

Hello, I am Michael Takeuchi

MikroTik Certified Engineer & Consultant from Jakarta, Indonesia

- in https://www.linkedin.com/in/michael-takeuchi
- f https://www.facebook.com/mict404
- michael@takeuchi.id

Why Packet Analysis?

Why Packet Analysis?

- Information of 5W + 1HAction/Decision
 - What
 - DDoS? Spam? Flood?
 - Who
 - Router? PC? Server?
 - When
 - Now? Yesterday?
 - Where
 - AS? Network?
 - Why
 - Virus?
 - How
 - TCP? UDP?

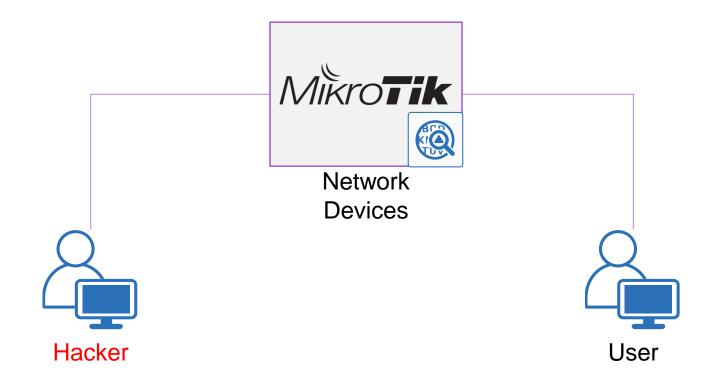
- - Fix
 - Stop
 - Deny

Who do Packet Analysis?

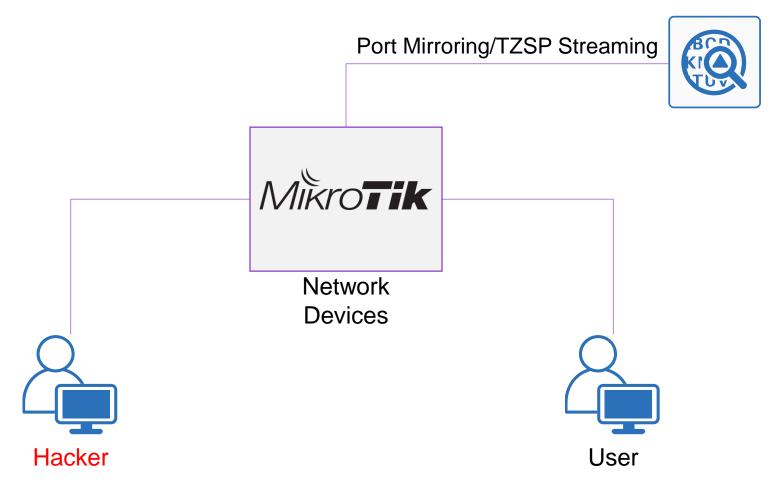
- Researchers: Access to RAW Data
- Administrator: Debugging Network Problems
- Analyst: Analyze the Traffic
- Incident Responders: Tracing the Incident

How We Do Packet Analysis?

