
Practical Optimization
with MATLAB

Practical Optimization
with MATLAB

By

Mircea Ancău

Practical Optimization with MATLAB

By Mircea Ancău

This book first published 2019

Cambridge Scholars Publishing

Lady Stephenson Library, Newcastle upon Tyne, NE6 2PA, UK

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Copyright © 2019 by Mircea Ancău

All rights for this book reserved. No part of this book may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording or otherwise, without
the prior permission of the copyright owner.

ISBN (10): 1-5275-3849-4
ISBN (13): 978-1-5275-3849-8

CONTENTS

Preface ... ix

1. Brief Introduction to MATLAB Programming 1

1.1 Introduction .. 1
1.2 Format to display ... 1
1.3 Scalar variables .. 1
1.4 Matrices and operations ... 2
1.5 Input and output operations.. 6
1.6 Programming guidelines .. 8

1.6.1 The for statement ... 8
1.6.2 The while statement... 10
1.6.3 The if-elseif-else statement ... 11
1.6.4 The break statement .. 12
1.6.5 The switch-case-otherwise statement 12
1.6.6 The continue statement .. 14
1.6.7 The return statement .. 15

1.7 Scripts and functions .. 15
1.8 Graphic representations ... 18
1.9 Conclusions .. 27

2. Basic Concepts ... 29

2.1 Introduction .. 29
2.2 The concept of optimization .. 29
2.3 The general mathematical model ... 36
2.4 The iterative computation .. 37
2.5 The existence and uniqueness of the optimal solution 39

2.5.1 The existence and uniqueness of the optimal
solution in the absence of constraints 40

2.5.2 The existence and uniqueness of the optimal
solution in the presence of constraints 43

2.6 Conclusions .. 46

Contents

vi

3. Optimization Techniques for One Variable Unconstrained
Functions .. 47

3.1 Introduction .. 47
3.2 Finding the boundaries of the interval containing the optimal
solution .. 47
3.3 The grid method ... 50
3.4 The golden section method .. 54
3.5 The Fibonacci method .. 58
3.6 Quadratic approximation ... 63
3.7 Cubic approximation .. 66
3.8 The minimum of a single variable constrained function 70
3.9 Conclusions .. 77

4. Optimization Techniques for N Variables Unconstrained
Functions .. 79

4.1 Introduction .. 79
4.2 The random search method .. 80
4.3 The random path method ... 83
4.4 The relaxation method ... 87
4.5 The gradient method .. 91
4.6 The conjugate gradient method .. 95
4.7 About convergence criteria .. 99

4.7.1 The absolute difference of the objective function values 99
4.7.2 The relative difference of the objective function values 100
4.7.3 The gradient equal to zero ... 101
4.7.4 The maximum number of iterations 101

4.8 Conclusions .. 101

5. Optimization Techniques for N Variables Constrained
Functions .. 103

5.1 Introduction .. 103
5.2 The random search method with constraints 103
5.3 The exterior penalty function method .. 108
5.4 The interior penalty function method ... 118
5.5 Conclusions .. 126

Practical Optimization with MATLAB vii

6. Global Optimization .. 127
6.1 Introduction .. 127
6.2 The Monte Carlo method ... 128
6.3 Global optimization algorithm ... 131
6.4 Conclusions .. 140

7. Multicriteria Optimization ... 141

7.1 Introduction .. 141
7.2 Some mathematical foundations of multi-criteria optimization ... 141
7.3 The method of global criterion ... 143
7.4 The Pareto-optimal set .. 152
7.5 Conclusions .. 155

8. Traveling Salesman Problem .. 157

8.1 Introduction .. 157
8.2 Conventional methods to solve TSP .. 159

8.2.1 Sorting horizontally ... 159
8.2.2 Sorting vertically ... 163

8.3 Nearest Neighbor ... 166
8.4 Determining the intersection of two segments 171
8.5 Removing segments intersection ... 172
8.6 Design of an insertion-type method ... 179
8.7 Conclusions .. 189

9. Optimal Nesting ... 191

9.1 Introduction .. 191
9.2 The Minkowski sum .. 193
9.3 The Minkowski sum for convex polygons 194
9.4 The Minkowski sum for concave polygons 202
9.5 Optimal orientation of a polygon ... 210
9.6 Nesting 2D design .. 220
9.7 Conclusions .. 236

10. Flowshop Scheduling Problem ... 237

10.1 Introduction .. 237
10.2 Total inactivity time calculation .. 240
10.3 The algorithm of Johnson .. 246
10.4 Constructive heuristic algorithm .. 252
10.5 Improvement heuristic algorithm ... 259
10.6 Conclusions .. 264

