

Practical Pipelining using Python

The Sydney Institute for Astrophysics
Cormac Purcell, CASS Radio School, 2nd October 2014

Data flood

● Huge amount of meta-data necessary to manage successful science:

● Coordinates, sensitivity, outages, coverage, imaging quality, source-finding, cross-
matching, quality control, publishing data-products

● Culture of transparency, consistency and reproducibility

● Transparent processing from final data-product to raw observations

● Consistent processing across dataset using well tested software

● Version control so that results are reproducible after later releases

● Worth building a software pipeline!

● More projects than ever conducted
survey mode – even PhD projects

● Wide area or dispersed: many
pointings

● Multi-epoch: years of ongoing
observations and many observers

● Multi-wavelength: linked with
sister surveys on other telescopes

Typical pipeline flow

● Data reduction (ingestion, calibration, imaging)

● Quality control (re-observe bad data, weighting, flagging)

● Basic Analysis (source-finding, clump/spectral-fitting, catalogues)

● Advanced analysis (multi-wavelength cross-matching, time-series, object
identification)

● Data access and citizen science (web-publication, virtual observatory)

● Must be a meta-data trail from the start – requires a database

Reduce
raw data

Assess
quality

Disseminate
results & data

Analyse &
Interpret

Python – a sticky language

● Image and table data accessible using astropy module (FITS & ASCII)

● Manage metadata via simple built-in database or external relational database

● Easily manipulate data in memory to create diagnostic metrics (numpy)

● Flexible plotting ability via matplotlib and APLpy

● Well-tested suite of analysis tools, e.g., source-finding (Aegean, Blobcat),
model-fitting (MPFIT, scipy.optomize, EMCEE).

● Python code is easy to read and should be published alongside papers

● Web-servers (e.g. Apache2, bottle) understand python. Build dynamic web-
interfaces to your scripts and share with your co-authors and community:

● Catalogue & image servers, 'Zooniverse' style analysis (user-based)

● Automatically generate plots, tables and reports for quality assessment

Reduce
raw data

Assess
quality

Disseminate
results & data

Analyse &
Interpret

Python – astropy and friends

● Until ~2012 python astronomy modules were scattered around the web

● Core modules now unified under astropy banner & affiliated packages

● Astropy.io.fits (formerly PyFITS)

● Astropy.io.ascii

● Astropy.wcs (formerly PyWCS)

● Astropy.coordinates

● Astropy.convolution

● Useful affiliated packages:

● APLpy - Image plotting

● PyVO - query the virtual observatory

● Useful non-astronomy packages

● MySQL DB

● SQLite3

● Matplotlib

● SciPy

● Astroquery – access web services

● MPFIT

● EMCEE

Python – beware the unknown

● Astropy is still under development

● Core packages mature & well tested

● Newer packages incomplete & in flux

● Newer packages often expose less
well-known python functionality and
add useful features

● Sometimes necessary to peer behind
the curtain and get your hands dirty

● Astropy.io.ascii ~ numpy.loadtxt

● Astropy.table ~ numpy.recarray

● APLpy easily augmented

● Matplotlib under the hood

● Combine with other figures

● No substitute for really understanding
what is being done to your data!

Python – accessing external software

● Good: Often easiest to make system calls

● Tell python where the package lives and set
up the $ENVIRONMENT

● Pipe into STDOUT to view output of task in
real time

● Bad(ish): Some external packages have
dedicated python wrappers

● MIRIAD → MIRpy

● AIPS → parseltongue and obittalk

● CASA → casapy *

● Increases complexity sometimes (bad)

● Super-Ugly: Can interface with ancient
user-driven software using pyexpect

● Pretends to be the user when dealing with
Q&A command line interfaces

* casapy comes with its own version of Python, which means you may need to
manage this environment in parallel, i.e., duplicate installed modules

CASA

MIRIAD

AIPS

IRAF

DS9

KVIS

IDL

BASH

Python – accessing external software

● Regular expressions (RegEx)

● Match patterns in any ASCII string

● Incredibly useful for parsing the
output of programs and tasks, e.g.,
MIRIAD uvindex

\S+ = 1 or more non-space chars

\s* = 0 or more spaces

() = groups of text to extract

Databases – Why?