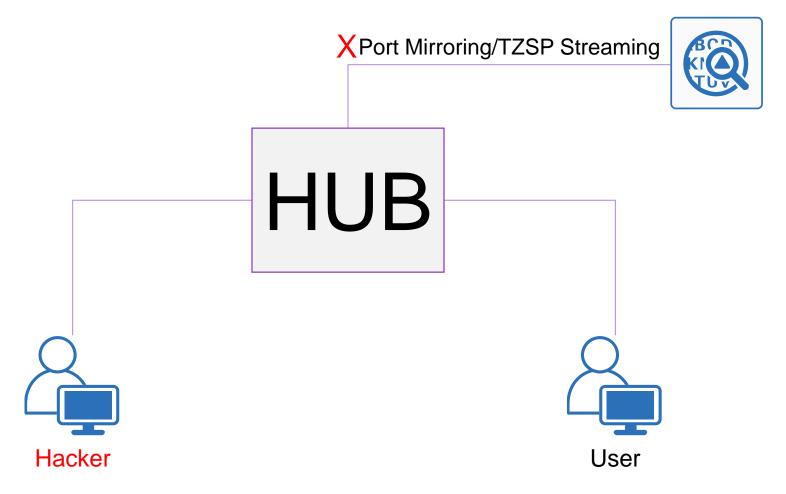
CAPTURE


&

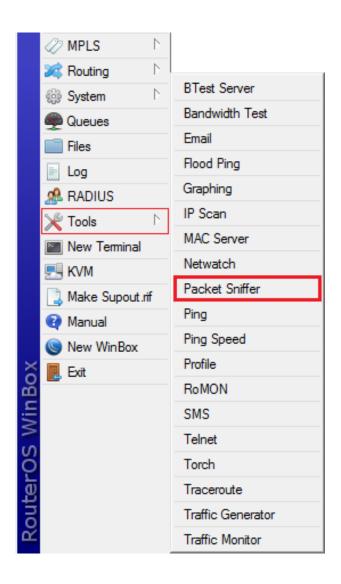
ANALYZE

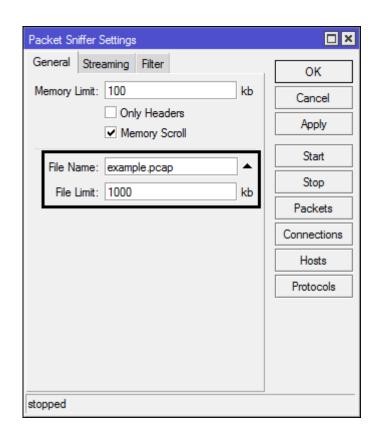

Capturing Packets

- Also known as SNIFFING
- PCAP is the common format of <u>Packet Cap</u>ture
- Perspective is Important
 - In-band
 - Out-band

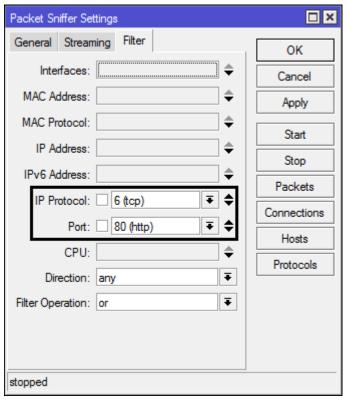

In-Band Capturing Packets/Sniffing

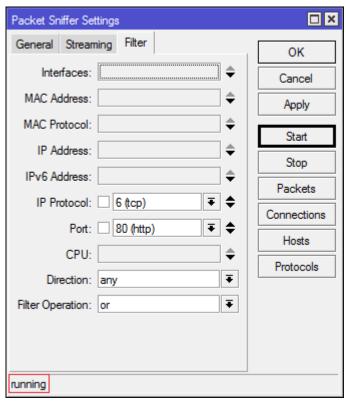
Out-Band Capturing Packets/Sniffing


Out-Band Capturing Packets/Sniffing



Capturing Packets in MikroTik – HTTP


```
/tool sniffer
set file-name="example.pcap"
set file-limit="1000"
set filter-ip-protocol="tcp"
set filter-port="80"
start
/file print where name="example.pcap"
```


Capturing Packets in MikroTik – HTTP

Capturing Packets in MikroTik – HTTP

Capturing Packets in MikroTik – Storage Expense

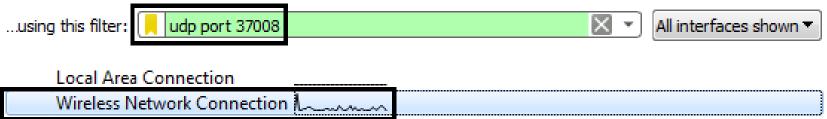
Expense storage quickly!!!

- 10Mbps * 3600 (second) * 24 (hours) = 864000Mb
- 864000Mb / 8 = 108000 Megabyte for 1 Day
 10Mbps Bandwidth need 100+ Gigabyte storage for 1 Day
 Double for full-duplex (200+ Gigabyte)

How big is your storage?

