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Practical Reproducibility in Geography and
Geosciences

Daniel N€ust and Edzer Pebesma

Institute for Geoinformatics, University of M€unster

Reproducible research is often perceived as a technological challenge, but it is rooted in the challenge to

improve scholarly communication in an age of digitization. When computers become involved and

researchers want to allow other scientists to inspect, understand, evaluate, and build on their work, they

need to create a research compendium that includes the code, data, computing environment, and script-

based workflows used. Here, we present the state of the art for approaches to reach this degree of

computational reproducibility, addressing literate programming and containerization while paying attention

to working with geospatial data (digital maps, geographic information systems). We argue that all researchers

working with computers should understand these technologies to control their computing environment, and

we present the benefits of reproducible workflows in practice. Example research compendia illustrate the

presented concepts and are the basis for challenges specific to geography and geosciences. Based on existing

surveys and best practices from different scientific domains, we conclude that researchers today can

overcome many barriers and achieve a very high degree of reproducibility. If the geography and geosciences

communities adopt reproducibility and the underlying technologies in practice and in policies, they can

transform the way researchers conduct and communicate their work toward increased transparency,

understandability, openness, trust, productivity, and innovation. Key Words: computational reproducibility,
reproducible research, scholarly communication.

R
eproducible research is often perceived as pri-

marily a technological challenge, but it is

really rooted in the challenge to adjust schol-

arly communication to today’s level of digitization

and diversity of scientific outputs. Common aca-

demic challenges, such as broken metrics and pres-

sure to publish articles over other products (see, e.g.,

Piwowar 2013; Nosek et al. 2015), have a negative

impact on reproducibility. The state of reproducibility

in geosciences and GIScience was investigated by

Konkol, Kray, and Pfeiffer (2019) and N€ust,
Boettiger, and Marwick (2018), respectively, and both

studies show that it needs to improve. Other fields

support this result; for example, Brunsdon (2016) on

quantitative geography, Wainwright (2020) on an

informal search in critical geography, Sui and Kedron

(2020) on the conceptual challenges of reproducibility

and replication in geography, and Sui and Shaw

(2018) on the lack of knowledge about the state of

reproducibility in human dynamics.
In this article, we present the current state of the

art for practical reproducibility of research and con-

nect it to geography and geosciences. The challenges

around reproducible research manifest in the general

lack of knowledge on how to work reproducibly and

the small fraction of published reproducible articles.

Interestingly, this is the case even though the indi-

vidual and overall benefits of reproducibility

(Vandewalle, Kovacevic, and Vetterli 2009; Donoho

2010; Markowetz 2015; Marwick 2015; Kray et al.

2019) and the innovative potential of working

reproducibly, which include, for example, “unhelpful

… non-reproducibility” (Sui and Kedron 2020),

better collaboration (Singleton, Spielman, and

Brunsdon 2016), and new pathways (Waters 2020),

are increasingly known and common concerns are

debunked (Barnes 2010). Editorial requirements and

author guidelines are an effective means to encour-

age reproducibility, but they are not widespread

enough or are still too lax (cf. Nosek et al. 2015;

Singleton, Spielman, and Brunsdon 2016; Stodden,

Seiler, and Ma 2018), so further incentives are

needed for a change of habits and culture (Munaf�o
et al. 2017; N€ust, Boettiger, and Marwick 2018).

Because many solutions for practical reproducibility

are not discipline specific, we include literature from

other domains to corroborate the small body of work

in “geo” fields, but we stick to examples and
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highlight particular concerns for these communities

of practice. For a much more extensive and compre-

hensive overview of the topic, we refer the reader to

the recent consensus study report Reproducibility and
Replicability in Science (National Academies of

Sciences, Engineering, and Medicine 2019).
We follow the Claerbout/Donoho/Peng terminol-

ogy (Barba 2018) and distinguish reproduction

from replication1 and reproducibility to mean

computational reproducibility (National Academies

of Sciences, Engineering, and Medicine 2019).

