

x(k + 1) = A(p(k))x(k)+ B(p(k))u(k), (1a)

y(k) = C(p(k))x(k)+ D(p(k))u(k), (1b)

where u(k) ∈ Rnu , x(k) ∈ Rnx , y(k) ∈ Rny and p(k) ∈
Rnp , are vectors of the input, state, output and scheduling
variable (parameter) of the system at a time index k ∈ N and
A,B,C,D are parameter-dependent matrices with appropri-
ate dimensions. The representation in (1) provides amodeling
framework that can efficiently describe NL/TV systems in a
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linear setting, in which the relation between the input and
output signals is linear, but dependent on p. It is assumed
that the scheduling variable is measurable and taking values
from a so-called scheduling range P. In LPV models of
NL applications, p is often associated with the input, state
or output (endogenous signals) of the system, thus, LPV
representations of NL systems are often referred to as quasi-
LPV (qLPV) models. The LPV system representation (1)
is usually employed for controller design based on linear
optimal and robust control methods [5]. In all LPV control
strategies, closed-loop stability and performance guarantees
during implementation are established under the assumption
that pwill stay all the time insideP. However, in case of qLPV
representations, where p is not a free variable, i.e., endoge-
nous, such assumption cannot be ensured, unless the control
design methodology can restrict p from deviation outside P
via input/state constraints. In fact, most of the LPV control
strategies based on H2/H∞ optimal control, e.g., [6], [7],
cannot handle signal constraints, which renders achieved sta-
bility/performance guarantees based on these strategies void
if p violates its region. On the contrary, MPC can optimally
tackle such a difficulty by virtue of constraints handling.

Although generalized formulations of MPC for NL sys-
tems exist, in the context of nonlinear MPC (NMPC), MPC
schemes based on LPV systems (LPVMPC) for controlling
NL plants have become popular in the control community
since the late 1990s, see [8]–[11] and the recent survey
in [12]. LPVMPC provides an intermediate step between
conventional linear MPC (LMPC) and NMPC in terms of
the achievable control performance with a moderate com-
putational complexity. Usually the achievable control per-
formance of an MPC design approach reflects its degree of
conservatism. The strength of the LPVMPC is its ability to
be solved using LMPC tools while it can achieve asymp-
totic stability and recursive feasibility1 guarantees for NL
systems, yet with a computational cost that is lower than
NMPC [11].

However, the major difficulty of an LPVMPC setting is
that the scheduling variable is accessible only at the current
time instant k , but its future values, which are required over
the prediction horizon of the MPC for state prediction, are
unknown. Therefore, robust MPC is used to handle such
uncertainty of p; however, it is usually conservative if p is
assumed to vary arbitrarily fast over its full range, see, e.g.,
[13] and [14], which might affect achievable performance.
Recently, tube-based MPC [15] has been investigated for
LPV systems in [16], [17] and [18] to handle the uncertainty
of the future values of p by exploiting known bounds on
its rate of variation to obtain an admissible range of p over
N instead of considering its full range, which can lead to
low conservative techniques. However, the computational
complexity of the associated optimization problem can be
very costly for practical applications. Note that one of the

1In MPC, recursive feasibility is defined as follows: If the MPC optimiza-
tion problem is initially feasible, then it will remain feasible.

main challenges of any MPC algorithm is to compromise the
degree of conservatism with the computational complexity.

In this paper, to tackle these difficulties, a tube-based set-
ting is carried out, where the bounds on the rate of variation
of p can be exploited to construct scheduling tubes containing
the N possible future values of p, which can considerably
reduce the conservatism of considering its full range. Such
tubes are employed to construct state tubes as rigid tubes [15]
to which the future trajectories of the state are confined and
used for constraint tightening. In contrast to many LPVMPC
approaches in the literature, the computation of these tubes in
our strategy is performed offline, which significantly reduces
the online computations.

To put any LPVMPC algorithm for practical use, it should
be suited for reference tracking. Such a control problem
has been rarely investigated in the context of LPVMPC,
where most of the developed methods have focused on reg-
ulating the state of the controlled system to the origin or
to a set point. Robust tracking MPC approaches for LPV
systems have been developed recently in [19], which have
achieved offset-free tracking for piecewise constant refer-
ences. In [20]–[22] LPVMPC algorithms have been pro-
posed for tracking time-varying reference trajectories, e.g.,
command trajectories in robotics applications. However, all
these approaches cannot guarantee recursive feasibility of the
associated MPC optimization problem.

For practical implementation, we extend our proposed
MPC strategy to include reference tracking. Inspired by the
approach of [23] and [24], for a given desired reference
trajectory, the corresponding admissible steady sate and input
are parameterized by a parameter vector referred to as the
admissible output, which is among the decision variables of
the optimization problem, and its deviation from the desired
reference is penalized in the MPC cost function. This can
lead to offset-free tracking if the desired reference is admis-
sible, then, the system is steered toward the closest admis-
sible reference. Such mechanism allows a safety constraint,
which protects the system from tracking references beyond its
physical limits without external interruption of its operation.
Moreover, a larger domain of attraction can be achieved
in comparison with standard MPC for tracking. Moreover,
at the expense of increasing the number of decision variables
associated with the admissible output, the proposed approach
is not restricted for tracking piecewise constant references as
that of [23]. For guaranteeing recursive feasibility, we utilize
the concept of invariant set for tracking which is associ-
ated with the maximum set of admissible references. That
invariant set is employed as a terminal set in the LMPVMPC
problem for reference tracking, thus, asymptotic stability of
the closed-loop system can be ensured.

To validate the practicality of the proposed technique,
it is implemented experimentally on a two degree-of-freedom
(DOF) roboticmanipulator for reference tracking. The unique
property of the proposed techniques is that it solves the online
LPVMPC optimization problem for the nominal system cor-
responding to the current value of p. At the expense of losing
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some performance, such formulation can result in computa-
tional burden comparable to that of conventional LMPC.

To summarize, the contributions of this paper are as
follows:

1) A general LPV modeling which can accommodate a
wide class of mechanical systems that can be repre-
sented by rigid body nonlinear dynamics. This allows
a straight forward formulation for the MPC reference
tracking problem.

2) A computationally convenient LPVMPC algorithm
based on quadratic programming (QP), which can
ensure offset-free tracking and is appropriate for con-
trolling several nonlinear applications.

3) Guarantees for recursive feasibility of the LPVMPC
optimization problem and asymptotic stability of the
closed-loop system.

4) A successful experimental implementation to control
a 2DOF robotic manipulator for reference tracking,
which shows comparable results to a recently devel-
oped more computationally demanding MPC scheme.

The paper is organized as follows: To introduce the pro-
posed approach, some preliminaries from [17] are given in
Section II. The modeling aspects related to the applications
considered in this work are illustrated in Section III. The pro-
posed LPVMPC approach for reference tracking is developed
in Section IV together with other related computation issues.
The application to the 2DOF robotic manipulator and the
experimental results are demonstrated in Section V. Finally,
in Section VI the conclusion is given.

A. NOTATION AND DEFINITION
Let N denote the set of non-negative integers including zero.
We denote the predicted values of a variable x(k) at time k+ i
based on the available information at time k as xi|k such that
x0|k = x(k). Co{·} denotes the convex hull of a set. For any
vector x ∈ Rn, ‖x‖ denotes the 2-norm, and the weighted
norm is defined by ‖x‖2P = x>Px, where P = P>, P ∈ Rn×n.