Contents

viii

Bibliography ... 265

List of Source Codes .. 275

PREFACE

 This book is a brief introduction to the theory and practice of the
numerical optimization techniques. It addresses all those interested in
determining extreme values of functions. Because the book does not delve
into mathematical demonstrations, it is accessible even to users without a
theoretical background of optimization theory or detailed knowledge of
computer programming. The concepts are presented in a simple way,
starting with optimization methods for single variable functions without
constraints and finishing with optimization methods for multivariable
functions with constraints. Each of the methods presented is accompanied
by its source code written in Matlab. The programs in the book are written
as simply as possible. To make things even easier to follow, the first
chapter of the book makes a brief overview of all the commands and
programming instructions used in the source codes. Explanations
accompanying each of the source codes within the book allow for the
adaptation of programs to users' needs either by changing functions and
restrictions expressions, or by including these programs only as simple
functions in other, larger applications.
 There is no method able to solve any type of optimization problem.
Matlab possesses the Optimization toolbox, capable of solving a multitude
of problems. Before grasping Matlab functions, you need to have enough
knowledge to allow you to choose the right optimization methods for your
problems. This book can help you take this first step. In addition to other
similar works, this book also initiates in multicriteria optimization and
combinatorial optimization problems. Because several of the source codes
are derived from other source codes explained in the previous chapters, it
is advisable for the scholarly reader to study each chapter of the book.
However, it is also possible to use the source codes without reading the
previous chapters, by providing the appropriate functions in the folder
containing the program source code.
 The book is structured in ten chapters. The first chapter addresses
beginner programmers and reviews the basic Matlab programming
knowledge. Fundamental concepts of reading and saving data in a specific
format are explained. At the same time, with simple examples, the main
programming syntax is explained, which is, anyway, similar to that
encountered in other programming languages. Also presented are ways to

Preface x

plot the functions, their specific implementation detailed in the following
chapters.
 The second chapter is called Basic concepts and its role is to
familiarize the reader with some optimization concepts such as objective
function, decision variables, explicit or implicit constraints, optimization
problems without or with constraints. The conditions of existence and
uniqueness of the optimization solution, in the absence or presence of
restrictions, are explained. The general mathematical model of an
optimization problem is defined. Despite its lack of importance at first
glance, the role of this chapter is to familiarize the reader with certain
rules, starting with the way in which an optimization problem is
formulated, the conditions in which the problem can be solved, and how
the solution can be presented graphically.
 In the third chapter, entitled Optimization techniques for one variable
unconstrained functions, some optimization methods for functions that are
dependent on a single variable without constraints are presented. Although
the mathematical model of the optimization problem to be solved does not
imply any constraint, the search must be limited to a specific domain.
Most often, the interval containing the solution of the problem is not
known. This is why, for the beginning, a simple method to find the limits
of the interval that includes the solution to the problem is presented. The
chapter continues with the grid optimization methods, the golden section
method, the Fibonacci method, the quadratic approximation and the cubic
approximation methods. At the end of the chapter, a method to solve the
optimization problem that contains constraints is presented, based on an
unconstrained optimization method, only by appropriately modifying the
objective function. Each method explains the applied technique for step-
by-step reduction of the length of the domain containing the optimal
solution to a length less than or equal to an initially imposed precision
factor. Each method is tested on the same optimization problem, so that
the reader can compare the performance of each method. At first sight,
solving an optimization problem whose objective function depends on a
single variable, without constraints, may seem to have less practical
applicability. However, the importance of these methods is significant. As
will be seen in the following chapters, these optimization methods are the
foundation of the most sophisticated optimization methods.
 The fourth chapter, titled Optimization techniques for n variables
unconstrained functions, takes a step further than the previous chapter.
The optimization methods in this chapter are able to solve any
optimization problems without restrictions, but optimization functions
depend this time on n decision variables. From the multitude of

