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Abstract

This dissertation is devoted to the development of quantum memories for light. Quantum

memory is an important part of future long-distance quantum fiber networks and quantum

processing. Quantum memory is required to be efficient, multimode, noise free, scalable,

and should be able to provide long storage times for practical applications in quantum

communications and beyond. Here I concentrate on solving particular problems of different

quantum protocols and find ways for extending the performance of memories and adding

new capabilities.

I theoretically show that an array of whispering-gallery resonators is capable of being an

efficient and noise-free optical memory with an adjustable storage time. The potential for on-

chip realization at room temperature makes the scheme attractive for easy implementation.

The effect of Raman scattering in echo memory was evaluated experimentally and the-

oretically. The noise performance of gradient echo memory in Λ configuration proves, that

the developed theory is in a good agreement with an experiment.

I proposed a mechanism for extending the bandwidth of impedance-matched memories via

a white-light cavity effect. The introduced additional dispersion compensates a bandwidth

decrease induced by the cavity and hence increases the spectral zone of impedance matching.

Theoretically the scheme allows to increase the bandwidth of high efficient storage (> 90%)

several times without adding extra noise.

Finally, I have proposed an architecture of quantum random-access memory for time-bin

photons. The architecture consists from a memory unit and a strongly coupled three-level

atom. Both of them are placed in their own cavities, which are coupled to each other.

The protocol allows to achieve quantum addressing of quantum information stored in the

memory with only a single control unit. This is useful for numerous tasks in quantum

machine learning.
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Preface

In this preface I discuss the role I played in each of the chapter through out the thesis.

Specifically, I briefly describe each chapter, my collaborators and my and their contribution

to these chapters.

In the first chapter, I present a historic overview of the prior methods and techniques

used for implementation of optical quantum memories. I identified the relevant literature

and wrote the chapter by myself. I received feedback from B.C. Sanders and A. Tashchilina.

In the second chapter, I present relevant prior theory for describing optical quantum

memories, which is used for subsequent analysis in the next chapters. I wrote the chapter

on my own with feedback from B.C. Sanders.

In the third chapter, I present a scheme for an on-chip optical quantum memory based

on an array of whispering gallery mode resonators. The concept of Chapter 3 was proposed

by S.A. Moiseev with the novelties being that resonators have a chirped frequencies and

are coupled to a common waveguide. I derived and wrote the mathematical expressions for

modeling the proposed concept, and I solved the mathematical expressions analytically for

optical quantum memory operation. I developed optimization methods to determine control

parameters for the highest storage efficiency. I discussed with S.A. Moiseev the analogous

resonator-based optical quantum memory, and together we compared the result with the

state of art. As a result, I produced Figures 3.2–3.4, Tables 3.1–3.2 and corresponding

captions, while S.A. Moiseev created Figure 3.1 and its caption. The chapter is largely taken

from the article I wrote with S.A. Moiseev. Specifically, in that article I wrote sections
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about the proposed scheme, comparison with other protocols and possible experimental

implementation. S.A. Moiseev wrote the introduction and the conclusion.

In Chapter 4, I present a proposal for extending the bandwidth of impedance-matched

quantum memory. The concept for Chapter 4 was proposed by S.A. Moiseev with novelty

being use of compensating dispersion for extending the bandwidth. I developed the proposal

into a full scheme, derived and wrote the mathematical expressions for describing cavity-

enhanced Raman storage on a three-level atomic medium accompanied by the Raman gain

medium. Together with A. Tashchilina we determined optimal parameters for cavity, storage

and dispersion compensating media for desired optical quantum memory bandwidth exten-

sion while minimizing noise. Specifically, A. Tashchilina created Figure 4.3 and Table 4.1,

while I created all the rest of figures and tables. I critically assessed feasibility for experimen-

tal proposal and have wrote an initial draft of the paper. I discussed the result with B.C.

Sanders, he improved the writing especially by highlighting the central idea of the initial

draft. None of the content of Chapter 4 is yet in the submitted manuscript, furthermore I

wrote the corresponding chapter myself.

In Chapter 5, I present my study of noise in gradient echo memory, which was proposed

by A.I Lvovsky. C. Kupchak, who was undertaking his PhD under supervision of A. I.

Lvovsky, experimentally observed previously unreported noise in the retrieved optical field

from the gradient echo memory. I built a mathematical model for the description of noise

generation due to Raman scattering of the residual population in atomic vapor memory, and

I successfully fitted the C. Kupchak’s experimental data within my model. Then I developed

a strategy for how to suppress the noise. I wrote Chapter 5 entirely by myself. None of the

content of Chapter 5 is yet in the submitted manuscript.

In Chapter 6, I present my original idea for a quantum random access memory protocol.

I developed a mathematical description for my idea, and constructed all Figures 6.1–6.5 and

corresponding captions. I have discussed my concept with S.A. Moiseev and A.I. Lvovsky.

The Chapter 6 reproduces the paper I coauthored together with S.A. Moiseev. In this paper
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I wrote section about the description of the scheme, quantum addressing and experimental

issues, which correspond to sections 6.2–6.4 of Chapter 6, respectively. In turn, S.A. Moiseev

wrote the introduction and the conclusion.

In the last chapter, I conclude the results of the conducted research and discuss possible

future studies. I wrote the chapter on my own with feedback from B.C. Sanders.

At the end of the dissertation, I present the bibliography and Appendices A and B for

Chapters 5 and 6, respectively. The bibliography and Appendix A are written by myself

with feedback from B.C. Sanders. Appendix B is based on the jointly written paper and is

written on my own.
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Chapter 1

Introduction

1.1 Quantum memories

Quantum memory (QM) [1] is a device that is capable of writing in and reading out a

qubit, an elementary bit of quantum information [2]. Following this definition, we can say

that any qubit is a quantum memory. To distinguish a QM from a qubit, we assume that a

useful quantum memory is capable of storing quantum information, in other words keeping

the original quantum state for a long time and converting state into a qubit. In summary,

a QM should not be capable of performing one- or two-qubits gates, but must be capable

of storing and transferring a quantum information between itself and some given type of

qubits.

1.1.1 Duan-Lukin-Cirac-Zoller protocol

The concept of QM is of special value for a quantum repeater in the context of long-

distance quantum communication [1]. The quantum repeater was proposed as a tool to

mitigate the limitation of the direct transmission of photonic qubits between two parties at

long distances. The distance of direct quantum communication via a fiber-link is roughly

limited to a few hundreds of kilometers due to absorption and the Rayleigh scattering of

1



photons in silica. The proposed way to handle this problem is to create an entanglement

between QMs located at reasonably close distances by transmitting photons. The sequential

swap of the entanglement between the neighbouring QMs transfers the entanglement to a

distance twice the photons have traveled. The swapping can be done using a Bell-basis

measurement device [3]. For ideal quantum repeaters the cost of communication becomes

polynomial with distance in contrast to exponential for direct transmission [4]. However in

practice the use of repeaters with non-ideal components can only reduce the exponential

factor in comparison with direct transmission [4, 5].

The first practical proposal for a quantum repeater exploited homogeneous atomic en-

sembles serving as a source of entanglement between photons and a long-lived collective

atomic excitation [6]. The protocol was called after the authors: Duan-Lukin-Cirac-Zoller

(DLCZ). The atomic ensemble has a Λ transition with all atoms populating one level. An

interrogation of the atomic ensemble with a detuned laser field induces Raman scattering

of the laser photons and creates an atomic excitation (see Fig. 1.1 (a)). If a pair of such

ensembles is used, the scattered photons can be sent to the ports of a 50/50 beam splitter

at the output of which single-photon counting modules are installed. Due to indistinguisha-

bility of the photons a click of any of the single-photon counting modules would produce a

delocalized excitation between two atomic ensembles, which itself is an entangled state. The

collective nature of excitation and the corresponding coherence provides deterministically

high probability of atomic excitation conversion into the photonic one by applying a laser on

the proper transition. Thus the delocalized entanglement can be converted into the photonic

and exploited by quantum optical techniques. The more elaborated schemes of the DLCZ

protocol use additional polarization [7], temporal [8], and spatial multimodeness [9] in order

to increase the rate and robustness of the entanglement creation.

2



Figure (1.1) Different quantum memory protocols. (a) DLCZ protocol comprises of two
steps: write-in and read out. During the first step a single atom is transferred from | 1 〉
to level | 2 〉. Simultaneously with that a signal photon is emitted and detected. The spin
coherence between two lowest levels makes the read-out of the single excitation coherently
enhanced. (b) In EIT scheme resonant control field creates a transparent window, while
signal field is converted into a spin wave. (c) In Raman protocol signal and control fields are
far detuned from the upper level, although are in a two-photon resonance. The three level
system is mapped onto a two-level system.

1.1.2 Electromagnetically induced transparency

At the same time other protocols for quantum memory have been proposed. In contrast

to DLCZ, where the system works as a memory and a generator of the quantum states, the

so-called absorptive memories are designed for converting flying optical qubits into long-lived

matter excitations, storing them, and deterministically reemiting them.

The memory protocol based on the electromagnetically induced transparency (EIT) ex-

ploits the resonant transparency window [10]. This window is induced by a strong control

field acting resonantly on one transition of a Λ scheme (see Fig. 1.1 (b)). At the same time,

the signal field is resonant with another transition, where most of the atomic population is

located. Fundamentally, the transparency is based on an adiabatic conversion of the prop-

agating signal field into an atomic spin wave in the limit of a long signal pulse. This spin

wave is conserved during propagation, since atoms transit into an eigenstate of the interac-

tion Hamiltonian with a zero eigenvalue. The match between the signal waveform and the

bandwidth of the transparency window is necessary to ensure a full conversion of the signal

field onto an atomic coherence. If the control field is adiabatically switched off [11, 12] while

the signal field is within the atomic medium, the quantum statistical information of the field

will stay within the medium encoded as an atomic coherence of the corresponding state.

3



Switching the control field back on converts the coherence back into an optical excitation

and allows the signal to escape the medium.

1.1.3 Raman memory

Another type of memory, the Raman memory, also uses a Λ atomic scheme except with

a large single photon detuning (see Fig. 1.1 (c)) [13, 14]. For large detunings between an

atomic system resonance and a signal field, the upper level could be adiabatically eliminated

[15]. Thus, the system is reduced to an effective two-level system composed of two ground

levels. As in the EIT protocol, switching off the control field maps the quantum state onto

the coherence between two ground levels. In contrast to the EIT protocol, where the control

field creates the transparency window for signal field, in Raman memories a far-detuned

control field permits an effective interaction for the signal field, which otherwise would pass

the atomic medium without absorption. Properly shaped pulse of the control field permits an

effective transfer without reemission and an effective read-out without reabsorption [12, 13].

The recall from the memory can be mathematically expressed as an integral convolution

between the kernel of the process and an input field amplitude. In turn, the kernel can be

decomposed into a normalized set of orthogonal eigenfunctions [16]. These eigenfunctions

form a basis of possible orthogonal spin waves available for storage, while the corresponding

eigenvalues represent the total efficiency of the memory. This means that using different

control field waveforms allows the storage of multiple fields independently in the same media.

Eventually, it provides the multimode capabilities to the Raman memory in contrast to the

single-mode EIT protocol [16, 17].

A protocol combining the resonant interaction as in EIT with a fast operational speed

as in Raman memory was also proposed [18, 19]. The use of resonant interaction reduces

the need of a powerful control field, as required for EIT, while providing faster operation

with similar multimodeness, as in Raman memory. The effect of dynamical Autler-Townes

splitting was used to name the protocol as “ATS memory”. A demonstration of the memory
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Figure (1.2) The Hahn spin-echo. a) The application of π/2 pulse creates coherent su-

perposition between two levels: | 1 〉+| 2 〉√
2

. b) The dephasing of different atoms destroys the

collective coherence. c) The application of a π pulse reverts the phase accumulation and
makes atoms to evolve towards the state with macroscopic coherence.

showed a potential for a large delay-bandwidth product [20, 21], which means that the short

pulses could be stored effectively.