A polytope is a compact polyhedron, which is the inter-
section of a finite number of half spaces. A (hyper)box is a
convex polytope where all the defining hyperplanes are axis
parallel. A PC-set is a set that is convex, compact and has
a nonempty interior containing the origin. Given two sets
A ⊂ Rn and B ⊂ Rn, the Minkowski set addition is defined
by A ⊕ B := {a + b | a ∈ A, b ∈ B} and the Pontryagin
set difference is defined by A	 B := {a | a⊕ B ⊆ A}. Let
a ∈ Rna , b ∈ Rnb and a set ϒ ⊂ Rna+nb , then the projection
of ϒ onto a is defined as Proja(ϒ) = {a ∈ Rna | ∃ b ∈
Rnb , (a, b) ∈ ϒ}.

A function f : R+→ R+ is of classK∞ if it is continuous,
strictly increasing, f (0) = 0 and limξ→∞ f (ξ ) = ∞.
Definition 1 (Quadratic Stabilizability [25]): The system

(1) is quadratically stabilizable if there exists a positive
definite function V : x → x>Px, where P = P> � 0,
P ∈ Rnx×nx and a control law u = Kx, K ∈ Rnu×nx such
that

V
(
Ac (p) x

)
− V (x) ≤ −x>(Q+ K>RK )x (2)

∀x ∈ Rnx , p ∈ P, where Q = Q> � 0, R = R> � 0 and

Ac(p) = A (p)+ B (p)K . (3)

Then the origin is globally exponentially stable for x(k+1) =
Ac(p(k))x(k), ∀p ∈ P.
Definition 2 (Robust Positive Invariant Set [26]): For the

system (1), with state and input constraint sets X and U,
respectively, and the control law u(k) = Kx(k) ∈ U, the
set Xf ⊂ X is robustly positively invariant (RPI) if for all
x(k) ∈ Xf and p(k) ∈ P, x(k + 1) ∈ Xf.
Definition 3 [Robust Invariant Set for Tracking (RIST)]:

It is the set of all initial states and steady states and inputs of
the system (1) that can be stabilized by the control law

u(k) = K (x(k)− x̄)+ ū, (4)

where x̄ and ū denote the steady state and input, respectively,
and K yields the closed-loop system matrix Ac(p) as shown
in (3) Schur for all values of p ∈ P. Moreover, the control
law (4) fulfills the input constraints and renders the system
state constraints satisfied throughout its evolution.

Definition 3 is extended from [24].

II. PRELIMINARIES
In this section, we review some material from [17]. Then,
we introduce a low complexity MPC scheme for regulating
the state of an LPV controlled system into the origin, which
will be extend in the sequel of the paper into an MPC for
tracking a given reference trajectory. The latter will be imple-
mented for controlling the robotic manipulator application in
this work, which can be applicable also for a broad class of
mechanical systems.

Consider discrete-time LPV systems represented by (1)
and let the following assumptions be satisfied.
Assumption 4: (i) The system (1) is quadratically sta-

bilizable.
(ii) The values of x(k) and p(k) are available at every time

k ∈ N.
(iii) The sets X and U are polytopic PC-sets.
(iv) The system matrices depend affinely on p, i.e.,

A(p) = A0 +
np∑
j=1

pjAj, B(p) = B0 +
np∑
j=1

pjBj, (5)

where pj denotes the jth-element of the vector p and Aj,
Bj, are constant matrices with appropriate dimensions.

(v) The parameter set P is a compact hyper-box defined as

P := {p ∈ Rnp | pj,min
≤ pj ≤ pj,max, j=1, · · · , np}.

(vi) The rate of variation of p is denoted as

dp(k) = p(k)− p(k − 1),

which is bounded such that dp ∈ dP, where

dP := {dp ∈ Rnp | |dpj| ≤ dpj,max, j=1, · · · , np}

is a compact hyper-box.
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FIGURE 1. An example of two sequences of subsets Pi+1|k (black) and
Pi |k+1 (red) with one scheduling parameter. Note that the nominal
values p̆4|k and p̆3|k+1 are depicted at the center of P4|k and P3|k+1,
respectively.

The above assumptions are imposed for the mathematical
derivations; however, they are standard in LPV literature and
encompass many practical situations [6].

In order to quantify the uncertainty of p over the prediction
horizon, let pi|k denote the uncertain scheduling parameter at
any step i over N such that pi|k ∈ Pi|k , see Fig. 1, where
Pi|k ⊆ P is a compact hyper-box defined as

Pi|k :=
{
pi|k ∈ Rnp | |pji|k − p̆

j
i|k | ≤

i∑
l=1

dpj,max
l|k ,

j = 1, · · · , np

}
.

where dpj,max
l|k ≤ dpj,max and p̆i|k is a known (nominal) value

of the scheduling parameter, which can be computed at the
center of Pi|k , see Fig. 1 for illustration. Therefore pi|k can be
parameterized as

pi|k = p̆i|k +
i∑

l=1

dpl|k , (6)

where dpl|k ∈ dP.
Define the uncertain system over the prediction horizon as

xi+1|k = A(pi|k )xi|k + B(pi|k )ui|k , pi|k ∈ Pi|k , (7)

for all i = 1, · · · ,N − 1, where xi|k represents the
corresponding uncertain state at step i. We can rewrite the
system (7) as

xi+1|k = Ai|kxi|k + Bi|kui|k + wi|k , (8)

where Ai|k = A(p̆i|k ), Bi|k = B(p̆i|k ) are known matrices and

wi|k := (A(pi|k )− Ai|k )xi|k + (B(pi|k )− Bi|k )ui|k ,

where wi|k represents an additive disturbance describing the
uncertainty of pi|k such that wi|k ∈Wi|k ,

Wi|k := Co
{(
A(pi|k )− Ai|k

)
xi|k +

(
B(pi|k )− Bi|k

)
ui|k ,

| pi|k ∈ Pi|k , xi|k ∈ X, ui|k ∈ U
}
, (9)

for all i = 1, · · · ,N − 1. Any set Wi|k is polytopic and
contains the origin, see [17]. Based on this setting the value
of x1|k in (8) at any time k ≥ 0 is known as x0|k = x(k) is
assumed to be known, thus, w0|k = 0.

Introduce the LPV nominal system for (8) as

zi+1|k = Ai|kzi|k + Bi|kvi|k . (10)

where zi|k represents the nominal state at step i, vi|k is the
nominal input, which is related to ui|k in (8) by

ui|k = vi|k + K (xi|k − zi|k ), (11)

where K ∈ Rnu×nx is referred to as the disturbance con-
troller [15], which is used to penalize the error between xi|k
and zi|k . For simplicity, we consider a robust controller K
according to Definition 1. Let z0|k = x0|k , thus, z1|k = x1|k
as w0|k = 0, compare (8) and (10) when i = 0. Furthermore,
introduce εi|k = xi|k − zi|k to denote the difference between
the uncertain and the nominal states with the dynamics

εi+1|k = Aci|kεi|k + wi|k , (12)

where Aci|k = Ai|k + Bi|kK is a Schur matrix for any i, k and
wi|k ∈Wi|k . Moreover, let εi|k ∈ Si|k , where

Si|k :=Wi−1|k ⊕ Aci−1|kSi−1|k , i = 2, · · · ,N , (13)

which is a PC-set [17]; note that ε0|k = ε1|k = 0 and hence
S0|k = S1|k = {0}.
The above formulation implies that the state trajectories

over N are confined in a state tube with varying cross section
and shape according to Si|k , which sometimes is referred to as
heterogeneous tube [18]. Similarly, every control trajectory
over N lies in a control tube with cross sections KSi|k .
Constructing heterogeneous tubes yields less conservative
tubes in comparison with homothetic or rigid tubes [18];
however, that is at the expense of considerable increase the
MPC computational burden.