ID Name RA_deg Dec_deg ID Flux_jy dFlux_jy rms_jy

● Replaces Excel (or Topcat, ASCII) in your workflow

● Advantages: scriptable, multi-user access, fast

● Large projects: run on a dedicated server (MySQL)

● Small projects: database built-into python (SQLite3)

● Server-client model with choice of interface client:

● Graphical clients which mimics spreadsheets

● Queries through a script or command-line return a filtered or joined table

● Under the bonnet:

● Tables connected by key columns with unique entries

SQLite3 – Python's built-in database

● Distributed with python since V2.5

● Serverless: creates a database file

● File can be moved, copied and read
on any other system (OS-agnostic)

● Can also operate in memory

● No configuration required

● Open source

● Crash safe (prevents data corruption)

http://www.sqlite.org

● Already used by many well known programs to store data on your computer:

http://www.sqlite.org/

SQLite3 – access through Firefox

● SQLite Manager Firefox plug-in: edit, query & export table data

https://addons.mozilla.org/en-US/firefox/addon/sqlite-manager/

https://addons.mozilla.org/en-US/firefox/addon/sqlite-manager/

SQLite3 – access through Python

● Python SQLite3 database access
takes place via cursor object

● Queries are designed in a special
statements which are used to
delete, insert or select information
from the database tables.

● Interface is almost identical when
accessing heavy-duty databases
(MySQL, PostgreSQL).

Databases – Sequel SQL

● 'Structured Query Language' (SQL)

● Close to English in syntax

● Basic trigonometric and
mathematical operations

● Powerful regular expressions

SQL – creating a table

Raw SQL Python

SQL – populating a database

Raw SQL Python

SQL – querying a database

Raw SQL Python

SQL – joining two tables

Raw SQL Python

SQL – joining two tables

Left Join

Inner Join

Right Join

Outer Join

Left Join
WHERE B

IS NULL

Outer Join
WHERE A IS NULL

OR B IS NULL

Right Join
WHERE A
IS NULL

Image credit: stackoverflow

Python – Numpy record arrays

● Numpy is the array-processing and
vector algebra module for python

● Arrays commonly defined as a
single data-type (e.g., 32-bit float)

● A more rich definition exists which
allows mixing of types - recarrays

● Columns can be named and
assigned different variable types
(dtypes)

● Natural match for tabular data
stored in a database

● Some database-like functionality
using logical statements and filters

● Augmented version used in the
astropy.table module

 http://docs.scipy.org/doc/numpy/user/basics.rec.html

Plotting from a database

● Query driven plotting is a very
powerful tool for exploring data

● The query defines the input data

● Two most useful plots in science:

● Histogram

● Scatter plot

● Build simple python script to read
one or more queries for comparison

● Control flags allow manipulation of
plot parameters

Sharing your science – web access

● Interface to your project at all stages

● Managing observations (e.g., MALT90)

● Raw data quality control (daily reports)

● Data-reduction control (selection)

● User driven tasks: eyeball carnage

● Two main choices for web

● Heavy duty server e.g., Apache2

● Light web 'framework' e.g., Bottle

● Apache: Comon Gateway Interface

● Python scripts in the cgi-bin directory

● Matching forms in separate HTML

● Bottle: Templating language

● HTML template defines forms and
calls python in one place

● Stand-alone or use within Apache

Python
cgi-bin

MySQL
DB

Heavy
Duty:

HTML
forms

Templating:
Call python
within HTML

Built-in
web server

SQlite3
DB

Light
Duty:

Pipeline case study – CORNISH

● Northern GLIMPSE I region

● 10o < l < 65o |b| < 1o

● 100 square degrees

● 8.5' primary beam, 1.5'' resolution

● < 0.4 mJy/bm rms noise level

● 9351 fields, hexagonal pattern

● 2x 40s cuts → 18702 data

VLA array configurations B & BnA

Pipeline case study – CORNISH

● Primary data product is a mosaiced
image 'tile'

● Observations conducted over 3
years

● Important to quickly reduce data
and track data-quality so bad fields
could be re-observed

Weight image

Pipeline case study – CORNISH

● Fairly standard data-reduction

● However, observations took
place during a rolling antenna
upgrade, control software
upgrade and peak electrical
storm season

● Python based pipeline was
driven by ASCII configuration
files and stored all metadata in
a MySQL database

● Raw and intermediate data
were stored on disk as uv- or
image-format FITS files

● Database was instrumental for
managing data producing
quality control diagnostic
plots

Pipeline case study – CORNISH

● Actual dwell times 77 – 80 seconds for most fields

Dwell Times:

Pipeline case study – CORNISH

● After flagging > 18 effective antennas for most fields.