Replicability is “the ultimate standard” (Peng 2011),

because it requires independent confirmation and

potentially yields new findings. Yet replication poses

fewer technological challenges: Hypotheses, results,

and conclusions are communicated with text and are

addressed by some form of peer review. A suitable

methodology for independent repetition can be

developed from the text. Replication demands, how-

ever, that a particular study can be replicated; that

is, that data sets used can be re-collected or compu-

tations can be repeated (Peng 2011). In studies

describing particular areas and time periods of the

Earth, this might not be possible; for instance, satel-

lite images or interviews can only be taken once, at

a particular moment in time, by a particular instru-

ment or person, respectively. Furthermore, large-

scale computations could be prohibitively expensive

to replicate (�Simko et al. 2019), specialized hardware

can be singular (Santana-Perez and P�erez-Hern�andez
2015), and real-time data streams would have to be

openly recorded constantly (cf. Brunsdon 2016).

When studies are impossible to replicate for con-

ceptual or practical reasons, reproducibility is the

only way we can ensure that a scientific claim can

be evaluated, and it becomes a minimal standard

(Peng 2011; Sandve et al. 2013). Open data alone

do not sufficiently guarantee reproducibility despite

great advancements driven by the FAIR principles

and research data management (see Wilkinson et al.

2016; Higman, Bangert, and Jones 2019), but work-

flows and processes must be open, too (Chen et al.

2019). The dynamic nature of the development pro-

cesses makes it particularly important that concerns

around computational reproducibility—that is, all

aspects of computers involved in research—are com-

prehensively considered from the start. Otherwise,

science falls short of communicating results effec-

tively, as stated in Claerbout and Karrenbach’s

claim: “An article about a computational result is

advertising, not scholarship. The actual knowledge is

the full software environment, code and data, that

produced the result” (adapted from Donoho [2010],

who paraphrased Claerbout and Karrenbach 1992).
So, science today is too complicated for brief

articles to fully communicate knowledge (Donoho

2010; Marwick 2015), and “[… ] paradoxically, these

in-silico experiments are often more difficult to

reproduce than traditional laboratory techniques”

(Howe 2012, 36). Peng (2011) introduced a spectrum
of reproducibility, which is useful to inclusively

acknowledge limitations and identify the current

state of individual pieces of work and practices. Peng

(2011) further argued that researchers should not

wait for a comprehensive solution and concluded,

“developing a culture of reproducibility … will

require time and sustained effort” (1227). As part of

this effort, we present the following tools and discuss

challenges for reaching a high degree of computa-

tional reproducibility, fully communicating knowl-

edge, and making in silico experiments reproducible

when using and presenting geospatial data.

Reproducible Workflows in Geography
and Geosciences

Creating Reproducible Workflows

Scientists must realize how fragile the typical

research workflows are today. We have grown accus-

tomed to the experience that a computer-based anal-

ysis we conduct today still works tomorrow; yet,

although this is often the case, when there are differ-

ences, they can be very hard to explain, despite their

dramatic effect (as documented, e.g., in

Gronenschild et al. 2012; Bhandari Neupane et al.

2019). The lack of reported failures from geography

and geosciences is not reassuring, and measures to

improve reproducibility have been suggested. For

example, Gil et al. (2016) presented the Geoscience
Paper of the Future based on a thorough analysis of

developments and challenges, and they give useful

and concrete steps for modern digital open scholar-

ship; Singleton, Spielman, and Brunsdon (2016)

described a framework for reproducible publications

based on Open GIS, open data, and workflow mod-

els for an Open Geographic Information science

(Open GISc) going beyond text-centric publications.

Building on these ideas, we present a practical

approach for reproducible workflows and extend

2 N€ust and Pebesma



previous work with a deliberate management of the

computing environment.
A computing environment is the totality of hard-

ware and software components involved in a particu-

lar workflow. The description of the computing

environment must be understandable by both

machines and humans: by machines so that snap-

shots can be taken, the environment can be moved,

or infrastructure can provision required capabilities

(e.g., using ontologies; Santana-Perez and P�erez-
Hern�andez 2015); by humans so that failures can be