Solution? Use Out-Band Capturing Packets/Sniffing method with Port Mirroring, TZSP Streaming or use HUB

Capturing Packets in MikroTik – Port Mirroring


- Port Mirroring is Switch Chip Feature
- MikroTik devices without switch chip can't do Port Mirroring

```
/interface ethernet switch
set switch1 mirror-source=ether2
set switch1 mirror-target=ether3
```

Capturing Packets in MikroTik – TZSP Configuration

```
/tool sniffer
streaming-server=ip.of.wireshark.box
set streaming-enabled=yes
start
```

Capture

TZSP is run on UDP/37008, you can listen on UDP/37008 with your sniffing tools like **wireshark** (will introduced more in analyze step)

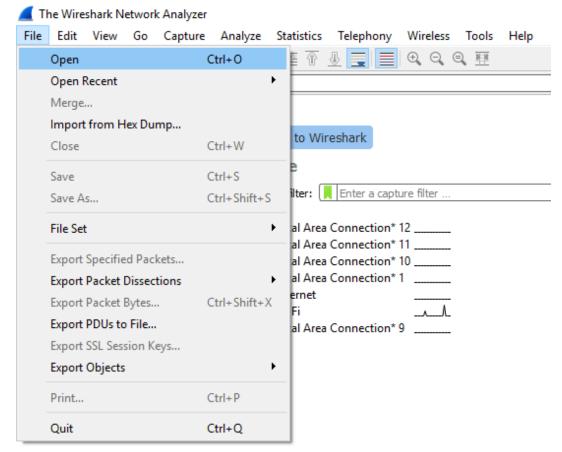
Capturing Packets in MikroTik – TZSP Configuration (Alt.)

```
/ip firewall mangle
add action=sniff-tzsp chain=prerouting
sniff-target=ip.of.wireshark.box
sniff-target-port=port.of.wireshark.box
```


By default TZSP is run on UDP/37008, so you can listen on UDP/37008 with your sniffing tools like **wireshark** (will introduce wireshark more in analyze step)

Capturing Packets in MikroTik – Done

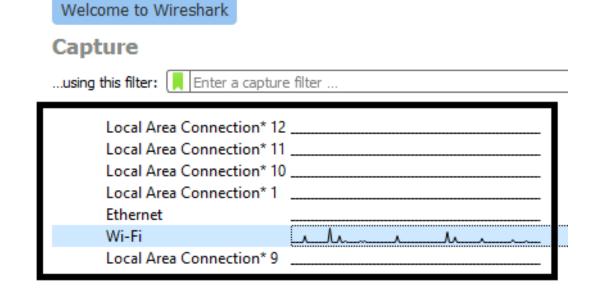
Are you done? Let's continue to analyze the PCAP!

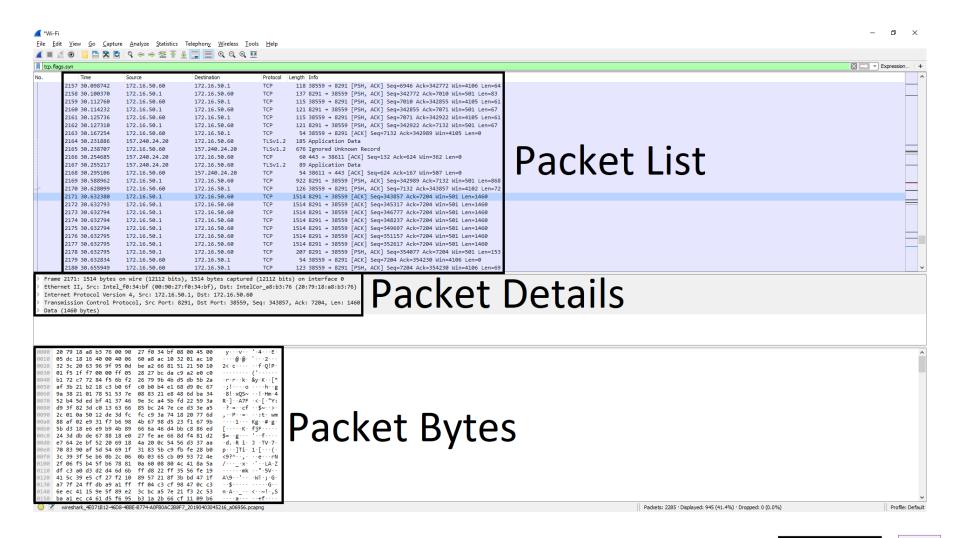

Analyzing Packets – Fire On The Tools

Fire on your tools:

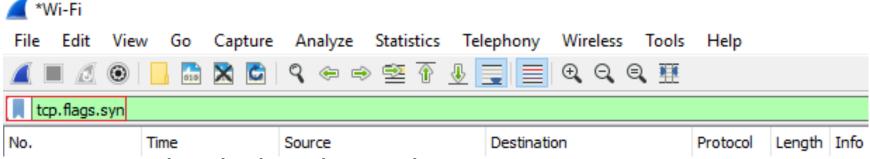
- Wireshark
 - Open Source (GNU Public License)
 - Multi-Platform (Windows, Linux, *BSD & MacOS)
 - Advanced Filtering & Analyzing
 - Used for Live Sniffing & Packet Analysis
- Some people use Wireshark for:
 - Network Administrators: troubleshoot network problems
 - Network Security Engineers: examine security problems
 - Developers: debug protocol implementations
 - Peoples: learn network protocol internals

Analyzing Packets – Getting Started with Wireshark


•To getting started with wireshark you can open the pcap file that you have from capturing packets

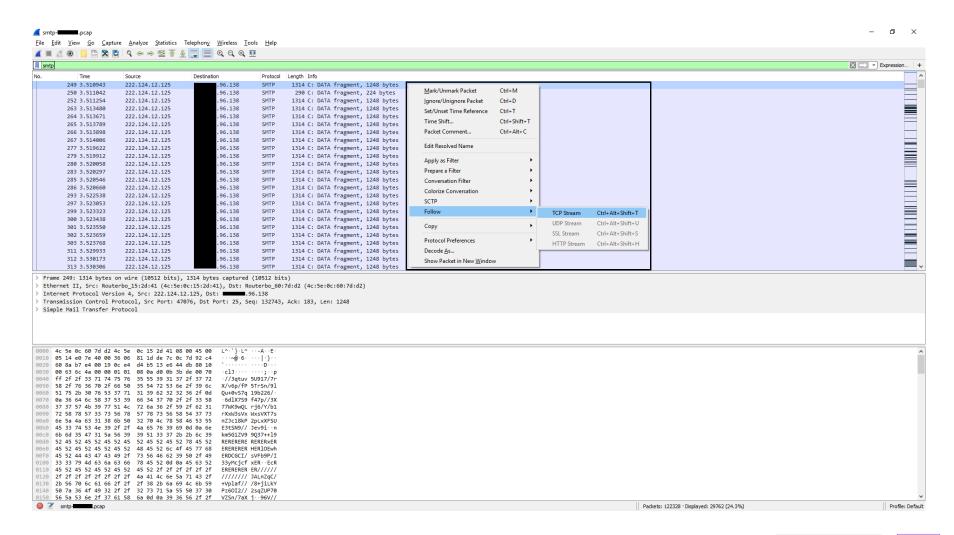

Analyzing Packets – Getting Started with Wireshark