1.1.4 Photon echo

In all protocols of the above, homogeneous media are used for storage. This limits

available types of media for storage. Therewith, the inhomogeneous spectral broadening

allows the storage of multiple modes for a given optical depth [16, 22]. The memory protocols

available for inhomogeneously broadened media are based on the idea of a photon echo that

in turn was inspired by the Hahn spin echo [23, 24]. An initially polarized ensemble of atoms

is transferred into a superposition of two levels by a π/2 pulse, as shown in Figure 1.2. The

created collective dipole moment experiences decay due to the presence of an inhomogeneous

frequency broadening, meaning that with time, atoms with different frequencies accumulate

different phases and destructively interfere. The application of a π pulse at time τ after

the π/2 pulse reverses the evolution, making ‘slower’ atoms ahead of the atoms with no

broadening and the ‘fast’ ones trail behind. Eventually, the ‘fast’ atoms catch up with the

unbroadened atoms and the ‘slow’ ones drift back toward them. The complete refocusing

happens at time 2τ and produces a collective dipole that irradiates the echo in the direction

defined by a phase matching. This technique is widely used in magnetic resonance and optics

as a tool for studying the spectroscopic parameters of different materials [25, 26, 27]. As
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Figure (1.3) Quantum regime of echo memory. The applied weak light rotates the atomic
Bloch vector towards the equator by the angle corresponding to pulse area of the stored
light. The frequency gradient destroys the induced coherence. The reverse of the gradient
performs a time reversal operation, which leads to subsequent echo irradiation.

well it was known for the operation as a classical optical memory with processing abilities

[22, 28, 29, 30].

The described echo protocol is not suitable for operating in a quantum regime [31, 32], in

which the dipole moment is created by an arbitrarily weak field instead of a π/2 pulse. The

application of the refocusing π pulse completely inverts the population and provides a huge

amplification to an echo induced by the initial signal. The amplification noise completely

buries the quantum statistics of the stored field [33]. Several ways were proposed to mitigate

this issue and we discuss them below.

1.1.5 Controlled reversal of inhomogeneous broadening

The first proposal exploited a different mechanism of refocusing [31, 34]. Instead of a

π pulse, refocusing was induced by changing the sign of the inhomogeneous broadening at

time τ . Because of that the phase is restoring to the initial value, which is the same for all

atoms in the ensemble. After 2τ the phase returns to its initial value upon excitation and

atoms coherently emit light. Since the essential part of this protocol is the manipulation of

an inhomogeneous broadening, the protocol was later called controlled reversal of inhomo-

geneous broadening (CRIB). If the protocol is employed in a Λ system, where all atoms are
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prepared in the ground state | 1 〉, an additional π pulse may be used on transition | 2 〉 → | 3 〉

to transfer the excitation into a long-lived level | 3 〉. In addition, this π pulse would allow a

reemission of the signal in the backwards direction, eliminating a reabsorption of the emitted

signal on transition | 1 〉 → | 2 〉.

For the best performance of the CRIB protocol, it is desirable to use a homogeneous

broadened atomic system and induce an externally controlled broadening by magnetic or

electric field gradients. It is worth noting that the CRIB protocol provides a perfect time

reversibility that results in the reversed temporal shape of the echo signal with respect

to the input signal pulse. A modified version of the CRIB is a so-called gradient echo

memory (GEM) [35, 36] that uses a magnetic or electric gradient along the propagation

of the signal field. The GEM, with a backward echo emission, coincides with CRIB. A

spatially dependent atomic frequency shift allows the recall of the light into the forward

direction without reabsorption. This is possible since the reemitted spectral components of

echo are not in resonance with atoms. However, the forward GEM scheme loses its perfect

time reversibility, which could lead to phase distortions [36].

The Λ-GEM [37, 38, 39] exploits the Raman transition induced by a control field acting

on the | 2 〉 → | 3 〉 transition with broadening applied to the ground levels in a Λ scheme.

The Λ-GEM allows storage of the light on the long-lived spin coherence without application

of π pulses (as in CRIB), and without specially shaped control field (as in Raman memory).

As in the usual GEM, the reversal of the applied gradient together with an application of

the control field produces an echo in a forward direction.

1.1.6 Atomic frequency comb

One more approach of rephasing was proposed for inhomogeneously broadened atoms

and is called the atomic frequency comb protocol (AFC) [40]. This protocol exploits simul-

taneously a large inhomogenous linewidth of the rare-earth ions and relatively long coherence

times of an individual ion. It is beneficial to have large ratio between inhomogeneous and

7



homogeneous linewidths. The idea is to isolate N absorbing homogeneously-broadened two-

level atoms—equidistantly separated by ∆ and spanned over bandwidth N∆. Isolating these

two-level atoms can be done with the spectral hole-burning technique [41] in the way that

ions with the frequency in between the absorbing peaks are pumped into metastable levels,

which are not coupled by the fields. The incoming signal, having a waveform spanned over

the frequency comb, gets converted into the superposition of excitations distributed along

the peaks. The induced dipole dephases since each peak has a different frequency. Due to

evolution at time τ = 2π/∆ after the absorption, the atoms again become in phase and

reemit the light. Thus, the AFC works as a delay line with a predefined storage time and

with no on demand recall. In turn, the on demand recall can be realized similarly to the

CRIB protocol with the help of an empty auxiliary level in a Λ configuration. The applica-

tion of a π pulse may transfer the excitation into this auxiliary level, from where it can be

returned back at an arbitrary time and re-emitted from the atomic comb. As well, storage on

an auxiliary level enables recall in a backward direction that would mitigate the reabsorption

in forward configuration as in CRIB.

While the AFC protocol was designed for a broadband operation, the creation of an

efficient and broad spectral structure was limited by a hyperfine splitting. The optical

hole burning moves the atoms into an auxiliary level, which is usually the other hyperfine

sublevel of the ground state. Thus, the effective comb bandwidth could not exceed the

splitting between these levels without degrading the comb properties [42]. In some materials

an absorption profile could be shaped by pumping atoms to distant shelving states, located

outside of the absorption bandwidth [43], extending the bandwidth to gigahertz.

1.1.7 Revival of silenced echo

Few protocols were proposed for exploiting the whole natural inhomogenous broadening

for storing short pulses [44, 45, 46]. The main idea behind the protocols is the use of two

π pulses similarly to the traditional photon echo. After application of the first π pulse the
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dipole induced by the signal pulse starts to rephase. In order to avoid the irradiation of

the echo into the amplifying media, the echo is suppressed by the application of an external

gradient during the rephasing [46], or by the phase-mismatching between the signal and π

pulses [44, 45]. The second π pulse returns the population back to the initial state and

the irradiated echo reproduces initial signal without amplification noise. From now on, this

family of protocols will be called ‘ROSE-based’ after the basic principle of revival of silenced

echo (ROSE). While this protocol demonstrates a high efficiency [47], the non-idealities of

the π pulses produce significant noise.

1.1.8 Cavity enhancement

All of the mentioned protocols are based on the mapping of the photonic excitations

onto the atomic ones. The ideal mapping is achieved only asymptotically for large optical

depth, or for high number of interacting atoms [11]. Unfortunately, the straightforward

increase of the atom number is usually accompanied by negative effects, such as an increase

of decoherence. As in cavity quantum electrodynamics [48] the use of an optical resonator

provides an enhancement of the light-atom interaction. All of the mentioned protocols can

be used in the cavity configuration. However, in the EIT and Raman schemes a use of a

cavity to increase an effective optical depth keeps the asymptotic scaling of the efficiency

[49]. In turn, for the echo memory, the impedance matching guarantees ideal mapping for

a finite optical depth [50, 51]. It becomes possible since the mapping between the light and

atom occurs via the decay of the induced collective dipole moment, while for the EIT and

the Raman the collective dipole moment does not experience degradation.

In the next section, we list main criteria used to assess performance of the memory. In

the view of these criteria, in section 1.3, we discuss the advantages of every type of the

memory and conclude whether these protocols are applicable for quantum communications.
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1.2 Memory performance benchmarks

Nowadays there are several figures of merits of a quantum memory performance. Below

we list these criteria and the best known experimental realizations. Moreover, we highlight

how these requirements limit the amount of suitable physical systems.

1.2.1 Efficiency

Historically, quantum efficiency is an energy ratio between the input signal and the output

or simply ε = 〈nout 〉/〈nin 〉, where 〈nout 〉 and 〈nin 〉 are the average photon numbers per

pulse for the output and input mode, e.g. given time mode [52]. Knowing the efficiency, one

can determine the validity of the memory for application in quantum repeaters and its ability

to outperform the direct transmission. A noiseless memory could be thought of as an analog

of an optical two-port beam-splitter, i.e., it restores the signal with a probability equal to an

efficiency of the memory while admixing vacuum from a free port. Let us assume, that an

input state for a such noiseless memory is a single photon state described by density matrix

| 1 〉 〈 1 |⊗ρin, where ρin represents the density matrix of single photon degree of freedom used

for quantum information encoding, e.g. polarization. Then an output of the memory can

be represented as ((1− ε) | 0 〉 〈 0 |+ ε | 1 〉 〈 1 |)⊗ ρout, for a completely noiseless memory the

output reduced density matrix should be equal to an input ρout = ρin. Thus, the efficiency

represents an upper limit of a possible achievable energy transfer, while this parameter does

not include any information about a corruption of quantum information happening during

the memory operation.

1.2.2 Fidelity

To quantify the change in the encoded quantum information after the storage, one can use

an overlap between input and output quantum states. It is called fidelity and is generally

found as F =
(
Tr(
√√

ρinρout
√
ρin)
)2

, where both input and output states are described
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by density matrices ρin and ρout [2]. In this case ρout represents the post-selected reduced

density matrices for a photonic degree of freedom, on which a useful quantum information

is recorded, similarly to an above example with a single photon. By post-selection we

mean, that an output density matrix is reconstructed only for cases when the memory

has successfully emitted a photon. This is especially useful for characterization of quantum

memory noise performance, where a qubit is encoded on orthogonal polarizational, spatial,

angular momentum, frequency, or temporal modes [53]. If the input state is pure and

represented by state |ψin 〉, the fidelity simplifies to F = 〈ψin | ρout |ψin 〉. It is worth noting,

that in contrast to mentioned encoding, quantum information encoded in optical phase space

and Fock basis experiences a decrease in fidelity by a factor equal to the efficiency [54].

Summarizing, a fidelity is not a universal metric of the quantum storage performance

because of its state dependent nature. For this reason the state-independent benchmark was

introduced [37]. It is called a T−V diagram, as an analogy of transmission T and conditional

variance δV used for describing a quantum channel [55]. The T coefficient represents a signal-

to-noise ratio of a quantum channel, while the δV coefficient is a measure of the noise added

to the output state.

1.2.3 Lifetime

The lifetime corresponds to the storage time of 50% decrease in efficiency. In a context

of a quantum repeater, the lifetime is an effective time window during necessary quantum

information operation—such as Bell-state measurements, purification, and photon transmis-

sion between the parties—can be implemented. In quantum repeaters a dominant time scale

is set by a time required for photons to travel between the parties. Hence, the longer the

lifetime is, the longer the possible communication distance potentially can be. Up-to-date

the memory lifetime achieved is hundreds of milliseconds in the hot gas [56] with possible

extension to a minute scale [57]. The laser cooled alkali atoms in optical dipole traps are

capable of light storage on hyperfine coherence on the order of tens of seconds [58]. At
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cryogenic temperatures, optically addressable nuclear spins of Non-Kramers ions in solids

demonstrate coherence times ranging from a minute in Pr+3:Y2SiO5 [59] to a few hours in

Eu+3:Y2SiO5 [60].

1.2.4 Multimodeness

An ability to store multiple optical modes allows to increase the rate of entanglement

generation for quantum repeater [61]. In principle, the operation of quantum repeater could

be based on different spatial [62, 63], polarization [64, 65], frequency or temporal modes [43]

as well as combinations of any of them. In terms of cost-efficiency the implementation of

temporal multimodeness may have the largest effect on the quantum entaglement generation

rate increase [61].

1.2.5 Bandwidth

The bandwidth limits the maximum spectral width of the pulses that could be stored. It

is defined as a full spectral width for a given relative efficiency reduction level [52]. The use of

shorter pulses (which have larger bandwidth) allows faster performance of the memory, the

corresponding delay-bandwidth product shows for how long the pulse can be stored in the

units of the pulse duration. The gigahertz scale bandwidth were achieved in warm atomic

vapor [66] and rare-earth ions [43].

1.3 Benchmark records

Let’s consider memories which are most successful in fulfilling the mentioned require-

ments. All of the mentioned criteria should be considered in the context of the desired

memory application. Among all the possible applications [67], quantum memory plays a

central role for quantum communication and is an indispensable part of a quantum repeater.