investigated and fixed. This documentation can be

crafted manually, generated with the assistance of

tools (e.g., Jupyter Project et al. 2018; N€ust and

Hinz 2019), or recorded as provenance; for example,

using scientific workflow management systems (see

National Academies of Sciences, Engineering, and

Medicine [2019], for details, which are beyond the

scope of this work). A well-defined computing envi-

ronment increases trust in the stability of results and

the chances that third parties can also execute an

analysis. Hirst (2019) coined three components of a

computing environment: physical, logical, and cultural.
The Examples and Conclusions sections cover the

cultural component.
The physical component is the hardware; for

example, the researcher’s laptop, a university’s high-

performance computing facility, a Global Positioning

System device, sensors, or instruments. Such devices

might be preserved physically and investigated if

problems arise but at very high costs (e.g., regular

testing and replacement of parts). These costs are

probably too high for regular research, and, at this

stage of reproducibility, physical components are too

rarely the source of critical issues. Thus, this compo-

nent must be documented in detail (e.g., product

names, IDs, manufacturing batches) and, where self-

built, have open construction plans. It is worth not-

ing here that quite often software has a much longer

life span than hardware, and outdated hardware can

often, although much later, be emulated by software.
To capture the logical component, common soft-

ware development methods, such as using a lan-

guage’s package manager and repository2 and

practicing version pinning in the respective configu-

ration files, allow freezing the logical component in

a specific state. Virtualization (Howe 2012) and con-

tainerization3 (Boettiger 2015) provide adequate sol-

utions to capture full software stacks; that is, both

programs’ researchers are aware of obvious and

unobvious dependencies (Perkel 2019). Containers

can be created from a recipe file, which provides an

additional layer of transparency and safeguarding

(N€ust and Hinz 2019) independent of the specific

container implementation (Santana-Perez and P�erez-
Hern�andez 2015), or even automatically in a deter-

ministic way (Jupyter Project et al. 2018). Container

preservation is actively researched (Rechert et al.

2017; Emsley and De Roure 2018). Such configura-

tion files and recipes can be managed using a version

control system for retracing errors and auditing

(Ram 2013). The application of Docker,4

Singularity,5 or supportive automating tools (Jupyter

Project et al. 2018) is a core skill for geoscientists

and geographers analyzing or visualizing data

with computers.
The goal of describing the computing environ-

ment is to allow others to re-create, scrutinize, or

extend it. This becomes more difficult when (1) the

logical component is directly linked with the physi-

cal component; for example, bespoke optimized soft-

ware for a particular computing, infrastructure, such

as high-performance computing; or (2) critical parts

of the computations involve proprietary software.6

A script-based workflow means that a user can exe-

cute a full analysis, starting from raw data up to visu-

alizations for publication, without any manual

intervention. Ideally the main control file is a digital

notebook following the literate programming para-

digm (Knuth 1984), thereby integrating text, docu-

mentation, visualization, mapping (Giraud and

Lambert 2017), and publication7 in a coherent way.

Jupyter (Kluyver et al. 2016; Rule et al. 2019) and R

Markdown (Xie 2015) are the two most commonly

used notebooks for practical reproducibility. Both

support various programming languages, hybrid work-

flows, and operating systems. All of the workflow’s

parts can be openly published in the form of a

research compendium (Gentleman and Temple Lang

2007), originally using a language’s packaging mech-

anism and later extended and demonstrated as a

powerful tool for scholarly communication.8 A self-

contained structured research compendium is

“preproducible” (Stark 2018), connects the actual

article with supplemental material (off-loading

details; cf. Greenbaum et al. 2017), and becomes an

executable research compendium (N€ust et al. 2017)

if it includes both container and notebook. All parts

of an (executable) research compendium must be

adequately licensed to allow use and extension (cf.

Practical Reproducibility in Geography and Geosciences 3



Stodden 2009) and use open formats

(Marwick 2015).

To summarize, authors, editors, reviewers, and

publishers can achieve the highest reproducibility

when they (1) familiarize themselves with common

guidance for reproducible research (e.g., Sandve

et al. 2013; The Turing Way Community et al.

2019), (2) consciously control computing environ-

ments, (3) use script-based workflows with note-

books, and (4) adhere to community practices for

research compendia. These steps can bring research-

ers close to the “gold standard” end of Peng’s (2011)

reproducibility spectrum.