Practical Optimization with MATLAB xi

optimization methods of this type, the random search method, the random
path method, the relaxation method, the gradient method and the
conjugate gradient method are presented. All the optimization methods
presented are iterative. This means that the search technique is applied in a
repetitive or recursive way until some ending conditions are met. Criteria
that stop the search for the solution are called convergence criteria. The
end of the chapter illustrates some of these convergence criteria, which set
the end time of the solution search procedure, when the initially set
precision is reached.
 The fifth chapter, titled Optimization techniques for n variables
constrained functions, introduces the reader to some techniques of solving
a more general optimization problem. These are the optimization problems
with functions dependent on n variables, with constraints. There are
presented the random search method with constraints, the exterior penalty
function method and the interior penalty function method. The random
search method with constraints is designed on the structure of the random
search method without constraints, seen in the fourth chapter. The search
method is very simple and once its principle understood, the transition to
solving the optimization problem with constraints becomes a simple
exercise. At the same time, even if the program is designed for functions
dependent on just two variables, changing it to more than two variables is
done by simply adding some source code lines. The following two search
techniques, the exterior penalty function method and the interior penalty
function method, are first-order methods that make use of the information
given by the the first order derivative of the objective function. It is
explained how to define the pseudo-objective function and how the
expression of this new objective function influences the search process.
The results of the search process are illustrated both numerically and
graphically. Just like in case of the random search method with
constraints, the source program is designed for functions that depend on
just two variables and a single restriction. However, the transition from
two to several decision variables, from one restriction to several, is very
simple, via replication of certain source code lines.
 Often, the methods presented in these three chapters are capable of
solving convex optimization problems only. When this condition is no
longer fulfilled, it may happen that the search procedure stops at a so-
called local optimum point. For this reason, it is recommended to restart
the search from different starting points and if the search method
converges to the same point, it becomes likely that the solution thus
determined represents the optimal point sought. However, there are
optimization methods capable of managing such situations, in which there

Preface xii

are many local optimum points, but only one is absolute or overall
optimum. One of these methods is the global optimization algorithm from
the sixth chapter, designed to find an absolute optimum, hidden among
many optimal local points. This algorithm searches for the optimum
solution in two steps. The first step is based on a general Monte Carlo
search process. The second step is a local search process, in the
neighborhood of the general solution determined at the first step. The
simple way of presenting the source code of the program makes it easy to
modify it from two variables without constraints, to several variables. In
addition, the experience gained with the study of optimization methods
with constraints, in the fifth chapter, makes the transition to solving
constrained optimization problems simpler.
 The seventh chapter titled Multicriteria optimization, aims to solve
optimization problems with multiple objective functions. The mathematical
bases of multicriterial optimization are briefly presented. The significance
of the Pareto-optimal set is also explained, as well as the way of
determining the points belonging to it. A source program for determining
the Pareto-optimal set is provided. The chapter illustrates the method of
global multi-criteria optimization criterion along with its relative norm
variant.
 The eighth chapter, called Traveling Salesman Problem, belongs to the
combinatorial optimization field. Traveling salesman is a problem with
many practical applications in very different fields, from industrial
engineering, applied physics, astronomy, medicine etc. For the beginning,
some simple methods both in terms of working principle and difficulty of
computer programming are presented. Next, a heuristic insertion algorithm
is also explained. For all the methods described in the chapter, the source
code is given. The program of the insertion heuristic algorithm is designed
so that the user can add additional functions to the existing one, so that one
can increase the degree of diversification of the solution search, or
increase the performance of the local search.
 The ninth chapter is entitled Optimal nesting and addresses, as well, a
problem from the field of combinatorial optimization, which is the
problem of optimal cutting of materials. Different solutions are suggested
to address this problem of material cutting, for different possible
situations.
 The tenth chapter is titled Flowshop scheduling problem and is an
illustration of the problem concerning the optimal launching of products in
manufacturing. It is shown how to calculate the total inactivity time,
according to the productive time values, in accordance with the
methodology developed by Johnson (1954), in its well-known paper.

Practical Optimization with MATLAB xiii

Johnson's algorithm is presented for the optimal flowshop of n jobs on two
machines. Two heuristic methods to solve the problem are designed, one
heuristic constructive and one improvement method respectively.
 This book is partly based on the Numerical Methods and Numerical
Optimization Techniques lectures, taught by the author at the Technical
University of Cluj-Napoca. For this reason, the book can also be used as a
course or laboratory teaching material to illustrate different concepts or
methods. Thus, the book becomes a valuable tool not only for researchers,
but also for students or professors from technical faculties.

Mircea Ancău
Cluj-Napoca, 29th of June 2019

1.

BRIEF INTRODUCTION TO MATLAB
PROGRAMMING

1.1 Introduction

 The present chapter is addressed to those who possess a symbolic
knowledge of programming, not necessarily in Matlab. For this reason,
this chapter is not a detailed Matlab tutorial in the true sense of the word.
The chapter is rather a guide to understanding the programming functions
used within the source codes appearing in the book. Only the
programming notions used within the programs are exposed, focusing on
input/output functions, operation with matrices, and programming
functions, graphical representation functions etc.