The use of memory in a quantum repeater for a given distance and desired entanglement
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generation rate poses strong requirements on all of the above criteria [4, 68]. To be useful

the overall fidelity1 of the recalled qubit from the memory should be larger than the so-called

no-cloning limit, which corresponds to the random guess [69] and is 2/3 (or 66%). While

the normalized fidelity in most of the implementations was higher than this value, getting

efficiency above the no-cloning limit is the main problem [52]. In addition, an efficiency is

of special importance for storing quantum information encoded in the continuous degrees

of freedom, where a non-ideal efficiency decreases quantum properties of a state [70]. In

contrast to this, optical qubits encoded in the discrete degrees of freedom have a decreased

recall probability for the non-ideal efficiency without loss of quantum properties.

1.3.1 High efficiencies

The optimal strategy for achieving high efficiency is the use of perfect time reversal

[11, 71], in other words the read-out and write-in operations should be identical up to an

action of a time-reversal unitary operator. In theory, CRIB (or GEM), EIT, and Raman

protocols can operate in the time-reversal regime. However, the time reversal requires the

retrieval of the light into a backward direction, which may be challenging. The AFC and

ROSE protocols violates the temporal reversibility, since Hamiltonians for the recall and

storage are the same. It was shown that the violation of time reversibility can strongly

affect the recovery efficiency in the case when the spectral width of the signal pulse becomes

commensurate with the spectral width of the AFC structure [72].

Fundamentally, free-space AFC and ROSE protocols with forward reemision are limited

by slightly more than 50% efficiency due to reabsorption. The backward scheme does not

have such a problem, but it is difficult to realize because precise π pulse is needed. Overall,

the most promising is to use the cavity-enhanced schemes for further improvement of the

AFC protocol [73, 74, 75].

The efficiency above the no-cloning limit was achieved in most of protocols: 87% in GEM

1efficiency multiplied by fidelity
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[39], 92% in EIT [71], 80% in Raman [76] and 80% in DLCZ [77]. In all these experiments

the fidelity was higher than measured efficiency, thus keeping the product of fidelity and

efficiency above the non-cloning limit. The highest efficiency of 56% was demonstrated in

AFC protocol in an impedance-matched cavity [73]. Thus this protocol seeks for further

improvement to be useful for a quantum repeater.

1.3.2 Fidelity

All of the protocols claim to be noiseless and to provide a large fidelity. The ultimate

experimental test of the fidelity is the storage of a non-classical quantum state, which is

especially sensitive to noise. The nature of the DLCZ protocol equips it with the non-

classical quantum states. Starting from the the first demonstrations [78] and further on [77]

the DLCZ protocol proved to be operational in a quantum regime.

Due to compatibility between the DLCZ and the EIT in cold atoms the demonstration

of non-classical storage was presented shortly in the EIT [79, 80], where the single photons

prepared in the DLCZ were stored in an EIT medium. Later on, the EIT storage of the

squeezed light generated by an optical parametric oscillator was presented [81]. The use

of the quantum process tomography allowed to characterized the introduced noise by the

memory [82] and revealed it to be on the order of 10−3 photons per pulse.

The storage of the correlated single-photon states from a spontaneous parametric down

conversion source was demonstrated for AFC [42, 83, 84], where the fidelity of the recalled

states was in the range from 70 to 90 %. The storage of non-classical quantum state of light

was not performed in GEM. However, the result of small amplitude coherent state storage

was used to claim the noiseless character of the memory with 98% fidelity [39].

The Λ system based memories are especially vulnerable to noise, since the strong control

field may create an additional nonlinearities and produce an extra scattering. The effect

of four-wave mixing (FWM) on an EIT memory performance and control field induced

spontaneous Raman scattering was studied [85]. Later it was shown, that the radiation
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limited brodening can reduced the negative effect of FWM noise [86].

1.3.3 Lifetime

The roadmap to long storage is the use of material with optically addressable hyperfine

states with long coherence times. Nowadays, there are two major types of materials suitable

for optical quantum memories, one of them are alkali gas, other are crystals doped with

rare-earth ions. Alkali atoms naturally have the required atomic Λ scheme. At the same

time, the rare-earth ions due to combination of large inhomogenous broadening and narrow

homogeneous linewidth require special procedures for isolating homogeneous sub-ensembles2

[88, 89].

For ATS, EIT and DLCZ it is preferable to have homogeneously broadened optical tran-

sition, thus these protocols are more favorable for implementation on the laser cooled alkali

gas or specially prepared rare-earth ions. Raman and Λ-GEM memories are immune to

inhomogeneous broadening on optical transition, as the use of large detuning compensates

the effect of ihnomogeneous broadening [90]. However, the small oscillator strength of rare-

earth ions makes implementation of the Raman protocol on the whole inhomogeneous width

difficult.

The storage with a lifetime exceeding hundreds of milliseconds was demonstrated in

DLCZ [91, 92, 93], AFC [94], and EIT [95, 96, 59, 97] protocols. At the same time, the

efficiency in these long storage time realizations was much less than the no-cloning limit

with an exception for the cavity-enhanced DLCZ [92].

In several papers the long coherence lifetime was demonstrated for a macroscopically large

nuclear spin coherence created by application of radio-frequency π/2 pulses [95, 60, 98]. The

lifetime was extended by the use of dynamical decoupling series [95]. However, the storage of

a single photon is prone to the fluctuation in the pulse area of a dynamical decoupling pulse

and consequently resulting in much shorter actual lifetimes for the single photons [58, 99].

2The notable exception is rare-earth ions in stoichometric crystal host [87], where the broadening is
smaller than the hyperine splitting of the ground state.
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Therefore, if the long coherence lifetime exists, the ability to provide an efficient optical

interface for storage on this coherence is the main problem of a quantum memory design.

1.3.4 Multimodeness

A possible multimode resource for atomic memories includes different polarization, time,

frequency, spatial modes and angular-momentum degrees of freedom. However, for appli-

cation in a quantum repeater the degrees of freedom should be efficiently convertible into

ones used for multiplexing in fiber communication3, namely temporal, spatial and frequency

degrees of freedom. The multimode capacity was demonstrated for AFC [43, 101], GEM

[39, 102, 103], DLCZ [7, 8, 104, 105], and EIT [106, 107, 108, 109, 110]. Work [16] shows how

a number of orthogonal time modes scales with an optical depth in each protocol. While

the study shows that the multimodeness is possible for any protocol for large enough optical

depth, the temporal multimodeness within a single QM unit is only practical for AFC, GEM,

and a special version of DLCZ [111, 105, 112]. Among all of the protocols AFC has an ad-

vantage in multimode capacity, since its multimode capacity exploits natural inhomogeneous

broadening.

1.3.5 Bandwidth

Bandwidths currently achieved range from several megahertz in EIT and DLCZ to a

gigahertz in AFC. Bandwidth is determined mostly by an effective interaction rate. In

EIT the bandwidth is determined by a transparency width window and the adiabaticity of

the interaction, this limits bandwidth significantly. In Raman memory the bandwidth is the

effective width of the Raman transition, which can be wide enough if the powerful control field

is employed. The bandwidths from hundreds of megahertz to a gigahertz were demonstrated

[66]. In AFC the storage is realized on the inhomogeneously broadened ensemble with the

frequency span of few GHz, that potentially allows the use of this full bandwidth. Theoretical

3We exclude from consideration free space satellite-assisted schemes of the repeater [100]
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proposal exists for storing sub-nanosecond pulses [113].

1.3.6 Current performance and perspective goal

Most of the protocols so far have demonstrated good performance only for a single cri-

terion, but not all together in a single experiment. So far the best realizations include

demonstration of cavity-enhanced DLCZ in optically trapped Rubidium 87 [92], where hun-

dreds of milliseconds coherence lifetime in conjunction with an 76% efficiency was achieved.

The EIT storage in praseodymium doped yttrium silicate with a lifetime of several seconds

was demonstrated [59]. The efficiency of ∼ 75% of this protocol in the same material was

separately demonstrated by the same group [114]. However, high efficiency and long lifetime

have not been demonstrated simultaneously in this crystal. Neither the quantum regime of

storage has been implemented.

Moreover, two of the demonstrated high performance quantum memories use wavelength,

which is not compatible with current telecom C or O bands. While the quantum wavelength

conversion technique exists, its efficiency is relatively low ∼ 60% [115, 116]. The only natural

atomic candidate for the telecom C band compatible memory is Erbium. Recently it was

shown [98], that at a large magnetic field (> 3 T) Erbium 167 doped in yttrium silicate has

a spin coherence lifetime of a second. Thus, development of an efficient protocol for Erbium

is of a special technological interest.

1.4 Conclusion and research impact

In this chapter, we considered promising quantum memory protocols. We listed the

benchmarks that are requisite for quantum memory applications. Moreover, we named the

best realizations of quantum memories up-to-date. We concluded that the current goal

for a quantum memory is to outperform the classical transmission channel for which it

is simultaneously required to have high fidelity and efficiency with a long lifetime. The

17



multimodeness is necessary for extending practical applications of the memories.

In Chapters 3, 4, and 6 we present newly proposed protocols, while in Chapter 5 the noise

performance of a well-known gradient echo memory is studied. The first presented protocol,

in Chapter 3, is the memory based on the cavity array with chirped frequency. The developed

protocol opens a way for realization of the on-chip memory with whispering-gallery mode

resonators and waveguides with an arbitrary storage times and large bandwidths. In addition

to that, its reliance on the cavity makes it wavelength independent in contrast to the atomic

based memories. Thus this design is applicable in a microwave domain for application in

circuit quantum electrodynamics with a proper modification.

The second result (Chapter 4) is the proposed method for extending the bandwidth of

the impedance matched cavity memory. While the method is general we propose to apply

it for increasing a delay-bandwidth product for the atomic telecom memory by an order of

magnitude.

The proposed protocol for the quantum random access memory is a new example of an

atomic memory beyond the quantum repeater application. The proposed design significantly

decreases the number of process units and the corresponding scalability issue by exploiting

the time multimodeness of the atomic memory.
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Chapter 2

Light-matter interaction

Most of the quantum memories are based on interaction of light and an atomic or atom-

like system with a discrete spectrum. For the description of quantum memories we present

the basic theory of light-matter interaction and apply it to a description of a free propagating

field and a field constrained by a cavity mode.

2.1 Ensemble of two-level atoms

Depending on a quantum memory protocol usually two- or three-level systems are em-

ployed for realization of the memory. The state of an isolated single N -level atom can be

simply described by wavefunction |Ψ 〉 =
∑N

i=1 αi | i 〉, where | i 〉 are the eigenstates of a free

atomic system within truncated space of interaction interest.

2.1.1 Electric-dipole interaction

The interaction of atomic system with light is approximated by a dipole interaction [15]:

V̂ ≈ −Ê · d̂, (2.1)
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where Ê is an electric field operator and d̂ is a dipole moment operator. The field propagating

along z direction and having polarization eq can be expressed in terms of creation and

annihilation operators [117]:

Ê =

√
~ωs

2ε0cS

(
e−iωst+ikszâ(z, t) + h.c.

)
eq, (2.2)

where ωs and ks are carrying frequency and wavevector respectively, and eq is the unit

vector. Further we use the following notations of polarization unit vectors in spherical basis:

e±1 = ∓x±iy√
2

and e0 = z. For a classical field, i.e. field in a coherent state with large

amplitude, the annihilation and creation operators can be replaced with complex number

〈 â(z, t) 〉 ≈ 〈α 〉 [15]. In this case field amplitude operator Ê simply becomes the classical

wave with complex amplitude E:

Ê ≈
(
E · e−iωst+iksz + h.c.

)
eq. (2.3)

For the derivation of the commutation relationship it is convenient to express the operator

â(z, t) in the momentum space:

â(z, t) =

∫
dkz
2π

√
ω(kz)

ks
â(kz)e

−i(ω(kz)−ωs)t+i(kz−ks)z, (2.4)

where operator â(kz) obeys the usual bosonic commutation relationship

[
â(kz), â

†(k′z)
]

= 2π · δ(kz − k′z). (2.5)

We find the commutation relationship for propagating field operator by using 2.5 together

with expansion 2.4:

[
â(z, t), â†(z′, t)

]
= c

(
1− i

ks

∂

∂z

)
δ(z − z′). (2.6)
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Operator â†(z′, t)â(z′, t) has a dimension of a photon number per second and the free Hamil-

tonian of the field is

Ĥf0 = ~ks

∫
dz′â†(z′, t)â(z′, t). (2.7)

Applying the commutator (2.6) reveals the Heisenberg equation of motion for â(z, t), which

resembles the wave equation in the slowly varying envelope approximation:

(
∂

∂t
+ c

∂

∂z

)
â(z, t) = −iωsâ(z, t) +

i

~

[
V̂ , â(z, t)

]
. (2.8)

The collective dipole moment of the atomic system can be represented as the sum over

individual atoms:

d̂ =
N∑
k=1

∑
n6=m

(
dnme

−iωnmt |n 〉k 〈m |k + h.c.
)
, (2.9)

where dnm is the dipole matrix element between the transition |n 〉 → |m 〉 and its value can

be extracted from the radiation lifetime and the branching ratio as it is shown in Appendix

A (Eq. A.5).