Based on the above formulation, a tube-based MPC for
LPV systems has been introduced in [17]. Given the initial
conditions z0|k = x0|k = x(k) and p0|k = p(k), the optimal
values of the nominal state zi|k , for all i = 1, · · · ,N − 1,
and the nominal control input vi|k , for all i = 0, · · · ,N − 1,
can be computed at any k ∈ N, such that the state and input
constraints of the LPV system (8) are satisfied by solving the
following optimization problem

min
v0|k ,··· ,vN−1|k

N−1∑
i=0

‖zi|k‖2Q + ‖vi|k‖
2
R + Vf(zN |k ) (14a)

subject to zi|k ⊂ X	 Si|k , i = 1, · · · ,N−1, (14b)

vi|k ⊂ U	 KSi|k , i=0, · · · ,N−1, (14c)

zN |k ⊂ Xf 	 SN |k (14d)

and the nominal system dynamics (10) with z0|k = x(k),
where Q = Q> � 0 and R = R> � 0 are used as
tuning parameters to meet some desired performance in the
stage cost of (14a) and Vf(·) is the terminal cost, which is
chosen offline as well as the terminal set Xf ⊂ X in (14)
to guarantee asymptotic stability of the closed-loop system
and recursive feasibility of the above optimization problem.
The computations of Vf(·) together with a terminal controller
K and Xf as an RPI set under K are carried out according
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to Definitions 1 and 2, respectively. Therefore, according
to the basic idea of tube-based MPC [15], the satisfaction
of the constraints (14b-d) ensures that xi|k ∈ X for all i =
1, · · · ,N − 1, ui|k ∈ U for all i = 0, 1, · · · ,N − 1 and
xN |k ∈ Xf, see [17] for more details.
The online implementation of (14) at each time k includes

also computing Wi|k for all i = 1, · · · ,N − 1 using (9) and
Si|k for all i = 2, · · · ,N using (13) as well as performing
the constraints tightening in (14b-d). Then, the optimiza-
tion problem (14) can solved as a QP problem. However,
the online computation burden of computing Wi|k and Si|k
might be relatively higher than solving theMPC optimization
problem due to the involved sets addition/subtraction.

For practical implementation, we modify in the following
the above MPC approach of [17] —at the expense of a prob-
able increase of conservatism— to avoid the online computa-
tions of the setsWi|k , Si|k and the associated inline tightening
of the constraint sets. Consider the following assumption:
Assumption 5: There exists a PC-set S ⊂ Xf such that

SN |k ⊆ S (15)

holds for all k ∈ N.
Note that the condition S ⊂ Xf in Assumption 5 is neces-

sary forZf to have an interior.Wewill discuss in Section IV-D
the computation of S (offline), which can satisfy (15). Based
on Assumption 5, the tightened constraint sets in (14b-d) can
be replaced by the following sets

z1|k ⊂ X, (16a)

zi|k ⊂ Z, i = 2, · · · ,N − 1, (16b)

v0|k , v1|k ⊂ U, (16c)

vi|k ⊂ V, i = 2, · · · ,N − 1, (16d)

zN |k ⊂ Zf, (16e)

where

Z ⊂ X	 S, (17a)

V ⊂ U	 KS, (17b)

Zf ⊂ Xf 	 S, Zf ⊂ Z. (17c)

Now, given the set S, all tightened constraint sets Z,V and Zf
can be computed offline, thus, we avoid the online computa-
tion of the setsWi|k and Si|k .
Remark 6: Such formulation implies that the state trajec-

tories over the prediction horizon are confined in a state tube
with a center zi|k and a fixed cross section S, i.e., xi|k ∈
zi|k ⊕ S, ∀i = 0, 1, · · · ,N , which sometimes is referred to as
rigid tube [27]. Similarly, every control trajectory over N lies
in a control tube as ui|k ∈ vi|k ⊕ KS. Note that the feedback
policy in (11) can affect the size of S.
Therefore, the online computation involves just updating

the systemmatrices based on the current value of the schedul-
ing variable p(k) and solving the optimization problem

min
v0|k ,··· ,vN−1|k

N−1∑
i=0

‖zi|k‖2Q + ‖vi|k‖
2
R + Vf(zN |k ) (18a)

subject to (16a-e). (18b)

To construct the stage cost in (18a) for i = 0, 1, · · · ,N − 1,
one can consider the LPV nominal model (10) or just a
simplified LTI model given by

zi+1|k = A0|kzi|k + B0|kvi|k , (19)

for all i = 0, 1, · · · ,N − 1, with z0|k = x(k), in this case,
the uncertainty of pi|k is parameterized as (6) where p̆i|k is
replaced by p0|k . Considering (10) might give better infor-
mation about the evolution of p over the prediction horizon;
however, it requires the computation of the nominal schedul-
ing variable p̆i|k over N , which takes into account the upper
bound on the rate of change of p. The proposed simplified
version of the MPC compared with that of [17] can result in a
lower computational complexity, which is comparable to that
of conventional MPC for LTI systems; however, depending
on the size of the set S, this might be more conservative than
that in [17].

Moreover, at the end of the prediction horizon, i.e., at step
N , the state should satisfy the terminal constraint xN |k ∈ Xf.
This condition is necessary for guaranteeing stability and
recursive feasibility. Satisfaction of xN |k ∈ Xf is ensured if
the nominal system at step N satisfies the tightened terminal
constraint, i.e., zN |k ∈ Zf, this holds true due to the condi-
tion (17c), where xN |k ∈ zN |k ⊕ S. Since xi|k ∈ Xf for all
i ≥ N if xN |k ∈ Xf —as Xf is RPI for (1) under the controller
K—we can conclude that zi|k ∈ Zf for all i ≥ N if zN |k ∈ Zf.
Moreover, since KXf ⊂ U holds for all p ∈ P as Xf is RPI
set under K , then, KZf ⊂ V, see (17b), i.e.,

∀zi|k ∈ Zf, Kzi|k ∈ V, i ≥ N . (20)

This indicates that Zf is RPI for any nominal system at any
k ≥ 0 under the controller K , i.e.,

∀zi|k ∈ Zf, zi+1|k ∈ Zf, i ≥ N . (21)

Finally, we present a formal statement for the stability of
the proposed LPVMPC and the recursive feasibility of its
optimization problem (18).
Theorem 7 (Recursive Feasibility and Stability of the

LPVMPC for Regulation): Consider the LPV system (1),
suppose that Assumptions 4 and 5 are satisfied and let
Vf in (18a) be a terminal cost satisfying the condition in
Definition 1 and the set Xf be a terminal set according to
Definition 2, then
(i) the optimization problem (18) is recursively feasible and
(ii) the LPVMPC solution by (18) is asymptotically stabi-

lizing.
The proof of Theorem 7 follows the same lines as of

the original approach in [17] taking into account the related
simplifications considered here.

III. LPV MODELING OF A CLASS OF NL DYNAMICS
In this section we present a systematic LPV modeling
technique of a class of NL dynamics, which describes a
wide range of mechanical systems. This is essential for
the proposed MPC tracking problem in the next section.
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Then, we apply the technique on theNL dynamics of a 2-DOF
robotic manipulator as shown in Section V-A.