1.2 Format to display

 In Matlab there are a multitude of formats for displaying numerical
data, from short, to long, short e, long e, short g, long g and so on. For
example, the short format has 4 significant digits while the long format
contains 15 significant digits. The entire list of these formats can be easily
obtained with the command:

 help format

1.3 Scalar variables

 A scalar variable (a numerical value) must have a name that will
necessarily begin with a letter, followed by any other combination of
letters or numbers, or letters and numbers. To avoid overlapping a name
with a pre-defined function name, check the ‘proposed_name’ with the
command:

1. Brief Introduction to MATLAB Programming 2

 exist('proposed_name')

This command returns zero if the proposed name does not exist among the
predefined Matlab function names or the reserved words etc. If the
proposed name exists within the above mentioned list, the command
returns a non-zero value. Because Matlab is case sensitive, a variable
name Sin will not conflict with the name of the trigonometric function sin.
Matlab operates with a set of reserved words or keywords. To prevent
these keywords from being used as variable names, they are displayed in
blue. The full list of keywords can be displayed with the command:

 iskeyword

1.4 Matrices and operations

 A matrix is a collection of numbers arranged into a fixed number of m
rows and n columns. A particular case of the matrix is a vector. A vector is
an array having either a single line (line vector) or a single column
(column vector). From this point of view, even a scalar variable can be
interpreted as a matrix with a single line and a single column.
 A matrix can be defined by including its elements in square brackets.
Within square brackets, the elements of each line are separated by spaces,
while the lines are separated by semicolons. The elements of a matrix can
be accessed by indicating, within brackets, the line and column number at
which the referenced item is located. If we define for example the matrix t:

 t = [1 2 3 4;5 6 7 8;9 10 11 12];

the command t(3,1) will refer to the element located in the third line, first
column, and returns t(3,1) = 9. To find the size of a matrix it is enough to
type:

 [m,n] = size(t);

This command will return values m = 3 and n = 4. By the command:

 help elmat

you can find the list of all types of elementary matrices and modes of
operation with them. Within the source codes presented in the following
chapters, often is used the command:

Practical Optimization with MATLAB 3

name = zeros(m,n);

in order to reserve memory space to a matrix called name, with m lines
and n columns. All elements of this matrix are initialized with zero.
Concerning the division between two matrices, besides the normal
division (with symbol - /) or right division, Matlab has the division to the
left (with symbol - \) or left division. Used usually to solve the matrix
equations of the form Ax = B, which requires the calculation of the inverse
of the matrix (i.e. A-1), the left division solves this equation by the
command x = A\B, equivalent to x = A-1B. It is recommended to use left
division as an alternative of the inverse matrix calculation for reasons of
stability in terms of numerical calculation and calculation speed,
respectively. Details concerning these operations can be found by
command:

 help slash

The command:

 help ops

will return the list of all operations, starting with the list of arithmetic
operators (i.e. +, -, *, /, ^), relational operators (i.e. ==, ~=, <, >, <=, >=),
list of logical operators (i.e. &&, ||, &, |, ~, …), list of special characters
(i.e. :, (), [], { }, @, …), list of bitwise operators and set operators. For
details about arithmetic operations involving matrices, execute the
command:

 help arith

For details on relational operations involving matrices, use the command:

 help relop

Matlab contains a multitude of predefined mathematical functions that
operate with matrices. The complete list of these functions can be found
with the command:

 help elfun

If one is interested in all primary help topics, one needs just type the
command help in the Command Window of Matlab. To avoid a long list

1. Brief Introduction to MATLAB Programming 4

scrolling on the screen, without having time to read it, even if you can
scroll back, before the help command, just type more on. This command
will lead to page by page scrolling. If someone is interested in something
in particular, for instance about the role of a function, use the command
lookfor followed by the topic (i.e. the function name) of your search.
 To make the multiplication of two matrices A and B, the main
condition is the equality between the number of columns of the first matrix
A with the number of lines of the second matrix B.
Let us consider two matrices A and B:

 𝐴 = ቂ𝑎ଵଵ 𝑎ଵଶ 𝑎ଵଷ𝑎ଶଵ 𝑎ଶଶ 𝑎ଶଷቃ ; 𝐵 = ൥𝑏ଵଵ 𝑏ଵଶ𝑏ଶଵ 𝑏ଶଶ𝑏ଷଵ 𝑏ଷଶ൩ ; (1.1)

The result of the multiplication of these two matrices is also a matrix
denoted C:

 𝐶 = ቂ𝑐ଵଵ 𝑐ଵଶ𝑐ଶଵ 𝑐ଶଶቃ ; (1.2)

whose elements are:

 𝑐ଵଵ = 𝑎ଵଵ ∙ 𝑏ଵଵ ൅ 𝑎ଵଶ ∙ 𝑏ଶଵ ൅ 𝑎ଵଷ ∙ 𝑏ଷଵ;𝑐ଵଶ = 𝑎ଵଵ ∙ 𝑏ଵଶ ൅ 𝑎ଵଶ ∙ 𝑏ଶଶ ൅ 𝑎ଵଷ ∙ 𝑏ଷଶ;𝑐ଶଵ = 𝑎ଶଵ ∙ 𝑏ଵଵ ൅ 𝑎ଶଶ ∙ 𝑏ଶଵ ൅ 𝑎ଶଷ ∙ 𝑏ଷଵ;𝑐ଶଶ = 𝑎ଶଵ ∙ 𝑏ଵଶ ൅ 𝑎ଶଶ ∙ 𝑏ଶଶ ൅ 𝑎ଶଷ ∙ 𝑏ଷଶ; (1.3)

When using a compiler of a programming language (i.e. C/C++, Pascal
etc.), programming the multiplication of these two matrices requires
several lines of source code (see Code 1.1).

1
2
3
4
5
6
7
8
9
10
11

% matrixMultiplication.m
%
% this program calculates the product of two
% matrices: a(m,n), b(n,p).
% the matrix c must have the size: (m,p)
%
A = [2 4 6; 1 3 5];
B = [1 2; 3 4; 5 6];
%
% get the size of matrices a and b
[m,n] = size(A);

Practical Optimization with MATLAB 5

12
13
14
15
16
17
18
19
20
21
22
23

[~,p] = size(B);
%
C = zeros(m,p);
for i = 1:m
 for j = 1:p
 C(i,j) = 0;
 for k = 1:n
 C(i,j) = C(i,j)+A(i,k)*B(k,j);
 end
 end
end
%

Code 1.1 matrixMultiplication.m.

Running the program in Code 1.1 for the matrices A and B defined at lines
6 and 7, will provide:

 𝐴 ∙ 𝐵 = ቂ𝑎ଵଵ 𝑎ଵଶ 𝑎ଵଷ𝑎ଶଵ 𝑎ଶଶ 𝑎ଶଷቃ ∙ ൥𝑏ଵଵ 𝑏ଵଶ𝑏ଶଵ 𝑏ଶଶ𝑏ଷଵ 𝑏ଷଶ൩ = ቂ44 5635 44ቃ ; (1.4)

To get the same result, in Matlab it is sufficient to type:

 C = A*B;

Let us suppose the matrices A and B are of the same size, and we want to
perform their multiplication, element by element. It means that:

 𝐴 = ቂ𝑎ଵଵ 𝑎ଵଶ𝑎ଶଵ 𝑎ଶଶቃ ; 𝐵 = ൤𝑏ଵଵ 𝑏ଵଶ𝑏ଶଵ 𝑏ଶଶ൨ ; (1.5)

 𝐶 = ቂ𝑐ଵଵ 𝑐ଵଶ𝑐ଶଵ 𝑐ଶଶቃ ; (1.6)

where

 𝑐ଵଵ = 𝑎ଵଵ ∙ 𝑏ଵଵ;𝑐ଵଶ = 𝑎ଵଶ ∙ 𝑏ଵଶ;𝑐ଶଵ = 𝑎ଶଵ ∙ 𝑏ଶଵ;𝑐ଶଶ = 𝑎ଶଶ ∙ 𝑏ଶଶ; (1.7)

This sort of multiplication is exemplified by the program in Code 1.2.

1. Brief Introduction to MATLAB Programming 6

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

% elementByElementMultiplication.m
%
% this program calculates the product of two
% matrices, element by element.
% the matrices a and b must have the same size
%
A = [2 4 6; 1 3 5];
B = [1 2 3; 4 5 6];
%
[m,n] = size(A);
% memory allocation for matrix c
C = zeros(m,n);
%
for i = 1:m
 for j = 1:n
 C(i,j) = A(i,j)*B(i,j);
 end
end
%

Code 1.2 elementByElementMultiplication.m.

Running the program in Code 1.2 for the matrices A and B defined at lines
6 and 7, will get:
 𝐴 ∙ 𝐵 = ቂ𝑎ଵଵ 𝑎ଵଶ 𝑎ଵଷ𝑎ଶଵ 𝑎ଶଶ 𝑎ଶଷቃ ∙ ൤𝑏ଵଵ 𝑏ଵଶ 𝑏ଵଷ𝑏ଶଵ 𝑏ଶଶ 𝑏ଶଷ൨ = ቂ2 8 184 15 30ቃ ; (1.8)

To get the same result, in Matlab it is enough to type:

 C = A.*B;

A number of other operations are possible with the elements of the data
vectors or the matrices. Usually, operations appliccable to scalars can also
be applied, element by element, to strings of data.