Using Reproducible Workflows

Based on a research compendium, reviewers, stu-

dents, collaborators, and even the original authors

years later can interact with a piece of research in a

manner far beyond a classic “paper” article. Using a

common format for a research compendium eases

communication between authors and readers

(Marwick, Boettiger, and Mullen 2018; N€ust,
Boettiger, and Marwick 2018), and special infrastruc-

tures can be built to discover and interact with them

(Perkel 2019). Research compendia can even under-

pin intelligent systems (cf. Santana-Perez and P�erez-
Hern�andez 2015; Gil et al. 2016). There is not one

special infrastructure emerging yet, nor should there

be only one, because different approaches cater to

different needs and communities and different

actors—for example, publishers (Brunsdon 2016;

Harris et al. 2017)—may provide it. For example,

Code Ocean (Clyburne-Sherin, Fei, and Green

2019) is a commercial platform for researchers to

conduct their work online based on Jupyter. It part-

ners with publishers9 to give reviewers and readers

access to research compendia with a full develop-

ment environment. Konkol and Kray (2019)

described an enhanced examination workflow for sci-

entific papers based on executable research compen-

dia and used it to provide tailored interactive figures

(Konkol, Kray, and Suleiman 2019). The Whole

Tale (Brinckman et al. 2019) and BinderHub

(Jupyter Project et al. 2018) projects build open plat-

forms for reproducible research operated by research

organizations. Such platforms are the most effective

way today to leverage containerization for openly

publishing practical, reproducible workflows and

improving scholarly communication, without

requiring additional expertise beyond creating

research compendia.

Examples

The following examples illustrate the challenges,

solutions, and prevailing shortcomings. They extend

earlier collections of cases in geography (Brunsdon

2016), spatial data collection and analysis in ecology

(Lewis, Wal, and Fifield 2018), spatial statistics10

(Pebesma, Bivand, and Ribeiro 2015), and geosci-

ences (Konkol, Kray, and Pfeiffer 2019).11 A com-

prehensive reproducibility study in geography and

geosciences is needed to substantiate these

observations.
Spielman and Singleton (2015) studied neighbor-

hoods with data from the American Community

Survey and provided data and methods openly.12 We

applaud their efforts, which allowed us to partially

reproduce the workflow,13 such as setting a seed to

avoid problems with nondeterministic results. This

project, however, demonstrates typical shortcomings

and issues for reproducibility (see also Konkol, Kray,

and Pfeiffer 2019), such as lacking licenses, binary

formats for data, and a data repository requiring

login and acceptance of terms of use.
Marwick (2017) reported on a case study about

the analysis of data from an archaeological excava-

tion, with inherently geospatial data. In detail and

suitable for a nontechnical audience, Marwick

described all considerations and concrete actions for

data archiving, scripting, publishing, and containeri-

zation of the computing environment.

Knoth and N€ust (2017) containerized a complex

geographic object-based image analysis workflow

using open source tools in a discipline where one

proprietary software is ubiquitous. The work demon-

strates how a combination of free tools can re-create

a proprietary analysis workflow, and it shows how

containerization can make it reusable by exposing

configuration parameters and making the data set

exchangeable.
Shannon and Walker (2018) described two case

studies in housing and urban diversity for public-fac-

ing geographic research. The case studies entail

shiny-based applications (Chang et al. 2020) with

interactive plots and maps for nonexpert users to

improve community engagement, which we could

easily inspect and reproduce. The authors nicely use

openness for transparency and provide synthetic data

4 N€ust and Pebesma



to handle data privacy, but the published code is

sparsely documented and lacks licensing information,

which hampers reuse and extension.
Verstegen (2019) published code and data for a

land use change model based on PCRaster and a

Python script (cf. Verstegen et al. 2012). The reposi-

tory includes a container for ease of use and trans-

parently communicates (despite lacking a notebook

document) which parts of the workflow reproduce

which figure and what changes were made to the

code after the original article publication.