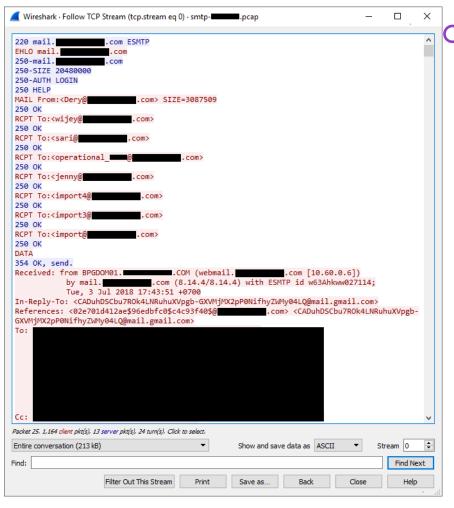
Or you can capture the new packets ☺



Analyzing Packets – Wireshark Interfaces

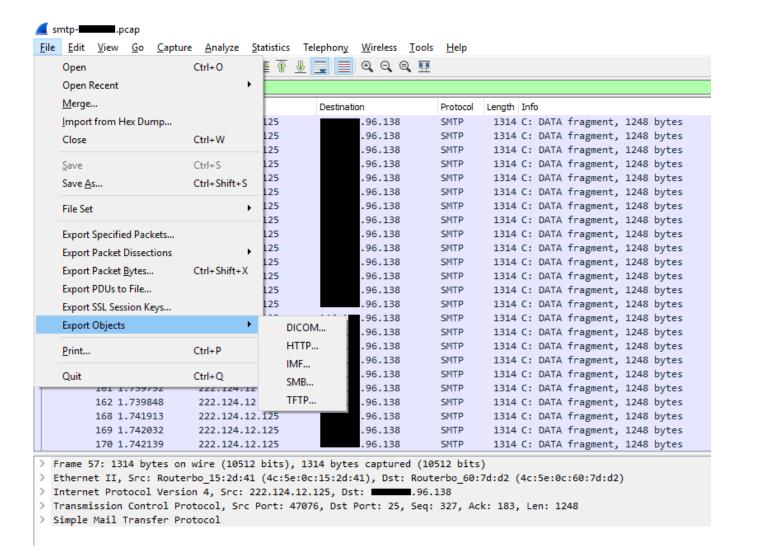
Analyzing Packets – Packet Filtering


OWe can filter specific packet type in wireshark


OYou can check the cheat sheet on

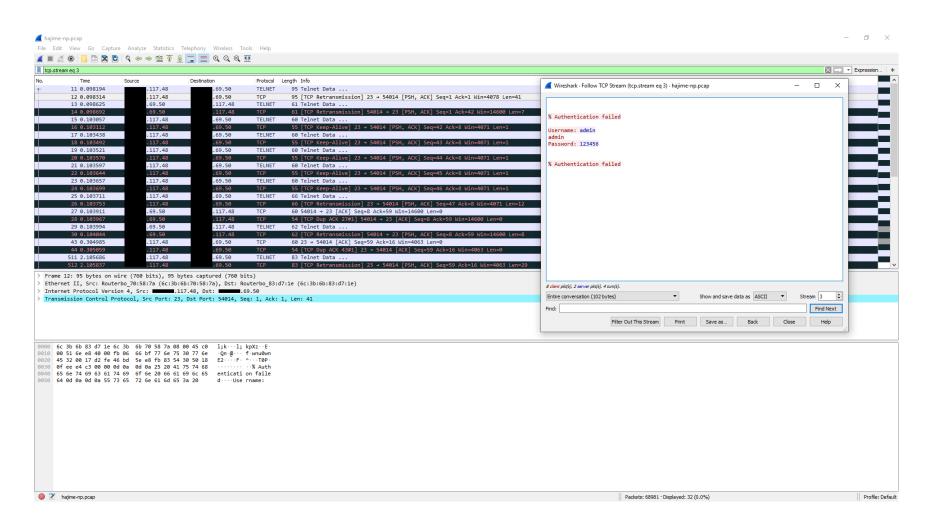
http://packetlife.net/media/library/13/Wireshark Display Filters.pdf

Analyzing Packets – Fetching a Messages



Analyzing Packets – Fetching a Messages

oNow we got a messages from email © and now we can analyze the email


Analyzing Packets – Exporting Object (PDF, JPG, PNG, etc.)

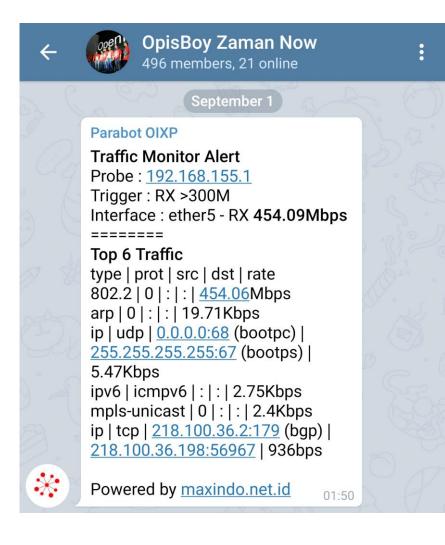
Analyzing Packets – Flood Example (DNS)