The resonant character of interaction between light and atoms allows to expand the dipole

interaction into the interaction between the light and the dipole induced on the energetically

closest transition. Here we consider an interaction between a single propagating quantum

field and N two-level atoms with states |n 〉 and |m 〉. The corresponding Hamiltonian can

be expressed in interaction picture as:

V̂ =

√
~ωs

2ε0cS

N∑
k=1

(
e−iωst+ikszk â(z, t) + h.c.

) (
(dnm · eq)e−iωnmtP̂ k

nm + h.c.
)
, (2.10)

where P̂ k
nm = |n 〉k 〈m |k is the projector from state |m 〉 to state |n 〉 for k’th atom and ωnm

is the frequency of atomic transition. We use the rotating wave approximation neglecting the
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energy non-conserving cross-terms oscillating on the sum of the atomic and field frequencies.

This approximation is well tested and is valid for atoms having transitions in the visible

range [33]:

V̂ ≈
√

~ωs
2ε0cS

(dnm · eq)
N∑
k=1

(
â(z, t)P̂ k

mne
−i(ωs−ωmn)t+ikszk + h.c.

)
. (2.11)

2.1.2 Rotating reference frame

The further simplification comes with an introduction of the rotating reference with

frequencies of the atomic transitions, this makes the Hamiltonian independent of oscillatory

terms. The introduction of the reference frame can be conveniently done via the following

unitary transformation [118]:

V̂rf = Û V̂ Û † + i~(∂tÛ)Û †, (2.12)

and the unitary transformation operator

Û =
N∏
k=1

ei(ωs−ωmn)t·P̂kmm . (2.13)

After applying the Baker-Campbell-Hausdorff formula

eiλĜV̂ e−iλĜ = V̂ + iλ[Ĝ, V̂ ] +
(iλ)2

2!
[Ĝ[Ĝ, V̂ ]] + · · · , (2.14)

and in the rotating frame the Hamiltonian has the form:

V̂rf = ~
N∑
k=1

(
∆P̂ k

mm + g(â(z, t)P̂ k
nme

ikszk + â†(z, t)P̂ k
nme

−ikszk)
)
, (2.15)

where ∆ = ωmn − ωs is the field-atom detuning, g =
√

ωs
2ε0~cS (dnm · eq) is the light-atom

coupling constant, and we assumed (dnm · eq) to be a real number.
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2.1.3 Uniformity of an ensemble and inhomogeneous broadening

For the sake of simplicity we assume atoms to be uniformly distributed along the volume

of interest. Based on this we introduce the continuous atomic coherence and population

operators in the form:

R̂nm(z, t) =
1√
N

∑
k

P̂ k
nmδ(z − zk), (2.16)

R̂nn(z, t) =
1

N

∑
k

P̂ k
nnδ(z − zk), (2.17)

with commutation relationship:

[
R̂mn(z, t), R̂nm(z′, t)

]
=
(
R̂mm(z, t)− R̂nn(z, t)

)
δ(z − z′). (2.18)

Assuming that the ensemble has a linear size L and density of atoms per unit of length is n

the interaction of a two-level atomic ensemble and a free propagating field is expressed by

means of

V̂rf = ~
L/2∫

−L/2

dz
(
N∆R̂mm(z, t) +

√
Ng
(
â(z, t)R̂nm(z, t)eiksz + h.c.

))
. (2.19)

While the Hamiltonian (2.19) with a few modifications is useful for describing the dynamics

of two-level atoms, most of the two-level quantum memory protocols, such as AFC, CRIB,

and ROSE, are based on inhomogeneously broadened optical transitions. The inhomogeneity

can be taken into account by dividing the whole ensemble into sub-ensembles with a given

detuning ∆ and introducing the normalized distribution of the inhomogeneous broadening

G(∆). One way to include this broadening into the system of equations is to modify the

coherence operators R̂mn(∆, z, t) to be parameterized by ∆. The commutation relationships
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(2.18) are modified accordingly:

[
R̂mn(∆, z, t), R̂mn(∆′, z′, t)

]
=
(
R̂mm(∆, z, t)− R̂nn(∆, z, t)

)
δ(z − z′)δ(∆

′ −∆)

G(∆)
. (2.20)

All of the above transforms Hamiltonian (2.19) into

V̂rf = ~
∞∫

−∞

d∆G(∆)

L/2∫
−L/2

dz
(
N∆R̂mm(∆, z, t) +

√
Ng
(
â(z, t)R̂mn(∆, z, t)e−iksz + h.c.

))
,

(2.21)

where operators R̂mn(∆, z, t) and R̂nn(∆, z, t) still have the dimensions of inverse length.

2.1.4 Heisenberg equations of motion

The basic requirement for further application of the two-level atoms for quantum memo-

ries is the linearity of the interaction and initial polarization of atoms, i.e., all N atoms are

initially prepared in the ground state 〈 R̂mm 〉 ≈ 1 and 〈 R̂mm 〉 � 〈 R̂nn 〉. These require-

ments bosonize the population. If these conditions are satisfied, the Heisenberg equations of

motion are written as follows:

(
∂

∂t
+ c

∂

∂z

)
â(z, t) = −i

√
Ng

∞∫
−∞

d∆G(∆)R̂nm(∆, z, t)eiksz, (2.22)

∂R̂nm(∆, z, t)

∂t
= (−i∆− γnm)R̂nm(∆, z, t)− i

√
Ngâ(z, t)e−iksz, (2.23)

where we have phenomenologically introduced the decay of coherence rate γnm. The presence

of a decay constant should be accompanied by a stochastic quantum operator [15]. For the

sake of simplicity we neglect this term here, although it will be introduced and studied in

Chapter 5.
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Figure (2.1) General three level diagram. Quantum field â(z, t) could be saved as a
coherence between two lowest levels | 1 〉 and | 2 〉. ∆s and ∆c are detunings of the quantum
field and the control field (Ωc) frequencies from the corresponding transition.

2.2 Λ system-based

The quantum memories employing Λ atomic system mainly use one strong coherent field

and a weak probe field, as shown in Figure 2.1. The strong coherent field controls atomic

susceptibility that eventually allows to map the state of incoming field into a long-lived

coherence.

2.2.1 Heisenberg equations of motion

We consider a three-level Λ atomic system interacting with classical control field acting on

transition | 2 〉 → | 3 〉 with Rabi frequency Ωc = d·Ec

~ and wave number kc. A weak quantum

field described by annihilation operator â(z, t) with wave number ks acts on transition | 1 〉 →

| 3 〉. An effective Hamiltonian for such a system can be found analogously to (2.19) and has
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a form

V̂rf = ~
L/2∫

−L/2

dz

(√
Ng
(
â(z, t)R̂31(z, t)eiksz + h.c.

)
+
(

Ωc(z, t)R̂32(z, t)eikcz + h.c.
))
−

− ~N
L/2∫

−L/2

dz
(

∆sR̂11(z, t) + ∆cR̂22(z, t)
)
. (2.24)

The system of Heisenberg equations for the operators are found in analogy with the two-level

atom in a presence of an inhomogeneous broadening of level | 3 〉 (Eqs. 2.22–2.23):

(
∂

∂t
+ c

∂

∂z

)
â(z, t) = −i

√
Ng

∞∫
−∞

d∆G(∆)R̂13, (2.25)

∂R̂13

∂t
= −i(∆s + ∆)R̂13 − i

√
Ngâ(z, t)

(
R̂11 − R̂33

)
− iΩc(z, t)R̂12, (2.26)

∂R̂23

∂t
= −i(∆c + ∆)R̂23 − i

√
Ngâ(z, t)R̂21 − iΩc(z, t)

(
R̂22 − R̂33

)
, (2.27)

∂R̂12

∂t
= −i(∆s −∆c + ∆)R̂12 + i

√
Ngâ(z, t)R̂32 − iΩc(z, t)R̂13, (2.28)

where the annihilation operator and Rabi frequency absorbed the wave vector phase factor, as

such â(z, t)eiksz → â(z, t). The inhomogeneous broadening is represented by random value ∆,

which is assumed to have normalized probability distribution function
∫∞
−∞ d∆G(∆) = 1. We

have omitted notation that states the dependence of coherence operators on the parameters

R̂mn(∆, z, t)→ R̂mn.

This is a general system of equations capable of describing EIT, Raman, fast memory,

and others both homogeneously and inhomogeneously broadened. Usually the system is

linearized, i.e., the terms which are proportional to multiplification of two operators are

neglected. For this, all atoms are assumed to populate a single level, thus R̂22 ≈ R̂33 = 0

and R̂11 ≈ 1. Furthermore, terms proportional to a quantum field operator multiplied by

a coherence operator (∝ â(z, t) · R̂mn) are of the second order of perturbation and could be

neglected [11].
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2.2.2 Cavity enhancement

For cavity enhanced scheme the description is slightly different due to the presence of a

single mode instead of continuum as in free space. Next we consider a single-sided cavity,

which is a good approximation for a cavity formed by mirrors with significant difference in

reflection.

The cavity mode interaction with free space field in the limit of high quality factor,

i.e. cavity linewidth is much smaller than a free spectral range, can be described by the

input-output formalism [119]. It allows to conveniently separate free space field into two

components: the incident on cavity (or input free space field) and reflected from the cavity

(or output field). The cavity field amplitude is related to the free space input and output

by the following expression:

âin + âout =
√
κâ, (2.29)

where κ is the inverse photon lifetime in the cavity, âin(out) represents input (output) free

space field. The interaction of the cavity with the media inside can be described by the

Heisenberg equation of motion written for the cavity annihilation operator:

dâ

dt
= −i

[
V̂int, â

]
+
√
κâin. (2.30)

The interaction Hamiltonian V̂int for a cavity and N two-level atoms almost coincides with

the one used in a free space Eq. 2.15, with a key difference of replacing interaction volume

in constant g with effective volume of the cavity mode V :

g =

√
ωs

2~ε0V
(dnm · eq), (2.31)

If a standing wave is formed in the cavity mode, the interaction constant longitudinally may

vary from atom to atom, which is true for a Fabry-Perot cavity. On the contrary, a ring
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cavity allows uniform coupling for the whole ensemble. The resulted interaction Hamiltonian

is:

V̂int = ~
N∑
k=1

(
gj(âP̂ k

nme
ikszk + â†P̂ k

nme
−ikszk)

)
. (2.32)

Similarly the interaction with the Λ system can be expressed as in (2.24) with the replacement

of the continuous quantum field on the cavity field and introduction of the input and output

fields. The resulted equation can be used for description of cavity enhanced memory protocol

such as Raman, EIT, DLCZ or impedance matched echo protocols.

2.3 Conclusion

In this chapter we introduced the mathematical framework that describes interaction

between ensemble of atoms and quantum fields. We have considered separately: two-level

and three-level atoms, atoms interacting with a free space fields and atoms interacting with

a field confined in a cavity. We discussed how to mathematically include an inhomogeneous

broadening. The same system of equations are going to be generalized to find quantum

noises accompanying quantum memories.
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Chapter 3

All-optical photon echo and memory

on a chip

3.1 Introduction

A photon echo [120, 121] is a broad class of optical phenomena when a coherence induced

in a quantum system by an optical field is emitted in a form of a well-resolved intense optical

signal, similar to the spin echo in nuclear magnetic resonance. Over decades photon echo has

been proven to be a powerful method of coherent spectroscopy, providing unique information

on transient processes in gases, liquids, and solids [122]. As an example, photon-echo revivals

in molecular rotational coherences have been shown to enable efficient quantum control of

molecular alignment [123], photochemical reactions [124], as well as synthesis of ultrashort

field waveforms [125]. Together with that photon echo is a promising strategy for quantum

data storage [31, 39, 51, 126, 127, 128, 129].