Consider the Lagrangian formulation of the NL dynamics
of an nq-DOFs mechanical system given by

M (q)q̈(t)+ c(q, q̇)+ g(q)+ τv(q̇) = τ, (22)

where q ∈ Rnq is the vector of generalized coordinates,
M is the inertia matrix, which is assumed to be invertible,
the vector c includes Coriolis and centrifugal terms, g con-
tains the terms derived from the potential energy, such as
gravitational forces, τv denotes friction vector and τ is the
vector of control inputs. The states of the system are com-
monly the vector

[
q> q̇>

]>. To simplify the derivation of a
qLPV representation of NL systems given by (22), consider
the the transformed states given as follows

x =
[
I 0
0 M (q)

] [
q
q̇

]
=

[
q

M (q)q̇

]
,

thus,

ẋ =
[

q̇
M (q)q̈+ Ṁ (q)q̇

]
. (23)

Next, substituting the termM (q)q̈ from (22) into (23), exploit-
ing the relation between the terms Ṁ (q)q̇ and c(q, q̇), see,
e.g., [28], reformulating the vector g(q) in matrix form as
shown below, and considering just viscous friction for the
term τv(t), lead to the following continuous-time general
qLPV state-space representation, which is equivalent to the
NL model (22),

ẋ = Ã(q, q̇)x + B̃u, (24a)

y = C̃x (24b)

where u = τ ,

Ã(q, q̇) =
[

0 Ã12(q)
Ã21(q) Ã22(q, q̇)

]
,

B̃ =
[
0
Inq

]
, C̃ =

[
Inq 0

]
(25)

with Ã12(q) = M−1(q), Ã21(q) is related to the term g(q)
and Ã22(q, q̇) is related to the terms c, τv. The scheduling
parameter can be defined as a function of q and q̇, see
e.g., [29]. Moreover, the output of the system according
to (24b) and (25) is q, which is often the controlled variable.
Note that only the A matrix is parameter dependent, which is
quite desired in several LPV control design approaches [6].
The structure of the system matrices in (25) will be very
useful for developing the proposed MPC tracking problem
in the next section.
Remark 8: In case of underactuated systems [30], which

have fewer control inputs than DOFs, some elements of the
vector τ in (22) are dependent on each others or zeros, that
might limit the controller authority on the system in compari-
son with that on fully actuated systems. Interestingly, the pre-
sented LPVmodeling as in (24) can be used for underactuated
systems; however, the elements dependency in τ should be

taken into account in the MPC optimization problem. That
can be easily handled provided that such dependency is linear;
otherwise, nonlinear transformations can be performed on τ
as commonly used in the context of nonlinear control [31].

Furthermore, since MPC is considered here to control the
system, a discrete-time model should be obtained. For sim-
plicity we use Euler’s forward (rectangular) discretization,
which results in a discrete-time qLPV model as shown in (1)
with

A(p) = I + Ã(q, q̇)Ts, B = B̃Ts, C = C̃, D = 0 (26)

where Ã, B̃, C̃ are given in (25) and Ts denotes the sampling
time. The rectangular method is an approximative method of
discretization; however, it has the important feature that it can
preserve the linear dependence over the scheduling variables
without introducing any extra complexity [2]. Furthermore,
it preserves stability and yields a small discretization error
provided that a suitable value of Ts is chosen, see [2] for more
details.

IV. PRACTICAL LPVMPC FOR REFERENCE TRACKING
Based on the LPVmodeling presented in the previous section,
we propose in this section a novel MPC formulation for LPV
systems to track a given desired reference trajectory using
the notion of admissible reference. For ensuring stability
and recursive feasibility, a terminal cost as a tracking error
penalty term is added to the stage cost of the related MPC
optimization problem and a terminal constraint based on the
concept of invariant set for tracking [23] is included; both
are computed offline. The MPC optimization problem is
formulated based on the nominal LTI model corresponding
to the current value of the scheduling variable. Therefore,
the control law is obtained online by solving a single QP
problem of a complexity similar to that of LMPC. To deal
with the uncertainty of the scheduling variable affecting the
evolution of the state over the prediction horizon, we utilize
the notion of rigid tubes presented in Section II using a set
S satisfying Assumption 5. It can be computed offline taking
into account the rate of variation of the scheduling parameter,
which can reduce the size of S leading to a low conservative
design.

A. ADMISSIBLE REFERENCE
For the LPV system (1), any admissible steady state and input
should satisfy the following equation[

A(p̄)−I B(p̄)
] [x̄
ū

]
= 0, p̄ ∈ P (27)

where x̄ and ū are the steady state and input, respectively, and
p̄ is the steady-state value of the scheduling parameter, which
represents—in case of qLPVmodels— the frozen scheduling
parameter associated with (x̄, ū). Note that (x̄, ū) belongs to
the null space of the left matrix in (27); moreover, provided
that the system is controllable for all p̄ ∈ P, the dimension of
the null space is nu.
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Now, consider qLPV models of the nonlinear dynam-
ics (22) as illustrated in Section III andmake use of the special
structure in (26) with (25), we can rewrite (27) as[

0 Ã12(p̄) 0
Ã21(p̄) Ã22(p̄) Inq

] [
x̄
ū

]
= 0, p̄ ∈ P, (28)

note here that nq = nu, see Remark 8. It holds that[
x̄
ū

]
= L(p̄)ȳs, p̄ ∈ P, (29)

where ȳs ∈ Rnq characterizes the solution of (28) and L ∈
R(nx+nq)×nq can be given as

L(p̄) =


Inq
0

−Ã21(p̄)

 , (30)

which spans the nullspace of the left matrix in (28). The
parameter ȳs represents the associated admissible output,
which is related to x̄ by ȳs = Cx̄, see (26) and (25). In
other words, ȳs represents admissible references which can
be tracked without steady-state tracking error. Moreover, p̄ is
related to ȳs, this means that for any ȳs there exists p̄ function
of x̄ for the qLPV models considered in Section III.

B. ADMISSIBLE RIST
Consider system (1) with the constraint sets X and U and
the special matrices structure in (26) with (25), let also
Assumption 4 be satisfied. Moreover, suppose that the system
is controllable for all p ∈ P by a control law as in (4), which
meets the conditions in Definition 3. Therefore, the system
matrix A(p)+ BK is Schur for all p ∈ P and the closed-loop
system converges to (x̄, ū) without violating the state and
input constraints provided that the initial state and (x̄, ū)
belong to the corresponding robust invariant set for tracking.
This set can be considered as an RPI set for the augmented
system[
x(k+1)
ȳs

]
=

[
A(p(k))+BK −B(K1+Ã21(p̄))

0 Inq

]
︸ ︷︷ ︸

Āc(p(k),p̄)

[
x(k)
ȳs

]
(31)

subject to the system state and input constraints. The system
(31) is derived by substituting (4) into (1a) taking into account
(26), (25), using (29) and partitioning K =

[
K1 K2

]
such that

K1 ∈ Rnu×(nx−nu). Note that for a given admissible ȳs and the
corresponding p̄, the state of the closed-loop system (31) will
converge to the related x̄ according to (29) starting from any
initial state and the associated p ∈ P. Since the system (31)
subjects to constraints, we want to construct an RPI set in
which any initial state will converge to a steady state accord-
ing to ȳs for any p ∈ P. Then, that RPI set can be used as a
terminal set for the proposed LPVMPC.