1.5 Input and output operations

 For the opening of a new or already existing file, the following syntax
can be used:

 fileID = fopen(filename,permission);

Practical Optimization with MATLAB 7

This syntax allows one to create a new file or open an existing one with
the name filename, under the conditions specified by permission. Filename
has the format name.extension, name being the file name, and the
extension specifying the type of data within the file. The data type in the
file can be a string in ASCII or binary format. The file can be created or
opened in both ways. We can write data in ASCII format in a text file
using the following syntax:

 fprintf(fileID,formatSpec,A1,A2,…,An);

formatSpec specifies the format in which the data will be written in the
file. Thus, if we have to write the values of three variables x1, x2, x3, of
which x1 is an integer, x2 of real type, and x3 a string, then we need to
write:

 formatSpec = ‘x1=%d x2 = %f x3 = %s’

Thus, the entire instruction becomes:

 fprintf(fileID,‘x1 = %d x2 = %f x3 = %s’,x1,x2,x3);

or we may explicitly specify the format descriptors as follows:

 fprintf(fileID,‘x1 = %3d x2 = %10.6f x3 = %6s’,x1,x2,x3);

In this way, the value of x1 will be written to the file with maximally 3
digits, the value of x2 with no more than 6 significant digits after the
comma and the string x3 with no more than six characters. The file is
closed with the command:

 fclose(fileID);

Table 1.1 contains the list of possible types of access permissions, when
opening a file.

1. Brief Introduction to MATLAB Programming 8

Table 1.1 Type of permited access.

Permission Type of access
‘r’ Open file for reading.
‘w’ Open or create new file for writing. Discard existing contents, if

any.
‘a’ Open or create new file for writing. Append data to the end of

the file.
‘r+’ Open file for reading and writing.
‘w+’ Open or create new file for reading and writing. Discard existing

contents, if any.
‘a+’ Open or create new file for reading and writing. Append data to

the end of the file.
‘A’ Open file for appending without automatic flushing of the

current output buffer.
‘W’ Open file for writing without automatic flushing of the current

output buffer.

1.6 Programming guidelines

 Within a program, many times, a certain set of some instructions is
repeated several times. Sometimes the number of these recurrences is
known in advance, sometimes not. Such sets of instructions, or blocks of
instructions, can be handled by control-flow statements. Sometimes it is
necessary to execute an instruction only if a certain condition is fulfilled.
These situations are managed by means of conditional statements.

1.6.1 The for statement

 The for statement is used in instructions that must repeat for a known
number of steps. At the beginning, there must be a specified start value, an
increment and the final value of the variable that controls the recurring
process. All the values of the counter can be chosen as positive or
negative, integers or real numbers. The syntax of the for statement is:

for counter = startValue:increment:finalValue
do something;

end

All statements included between the start line of the for loop and the end
statement are executed recursivelly until the counter reaches the

Practical Optimization with MATLAB 9

finalValue. The program simpleForLoop.m in Code 1.3, is an example
of using this cycle.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

% simpleForLoop.m
%
% for-loop whose increment is a positive integer
a = zeros(1,10);
for i = 1:10
 a(1,i) = sqrt(i);
end
%
% for-loop whose increment is a negative integer
b = zeros(1,10);
j = 1;
for i = 10:-1:1
 b(1,j) = sqrt(i);
 j = j + 1;
end
%
% for-loop whose increment is a positive non-integer
c = zeros(1,10);
j = 1;
for i = 1:0.1:1.9
 c(1,j) = sqrt(i);
 j = j + 1;
end
%
% for-loop whose increment is a negative non-integer
d = zeros(1,10);
j = 1;
for i = 1.9:-0.1:1
 d(1,j) = sqrt(i);
 j = j + 1;
end
%

Code 1.3 simpleForLoop.m.

The first for loop in Code 1.3 calculates the square root of the first ten
natural numbers starting from 1 to 10. Each of these ten values is stored in
the line vector called a. Because inside this loop there is no specified
increment, the Matlab compiler assumes it as one. On the second for
loop, the increment is still an integer but negative. So, the same
calculations as in the first loop apply, but in reverse order. The values of
the square roots of the first ten integers are stored in a line vector called b.

1. Brief Introduction to MATLAB Programming 10

The next two for loops make similar calculations, but, this time, the
increment is a non-integer. It is important to note that starting with the
second for loop, the index j denoting the line vector location differs from
the counter i of the loop. This difference is required because the location
index in a vector or a matrix is always an integer, while the loop increment
may be an integer or not.