Here we show that a photon echo can be implemented by purely optical means using an

array of on-chip high-finesse ring cavities whose parameters are chirped in order to support

equidistant spectra of cavity modes. Classical or quantum optical signal, launched into

such a system, becomes distributed between individual cavities, giving rise to the coherence
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revivals at well-defined delay times, controlled by the chirp of cavity parameters. This effect

enables long storage times for high-throughput broadband optical delay and consequentially

quantum memory. The proposed scheme is notably different from the conventional and

silenced [130] photon echo by an absence of the applied π-pulse, which is harmful due to

spontaneous emission. Thus the scheme is of special value for quantum protocols, where only

a few excitations in the media exist and the excessive noise due to a π-pulse is especially

harmful [47].

While the proposed way of light storage is conceptually similar to the AFC protocol

[40], the waveguide-cavity coupling provides an advantage. We show that optimal coupling

between cavity and waveguide exists and ensures complete conversion of the input field into

the superposition of the cavity excitations. It contrasts with AFC, where an infinite optical

depth is required for complete conversion of input light into the atomic excitation. In that

sense our scheme resembles AFC in an impedance matched optical cavity [131], where a

complete conversion is possible. In this chapter we find a condition when this scheme can

work as a classical delay line and an efficient QM. Moreover, we discuss possible experimental

implementations and further development of the protocol for a long lived storage.

3.2 Proposed scheme

We consider an array of N single-mode high-finesse chirped cavities with an equidistant

spectrum of modes with mode spacing ∆ (Fig. 3.1). An optical field coupled into such

an array remains distributed between the cavities until all of them can re-emit in phase,

giving rise to intense photon-echo signals at the output. With appropriate coupling between

the nanofiber and the cavities, which is possible, e.g., with a fiber tapered to a submicron

diameter [132, 133, 134], the entire field stored in the cavity array can be retrieved within

the first echo signal with a time delay techo
∼= 2π/∆.

In the considered chirped ring-cavity (CRC) scheme (or frequency comb all-pass filter),
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Figure (3.1) An array of chirped ring cavities coupled to a common optical fiber. The
spectrum of cavity modes ωn = ωo + n∆ with γ < ∆ is shown in the inset. The spectrum of
the input signal with a bandwidth δ is shown by the solid blue line.1

the spectrum of cavity modes is equidistant and consists of narrow lines centered at cavity

eigenfrequencies ωn: ωn = ω0 +n∆− iγn, where γn < ∆ is the nth mode linewidth, and n =

0, 1, ..., N−1. Further on, we consider non-Hermitian free Hamiltonian for the cavities, where

the finite lifetime of the photon is included as an imaginary frequency. The Hamiltonian

of the CRC system is written as Ĥ = Ĥc + Ĥf + V̂ , where Ĥc = ~
∑N

n=1 ωnb̂
†
n(ω)b̂n(ω) is the

Hamiltonian of N ring cavities, Ĥf = ~
∫
dωωâ†(ω)â(ω) is the Hamiltonian of optical-fiber

modes, and

V̂ = ~
N∑
n=1

∫
dω(gnb̂

†
n(ω)â(ω)eikωzn + g∗nb̂n(ω)â†(ω)e−ikωzn) (3.1)

is the cavity-fiber interaction Hamiltonian, with zn being the coordinate of the nth cavity

(zn 6= zm for n 6= m) and â(ω), â†(ω), b̂n(ω), and b̂†n(ω) being bosonic annihilation and

creation operators of the optical-fiber and cavity modes.

An input optical light field is launched into the CRC system at the time moment t = 0

along the z axis as shown in Figure 3.1. Applying the input-output formalism [134, 33] for

the interaction of the light field with ring-cavity modes, which are assumed to be in the

ground state at a room temperature, we arrive at the following set of equations for the field

1The figure and the caption were created by S.A. Moiseev.
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amplitude inside nth cavity:

db̂n(ω)

dt
= −(iωn + κn/2 + γn)b̂n(ω) +

√
κnâin,n(ω). (3.2)

To find the field amplitudes for each cavity b̂n(ω) and fiber âin,n(ω), we use the condition

âin,n(ω)+ âout,n(ω) =
√
κnb̂n(ω) [119], where κn is a coupling constant of the nth cavity mode

with the nanooptical fiber. Additionally, the fiber fields before and after the interaction

with the nth cavity are related as âin,n+1(ω) = e−ik(zn+1−zn)âout,n(ω), where an intermediate

position is zn+1 > z > zn. Applying conditions from the above and Fourier transformation

b̂n(t) =
∫
dωb̂n(ω)e−iωt and âin,n(t) =

∫
dωâin,n(ω)e−iωt to Eq. (3.2), we find the fiber field:

âout,n(ω) = −κn/2− γn − i(ωn − ω)

κn/2 + γn + i(ωn − ω)
âin,n(ω). (3.3)

Generalizing this formula for the whole array we find the output fiber field

âout,N(ω, z > zN) = eikω(z−zN )UN
ω âin(ω), (3.4)

where

Um
ω = (−1)meikω(zm−z1)

m∏
n=1

κn/2− γn − i(ωn − ω)

κn/2 + γn + i(ωn − ω)
, (3.5)

determines the fiber mode amplitude behind the mth cavity. We use new notation âin(ω) =

âin,1(ω, z1) for the Fourier-transformed input field. Following the same line of derivations we

find nth cavity mode amplitude

b̂n(t) =

∫
dωβn(ω)U (n−1)

ω e−iωtâin(ω) (3.6)

with βn(ω) =
√
κn

κn/2+γn+i(ωn−ω)
.

As can be seen from Eqs. 3.4 and 3.5 the output field is independent from the order
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(a) (b)

Figure (3.2) (a) The input and output field intensities (I = |Ain(t)|2, |Aout(t)|2) as func-
tions of time (in units of δ−1) for a three-pulse input field (left dashed red curve) for
κ/δ = 0.01 (green line), 0.025 (yellow line), and 0.05 (blue line). The mode spacing is
∆ = 0.1δ. The finesse of ring cavities is F = 50, number of cavities N = 61. (b) Quantum
efficiency η echoes of signal retrieval as a function of the cavity finesse F for a Gaussian
pulse in a cavity array with N = 61. The mode spacing and coupling constants are the same
as in (a). The efficiency is calculated over all possible echoes.

in which the cavities are arranged in the array. For a single-photon initial state |ψδ 〉 =∫
dωfδ(ω)â†in(ω) | ∅ 〉, where | ∅ 〉 is the vacuum state and fδ(ω) is the wave-function normal-

ized by
∫
dω|fδ(ω)|2 = 1 with bandwidth δ, the probability amplitude of the output light

field Aout(t, z) = 〈 ∅ | âout,N(t, z) |ψδ 〉 is given by

Aout(t, z) =

∫
dωe−i(ωt−kω(z−zN ))UN

ω fδ(ω). (3.7)

In Figure 3.2a, we plot the output field amplitude Aout(t) calculated for a three-pulse input

signal as a function of time for three different values of the coupling constant κ and fixed

decay rate γ, with κ = κ1 = ... = κN , γ = γ1 = ... = γN . The cavities are qualified with two

parameters: finesse defined as F = ∆/(2γ) and the cavity quality factor Q = ω0/(2γ). In

the regime of weak coupling, κ� ∆, some fraction of the input light is transmitted through

the entire CRC system, experiencing no delay, giving rise to a signal at t ≈ 0 in Figure 3.2a.

33



The remainder of the input field is distributed between the first, second, and subsequent

echo signals, observed at techo, techo,2 ≈ 2techo = 4π/∆, and techo,n ≈ ntecho, respectively.

Figure (3.3) Intensities of the input signal pulse and retrieved echo pulses (I = |Ain(t)|2,
|Aout(t)|2) for ring cavity QM vs coupling constant κ; spectral distance ∆ = 0.1δ, number of
cavities N = 61, γ = 10−4δ (finesse F = ∆/(2γ) = 500), δ is a spectral width of the input
light pulse.

Remarkably, the storage time in the considered cavity array is mainly determined by

the frequency spacing ∆, but is also sensitive for large enough coupling constant κ > ∆/2.

The change in the recall time is depicted in Figure 3.3 for different coupling constants.

The presented advance of the pulse recall for a large coupling constant is due to the faster

formation of coherence in the ‘overcoupled’ cavities. The resulting recall time is modified as

techo ∼ 2π
∆
− κ

∆δ
.

We can define quantum efficiency η(t) of the field retrieved in the first echo pulse as

η(t) =

∫
dzA∗out(t, z)Aout(t, z)∫
dzA∗in(t0, z)Ain(t0, z)

, (3.8)

where Ain(t0, z) = 〈 ∅ | âin(t0, z) |ψδ 〉 is the input field amplitude. Calculations presented in

Figure 3.2b show that for a finesse higher than 50 the first echo provides signal retrieval

with efficiency more than 90%. As can be seen in Figures 3.2a and 3.2b coupling constants
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κ close to 0.5∆ are required for efficient signal retrieval.

3.3 Comparison with other protocols

Figure (3.4) Intensities of the input and output light pulses (I = |Ain(t)|2, |Aout(t)|2) in
the SCISSOR scheme [135] for different coupling constants normalized to the spectral width
of signal pulse κ/δ shown in the legend; number of cavities N = 61, all the cavities have
equal frequencies (i.e., ∆ = 0), γ = 10−4δ, δ is a spectral width of the input light pulse. The
presented time delay is totally due to the interaction between the cavities and the incoming
pulse.

We emphasize that, while the CRC array considered here stores light—classical or quantum—

in the form of a field distributed between individual cavities, its ability to provide long

storage times is due to periodic coherence revivals, occurring at the instants of time when

the fields circulating in individual cavities are all emitted in phase. In this respect, it is

instructive to compare the delay-line performance of the CRC-array scheme considered here

with a delay-line architecture based on all-pass filter called also as a side coupled integrated

spaced sequence of resonators (SCISSOR) [135, 136, 137]. In contrast to the CRC-array,

SCISSOR scheme consists of the ring cavities with equal central frequencies. The SCISSOR

technique and the coupled resonator optical waveguide (CROW) configuration [138] are two
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complementary basic standards of an on-chip integrated optical delay line [139, 140, 141],

the principle schemes for both delay lines are presented in Figure 3.5.

1 2 N

Waveguide

1 2 N

Figure (3.5) The principle schemes of SCISSOR (above) and CROW (below). SCISSOR
consists of an array of identical cavities coupled to a common waveguide. The input light âin
from the coupling fiber enters the first resonator, where it is delayed by the time proportional
to the inverse coupling constant κ. The procedure is repeated N times, where N is number
of resonators. CROW consists of a resonator array with closest neighbours being coupled
to each other. The input light experiences reduced group velocity due to large dispersion of
the array. An overall delay is the same for both schemes ∼ N/κ.

Time delay in both schemes is mainly determined by their bandwidth windows where

an effective group velocity of light can be reduced to c/100. Herein, CROW, where the

ring cavities are coupled to each other without additional common optical fiber, can work

within wider spectral range even in the presence of weak coupling between the resonators

(i.e., δ � κ). In addition, while SCISSOR scheme can demonstrate a longer time delay, it

is associated with relatively higher losses, which are caused by a significant role of resonant

interaction with the light field. Below we show that the CRC-array scheme can considerably

exceed the basic characteristics of SCISSOR scheme and reach properties close to the CROW

scheme.

A comparison of CRC and SCISSOR schemes shows (see Figures 3.3, 3.4 and Tables 3.1,

3.2) that both schemes can provide comparable efficiencies, η ≈ 95% for the same input light
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pulses. Moreover, both schemes can provide a superb fidelity, with the shape of the retrieved

signal accurately following the shape of the input pulse (Figures 3.2a, 3.3, and 3.4). Finally,

the coupling constants needed to achieve comparable delay times are much lower for CRC

arrays. Additionally, for comparable efficiencies the delay times provided by a CRC array

are substantially longer than the delay times attainable with the SCISSOR design.

Specifically, calculations presented in Figures 3.3 and 3.4 give τ ≈ 2π/∆ ≈ 62.8/δ for

the CRC array with κ = 0.05δ versus τ ≈ 16.8/δ for SCISSOR with κ = 7.5δ. Large

difference in the coupling constants κ follows from the fact that maximum bandwidth δ

of SCISSOR scheme is determined by the coupling constant of an individual resonator (or

loaded Q-factor), while the total group delay results from a summation of the delays of all

individual resonators. In turn, CRC can provide larger time delay for broadband light pulses

of an order t ≈ 2π/∆ � δ−1 due to the presence of spectral frequency combs N∆ ≥ δ for

relatively weak coupling κ � δ. Accordingly, the predominant interaction of signal fields

with CRC array occurs for the off-resonant condition with the ring cavity modes that will

provide lower losses similar to CROW.