The set of constraints on (31) can be posed as follows

X̄λ = {(x, ȳs) | x ∈ X, ȳs ∈ λȲ, p̄ ∈ P,
(Kx−(K1+Ã21(p̄))ȳs) ∈ U}, (32)

where Ȳ = Projy(X) denotes the constraint set of the admis-
sible output and λ is a scalar, for the moment, let λ = 1.
Now, define a set � ⊆ X̄1 as an admissible robust invariant
set for tracking for the system (1) with (26) or as a robust
positive invariant set for the augmented system (31), under
the constraint set X̄1, if

∀

[
x
ȳs

]
∈ � : Āc(p, p̄)

[
x
ȳs

]
∈ �, � ⊆ X̄1, ∀p ∈ P. (33)

In order to attain the largest possible domain of attraction
of the proposed MPC scheme, we should consider the max-
imum admissible RIST, which can be determined —using
linear programming— similarly as computing a maximum
RPI set for the system (31) constrained in X̄1. However, due
to the unity eigenvalues of the augmented matrix Āc as shown
in (31), the computation of maximum RPI set may not be
finitely determined. Apparently, this can be resolved by con-
sidering the set X̄λ in (32) with λ arbitrarily close to 1, note
that λ ∈ (0, 1), see [32] for more details. This results in an
admissible RIST set smaller but close to the maximum one.
Denote such a set as X̄f ⊆ X̄λ, which will be employed for
constructing the terminal set in the proposed MPC setting as
shown below, therefore, X̄f is the maximum � ⊆ X̄λ.

C. OPTIMIZATION PROBLEM
Now, the proposed MPC optimization problem for reference
tracking can be formulated as follows:

min
v0|k , · · · , vN−1|k
ȳ0|k , · · · , ȳN |k

N−1∑
i=0

‖zi|k − z̄i|k‖2Q + ‖vi|k − v̄i|k‖
2
R

+ ‖ȳi|k − ri|k‖2T + ‖ȳN |k − rN |k‖
2
T

+ V̄f(zN |k , z̄N |k ) (34a)

subject to (16a-d), (34b)[
zN |k
ȳN |k

]
∈ Z̄f (34c)

and the nominal system dynamics at p(k) with z0|k = x(k),
where T = T> � 0, Q, R are tuning matrices to achieve
a desired tracking performance, for all i = 0, 1, · · · ,N , z̄i|k ,
v̄i|k are nominal steady state and input, respectively, according
to the desired reference trajectory ri|k , which are parame-
terized as in (29) by the corresponding nominal admissible
output ȳi|k with p̄ = p(k), V̄f(zN |k , z̄N |k ) is the terminal cost
for tracking which is given by

V̄f(zN |k , z̄N |k ) = ‖zN |k − z̄N |k‖2P, (35)

and satisfies the condition in Definition 1 and Z̄f is a tightened
terminal set given by

Z̄f = X̄f 	
(
S× Projy(S)

)
, (36)

with X̄f is an admissible RIST as discussed in Section IV-B.
The nominal states zi|k are computed according to the nom-
inal model in (19) given p0|k = p(k) (for computing
the corresponding system matrix), where z0|k = x(k).

62386 VOLUME 9, 2021



H. S. Abbas et al.: Practical MPC for a Class of Nonlinear Systems Using LPV Representations

The tightened state and input constraint sets Z and V are
computed offline from (17a) and (17b), respectively. The
reference steps r0|k , · · · , vN |k are given in advance. The nom-
inal control input moves v0|k , · · · , vN−1|k , and the admissible
output moves ȳ0|k , · · · , ȳN |k are the decision variables of the
optimization problem. Finally, the values of z̄i|k and v̄i|k are
substituted in terms of ȳi|k using (29) with p̄ = p(k) as these
nominal steady state and input are related to the nominal
model at p(k), i.e., (19), where its matrices computed at p(k)
are frozen over the prediction horizon. Another way, one can
use the nominal LPV model in (10) instead of (19); however,
the system matrices as well as the matrix L in (30) should
be updated at each step of the prediction horizon, which
demands a slight increase in computations.

The main result of the paper is presented in the following
theorem.
Theorem 9 (Recursive Feasibility and Stability of the

LPVMPC for Tracking): Consider the LPV system (1) with
the system matrices (26) and (25) and suppose that Assump-
tions 4 and 5 are satisfied. Let r be a given admissible refer-
ence trajectory, V̄f in (35) be a terminal cost for the optimiza-
tion problem (34) satisfying the condition in Definition 1 and
Z̄f in (36) be its terminal set, where X̄f satisfies the invariance
condition in (33) with � and X̄1 are replaced by X̄f and X̄λ,
respectively, for a given λ ∈ (0, 1), then

(i) the optimization problem (34) is recursively feasible and
(ii) the LPVMPC solution by (34) is asymptotically stabi-

lizing.

The proof of Theorem 9 is detailed in Appendix A.
Remark 10: The approach in [23] and [24] has considered

fixed values for z̄i|k and v̄i|k for all i over N, thus, it handles
piecewise constant references, moreover, that can lead to
tracking with a large rise time. In contrast, the proposed
approach is not restricted to that as the variables z̄i|k and v̄i|k
are allowed to be changed over N via the admissible output
moves ȳ0|k , · · · , ȳN |k , which does increase the number of
decision variables, according to the given desired reference.
In this perspective, one might realize z̄i|k and v̄i|k as points
on state and input trajectories related to the trajectory of the
admissible reference rather than steady state and input values
discussed in the previous section.
Remark 11: The terms ‖ȳi|k − ri|k‖2T , i = 0, 1, · · · ,N in

the cost function (34a) penalize the deviation between the
nominal admissible output and the desired reference trajec-
tory. This guarantees offset-free tracking provided that there
exists an admissible output trajectory equal to the desired
reference; otherwise, it steers the system to the closest admis-
sible output.

Algorithm 1 summarizes the online implementation of the
proposed approach. It can be executed provided that Assump-
tions 4(ii) is satisfied and given the reference trajectory r ,
the matrices P, Q, R, T and the sets X, Z, U, V and Z̄f which
can be computed offline as shown in the next section. At every
sample k , the value of p(k) is measured and used to update the
matrix A using (26), (25), and hence the block matrix Ã21,

and the matrix L as in (30). Then, given x(k) the optimization
problem (34) is solved and the receding horizon concept is
used, where the control sample u(k) = v0|k is applied to the
system.

Algorithm 1 The Proposed LPVMPC for Tracking

Require: r , P, Q, R, T , X, Z, U, V and Z̄f F Offline
Initialization x(0), p(0) and k = 0

Repeat F Online
1: Measure p(k) and update A(p0|k ) and L(p0|k ).
2: Measure x(k) and solve the optimization (34).
3: Implement the control sample u(k) = v0|k .
4: k ← k + 1

D. OFFLINE COMPUTATIONS
The proposed LPVMPC approach involves offline computa-
tions including the cost function V̄f and the sets Z, V, Z̄f.
Computing V̄f together with the controller gain K according
to Definition 1 is a standard LMI problem, see [33] for
more details. Regarding the computations of the tightened
constraint sets Z, V, Z̄f, it is based on the sets X, U, X̄f,
respectively, as well as the set S as shown in (17a,b) and
(36). Determining the set X̄f is also a standard problem using
linear programming which can be computed as a maximum
RPI set, as shown in [26], for the system (32) subjected to the
constraint set X̄λ with λ chosen close to 1 so that X̄f is finitely
determined. Concerning the set S satisfying Assumption 5,
we propose two ways as follows:

1) One way is to consider S a minimal robust positive
invariant (mRPI) set [34] based on a disturbance set
given as Co{(A(p)− A0)x + (B(p)− B0)u | p ∈ P, x ∈
X, u ∈ U} corresponding to the whole scheduling range
P, where (A0,B0) are the related nominal systemmatri-
ces evaluated at the center of P. In this way, we ignore
the fact that the rate of variation of p is bounded. The
approach proposed in [34] can be employed to compute
an outer approximation of the mRPI set.

2) Another way to compute S, let N and the bound on the
rate of variation of p, i.e., dpmax, be given, calculate
the set SN |k using (13) on a grid points of P, which
we denote as S igN |k at every grid point ig = 1, · · · , ng,
where ng is the number of the grid points. Next, use
these sets to compute

S = α · Co


ng⋃
ig=1

S igN |k

 , (37)

where α ≥ 1. Note that, any of the sets S igN |k is a PC-set
according to the formulation in Section II. Finally,
the obtained S can be verified on a denser grid to check
the validity of Assumption 5; otherwise, it should be
enlarged using α and verified again.