Challenges for Practical Reproducibility in
Geography and Geosciences

Geography and geosciences are diverse disciplines,

and their community members have equally diverse

backgrounds, many of which do not include a famil-

iarity with computational methods or software devel-

opment. This diversity leads to challenges in

adopting practical reproducibility in education and

publishing. The focus on practical solutions in this

work can inform these adaptations, which must be

accompanied by changes of habits by individuals and

at different organizational levels, such as research

labs (cf. N€ust, Boettiger, and Marwick 2018). The

large body of experience from other domains and

best practices (Sandve et al. 2013; Stodden and

Miguez 2014; Boettiger 2015; Eglen et al. 2017;

Greenbaum et al. 2017; Marwick 2017; Eglen et al.

2018; Marwick, Boettiger, and Mullen 2018; N€ust
et al. 2019; P�erignon et al. 2019; Rule et al. 2019;

Sch€onbrodt 2019; �Simko et al. 2019) does not limit

self-improvement and further training, but the

amount of information might seem overwhelming.

In a similar way, ongoing disruptions and innova-

tions in scholarly publishing (cf. Gil et al. 2016;

Singleton, Spielman, and Brunsdon 2016; Eglen

et al. 2018; Tennant et al. 2019) pose challenges for

geographers and geoscientists in their roles as

authors, reviewers, and editors, especially for early

career researchers and due to a complex mixture of

community, commercial, and political interests.
Giraud and Lambert (2017) described the multi-

plicity of tools in the cartographic process as an

impediment for reproducibility. They transferred

Peng’s spectrum into a spectrum of map reproducibil-

ity and set the equivalent of a research compendium

(linked and executable code and data) at the highest

level. They argued that cartography is often

considered a design process and an art, but this

should not be at the cost of reproducibility, for

example, due to manual tweaking of visual appear-

ances. Konkol, Kray, and Pfeiffer (2019) even found

that the differences in the created maps were an

effective way to assess reproducibility. Similar to the

aforementioned spectra, Wilson et al. (2020) present

a five-star classification for sharing geospatial

research, addressing challenges in geographic infor-

mation systems (GIS) software and algorithms.

Geospatial data and processing are often realized

via spatial data infrastructures, such as the data,

processing, and map interfaces by the Open

Geospatial Consortium or OpenStreetMap. Online

services pose a challenge for reproducibility, because

they could change over time or disappear. A service-

oriented approach, however, also promises improve-

ment through standardization, less duplication of

effort, and easier translation into different tools for

cross-validation (Wilson et al. 2020). Still, the code

to access geoservices and the requests sent as well as

the retrieved responses must all be stored (cf. real-

time data; Brunsdon 2016) to build a research com-

pendium. When analyzing large data sets, processing

is increasingly shifted to remote infrastructures closer

to the data, which requires open availability not

only of the application programming interface but

also of the implementations (Hinz et al. 2013;

Pebesma et al. 2017). “Free” platforms, such as

Google Earth Engine, provide complex script-based

processing to a broad audience, but the analyses are

not reproducible because the computational environ-

ment cannot be captured or inspected in full (Sidhu,

Pebesma, and Câmara 2018). When creating

research compendia, compromises can be made as to

the amount of detail they include to reduce storage

size; for example, include only relevant data after

preprocessing or allow referencing data in trusted

data repositories or spatial data infrastructures (N€ust
and Schutzeichel 2017).

Qualitative GIS was judged as nonreproducible by

Preston and Wilson (2014), partially due to their

mixed-methods approach. In our view, however,

such an approach does not free researchers to work

as reproducible as possible. Data collection and crea-

tion of visualizations can be reproducible and should

be, because maps are commonly used for interaction

with study participants during data collection and

for communicating results. Muenchow, Sch€afer, and
Kr€uger (2019) reviewed the body of work in