4 u	ıdp53.pc	ар					
File	Edit	Viev	v Go Capture	Analyze Statistics	Telephony Wireless	Tools Help	
		•	oto 🗙 🖒	९ ⇔ ⇒ 堅 🕜	હુ 📃 📃 🗨 વ્	⊇ ∰	
	Ins						
۱o.			Time	Source	Destination	Protocol	Length Info
	6	321	32.997895	.68.170	8.8.4.4	DNS	74 Standard query 0xb6d3 A m9.tthbbre.com
	2	336	9.379658	.68.170	8.8.4.4	DNS	74 Standard query 0xb6d3 A m6.rszxbjn.com
	2	335	9.379443	.68.170	8.8.4.4	DNS	74 Standard query 0xb6d3 A m6.rszxbjn.com
		856	3.542306	.68.170	8.8.4.4	DNS	75 Standard query 0xb676 A m36.qjbyfio.com
		855	3.542067	.68.170	8.8.4.4	DNS	75 Standard query 0xb676 A m36.qjbyfio.com
	2	827	11.392291	.68.170	8.8.4.4	DNS	75 Standard query 0xb669 A m10.qjwhpfe.net
	2	826	11.392077	.68.170	8.8.4.4	DNS	75 Standard query 0xb669 A m10.qjwhpfe.net
	3	397	13.700797	.68.170	8.8.4.4	DNS	75 Standard query 0xb607 A m28.pgxgxmo.com
	3	396	13.700657	.68.170	8.8.4.4	DNS	75 Standard query 0xb607 A m28.pgxgxmo.com
	3	173	13.030748	.68.170	8.8.4.4	DNS	75 Standard query 0xb603 A m38.ddjctyf.biz
	3	172	13.030574	.68.170	8.8.4.4	DNS	75 Standard query 0xb603 A m38.ddjctyf.biz
		662	2.620854	.68.170	8.8.4.4	DNS	75 Standard query 0xb5c0 A m31.swwgocu.net
		661	2.620628	.68.170	8.8.4.4	DNS	75 Standard query 0xb5c0 A m31.swwgocu.net
	4	996	26.914537	.68.170	8.8.4.4	DNS	74 Standard query 0xb5be A m7.brmgkod.com
	4	995	26.914357	.68.170	8.8.4.4	DNS	74 Standard query 0xb5be A m7.brmgkod.com
	7	936	40.211405	.68.170	8.8.4.4	DNS	74 Standard query 0xb596 A m9.bnwqcxl.com
	7	935	40.211193	.68.170	8.8.4.4	DNS	74 Standard query 0xb596 A m9.bnwqcxl.com
	6	961	35.918350	.68.170	8.8.4.4	DNS	75 Standard query 0xb588 A m30.atoifmo.com
	6	960	35.918120	.68.170	8.8.4.4	DNS	75 Standard query 0xb588 A m30.atoifmo.com
	7	059	36.405497	.68.170	8.8.4.4	DNS	74 Standard query 0xb54d A m16.plswhql.cc
	7	058	36.405310	.68.170	8.8.4.4	DNS	74 Standard query 0xb54d A m16.plswhql.cc
		134	0.488968	.68.170	8.8.4.4	DNS	75 Standard query 0xb51b A m30.shbqnoe.net
		133	0.488805	.68.170	8.8.4.4	DNS	75 Standard query 0xb51b A m30.shbqnoe.net
	1	256	5.029502	.68.170	8.8.4.4	DNS	75 Standard query 0xb51a A m31.gumqkle.net

Analyzing Packets – Flood Example (TELNET)

Analyzing Packets – Flood Example (WINBOX)