The first way is guaranteed to verify condition (15); how-
ever, it might be overly conservative, especially, when dpmax
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is relatively small or N is short, resulting in a significant
reduction in the size of Zf together with the domain of attrac-
tion, then the second method could provide a better solution
provided that condition (15) is verified on very dense grid
points. It is recommend to compare the obtained S from both
approaches.

V. APPLICATION TO THE CRS A465 ROBOT
In the following, we present the results of implementing the
proposed LPVMPC for tracking on the CRS A465 Robotic
manipulator shown in Fig 2. It has six rotational joints actu-
ated by DC motors. The angular displacements of the motor
shafts are measured by incremental encoders. In this work,
we consider the shoulder and the elbow corresponding to q1
and q2, respectively, they are the most challenging links to
control, since they are affected by gravity, inertial, centripetal,
Coriolis and friction torques; the other links are fixed during
the experiments. To demonstrate the quality of the proposed
control approach we consider two practical trajectories [35]
to be tracked and we compare with other MPC scheme devel-
oped recently in [22].

FIGURE 2. The CRS A465 robotic manipulator and a side view of the
2-DOF model.

A. LPV MODELING
Based on the formulation introduced in Section III, we derive
now a qLPV model for a 2-DOF of the CRS A465 robotic
manipulator. According to (22), q, q̇, q̈ ∈ R2 are the joint
angular positions, velocities and acceleration, respectively,
and the nonlinear matrices are given by

M =
[
b7 + b2 + 2b3 cos(q2) b2 + b3 cos(q2)
b7 − b8 + b3 cos(q2) b7

]
,

c =
[
−b3q̇22 sin(q2)− 2b3q̇1q̇2 sin(q2)

b3q̇21 sin(q2)

]
,

g =
[
−b4 sin(q1 + q2)− b5 sin(q1)

−b4 sin(q1 + q2)

]
, τv =

[
b6q̇1
b9q̇2

]
(38)

where b1, · · · , b9 are grouped parameters related to the
dynamic and kinematic parameters of the robot. We use the
parameters of [4], which were experimentally identified for
the same robot considered here, the parameters are shown
in Table 1. The physical limits of the robot movements are
specified by the manufacturer of the robot as the following
bounds on its angular positions and velocities

| q1 |≤ 90◦, | q2 |≤110◦, | q̇1 |≤180◦, | q̇2 |≤180◦, (39)

TABLE 1. Constant parameters in (38).

and its input constraints are

| τ1 |≤ 5, | τ2 |≤ 5, (40)

which are based on the actuators limits.
Therefore, the qLPV representation of the system is given

by (24) with (25), where

Ã12(q) = M−1(q) (41a)

Ã21(q) =
b4 sin(q1 + q2)

q1 + q2
I2 +

b5 sin(q1)
q1

[
1 0
0 0

]
(41b)

Ã22(q, q̇) = −
([
b6 0
0 b9

]
+ b3q̇1 sin(q2)

[
0 0
1 1

])
M−1(q).

(41c)

To further simplify the obtained qLPV model, we neglect the
second-order term b3q̇1 sin(q2) in (41c), this gives

Ã22(q) = −
[
b6 0
0 b9

]
M−1(q), (42)

therefore, the system matrix Ã becomes dependent only on
q, and hence, measuring Ã in practice is independent of
derivatives of signals. In general, the error due to such sim-
plification is usually small, unless when both q2 and q̇1 are
very close to their limits, which is an irregular scenario. Next,
we define the scheduling variables of the qLPV model based
on (41a,b) and (42), which indicate 4 variables yielding Ã
affine dependent matrix; they are shown together with their
bounds and the bounds on their derivatives according to (39)
in Table 2. Finally, the discrete-time model of the system can
be determined as in (26) taking into account the blocks of Ã
as shown in (41a,b) and (42).

TABLE 2. Scheduling parameters data.

B. SIMULATION RESULTS
We consider the discrete-time qLPV model developed in
Section V-A, with sampling time Ts = 0.01s, which compro-
mises the execution time of the MPC algorithm as well as the
bandwidth of the system. Moreover, we scale the scheduling
variables in Table 2 to be within ±1, which is preferred for
numerical reasons. Note that scaling p changes the constant
matrices associated with the affine dependency on p, i.e., the
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matrices Aj in (5). In discrete-time, the rate of change of p is
defined as dp = ṗTs and its bounds are computed accordingly
using (39) and the definition of p in Table 2, then, they are
redefined based on the scaled p as follows:

| dp1 | ≤ 0.073, | dp2 |≤ 0.117

| dp3 | ≤ 0.086, | dp4 |≤ 0.078. (43)

To compute the terminal cost V̄f (35), the matrix P ∈ R4×4

together with the associated controllerK ∈ R2×4 are obtained
using LMIs; K is required for calculating the sets X̄f and S.
The RIST X̄f has been computed as discussed in Section IV
with λ = 0.975, which can lead to reasonably offset free
tracking ranges of

| q1 |≤ 87.75◦, | q2 |≤ 107.25◦, (44)

c.f., (39); note that larger value than that λ could not allow
convergence while computing the set X̄f. To calculate the set
S satisfying Assumption 5, a prediction horizon N = 4 has
been chosen and used afterward in the online implementation,
then, the second method in Section IV-D has been carried
out to compute S, which is a reasonable choice here due to
the small values of dpmax as shown in (43) and the short
prediction horizon. According to (37), we obtained the set S
with ng = 34 and α = 1.1 and it has been verified on a very
dense grid of 814 points on the set P. Next, we performed
set tightening to obtain the constraint sets Z, V and Z̄f using
(17a), (17b) and (36), respectively, which are the required
sets to implement Algorithm 1. It is worth mentioning that
all the involved set computations and operations have been
performed using the Multi-Parametric Toolbox 3.0 [36]. To
solve the optimization problem (34), the weighting matrices
for the stage cost have been tuned to Q = 10 · (1, 1, 0, 0),
R = 0.001 · diag(1, 1) and T = 1000 · diag(1, 1).
To evaluate Algorithm 1, it has been implemented in simu-

lation to track a sinusoidal reference for both q1 and q2 which
covers the whole range of both as given in (39) and results
in an ellipse like shape reference trajectory in the Cartesian
space. A projection of the state-phase plane on the (x1-x2)-
plane is shown in Fig. 3, note that x1 = q1 and x2 = q2
according to (23). The figure demonstrates the convergence
of the state trajectories of q1 and q2 to the admissible com-
mand trajectory based on the smaller range (44), c.f., (39).
This leads to a small steady-state tracking error with respect
to the desired Cartesian command trajectory. In Fig. 3 it is
also shown the projection of the computed set S onto the
(x1, x2)-plane, which is quite very small leading to a very
small difference between the state constraint set X and the
tightened one Z as depicted in the figure as well by their
projections onto the (x1, x2)-plane. In addition, the projection
of the terminal set Z̄f onto the (x1, x2)-plane is shown in Fig. 3.
Moreover, for comparison, we have computed the terminal set
Z0
f corresponding to the steady state at the origin, its projec-

tion onto the (x1, x2)-plane is depicted in Fig. 3. Obviously,
it is much smaller than the terminal set based on the proposed
RIST, which implies larger domain of attraction. For further

FIGURE 3. Phase plane on the (x1, x2)-plane (the transformed state as
shown in (23)): the reference (yellow) and the simulated state trajectories
of (x1, x2) (dashed-blue), and the projection of the sets X (sold-gray),
Z (dashed-black), Z̄f (filled-light-gray), Z0

f (filled-gray) and S (the smallest
set) onto the (x1, x2)-plane. Note that x1 = q1 and x2 = q2.