CRC scheme can be used for noiseless quantum storage due to its passive nature. In con-

trast to a free space AFC protocol [126], the described CRC scheme uses purely optical tools

and can operate at a room temperature. It is also important that the CRC scheme provides

an efficient light retrieval in a forward direction that allows practical implementation with

high quantum efficiency. At the same time, a conventional AFC-protocol works efficiently

only for backward light retrieval that requires the use of additional control laser pulses. An-

other unobvious property of the CRC scheme is an efficient quantum storage at the optimal

coupling κ = 0.5∆ that distinguishes this scheme from the free space AFC protocol [126]

and from its recent spatial-frequency version [142].

The optimal coupling makes the CRC protocol similar to the impedance matching QMs

[131, 50, 143], although CRC does not use any common single mode resonator providing an

optimal coupling with all the CRC modes. This property exposes another physical nature in
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the emergence of optimal conditions in the CRC scheme and in the quantum random-access

memory [144] indicating the possibility of more common manifestation of the impedance

matching effects for light field evolution in the integrated optical devices.

3.4 Possible experimental implementations

The proposed purely optical scheme can be experimentally implemented with whispering

gallery modes of the ring cavities [132] or by using an on-chip approach [145]. The cavities

from these works [132] and [146] are characterized by very high intrinsic quality factors,

Q = 108 and Q = 1010, while the cavities can still be efficiently coupled to a nanofiber

[147]. Below we analyze a possible implementation of CRC by means of on-chip array of ring

cavities [146].

Following work [146], we choose the parameters of a single-mode ring cavity: ω0 = 2π ·200

THz (telecommunication band λ = 1.5 µm), cavity diameter D = 90 µm, free spectral range

ωFSR = 2π · 790 GHz, and linewidth γn = γ = 1/(2τcrit) = 2π · 1.6 MHz determined by

an intrinsic quality factor Q = 1.25 · 108. By taking into account that total number of the

cavities can be as high as a hundred [139], we pick an intermediate number N = 61 that

determines a maximum intermode spacing to be ∆ = ωFSR/60 = 2π · 13.16 GHz.

The optimal coupling constant κ = ∆/2 = 2π ·6.58 GHz (see Figure 3.3) can be obtained

experimentally by tuning distance between the microcavities and a waveguide [139]. For

instance, nth cavity could have spectral detuning of n∆ by using slightly different diameter

Dn
∼= D − n∆D/ω0 (where ∆D/ω0 = 7.37 · 10−4D = 63 nm). The precision of 63 nm

is attainable by the current nanooptical technologies [134]. Other ways to realize an arbi-

trary spectral offsets n∆ for microresonators are thermo-optics, electro-optics, or free-carrier

dispersion control, which varies refraction index [139, 148].

As an evaluation of light pulse retrieval efficiency we use numerical results with mode

spacing ten times smaller than the bandwidth of the input light ∆ = 0.1δ = (10ts)
−1.
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Q ts tdelay, SCISSOR tdelay, CRC

108 1.2 ps 20.2 ps 75.4 ps
32 ps 0.54 ns 2 ns

1010 0.12 ns 2.02 ns 7.54 ns
3.2 ns 54 ns 0.2 µs

Table (3.1) Time delay of the retrieved pulse in SCISSOR- and CRC schemes with quan-
tum efficiency η ≈ 0.95 related to the results of Figures 3.4, 3.3 for two intrinsic quality
factors Q; coupling constant κ = 7.5δ for SCISSOR and κ = 0.05δ for CRC scheme, δ = t−1

s

is a spectral width of the signal pulse, ts - its temporal duration, δ = 10∆, number of
microcavities N=61, finesse F = 500.

However, the spectral width of light pulse δ = t−1
s can also be in the range from few ∆ to

several dozen of ∆. By using two possible intrinsic quality factors (Q = 108 and Q = 1010),

we find the time delays tdelay for the same quantum efficiency η ≈ 0.95 of SCISSOR and CRC

schemes. This data is also summarized in Table 3.1. Efficient quantum storage is possible

for pico- and nanosecond pulses where time delays in CRC scheme can reach techo
∼= 2 ns

(for ts = 32 ps and Q = 108) and techo
∼= 0.2 µs (for ts = 3.2 ns, Q = 1010).

Additional time delay of light pulse due to propagation in the common optical fiber,

being 6 mm long2 with refractive index 1.5, will be ≈ 30 picoseconds. This time delay is 60

or 6 · 103 times shorter than tdelay in CRC scheme for quality factors Q = 108 and Q = 1010.

This is a significant advantage of CRC for on-chip optical schemes in comparison with a

usual SCISSOR scheme.

Storage time in the CRC scheme techo
∼= 2π/∆ can be further increased for the cavities

with smaller frequency spacing ∆ (i.e., for lower finesse F) but at the expense of reducing

the quantum efficiency. We summarize the numerical data results, presented in Fig. 3.2b,

in Table 3.2, where we provide possible time delays for the CRC scheme with appropriate

quantum efficiencies. From this data it is seen that the time delay reaches tdelay
∼= 334.7

ns for the light pulse duration ts = 5.33 ns, quality factor Q = 108, and quantum efficiency

η ≈ 0.35. For higher quality factor, Q = 1010, the time delay can reach 33.5 µs. This time

delay is shorter by one order of magnitude than the light lifetime in a single ring cavity. It

2Spatial size of the described array consisting of 61 cavities can be estimated as L = 60 · 100 µm=6 mm,
where 100 µm is the distance between the centers of two nearest cavities.
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Q (CRC) F η ts tdelay

108 10 0.72 1.6 ns 100.5 ns
3 0.35 5.33 ns 334.7 ns

1010 10 0.72 0.16 µs 10.05 µs
3 0.35 0.533 µs 33.5 µs

Table (3.2) Time delay of the retrieved pulse in CRC schemes in accordance with results
of Figs. 3.2b for two different finesse: F = 3 and F = 10 and for two quality factors Q;
coupling constant κ = 0.05δ, δ = 10∆ (δ = t−1

s ), N=61.

is worth noting new nanooptical technologies which could be useful for fabrication of the

studied CRC scheme. For example, it may be monolithic semiconductor microcavities and

cavity arrays in photonic crystals and other materials [134, 139].

3.5 Conclusion and discussion

We have shown that a system of frequency comb ring cavities coupled to a nanofiber

can be used for implementation of on-chip broadband delay line operating at room temper-

ature. In comparison with usual SCISSOR configuration [135, 136, 137], the proposed CRC

scheme provides longer temporal delay with much weaker coupling constant—two orders of

magnitude—between the cavities and optical fiber and it promises lower losses in practice.

Moreover, the CRC scheme provides operation in a wider spectral range, δ � κ, if compared

with the SCISSOR configuration.

On demand retrieval in CRC scheme can be realized by adiabatically fast equalizing the

cavity frequencies after complete absorption of an input light pulse but before its irradiation

in an echo pulse at t ∼= 2π/∆. The control of cavity frequencies can be implemented via

existing methods desribed in these works [139, 148, 149] providing sufficiently fast switching

of the microresonator with frequencies up to hundreds of GHz. The equalized cavity fre-

quencies will lead to freezing of relative phases of CRC modes and to complete stop of the

input light pulse in the CRC arrays. The light retrieval will be possible only after recovering

the initial cavity frequencies at the times being multiples of 2π/∆. Although the maximum

storage time in this case is limited by the intrinsic cavity mode Q-factor and by additional
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losses caused by the non-ideal switching, this technique opens a direct way for the fast and

on demand retrieval of the stored light pulses.

Longer storage in CRC arrays can be implemented by placing resonant atoms in the

ring cavity volume. Herein, one can reversibly transfer the cavity mode excitation to the

long-lived atomic/spin coherence (for example on the hyperfine sublevels of an NV-center

[150, 151, 152, 153, 154]) by applying an additional control laser field and forming cavity

enhanced Λ-transition. In particular, single atom with a suitable Λ scheme should be placed

in each ring cavity. It demands control of single atoms in 61 individual cavities for the

storage of a single photon field on long-lived atomic transition. Remarkably, the non-uniform

distribution of coupling constants κ allows to achieve efficient delay with only four cavities

[155] and simplifies the scaling problem significantly. Meanwhile, the implementation of

the slow light dispersion by incorporating Erbium ions into silica-fused WGM resonator

showed the possibility to extend the cavity quality factor to the value of 1011 [156] at room

temperature. The use of such resonator seems promising but may require additional analysis

of the noises created by the presence of Erbium ions.

All discussed observations indicate promising opportunities of the CRC scheme for prac-

tical implementation of the frequency comb based quantum repeater. The detailed studies

of long-lived CRC based quantum memory schemes will be a subject of further research.

The described properties of all-optical photon echo on the chirp ring cavity array coupled

with nanofibers demonstrate a promising credit to the room temperature time delay line and

optical quantum memory suitable for application in integrated optics.
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Chapter 4

White cavity

4.1 Introduction

Quantum information encoded in photons has to be reversibly converted into a matter

excitation with a lifetime long enough for a given task. Nowadays there are a number of

practical implementations, which include the use of cavities [157], neutral atoms at low [92]

or high temperatures [97], quantum dots [158], vacancy centers and phonons in diamond

[159, 160], and solids doped with rare ions [161]. Among them the use of a single quantum

emitter or ensemble of atoms situated in a strongly coupled cavity [162, 163, 164] is considered

promising for use in quantum processing [165, 166, 167]. However, such a memory allows

an efficient storage only for flying qubits with special temporal modes, which, in particular,

require high-precision match of the signal and control light pulses [49]. Moreover, the finite

coupling constant of cavity-atom interaction limits the quantum storage of broadband light

fields.

In contrast to single atoms in a high-quality resonator that can only store quantum

states of single photon fields, the multi-atomic coherent ensembles provide universal and

robust media for storage of arbitrary quantum fields [128, 67, 168, 129, 169]. In addition,

atomic ensembles can be used both in free space [13] and in resonators [49]. Both of these
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approaches have their advantages and drawbacks and therefore they are under investigations

for improvements [67].

The quantum memory protocols require a considerable enhancement of the coherent

interaction between resonant photons and atoms, for example, by increasing the number

of atoms in the ensemble. This implies using longer cells for hot gases or denser traps for

cold gases, such as 2D magneto-optical traps [170] or special sub-wavelength arrangement of

atoms [171]. For solid-state media such as rare-earth ions doped crystals increasing optical

depth is more challenging. Detailed experimental studies show that absorption coefficient

in birefringent materials generally varies with length [172]. This means that absorption

will not increase linearly by increasing the crystal length which could in principle limit the

maximal optical depth. In addition, bulk crystals are inconvenient for integration in the

compact optical systems. Therefore, atomic ensembles placed in resonators are considered

as a promising practical platform for quantum storage, but requiring further research and

the use of new technological solutions.

The first work [49] devoted to the study of the amplification of the interaction of light

with atomic ensembles in an optical resonator showed an asymptotic tendency of quantum

efficiency to unity with an increasing collective cooperativity parameter, that is, the max-

imum possible increase in the collective coupling constant between the cavity mode and

atoms. Further improvement came with so-called impedance-matched (IM) configuration

[173, 131]. Where an optimal coupling constant between an atomic ensemble and resonant

cavity mode for realization of unit quantum efficiency was demonstrated [174, 74, 75, 175].

The combination of this approach with the off-resonant Raman memory [143] allows to

efficiently store light on a long-lived ground state hyperfine coherence of some rare-earth

ions without application of noisy control π pulses. Here, the reflected wave is suppressed

by matching the single-sided cavity Q-factor with an effective optical depth of the media.

Simultaneously with this, an incoming wave is fully converted into the ground state hyperfine

excitation. As a result, time-reversible absorptive QM under IM condition is capable of
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complete absorption and retrieval of incoming light pulses at finite atomic optical depth.

For samples with low optical depth the IM scheme of quantum storage demands a high

quality factor. However, an increase of the quality factor leads to proportional narrowing of

the cavity linewidth and the QM bandwidth [174]. Together with weak oscillator strength

of the ions it makes impossible to store short signal pulses. It was found [173, 176] that the

additional IM conditions can provide efficient, > 90%, quantum storage in wider spectral

range, but still limited by a spectral width of the cavity mode.

Here we propose to extend the bandwidth of impedance matched QM by exploiting the

white cavity effect [177]. The general idea can be expressed as extending impedance matching

over the broader spectral bandwidth by introducing the dispersion interaction of atoms with

additional control field providing zero spectral dispersion for the signal field. The dispersion

interaction compensates the round-trip phase shift for different spectral components of the

incoming signal field to keep them under IM conditions.