Effective number of antennas:

Pipeline case study – CORNISH

● Sensitivity split between two Epochs
● 0.25 mJy/beam (EVLA, high-dec)
● 0.35 mJy/beam (mixed VLA/EVLA)

Weather

Complex emission

RMS noise per field (scale: 0.2 -0.7 mJy/beam)

Pipeline case study – CORNISH

● Once the data was imaged
progressed onto source-finding to
create a catalogue

● Characterised unresolved emission
using Gaussians (Obit Soufnd)

● Measured extended sources using
polygonal aperture photometry

● Source finders wrote directly into
the database and external python
scripts were used to merge the two
types of catalogue

● Note 1: More modern source finders
available now - Aegean and Blobcat

● Note 2: Python Shapely module
very useful for manipulating
polygons http://toblerity.org/shapely/

https://github.com/PaulHancock/Aegean

http://blobcat.sourceforge.net/

Pipeline case study – CORNISH

● Co-Ordinated Radio 'N' Infrared Survey for High-mass star formation

● Key science requires reference to the mid-IR GLIMPSE data

● However, most objects of interest are extended – difficult to automate

● Solution: Eyeball carnage!

Pipeline case study – CORNISH

● Web interface to the image
and catalogue data using
Apache and Python CGI

Search tools:
● By partial name
● By user notes

Pipeline case study – CORNISH

● Web interface to the image
and catalogue data using
Apache and Python CGI

Catalogue access
● Pre-defined SQL queries
● Links to catalogue and

image server

Pipeline case study – CORNISH

● Web interface to the image
and catalogue data using
Apache and Python CGI

● Catalogue table filtered
by SourceType HII region

● Links to source-summary
and cross-match page

Pipeline case study – CORNISH

● Web interface to the image
and catalogue data using
Apache and Python CGI

● Source summary page
● Details of source pulled

from the database
● Links to edit pages

Made using APLpy

Pipeline case study – CORNISH

● Web interface to the image
and catalogue data using
Apache and Python CGI

● Form allowing editing of
identified source type
and notes in the DB.

● Tracks history and user

Pipeline case study – CORNISH

● Live web page at:

http://cornish.leeds.ac.uk

● Catalogue server

● uv-date server

● Image cutout server and
clickable maps

● Batch Image server using
uploaded catalogue

● Cross-matching service

● All done in Python

Summary and notes on the future

● Take-away message:

● Python can stitch practically everything together and make your life easier

● Huge range of well-tested libraries (although don't treat as a black-box)

● Lends itself well collaborating on the web and publishing data

● If you are short on time and just want to learn one tool – learn Python

● Caveats:

● Not always the best tool for the job

● For very large web projects javascript browser based plotting will be superior

Thanks for listening!

Links on next slide

Resources

● NumPy RecArrays:

● http://docs.scipy.org/doc/numpy-1.8.1/reference/generated/numpy.recarray.html

● http://docs.scipy.org/doc/numpy/user/basics.rec.html

● SQL & databases:

● https://docs.python.org/2/library/sqlite3.html

● http://zetcode.com/db/sqlitepythontutorial/

● https://www.sqlite.org/lang.html

● http://mysql-python.sourceforge.net/MySQLdb.html

● http://zetcode.com/db/mysqlpython/

● Reqular expressions:

● https://docs.python.org/2/howto/regex.html

● http://www.tutorialspoint.com/python/python_reg_expressions.htm

● Plotting:

● http://aplpy.github.io/

● http://matplotlib.org/ And also http://plplot.sourceforge.net/ (for PGPLOT users)

http://docs.scipy.org/doc/numpy-1.8.1/reference/generated/numpy.recarray.html
http://docs.scipy.org/doc/numpy/user/basics.rec.html
https://docs.python.org/2/library/sqlite3.html
http://zetcode.com/db/sqlitepythontutorial/
https://www.sqlite.org/lang.html
http://mysql-python.sourceforge.net/MySQLdb.html
http://zetcode.com/db/mysqlpython/
https://docs.python.org/2/howto/regex.html
http://www.tutorialspoint.com/python/python_reg_expressions.htm
http://aplpy.github.io/
http://matplotlib.org/
http://plplot.sourceforge.net/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