1.6.2 The while statement

 With this type of statement a cycle can be defined, even if we do not
know how many times the instructions in the cycle need to be repeated.
The syntax of the while statement is:

while (condition holds TRUE)
do statement 1;
do statement 2
…
do statement k;

end

This cycle is terminated by the end statement. All statements inside the
cycle are repeated, until the condition introduced after the while
statement is accomplished. Code 1.4 displays a very simple example of
while statement use.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

% whileStatement.m
%
% This is an example of a cycle with an
% unknown number of steps
%
% open a text file to save results
fp = fopen('results.txt','w');
x = 0;
while x<=5
 fprintf(fp,'x = %2d\n',x);
 % increment x
 x = x + 1;
end
% close the text file
fclose(fp);
%

Code 1.4 whileStatement.m.

Practical Optimization with MATLAB 11

This program will print into results.txt file the first six values of x, starting
with zero. Always take much care in what way you formulate the
condition that define the while statement. If in Code 1.4, at line 8, we
assign, say x = 10 and at line 9, instead of x <= 5 we put x >= 5, the while
block will loop forever.

1.6.3 The if-elseif-else statement

 In a program, there is often the question of the execution of certain
statements only when certain conditions are fulfiled. Typically, these
situations can be solved using the if-elseif-else instructions. The
syntax of these istructions is:

if condition 1 is TRUE
 statement 1;
elseif condition 2 is TRUE
 statement 2 (or group of statements);
elseif condition 3 is TRUE
 statement 3;
 ...
elseif condition k is TRUE
 statement k;
else
 do something else;
end

The program in Code 1.5 illustrates the way this instruction operates in the
simple case of solving a second degree equation. The user must assign the
numerical values of the coefficients of the equation ax2+bx+c = 0, and the
program will indicate the type of roots of that equation (i.e. distinct real
roots, real equal roots or complex roots).

1
2
3
4
5
6
7
8
9
10

% define equation coefficients
a = 1; b = 0; c = 1;
% calculation of the equation discriminant
delta = b^2 - 4*a*c;
% decide the type of equation roots
if delta >0
 message = ('real and distinct roots');
 disp(message);
elseif delta == 0
 message = ('real and equal roots');

1. Brief Introduction to MATLAB Programming 12

11
12
13
14
15
16

 disp(message);
else
 message = ('complex roots');
 disp(message);
end
%

Code 1.5 secDegrEq1.

To test the condition inside if-elseif-else statements, any relational
or logical operators can be used (see help ops in Matlab Command
Window), and multiple conditions can be used in the same time.

1.6.4 The break statement

 Sometimes it is necessary to execute a for loop only until a certain
condition is fulfilled. To exit the cycle, an if statement should be
inserted, indicating the moment of exit. The exit is made by the break
statement. The syntax used in such cases is:

for counter = startValue:increment:finalValue
statement 1;
if condition is TRUE
 break;
statement 2;
statement 3;
...
statement k;

end

Please note that when the Matlab compiler meets the break statement, all
statements that follow the break statement are omitted, and control is
transferred outside the for loop.

1.6.5 The switch-case-otherwise statemens

 Another way to branch off a program is provided by the switch-
case-otherwise statement, whose syntax is:

switch var
case varValue 1

list 1 of statements;

Practical Optimization with MATLAB 13

case varValue 2
list 2 of statements;
…

case varValue k2
list k of statements;

otherwise
another list of statements;

end

The variable var may be of any type, according to the algorithm. There
may be any case branches and a single otherwise, in case any of the
above case situations are not realized. Code 1.6 extends the case of
solving the second-degree equation and indicates their values besides the
type of solutions, using a switch-case-otherwise statement.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

% define equation coefficients
a = 1; b = 0; c = 1;
% calculation of the equation discriminant
delta = b^2 - 4*a*c;
% decide the type of equation roots
if delta > 0
 message = ('real and distinct roots');
 disp(message);
elseif delta == 0
 message = ('real and equal roots');
 disp(message);
else
 message = ('complex roots');
 disp(message);
end
%
% the calculation of roots
switch message
 case 'real and distinct roots'
 x1 = (-b - sqrt(delta))/(2*a);
 x2 = (-b + sqrt(delta))/(2*a);
 mess = sprintf('x1 = %f and x2 = %f ',x1,x2);
 disp(mess);
 case 'real and equal roots'
 x = -b/(2*a);
 mess = sprintf('x1 = x2 = %f ',x);
 disp(mess);
 otherwise
 realPart = -b/(2*a);

1. Brief Introduction to MATLAB Programming 14

30
31
32
33
34
35

 imagPart = sqrt(-delta)/(2*a);
 mess = sprintf('x1=%f-i*%f\nx2=%f+i*%f',...
realPart,imagPart,realPart,imagPart);
 disp(mess);
end
%

Code 1.6 secDegrEq2.m.