Practical Reproducibility in Geography and Geosciences 5



qualitative GIS research and identified reproducibil-

ity as having promising potential for the field.
Prevailing GIS software is based on a graphical

user interface, proprietary, or both. To fix these limi-

tations, either these tools must be updated to pro-

vide an executable workflow (i.e., recording a trace

of the user interactions; cf. Brunsdon 2016) or

researchers need to switch to open tools to achieve a

unified toolchain (Giraud and Lambert 2017) and to

avoid the risk of a digital divide but rather enable

faster collaborative development (cf. Muenchow,

Sch€afer, and Kr€uger 2019). Proprietary software

might in some cases be user friendly for conducting

research, and Open Source alternatives require a

higher computer literacy (Muenchow, Sch€afer, and

Kr€uger 2019), but such closed tools are ultimately

unsuitable for science: No access to source code pro-

hibits examination and extension of methods and

can increase the potential of errors (Singleton,

Spielman, and Brunsdon 2016) and restrictive non-

open license agreements prohibit reproduction by

others without access or even by authors at a future

point in time (Eaton 2012; Lees 2012; Singleton,

Spielman, and Brunsdon 2016). Most important,

open software stacks much better with core tools for

practical reproducibility. The pace of digitization

and the trend toward openness (cf. Nosek et al.

2015) put pressure on scientists at all career stages

to switch to open tools14 and require future geo-

scientists and geographers to be trained as “Pi-shaped

researchers” with a deep knowledge both in their

domain as well as in reproducibility and computing

(Marwick 2017).
Limitations of sensitive data are commonly men-

tioned impediments to practical reproducibility, but

various solutions exist. O’Loughlin et al. (2015) dis-

cussed the balance of disclosure and source protec-

tion in the field of political geography, and they

mentioned redaction as a means to check research

using quantitative data and statistical data rigorously.

These limitations can also be seen as a need in

establishing processes and providing infrastructure

for controlled access to research compendia.

P�erignon et al. (2019) and Foster (2018) described

the tensions between reproducibility and data pri-

vacy, and they presented a public research infrastruc-

ture for confidential government data in France and

cloud-based data enclaves. Shannon and Walker

(2018) suggested an analysis infrastructure that

restricts access to raw data and only provides derived

results. In the context of geocomputation, Brunsdon

argued the advantages of “‘domains of reproducibil-

ity’—that is, groups of people who are permitted to

access this information adopting reproducible practi-

ces amongst themselves—so that internal scrutiny,

and updating of analyses becomes easier” (Harris

et al. 2017, 608).

An approach to reduce the limitations induced by

big, proprietary, export-controlled, or sensitive data

is providing a synthetic data set (e.g., Shannon and

Walker 2018). A data set of more manageable size

reduces storage space as well as workflow execution

time. Made-up data prevent deanonymization and

can be tailored to illustrate the method. A copy of

the original data within the research compendium

ensures consistency and accessibility, but synthetic

data, anonymized data, or data subsets allow third

parties to evaluate, understand, validate, and build

on methods.

Reproducibility of computational methods is fur-

ther constrained by time. The fact that all presented

platforms and tools are open themselves facilitates

archival and maintenance, yet the reproduction of

workflows in more than ten years is an open chal-

lenge beyond geography and geosciences. The Ten

Years Challenge by the journal ReScience15 is an

example for learning more about problems and solu-

tions for long-term reproducibility. Because we can-

not foresee what future computers will look like, a

research compendium that can be reproduced today,

for example, as part of a peer review (Eglen and

N€ust 2019) ensures that everything needed is there

and ensures a starting point for future generations of

geographers, geoscientists, and science historians.

Conclusions

In this article we describe practical solutions that

facilitate computational reproducibility in scholarly

communication. Wilson and Burrough (1999) stated

on a new geography, “It is also clear that improved

understanding of landscapes comes … from the

study of large quantities of data in a reproducible

data-handling environment that extends from the

field to the laboratory and the computer” (743).

They further argued for the adoption of new meth-

ods and that “geographers will need to be comfort-

able in new sneakers that incorporate the [new

methods]” (Wilson and Burrough 1999, 743). As the

new method, we suggest replacing traditional text-
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centric research papers as the final product of

research with executable research compendia: digital

artifacts that encapsulate the data, the script-based

workflow and its computing environment, and the

article based on a notebook.

The emerging infrastructure for research compen-

dia greatly reduces the needed software engineering

skills, yet a lack of academic recognition for open-

ness and reproducibility and a lack of hard, minimal

requirements posed by editorial boards of scientific

journals still keep scientists from adopting methods

supporting practical reproducibility. Chen et al.