	8291 tcp.flags.syn				
	Time	Source	Destination	Protocol	Length Info
689	959 304.500312	.69.50	.123.140	TCP	60 28809 → 8291 [SYN] Seq=0 Win=14600 Len=0
689	960 304.500396	.69.50	.110.130	TCP	60 19497 → 8291 [SYN] Seq=0 Win=14600 Len=0
689	961 304.500438	.69.50	.123.140	TCP	54 [TCP Out-Of-Order] 28809 → 8291 [SYN] Seq=0 Win=14600 Len=0
689	962 304.500439	.69.50	.246.195	TCP	54 [TCP Out-Of-Order] 11758 → 23 [SYN] Seq=0 Win=14600 Len=0
689	963 304.500503	.69.50	.110.130	TCP	54 [TCP Out-Of-Order] 19497 → 8291 [SYN] Seq=0 Win=14600 Len=
689	964 304.500538	.69.50	.106.187	TCP	60 35890 → 8291 [SYN] Seq=0 Win=14600 Len=0
689	965 304.500619	.69.50	.60.94	TCP	60 61649 → 8291 [SYN] Seq=0 Win=14600 Len=0
689	966 304.500684	.69.50	.106.187	TCP	54 [TCP Out-Of-Order] 35890 → 8291 [SYN] Seq=0 Win=14600 Len=
689	967 304.500721	.69.50	.151.111	TCP	60 44140 → 8291 [SYN] Seq=0 Win=14600 Len=0
689	968 304.500766	.69.50	.60.94	TCP	54 [TCP Out-Of-Order] 61649 → 8291 [SYN] Seq=0 Win=14600 Len=0
689	969 304.500850	.69.50	.151.111	TCP	54 [TCP Out-Of-Order] 44140 → 8291 [SYN] Seq=0 Win=14600 Len=
689	970 304.500856	.69.50	.98.233	TCP	60 61327 → 8291 [SYN] Seq=0 Win=14600 Len=0
689	971 304.500885	.69.50	.119.191	TCP	60 2865 → 8291 [SYN] Seq=0 Win=14600 Len=0
689	972 304.500967	.69.50	.98.233	TCP	54 [TCP Out-Of-Order] 61327 → 8291 [SYN] Seq=0 Win=14600 Len=0
689	973 304.500983	.69.50	.119.191	TCP	54 [TCP Out-Of-Order] 2865 → 8291 [SYN] Seq=0 Win=14600 Len=0
689	974 304.501001	.69.50	.186.77	TCP	60 15023 → 8291 [SYN] Seq=0 Win=14600 Len=0
689	975 304.501098	.69.50	.186.77	TCP	54 [TCP Out-Of-Order] 15023 → 8291 [SYN] Seq=0 Win=14600 Len=0
689	976 304.501129	.69.50	.120.221	TCP	60 24557 → 8291 [SYN] Seq=0 Win=14600 Len=0
689	977 304.501157	.69.50	.57.155	TCP	60 1057 → 8291 [SYN] Seq=0 Win=14600 Len=0
689	978 304.501246	.69.50	.57.155	TCP	54 [TCP Out-Of-Order] 1057 → 8291 [SYN] Seq=0 Win=14600 Len=0
689	979 304.501248	.69.50	.120.221	TCP	54 [TCP Out-Of-Order] 24557 → 8291 [SYN] Seq=0 Win=14600 Len=
689	980 304.502189	.69.50	.222.170	TCP	60 7020 → 23 [SYN] Seq=0 Win=14600 Len=0
689	981 304.502296	.69.50	.18.124	TCP	60 58167 → 23 [SYN] Seq=0 Win=14600 Len=0


Analyzing Packets – Flood Example (SMB)