1.6.6 The continue statement

 If the program finds a continue statement inside a loop of type for
or while, it passes the control to the next iteration in which it appears,
and skips any remaining statements that follow. Code 1.7 and Code 1.8
exemplifies the use of continue statements inside a for loop and a
while loop, respectively.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

% continueStatement1.m
%
% 'continue' is inside a 'for' loop
% open the file ‚results.txt’
fp = fopen('results.txt','w');
for i = 1:3
 for j = 1:3
 for k = 1:3
 if i==2
 continue
 end
 fprintf(fp,'i=%2d j=%2d k=%2d\n',...
 i,j,k);
 end
 end
end
% close the file ’results.txt’
fclose(fp);
%

Code 1.7 continueStatement1.m.

1
2
3
4
5
6

% continueStatement2.m
%
% 'continue' is inside a 'while' loop
% open the file ‚results.txt’
fp = fopen('results.txt','w');
i = 0;

Practical Optimization with MATLAB 15

7
8
9
10
11
12
13
14
15
16
17
18
19
20

while i<=3
 j = 0;
 while j<3
 j = j + 1;
 if i==2
 continue
 end
 fprintf(fp,'i=%2d j=%2d\n',i,j);
 end
 i = i + 1;
end
% close the file ’results.txt’
fclose(fp);
%

Code 1.8 continueStatement2.m.

1.6.7 The return statement

 Typically, at the end of a function, the compiler returns control to the
program that called it, without the need to insert a return instruction.
The return instruction is required, if a premature termination of the
function and the return of control within the program is desired.

1.7 Scripts and functions

 In each of the chapters that follow, two different types of programs,
namely scripts and functions will appear. As a set of instructions that
respects a specific syntax, the script is a Matlab program that does not
accept input arguments and does not return output arguments. The script is
designed by the user to operate with some data, so that it can generate new
data. All data are located in the Matlab workspace. On the other hand, a
function is also a set of instructions. The function is designed to accept
some input arguments, or actual parameters, and return output parameters.
All internal variables a function uses are considered as local, meanning
these variables are not visible outside the function. As programs grow in
complexity, they become increasingly difficult to understand and debug.
For this reason, programs are divided into smaller pieces, each piece
having its own well-defined role. Thus, the script keeps its role of program
coordinator and allocates most of its attributes to functions. In this way,
the programs become easy to track, understand and correct in case of error.
Code 1.5 calculates the discriminant of the second degree algebraic

1. Brief Introduction to MATLAB Programming 16

equation and determines the type of roots of this equation. Code 1.6 goes
further and, based on the coefficients values of this equation, calculates the
roots and displays them in the Command Window.
 We will resume the problem of solving the second degree equation by
delegating work to several functions. Thus, we will have a script program,
called solveEqByFuncCall.m working as a coordinator. From this
program, we call some functions with different attributes. First of all, we
call the function equationDiscriminant.m. This function takes the equation
coefficients as arguments and returns the value of the equation
discriminant delta. The second function called by solveEqByFuncCall.m is
decideRootsType.m. This function takes as argument the value of the
equation discriminant delta and, based on this value, the function takes a
decision concerning the type of equation roots. The third function called
from solveEqByFuncCall.m is rootsCalculation.m. It can be seen that this
time, the function does not return a result. It just takes as arguments a, b,
delta and message and, based on this information, it calculates the
equation roots and displays them in the Command Window.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

% solveEqByFuncCall.m
%
% define equation coefficients
a = 1; b = 0; c = 1;
% calculation of the equation discriminant
delta = equationDiscriminant(a,b,c);
% decide the type of equation roots
[message] = decideRootsType(delta);
% display the type of equation roots
% into the Command Window
disp(message);
% calculate the roots of the equation based on
% equation coefficients, and display them into
% the Command Window
rootsCalculation(a,b,delta,message);
%

Code 1.9 solveEqByFuncCall.m.

1
2
3
4
5

% equationDiscriminant.m
function [delta] = equationDiscriminant(a,b,c)
%
delta = b^2 - 4*a*c;
%

Code 1.10 equationDiscriminant.m.
1
2

% decideRootsType.m
function [message] = decideRootsType(delta)