The chapter is structured as follows. First we present a classical model for describing

white cavity impedance matching. Next we present the quantum treatment for storage of

the incoming field in Raman echo QM operating in IM white cavity regime and show the

extension of the memory’s bandwidth. At the end we analyze the noise induced by the

imaginary part of the abnormal dispersion and present a regime of a noise free operation.

Finally we discuss possible experimental implementations.

4.2 Classical approach

Let us consider the simplest cavity consisting of two mirrors with amplitude reflection

coefficients r1, r2. The cavity is driven by an incident plane wave with wave-vector k = 2πν
c

,

where c is the speed of light and ν is the central frequency. If the cavity is filled with a linear

medium having a complex refractive index n(ν) =
√

1 + χ(ν), where electric susceptibility

of the media χ(ν) = χ′(ν) + iχ′′(ν) consist from real χ′(ν) and imaginary χ′′(ν) parts. We
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can obtain equations for the reflected field amplitude and intensity from the cavity [178]:

Eref = Ein
r2e

i2kl
√

1+χ(ν) − r1

1− r1r2e
i2kl
√

1+χ(ν)
, (4.1)

Iref = Iin

(r1 − r2e
−2kl·α(ν))2 + 4r1r2e

−2kl·α(ν) sin2
(
πνn(ν)

FSR

)
(1− r1r2e−2kl·α(ν))2 + 4r1r2e−2kl·α(ν) sin2

(
πνn(ν)

FSR

) , (4.2)

where l is a length of the cavity and FSR = c/(2l) is its free spectral range (FSR). The losses

due to the media are expressed as extinction coefficient α(ν), while the phase retardation is

expressed as refractive index n(ν):

α(ν) =

√(√
(1 + χ′(ν))2 + (χ′′(ν))2 − 1− χ′(ν)

)
/2, (4.3)

n(ν) =

√(√
(1 + χ′(ν))2 + (χ′′(ν))2 + 1 + χ′(ν)

)
/2. (4.4)

In the absence of the medium (χ′, χ′′ = 0) the resonance occurs for a frequency equal to the

multiple of FSRs: ν = m · FSR , where m ∈ N. In turn, the impedance matching occurs

(Iref = 0) at resonance, when the reflection coefficient of the input mirror equals to the round

trip losses: r1 = r2, that corresponds to the full transmission of the wave from the input to

the output mirror. If the medium is present, the impedance matching condition is modified

to be

r1 = r2e
−2kl·α(ν). (4.5)

One can think, that if the media is able to provide dispersion profile with inverse frequency

dependence n(ν) ∼ 1
ν
, the broadbandness is realized since the argument of the sinus in

Equation (4.2) is constant. Unfortunately, this dispersion is going to be accompanied by

logarithmically increasing absorption α(ν) ∼ log v because of the Kramers–Kronig relations.

This additional absorption would ruin the impedance matching at larger frequency range.

Therefore, the realization of large broadbandess covering several FSRs seems not feasible.
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However we still can try to consider a single resonance and expand its bandwidth by finding

suitable compensating dispersion.

For further analysis we consider a single resonance occurring at frequency ν0 and expand

the small frequency deviation δν with respect to ν0. In this case the Taylor expansion gives

next result:

sin2

(
πνn(ν)

FSR

)
≈
(
d

dν
sin

(
πνn(ν)

FSR

) ∣∣∣
ν0
δν +O(δν2)

)2

. (4.6)

The first order broadbandness is realized when the linear term in the expansion is supressed

(
n(ν) + ν

dn(ν)

dν

) ∣∣∣∣
ν0

= 0. (4.7)

Therefore the realization of the first order broadness requires a slow negative slope of the

dispersion. In principle, the condition is not that strict, since slow negative slope dispersion

is not exotic material and it would be accompanied by small flat absorption, that should not

ruin the impedance matching. Similarly, the second order in the Taylor expansion can be

eliminated :

(
2
dn(ν)

dν
+ ν

d2n(ν)

d2ν

) ∣∣∣∣
ν0

= 0 (4.8)

Since our goal is to extend the bandwidth for high efficient quantum memory, we may

need two types of medium. The first is used to absorb the incoming light and convert it into

long-lived atomic coherence. In turn, the second medium guarantees the desired dispersion

necessary for the broadbandness. Thus it is important to make sure that the actual storage

is realized on the proper medium. This problem is studied in the Section 4.3 where quantum

mechanical treatment is used to assess the problem.

If we assume, that the cavity is single-sided r2 = 1, the conditions (4.7) and (4.5) put

restrictions for superposition of storage and compensation medias χ(ν) = χs(ν) + χc(ν),
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(a) Impedance matching, A=0.017, ν0=0 (b) White cavity, A=0.574, ν0=0.56

Figure (4.1) Parameters used in calculations FSR=20, r1=0.8, r2=0.95. ε′ = A(ν−ν0)
γ2+(ν−ν0)2

where

r1 = exp

(
−2kl

√(√
(1 + χ′(ν))2 + (χ′′(ν))2 − 1− χ′(ν)

)
/2

)
, (4.9)

(1 + χ′(ν))2 + (χ′′(ν))2 + ν0
2

(χ̇′(ν)(1 + χ′(ν)) + χ̇′′(ν) · χ′′(ν))√
(1 + χ′(ν))2 + (χ′′(ν))2

+
(

1 + χ′(ν) +
ν0

2
χ̇′(ν)

)
= 0,

(4.10)

where we evaluate the spectral properties of different susceptibilities and their performance

for extending the impedance matching. For this purpose we introduce simple bandwidth

benchmark as 90% absorption band, instead of conventional 50%.

In order to see how the cavity field is modified we consider the medium with Lorentzian

profile. In turn the media consists from non-interacting two-level atoms with linear density

ρ (numbers of atoms per unit length), resonant transition frequency ν0, natural linewidth γ,

and transition dipole moment d. The susceptibility of the medium is [15]

χ(ν) = i
ρνd2

~cε0
1

γ − i · (ν − ν0)
, (4.11)

where ~ is the Plank constant, ε0 is the vacuum permittivity and we have assumed the
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intensity of electromagnetic wave to be much lower than medium’s saturation intensity. As

shown in Figure 4.1a, the absorber consisting from two-level atoms achieves a complete

suppression of the reflection. The additional Lorentzian profile in Figure 4.1b with negative

dispersion increases the effective 90% bandwidth by a factor of ∼ 5.

4.3 Quantum mechanical approach: Model

Next we consider full quantum treatment of the memory protocol in the presence of the

compensation medium. We assume that an atomic ensemble is placed inside a one-sided high-

quality factor single-mode cavity as it is depicted in Figure 4.2. We use the double-Λ scheme

of the atomic transition where the ground atomic levels | 1 〉 and | 4 〉 are initially populated,

while other ground levels | 2 〉 and | 5 〉 are depopulated. Signal field âin is launched into the

cavity in the presence of two control laser fields propagating at some angles to the cavity

axis. One control field is characterized by the wave vector ~kL, carrier frequency ωL and Rabi

frequency ΩL. This field couples atomic states | 2 〉 and | 3 〉 and provides a usual off-resonant

Raman interaction with the cavity mode field âs on the Λ transition | 1 〉 → | 3 〉 → | 2 〉

through optically excited state | 3 〉 with spectral detuning on optical transition ∆L. Second

control field with wave vector ~kn and carrier frequency ωn couples atomic states | 4 〉 and | 6 〉

with Rabi frequency Ωn and provides an off-resonant interaction of the cavity mode field

with atomic transition | 4 〉 ↔ | 5 〉 through the optical state | 6 〉 with detuning ∆n.

We note that in contrast with the first Λ scheme, the signal and second control laser

fields do not result in a resonant transition between atomic states | 4 〉 and | 5 〉. Large two-

photon detuning δ governs the dispersion type of interaction on transition | 4 〉 → | 6 〉 → | 5 〉

between the signal light and atoms (see Figure 4.2). Moreover, in contrast with usual

off-resonant interaction on the atomic transition | 1 〉 → | 3 〉 → | 2 〉, the signal light field

interacts on the transition | 4 〉 → | 6 〉 → | 5 〉 with an inverted atomic population leading

to the inverted spectral dispersion. By controlling the parameters of inverted dispersion

48



we find the condition of impedance matched QM in a broad spectral range due to strong

compensation of the negative spectral effects in light-atom interaction in this spectral range.

As usual, we consider the light-atom interaction in the limit of a weak signal field, when

it is sufficient to take into account a linear atomic response to the input signal field. By

using an input-output formalism [119], we get the following system of equations for slowly

varying operators of the cavity mode âs and atomic coherences for jth atom P̂ j
pq = | p 〉jj 〈 q |

(p, q=1,...,6):

(a) (b)

Figure (4.2) (a) The atomic media is coupled to a running-wave cavity. (b) The atomic
levels and quantum transitions: strong control laser field ΩL provides an absorption for
optical cavity field â via two-photon Raman transition | 1 〉 → | 3 〉 → | 2 〉; the additional
control field Ωn through the Raman scattering on second lambda scheme | 4 〉 → | 6 〉 →
| 5 〉 realizes dispersion compensation mechanism for extending impedance matched cavity
linewidth.

d

dt
âs = −

(κ
2

+ iωs

)
âs − i

N∑
j=1

(
gj1P̂

j
13 + gj2P̂

j
56

)
e−i

~ks~rj +
√
κâin, (4.12)

d

dt
P̂ j

13 = −(γ13 + iωj31)P̂ j
13 − ig

j∗
1 e

i~ks~rj âs〈 P̂ j
11 〉 − iΩLe

−i(ωLt−~kL~rj)P̂ j
12, (4.13)

d

dt
P̂ j

12 = −(γ12 + iωj21)P̂ j
12 − iΩ∗Lei(ωLt−~kL~rj)P̂ j

13, (4.14)

where ωs and ~ks are a resonant frequency and a wave vector of the cavity mode, gj1 and gj2 are

the coupling constants for the cavity mode interacting with atomic transitions | 1 〉 ↔ | 3 〉

and | 5 〉 ↔ | 6 〉, γnm are the decay constant on the atomic transition |n 〉 ↔ |m 〉, κ is
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the coupling constant of this mode with the external field modes. In accordance with the

photon echo QM protocol [143], it was also assumed a presence of controllable inhomogeneous

broadening on the atomic transition | 1 〉 → | 2 〉.

The atomic coherence excited on the transition | 4 〉 → | 6 〉 → | 5 〉 is governed by the

following equations for the atomic coherences:

d

dt
P̂ j

46 = −(γ46 + iω64)P̂ j
46 − i

nc∑
n=1

Ωne
−i(ωnt−~kn~rj)〈 P̂ j

44 〉, (4.15)

d

dt
P̂ j

56 = −(γ56 + iω65)P̂ j
56 − iP̂

j
54

nc∑
n=1

Ωne
−i(ωnt−~kn~rj), (4.16)

d

dt
P̂ j

45 = −(γ45 + iω54)P̂ j
45 + iP̂ j

65

nc∑
n=1

Ωne
−i(ωnt−~kn~rj) − igj2ei(ωst−~ks~rj)ˆ̃a†sP̂

j
46, (4.17)

where the sum is taken over a number of additional control laser fields nc with Rabi frequen-

cies Ωn, carrier frequencies ωn, and wavevectors ~kn. We simplify Eqs. 4.15–4.17 by taking

into account off-resonant interaction of light fields with atoms and assuming a sufficiently

large spectral detunings of additional control laser fields |ω64 − ωn| � δωf .