FIGURE 4. Phase plane on the (x3, x4)-plane (the transformed state (23)):
the projection of the sets X (sold-gray), Z (dashed-black), Z̄f
(filled-light-gray), Z0

f (filled-gray) and S (the smallest set) onto the
(x3, x4)-plane.

illustration, Fig. 4 shows the projections of the sets X, Z, Z̄f,
Z0
f and S onto the (x3, x4)-plane.

C. EXPERIMENTAL RESULTS
To evaluate the proposed LPVMPC approach in real-time,
we consider here two tracking scenarios: In the first one,
the robot tracks typical trajectories from practice, whereas,
in the second scenario the robot tracks command trajectories
beyond its work space. For comparison we consider the MPC
approach in [22]. It is an NMPC scheme based on qLPV
models for NL systems with stability guarantees, where the
scheduling parameters are predicted in an iterative procedure
over the prediction horizon without convergence guarantees
and the online nonlinear optimization problem is solved as a
sequence of QPs, which might be computationally demand-
ing in comparison with the proposed approach. Moreover,
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FIGURE 5. Angular positions trajectories of the first scenario: reference
(yellow), based on MPC of [22] (dotted-black) and based on the proposed
LPVMPC (dashed-blue).

the approach in [22] is basically for tracking piece-wise
constant references and its stability guarantee was formulated
accordingly without recursive feasibility guarantees.

The proposed approach considers the availability of instan-
taneous information of p and x. Owing to the modeling
developed in SectionV-A, p depends only on q1 and q2, which
are directly measured via the incremental encoders attached
to the motors shafts. For the state x, it depends also on q̇1 and
q̇2, which can be reasonably measured by low-pass filtering
and numerically differentiating q1 and q2, respectively.
For the first tracking scenario, the trajectory tracking

results are shown in Fig. 5 based on the approach of [22]
and the proposed approach, both provide perfect tracking
which is almost undistinguished from the desired references.
To evaluate the tracking capability numerically we use the
best fit rate (BFR) criterion, which is commonly used for
models output validation in system identification [37], it is
given by

BFR = 100% ·max
(
1−
‖ri(k)− qi(k)‖
‖ri(k)− rm,i‖

, 0
)
,

i = 1, 2, where rm,i is the mean value of the reference
trajectory ri. The tracking capability of the angular position of
the first joint in terms of the BFR is about 98% based on [22]
and 96% using the proposed LPVMPC and for the second
joint it is 97.91% and 97.14%, respectively. Note that p using
the MPC of [22] is predicted over N , which is an advantage
in [22] at the expense of its extra online computations,
whereas in our approach it is unknown over the predic-
tion horizon. Zoomed-in plots of the trajectories are shown
in Fig. 6 to better visualize the deviations from the refer-
ence trajectories. Furthermore, the control signals computed
by the proposed LPVMPC during this experiment is shown
in Fig. 7, which is corresponding to the time interval consid-
ered in Fig. 6. The control effort is acceptable and within the
specified limits.

Finally, we assess the capability of the LPVMPC to deal
with command trajectories beyond the robot workspace. This
demonstrates how large the domain of attraction by using
the admissible reference concept [23] and it can also be

FIGURE 6. Zoom-in angular positions trajectories of the first scenario:
reference (yellow), based on MPC of [22] (dotted-black) and based on the
proposed LPVMPC (dashed-blue).

FIGURE 7. Zoom-in control signals of the proposed LPVMPC in the first
scenario.

FIGURE 8. Angular positions trajectories of the second scenario: the
reference (yellow) and based on the proposed LPVMPC (dashed-blue).

considered as a safety feature of the proposed approach. In
this tracking scenario, the desired reference r1 is assigned to
maneuver within |r1| ≤ 102◦ which is not admissible based
on the specified bounds in (39) while r2 is restricted to |r2| ≤
88◦, which is admissible. As shown in Fig.8, the LPVMPC
allows only the admissible value for q1 (44) to be approached
with reasonably well tracking capability of both q1 and q2
within there admissible values. The corresponding control
signals during this experiment are depicted in Fig. 9.
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FIGURE 9. Control signals of the proposed LPVMPC in the second
scenario.

VI. CONCLUSION
This paper has introduced a novel MPC approach for con-
trolling a variety of nonlinear mechanical systems. The
special qLPV representation of the nonlinear dynamics asso-
ciated with these systems allows practical formulation for
the MPC optimization problem, which is solved based on the
frozen LPV system at the current scheduling parameter. The
approach has several features: (i) the online control law is
a solution of single QP problem. (ii) The controller ensures
offset free tracking provided that the desired reference tra-
jectory is admissible; otherwise, it steers the system to the
closest admissible reference. (iii) Stability of the closed-loop
system and feasibility of the optimization problem are guar-
anteed by including an admissible output trajectory, a related
appropriate terminal cost, an admissible robust invariant set
for tracking, and tightening the constraint sets. The successful
experimental implementation on the 2DOF robot demon-
strates its features and performance, which is almost similar
to that of a more computationally demandingMPC approach.

APPENDIX A
PROOF OF THEOREM 2
In the following we prove the first part of the theorem, which
is the recursive feasibility of the optimization problem (34).
Assume that (34) is feasible at time k for an initial conditions
z0|k = x0|k = x(k), p0|k = p(k) with the nominal system
matrix A0|k and given the reference values r0|k , · · · , rN |k ,
which results in the optimal control sequence and the optimal
sequence of nominal admissible output

{v∗0|k , v
∗

1|k , · · · , v
∗

N−1|k}, (45a)

{ȳ∗0|k , ȳ
∗

1|k , · · · , ȳ
∗

N |k}, (45b)

respectively, these lead to the optimal nominal state sequence
{z0|k , z∗1|k , · · · , z

∗

N |k}. When u(k) = v∗0|k is applied to the
LPV system, the initial state x0|k will move to the successor
state x(k + 1) = x1|k = z∗1|k . To prove recursive feasibility,
we show that at time k+1, for the initial conditions z0|k+1 =
x0|k+1 = x(k+1) and p0|k+1 = p(k+1), there exists a feasible
solution for (34).

Using the feasible solution at time k , we can construct
a feasible solution at time k + 1 as follows. The reference

trajectory is defined in advance, then,

ri|k+1 = ri+1|k , ∀i = 0, 1, · · · ,N − 1, (46)

and hence, the solution for the admissible output trajectory at
time k + 1 can be chosen as

ȳi|k+1 = ȳ∗i+1|k , ∀i = 0, 1, · · · ,N − 1. (47)

Next, at any prediction step i|k + 1, i = 0, · · · ,N − 1,
the nominal system is

zi|k+1 = A0|k+1zi−1|k+1 + Bvi−1|k+1. (48)

Note that if p0|k+1 6= p0|k , then A0|k+1 6= A0|k . Since the
variation rate of p is bounded, we have p0|k+1 ∈ P1|k , see
Fig. 1. Now, we need to show that, there exists vi−1|k+1 ∈
U	 KS yielding zi|k+1 ∈ X	 S, c.f., (17). Let

vi−1|k+1 = v∗i|k + K (zi−1|k+1 − z∗i|k ), (49)

and substitute (49) into (48), then, one can rewrite (48) as

zi|k+1 = z∗i+1|k + A
c
0|k (zi−1|k+1 − z

∗

i|k )