(2019) rightly argued that new research practices

must be tailored to the needs of scientific disciplines.

In geography and geosciences, this discourse has just

started (Pebesma, N€ust, and Bivand 2012a, 2012b;

Gil et al. 2016; N€ust, Boettiger, and Marwick 2018;

Kedron et al. 2019, and the articles of this Forum).

These scientific communities must decide which

degree of reproducibility is “good enough,” but we

believe that in most cases “very, very close to the

original” is feasible and practical. Irrespective of

whether the “reproducibility crisis” does or does not

exist (cf. Fanelli 2018), the benefits of working

reproducibly are by now clear. Technical, systemic,

and cultural barriers are conquerable. The advan-

tages of reproducibility for scientific progress lie in

strengthened trust in results through transparency,

higher productivity through openness, and more

innovation through collaboration and exploration of

new pathways. The scientific community should

embrace the disruptions in scholarly publishing and

reap the benefits and advantages by setting up new

platforms and standards for scholarly communication

(e.g., Munaf�o et al. 2017; Kray et al. 2019). The

maxim of the new technology for practical reproduc-

ibility should be open source software implementing

an open and self-correcting public infrastructure con-

trolled by scientists (cf. Buck 2015; Santana-Perez

and P�erez-Hern�andez 2015; Munaf�o et al. 2017).
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Notes
1. Reproduction means that the authors’ materials are

available for third parties to re-create identical results,
whereas replication means different data and methods
lead to the same findings. From a computational
standpoint, identical is more complicated than it
sounds; for example, floating point computations might
result in small yet insignificant numerical differences,
or image-rendering algorithms might introduce
nondeterministic artifacts.

2. For example, CRAN (https://cran.r-project.org) and
renv (https://cran.r-project.org/package = renv) for R,
or PyPI (https://pypi.org/) and conda (https://conda.
io) for Python, which even has tooling for
separating full installations in virtual environments;
for example, virtualenv (https://virtualenv.pypa.io).

3. For the simplicity of the argument, we use recipe
instead of Dockerfile and containers as a catch-all
term, whereas the experienced reader might expect a
distinction between container and image.

4. Docker is the most common containerization
solution today (see https://en.wikipedia.org/wiki/
Docker_(software)). It is open source, and relevant
parts are standardized (see https://www.opencontainers.
org/).

5. Singularity is mostly used in scientific contexts and
high-performance computing, see Kurtzer, Sochat,
and Bauer (2017).

6. Proprietary software cannot be avoided in some
areas, such as the system BIOS or device drivers.

7. The notebook might render directly into submission-
ready manuscripts with R Markdown and the rticles
package by Allaire et al. (2020), which supports a
variety of journals, including the publisher of the
Annals, Taylor & Francis, and other publishers close
to the disciplines such as AGU or Copernicus
Publications (EGU).

8. See https://research-compendium.science/ for a
minimal definition, extensive literature, and examples.
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The R (R Core Team 2019) community is at the
forefront of enabling reproducibility both in the
available tools and in the mindset of the user
community (e.g., Pebesma, N€ust, and
Bivand 2012b; Marwick 2015).

9. For example, Sage (Estop 2019), De Gruyter (Code
Ocean 2018), or Nature (“Easing the Burden of
Code Review” 2018).

10. All articles in this special issue on software for
spatial statistics in the Journal of Statistical Software
are in principle reproducible, but these articles by
software developers are probably not representative
of the whole community using the software.

11. The largest study to date, it reproduced thirty-one
research articles. See the full list at https://osf.
io/sfqjg/.

12. Code on GitHub: https://github.com/geoss/acs_
demographic_clusters; data on openICPSR: http://
doi.org/10.3886E41329V1.

13. A summary of the issues, changes, suggestions, and
subsequent communication with the authors is
available at https://github.com/geoss/acs_demographic_
clusters/issues/2.

14. The Carpentries (https://carpentries.org/) is an
excellent resource to learn data science skills outside
of topical studies.

15. See https://rescience.github.io/ten-years/.
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