		9 ⇔ ≅ 1 }	🖟 📃 🗏 ૧૧૧	•	
tcp.port e	445 tcp.flags.syn				
	Time	Source	Destination	Protocol	Length Info
	1 0.000000	192.168.1.46	157.201.73.159	TCP	66 56217 → 445 [SYN] Seq=0 Win=8192 Len=0 MSS=1460 WS=4 SACK_PERM=1
	2 0.000014	192.168.1.46	157.201.73.159	TCP	66 [TCP Out-Of-Order] 56217 → 445 [SYN] Seq=0 Win=8192 Len=0 MSS=1460 WS=4 SACK_PERM=
	3 0.015284	192.168.1.46	155.81.49.177	TCP	66 56216 → 445 [SYN] Seq=0 Win=8192 Len=0 MSS=1460 WS=4 SACK_PERM=1
	4 0.015308	192.168.1.46	155.81.49.177	TCP	66 [TCP Out-Of-Order] 56216 → 445 [SYN] Seq=0 Win=8192 Len=0 MSS=1460 WS=4 SACK_PERM=
	5 0.015363	192.168.1.46	212.182.121.241	TCP	66 56218 → 445 [SYN] Seq=0 Win=8192 Len=0 MSS=1460 WS=4 SACK_PERM=1
	6 0.015373	192.168.1.46	212.182.121.241	TCP	66 [TCP Out-Of-Order] 56218 → 445 [SYN] Seq=0 Win=8192 Len=0 MSS=1460 WS=4 SACK_PERM=
	7 0.018396	192.168.1.46	219.78.8.88	TCP	66 56567 → 445 [SYN] Seq=0 Win=8192 Len=0 MSS=1460 WS=4 SACK_PERM=1
	8 0.018414	192.168.1.46	219.78.8.88	TCP	66 [TCP Out-Of-Order] 56567 → 445 [SYN] Seq=0 Win=8192 Len=0 MSS=1460 WS=4 SACK_PERM=
	9 0.046451	192.168.1.46	124.37.75.228	TCP	66 56225 → 445 [SYN] Seq=0 Win=8192 Len=0 MSS=1460 WS=4 SACK_PERM=1
	10 0.046465	192.168.1.46	124.37.75.228	TCP	66 [TCP Out-Of-Order] 56225 → 445 [SYN] Seq=0 Win=8192 Len=0 MSS=1460 WS=4 SACK_PERM=
	11 0.046523	192.168.1.46	217.46.218.120	TCP	62 55541 → 445 [SYN] Seq=0 Win=8192 Len=0 MSS=1460 SACK_PERM=1
	12 0.046533	192.168.1.46	217.46.218.120	TCP	62 [TCP Out-Of-Order] 55541 → 445 [SYN] Seq=0 Win=8192 Len=0 MSS=1460 SACK_PERM=1
	13 0.046555	192.168.1.46	91.38.86.182	TCP	66 56226 → 445 [SYN] Seq=0 Win=8192 Len=0 MSS=1460 WS=4 SACK_PERM=1
	14 0.046562	192.168.1.46	91.38.86.182	TCP	66 [TCP Out-Of-Order] 56226 → 445 [SYN] Seq=0 Win=8192 Len=0 MSS=1460 WS=4 SACK_PERM=
	15 0.093386	192.168.1.46	183.175.120.189	TCP	66 56229 → 445 [SYN] Seq=0 Win=8192 Len=0 MSS=1460 WS=4 SACK_PERM=1
	16 0.093404	192.168.1.46	183.175.120.189	TCP	66 [TCP Out-Of-Order] 56229 → 445 [SYN] Seq=0 Win=8192 Len=0 MSS=1460 WS=4 SACK_PERM=
	17 0.108902	192.168.1.46	189.220.119.135	TCP	66 56235 → 445 [SYN] Seq=0 Win=8192 Len=0 MSS=1460 WS=4 SACK_PERM=1
	18 0.108915	192.168.1.46	189.220.119.135	TCP	66 [TCP Out-Of-Order] 56235 → 445 [SYN] Seq=0 Win=8192 Len=0 MSS=1460 WS=4 SACK_PERM=
	19 0.108953	192.168.1.46	190.64.238.86	TCP	66 56231 → 445 [SYN] Seq=0 Win=8192 Len=0 MSS=1460 WS=4 SACK_PERM=1
	20 0.108961	192.168.1.46	190.64.238.86	TCP	66 [TCP Out-Of-Order] 56231 → 445 [SYN] Seq=0 Win=8192 Len=0 MSS=1460 WS=4 SACK_PERM=
	21 0.108977	192.168.1.46	197.87.120.30	TCP	66 56233 → 445 [SYN] Seq=0 Win=8192 Len=0 MSS=1460 WS=4 SACK_PERM=1
	22 0.108984	192.168.1.46	197.87.120.30	TCP	66 [TCP Out-Of-Order] 56233 → 445 [SYN] Seq=0 Win=8192 Len=0 MSS=1460 WS=4 SACK_PERM=
	23 0.126188	192.168.1.46	115.16.221.99	TCP	66 56575 → 445 [SYN] Seq=0 Win=8192 Len=0 MSS=1460 WS=4 SACK_PERM=1
	24 0.126210	192.168.1.46	115.16.221.99	TCP	66 [TCP Out-Of-Order] 56575 → 445 [SYN] Seq=0 Win=8192 Len=0 MSS=1460 WS=4 SACK_PERM=
1	. 66 butos on wi	no /E20 hits) 66 hi	tes captured (528 bit	-\	

Analyzing Packets – Wireshark Reference

- OWireshark Website
 http://www.wireshark.org
- OWireshark Documentation http://www.wireshark.org/docs/
- OWireshark Wiki http://wiki.wireshark.org
- ONetwork analysis Using Wireshark Cookbook http://www.amazon.com/Network-Analysis-Using-WiresharkCookbook/dp/1849517649

Study Case – Parabot OpenIXP

- OpenIXP is one of the biggest Internet Exchange in Indonesia
- and Parabot, a Bot in Telegram that brewed by @ericksetiawan and the Infrastructure was provided by @mtakeuchi using MikroTik RouterOS as a Probe & BGP router in OpenIXP, also Powered by Maxindo Networks
- Parabot help to notify us when the router receiving broadcast or flood on OpenIXP interface
- Parabot will do Torch and start Packet
 Sniffer on your Router

Conclusion

Secure ≠ Easy

Feel so hard to analyze? Let me help you!

michael@takeuchi.id

https://www.facebook.com/mict404

https://www.linkedin.com/in/michael-takeuchi/

Question & Answer

Slide is available in my GitHub repository https://github.com/mict404/slide/