+ (A0|k+1 − A0|k )zi−1|k+1, (50)

which implies that zi|k+1 ∈ z∗i+1|k ⊕ Si+1|k , see (13). Since
z∗i+1|k ∈ X	 S, by imposing the constraint on zi|k+1, it holds
that (z∗i+1|k ⊕ Si+1|k ) ∩ (X 	 S) 6= ∅, i.e., the solution set
of zi|k+1 subject to the constraint X 	 S is nonempty, which
implies feasibility of zi|k+1 ∈ X 	 S. For vi−1|k+1, (49)
ensures that vi−1|k+1 ∈ v∗i|k ⊕ KSi|k , where v∗i|k ∈ U 	 KS,
again, the solution set for vi−1|k+1 is (v∗i|k ⊕ KSi|k ) ∩ (U 	
KS) 6= ∅, which concludes feasibility of vi−1|k+1 ∈ U	KS.
Now, consider step N − 1|k + 1 and the nominal system

(48) with i = N − 1, using the same reasoning as above,
one can show the feasibility of the constraints at this step.
Furthermore, (50) at i = N − 1 indicates that zN−1|k+1 ∈
z∗N |k ⊕ SN |k and according to (47) ȳN−1|k+1 = ȳ∗N |k , we can
conclude that (zN−1|k+1, ȳN−1|k+1) ∈ X̄f as (z∗N |k , ȳ

∗

N |k ) ∈
X̄f 	 (S × Projy(S)) and SN |k ∈ S based on Assumption 5,
therefore, (zN−1|k+1, ȳN−1|k+1) is already in the RIST, and
hence, we guarantee convergence to steady state and input
according to the control law, see Definition 3. By choosing

vN−1|k+1 = v̄∗N |k + K (zN−1|k+1 − z̄∗N |k ), (51)

at stepN , the feasibility of vN−1|k+1 ∈ U	KS can be ensured
using similar argument as above. Substituting (51) into (50),
then, it follows that zN |k+1 ∈ z∗N+1|k 	 SN+1|k . Moreover,
using the relation between the nominal systems at k and k+1,
according to dpmax, one can show that ȳN |k+1 ∈ ȳ∗N+1|k ⊕
Projy(SN+1|k ). Since (z∗N+1|k , ȳ

∗

N+1|k ) ∈ X̄f	 (S×Projy(S)),
we can conclude that the solution set of (zN+1|k , ȳN |k+1)
using (51) is nonempty, i.e., (zN+1|k , ȳN |k+1) ⊕ (SN+1|k ×
{0}) ∩ {X̄f 	 (S × Projy(S)} 6= ∅, and hence, feasibility of
(zN |k+1, ȳN |k+1) ∈ {X̄f 	 (S × Projy(S)} can be ensured.
Therefore, it is possible to construct sequences

{v0|k+1, v1|k+1, · · · , vN−1|k+1}, (52a)

{ȳ0|k+1, ȳ1|k+1, · · · , ȳN |k+1}, (52b)
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which can lead to a feasible solution for (14) at time k + 1.
This completes the proof of the first part of the theorem.

The proof of the second part of the theorem, the asymptotic
stability, is demonstrated as follows. We show that the cost
function (34a) is a Lyapaunov function for the closed-loop
system under the proposed LPVMPC controller. To simplify
the notation, we denote the stage cost in (34a) by `i|k+j =
‖ei|k+j‖2Q + ‖vi|k+j − v̄i|k+j‖2R + ‖ȳi|k+j − r̄i|k+j‖2T , for all
i = 0, 1, · · · ,N − 1, j = 0, 1, · · · , where ei|k+j = zi|k+j −
z̄i|k+j, and we use `N |k+j = ‖ȳN |k+j− r̄N |k+j‖2T . Furthermore,
we indicate by Jk+j the cost function (34a) at time k+j, which
is a function of z0|k+j, p0|k+j, r0|k+j, · · · , rN |k+j.
As shown above, the non-optimal solution (52) at time

k + 1, which is constructed based on the optimal solution
(45) at time k , yields (zN−1|k+1, ȳN−1|k+1) ∈ X̄f. Next, using
the solution at time k + 1, we can construct similarly as
shown above a feasible solution at time k + 2, which can
yield (zN−2|k+2, ȳN−2|k+2) ∈ X̄f. Proceeding in the same
way, we can conclude that (zN−i|k+j, ȳN−i|k+j) ∈ X̄f for all
i = j = 1, 2, · · · ,N . Each constructed feasible solution can
provide a non-optimal cost Jk+j, j = 1, 2, · · · , which bounds
from above the corresponding optimal one.

Now, consider the difference between the costs at times k+
N and k + N − 1 as

1Jk+N = Jk+N − Jk+N−1

=

N∑
i=0

`i|k+N − `i|k+N−1

+ V̄f(eN |k+N )− V̄f(eN |k+N−1). (53)

Note that the control policy over X̄f is vN−i|k+j = v̄N−i|k+j+
KeN−i|k+j, ∀i = j = 0, 1, · · · ,N . Then, substituting into
`i|k+N renders `i|k+N = ‖ei|k+N‖2Q+K>RK + ‖ȳi|k+N −

ri|k+N‖2T , ∀i = 0, 1, · · · ,N − 1 and `N |k+N = ‖ȳN |k+N −
r̄N |k+N‖2T . From (2) it holds that Q + K>RK < P − Ac>(p)
PAc(p), ∀p ∈ P, therefore, we can conclude that

`i|k+N ≤ ‖ei|k+N‖2P − ‖ei+1|k+N‖
2
P + ‖ȳi|k+N − ri|k+N‖

2
T ,

where Ac0|k+N = A0|k+N + BK and ei+1|k+N =

Ac0|k+N ei|k+N . A condition for `i|k+N−1 can be similarly
obtained. Substitute these two conditions into (53) and con-
sider the following: According to (46) and (47), we have
ri|k+N = ri+1|k+N−1 and ȳi|k+N = ȳi+1|k+N−1, respec-
tively, for all i = 0, · · · ,N − 1, moreover, e0|k+N =
e1|k+N−1, V̄f(eN |k+N−1) = ‖eN |k+N−1‖2P and V̄f(eN |k+N ) =
‖eN |k+N‖2P. Thus, one can cancel all similar terms in
1Jk+N (53) related to `i|k+N , `i|k+N−1 for all i = 1, · · · ,N ,
V̄f(eN |k+N−1) and V̄f(eN |k+N ). Finally, if r is an admissi-
ble reference, then, it follows that 1Jk+N ≤ −`0|k+N−1.
Employing quadratic stage cost here ensures existence
of a K∞-function α(‖e0|k+N−1‖) such that `0|k+N−1 ≥
α(‖e0|k+N−1‖). Therefore, the cost function J , which is
positive definite, is monotonically decreasing [25], conse-
quently, it is a parameter-dependent Lyapunov function for
the closed-loop system consisting of any of the nominal sys-
tems and the MPC control law. The convergence of J to zero

implies the convergence of the nominal state z asymptotically
to the steady state z̄, which ensures the convergence of ȳ to r .
On the other hand, if r is not admissible, the convergence of z
to z̄ ensures the convergence of ȳ to ỹ = argminȳ∈Ȳ ‖ȳ− r‖

2
T ,

see Lemma 1 in [24] and Lemma 3 in [23] for more details.
In this case, convergence of J is ensured but not to zero.
Regarding the convergence of the state x, we have x0|k+1 =

z1|k for all k ≥ 0, and hence, x(k + 1) = z1|k . The
asymptotic stability of the nominal system and the fact that
x(k + 1) = x0|k+1 = z1|k implies that x(k + 1) also will
converge asymptotically to the corresponding steady state.�
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