Eqs. 4.12–4.14 are common for the off-resonant Raman QM [13]. By transferring to

slowly varying fields {ˆ̃as; ˆ̃ain} = eiωst{âs; âin} and atomic coherences P̂ j
12 = ˆ̃P j

12e
−i(ωs−ωL)t,

P̂ j
13 = ˆ̃P j

13e
−i(ωst−~ksrj) and after performing the Fourier transformation:

{ ˆ̃P j
kl(t),

ˆ̃as(t), ˆ̃ain(t)} =
1√
2π

∫
dωe−iωt{ ˆ̃P j

kl(ω), ˆ̃as(ω), ˆ̃ain(ω)}, (4.18)

we deduce from Eqs. 4.13–4.17:

ˆ̃as(ω) =

√
κ

κ/2 + β1(ω)− iβ2(ω)− iω
ˆ̃ain(ω), (4.19)

β1(ω) = 〈 P̂11 〉
N∑
j=1

|gj1|2

γ13 + i(∆L − ω)− i |ΩL|2
(δj21−ω−iγ12)

, (4.20)

β2(ω) = 〈 P̂44 〉
N∑
j=1

|gj2|2
∑nc

n=1
1

(ω−δn+iγ45)
|Ωn|2

(∆n+iγ46)

(∆1 + δ1 − ω − iγ56) +
∑nc

n=1
|Ωn|2

(ω−δn+iγ45)

, (4.21)
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where δj21 is individual detuning of atom due to inhomogeneous broadening of level | 2 〉. We

note that β1(ω) characterizes spectral properties of the absorption and dispersion in the off-

resonant interaction of signal light with atoms [143]. While term β2(ω) is responsible only for

the additional spectral dispersion effects caused by the presence of additional control laser

fields Ωn. Now we can find the output field by using input-output relation âout =
√
κâs− âin

[119] and Eq. 4.19 we have ˆ̃aout(ω) = R(ω)ˆ̃ain(ω), where

R(ω) =
κ/2− β1(ω) + iβ2(ω) + iω

κ/2 + β1(ω)− iβ2(ω)− iω
(4.22)

is a spectral reflection coefficient of the input signal field, which characterizes the properties

of the studied QM scheme. Input signal light within spectral range with reflection coefficient

R(ω) = 0 is efficiently mapped on the spin coherence. The process is accompanied by

a strong rephasing of the spin atomic coherence created on the transition | 1 〉 ↔ | 2 〉 by

inhomogeneous broadening. In accordance with cavity assisted photon echo QM scheme, the

retrieval of the input signal is realized by active rephasing of the spin coherence in a presence

of control laser fields [143]. In the studied case, we have to apply two additional control laser

fields ΩL and Ωn. An efficient echo emission is guarantied by the temporal reverse scenario

of the light-atom interaction which can be even generalized for irradiation of echo pulse with

another temporal duration and carrier frequency [179]. Below we analyze the particular cases

of broadband off-resonant quantum storage with the application of dispersion compensation

laser field Ωn.

4.4 Controlling the field storage by one and two addi-

tional off-resonant laser fields

1) One control field (n = nc = 1). By assuming that all the decay constants on the

optical and spin transitions are close to each other γ46 = γ56 = Γ and γ45 = γ12 = γ, we can
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(a) δn = −0.7, Ωn = 2.77, FSR=1.12
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(b) δn = −0.71, Ωn = 2.8, FSR=1.075

Figure (4.3) Numerical simulation of the reflected field from one-sided cavity, where the
solid red line corresponds to usual IM condition without additional dispersion compensation

fields Ωn = 0, ΩL =
√

∆2
s∆in

2Cγ13
∼= 8.47; the blue dashed line reflects the situation of applied

dispersion compensation field having a single central frequency and Rabi frequency Ωn =
2.2; the green dotted line corresponds to the case dispersion compensation fields with two
sideband Ω1 = Ω2 ≈ 0.4 (nc = 1) detuned by one FSR away. All parameters used in
calculations are given in units of γ13 and are δj21 = 2.84, ∆s = 9.2, ∆n = 1.44, γ12 = 0,
γ45 = 0.0074, γ46 = 0.005, γ56 = 0.555, 〈P11 〉 = 〈P44 〉 = 1, κ = 0.0705; cooperativity

parameter C = N | g1 |
2

κγ13
≈ 16.7.1

simplify β2(ω) as follows

β2(ω) =
〈 P̂44 〉

(∆1 + iΓ)

|Ω1|2
∑N

j=1 |g
j
2|2

[(δ1 + ∆1 − ω − iΓ)(ω − δ1 + iγ) + |Ω1|2]
. (4.23)

In Figure 4.3, we present a numerical simulation of reflection coefficient |R(ω) |2 for the

usual case of impedance matching storage (nc = 0, red, solid line) and for the quantum

storage in a presence of a single control laser field (nc = 1,Ω1 6= 0, blue dashed line). Strong

suppression of the field reflection in broad spectral range means broadband IM and efficient

absorption of the input light field. It is seen that applying just a single dispersion compen-

sation laser field makes the impedance matched spectral width 8 times wider on the level of

spectral quantum efficiency 99%.

2) nc = 3.

We consider three additional dispersion compensation fields because of the it is easy to

1The figure and the caption were created by A. Tashchilina.
2The table and the caption were created by A. Tashchilina
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γ12 γ13 γ45 γ46 γ56 κ ΩL Ωn ∆L,∆s δn δj21 ∆n

0 1 0.0074 0.005 0.555 0.0705 8.4733 2.8 9.2 -0.7 2.84 1.44

Table (4.1) Parameters are normalized by γ13 and used for calculation to produce Figure
4.3. 2

get them via phase modulation of single dispersion compensation field. The case of three

additional dispersion compensation fields (Ω1,Ω2,Ω3) depicted by a green line in Figure

4.3 provides 2 times larger spectral width of impedance matching in comparison with the

previous case nc = 1. And it is - 16 times broader than it is for usual spectral impedance

matching QM. We note that the control fields Ω1,2,3 lead to additional optical Stark-shifts in

off-resonant Raman transition, as it is seen for the central part of small reflection coefficient

in the Figure 4.3. Moreover, it is also seen that large decay constant γ23 on the atomic

transition | 2 〉 ↔ | 3 〉 could lead to the amplification of the signal field (see a peak near

ω/γ13 ≈ −1.0). The main contribution to the amplification is imaginary part of Raman

gain, which bandwidth start to coincides with shifted broad impedance matched resonance.

Fortunately in the case of modulated pump (green dotted line), the Stark shift plays positive

role and keeps the resonance away from the noise bandwidth. In addition it is possible to

suppress the amplification by using a sufficiently large spectral detunings ∆1,2,3 � γ23 where

there is only a dispersive atomic response to the input signal field due to the strong detuning

of the resonant interaction.

Strong suppression of the light reflection for the frequency range: −0.75 < ω/γ < −0.55

(where |R(ω) |2 < 0.01) means an efficient transfer of the signal field âs(ω) in the atomic

coherence P̂ j
12. Herein the absence of the signal field in the cavity leads to the absence of

atomic coherence on the adjusted atomic transition | 4 〉 ↔ | 6 〉. Finally we see about 12 and

20 times increase of the bandwidth at 90% and 95% absorbing levels respectively.
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4.5 Noises in the scheme

There are several possible noise sources in the proposed scheme. It includes four-wave

mixing process induced by the cavity signal field, the control field acting on transition | 1 〉 →

| 3 〉 and | 2 〉 → | 3 〉, and an auxiliary idler field. When pump is not collinear with the cavity

mode such process can be dumped by the absence of geometrical phase-matching. For the

collinear configuration the proper choice of the cavity frequency still can dump the four-wave

mixing since the cavity may not provide necessary state for the idler field to fulfill energy

conversion law. The proper density of the cavity state together with geometry can suppress

such process [180].

The presence of the additional dispersion is accompanied by the corresponding gain or

loss according to Kramers–Kronig relations. The gain is responsible for the amplification

and noise due to accompanying spontaneous emission. In contrast to four wave mixing, this

process is not coherent and cannot be suppressed by choice of geometry. Thus it is necessary

to take into account this effect.

For modelling the spontaneous emission we include the Langevin noise term correspond-

ing to spontaneous emission into the Λ system:

d

dt
P̂ j

46 = −(γ46 + i(ω64 − ωn))P̂ j
46 − i

nc∑
n=1

Ωne
i~kn~rj〈 P̂ j

44 〉+ F̂ j
46, (4.24)

d

dt
P̂ j

56 = −(γ56 + i(ω65 − ωs))P̂ j
56 − iP̂

j
54

nc∑
n=1

Ωne
i~kn~rj + F̂ j

56, (4.25)

d

dt
P̂ j

45 = −(γ45 + i(ω54 − ωn + ωs)))P̂
j
45 + iP̂ j

65

nc∑
n=1

Ωne
i~kn~rj − igj2e−i

~ks~rj ˆ̃a†sP̂
j
46 + F̂ j

45, (4.26)

where F̂ j
mn(t) represents generalized delta-correlated Langevin noise terms [15] with corre-

lators of the form 〈 F̂ j
mn(t)F̂ j

nm(t′) 〉 = Dj
mm(t)δ(t − t′) and Dj

mm(t) are generalized diffusion

coefficients [86, 181].
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Figure (4.4) (a) The noise spectrum of spontaneously emitted photons (green dot-dashed)
together with the broadened (blue dashed curve) and unbroadened (red green-dashed curve)
impedance matched absorption profile.

The output field is found similarly as in Section 4.3 with an additional noise term:

ˆ̃aout(ω) = R(ω)ˆ̃ain(ω) +
κ

κ/2 + β1(ω)− iβ2(ω)− iω
δânoise(ω), (4.27)

where the noise term is the superposition of two

δânoise(ω) = i
N∑
j=1

gj2

(
F̂ j

56e
−i~ks~rj

Ξ(ω)
− iF̂ j

54Ω1e
i(~kn−~ks)~rj

Γ(ω)Ξ(ω)

)
, (4.28)

Γ(ω) = (γ45 − iδ + iω), (4.29)

Ξ(ω) = γ56 + i(ω65 − ωs)− iω + |Ω1 |2 /Γ(ω). (4.30)

The corresponding output spectrum 〈 n̂ 〉 = 〈 â†(t′), â(t) 〉 =
∫
dωS(ω)e−iω(t−t′) for a vacuum

input:

S(ω) =

∣∣∣∣ κg2

κ/2 + β1(ω)− iβ2(ω)− iω

∣∣∣∣2 ·
N

(
γ56〈 P̂66 〉
|Ξ(ω) |2

+
|Ω1 |2 (γ54〈 P̂44 〉+ (γ46 + γ56)〈 P̂66 〉)

|Γ(ω)Ξ(ω) |2

)
. (4.31)

Our memory has a relatively low noise level of ∼ 10−2 photons per a bandwidth unit, as can

be seen in Figure 4.4a. Such noise levels allow the memory to operate in quantum regime

with a high fidelity [82].
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γ12 γ13 γ45 γ46 γ56 κ ΩL Ωn ∆L ∆n δn δj21

0.1 10 0.001 1 1 6.5 35.4 28.3 58 15 -13 19.4

Table (4.2) Parameters used to find the noise spectrum presented in Figure 4.4. All these
parameters are in MHz. Other parameters 〈P̂11〉Ng2

1 = 283 MHz2, 〈P̂44〉Ng2
2 = 158 MHz2,

g1 = g2 = 100 Hz.

Among all the control parameters the low noise regime is achieved only for high coherence

times between levels | 4 〉 and | 5 〉. The dependence of the noise power on γ45 is presented in

Figure 4.4b. In turn, there is strict requirement on a specific material, where long coherence

time of the ground levels is accompanied by the existence of an additional three-level system.

In the next section we consider suitable materials.

4.6 Experimental feasibility

In this section, we discuss suitable materials for the experimental realization of the

broadband impedance-matched photon-echo QM. These materials should be able to pro-

vide spectrally independent ensembles with addressable Λ schemes. As memory cells built

with dielectric crystals doped with rare-earth (RE) ions are solid-state, scalable, and have

on-chip realizations, we will limit our consideration to these crystals.

Table (4.3) Potential candidates for implementation of the off-resonant Raman QM. Here
Γinh is an inhomogeneous broadening of an optical transition, T1 and T2 are achieved longi-
tudinal and transverse relaxation times of the ground state spin coherence, λ is the central
wavelength of the optical transition.

Material
Doping

%
Γinh

MHz
T1

s
T2

s
λ

nm
dipole moment

C·m Ref.

167Er3+ :Y2SiO5 0.005 150 9.2 1.3 1538.903 7× 10−32 [182]
Pr3+ :Y2SiO5 0.05 3 · 103 ∼ 102 60 605.977 3.7× 10−32 [183]

Eu3+ :Y2SiO5 0.01 1.4 · 103 ∼ 105 3600 579.879 1.36× 10−34 [184]

We find crystals presented in Table 4.3 to be the best known candidates for an implemen-

tation of the off-resonant Raman QM protocol. Their ground hyperfine levels have both ex-

tremely long lifetimes, T1, and long phase-relaxation times, T2, leading to long storage times
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of quantum information. In addition, some of them have optical transitions compatible with

telecom bands, where the transmission losses are low and numerous optical-communication

devices exist.

First, let us consider the non-Kramers RE ions, such as Eu+3 and Pr+3 in yttrium silicate

(Y2SiO5). Their states are singlet states and their electron spin is equal to zero. Thus, the

strong dephasing mechanism, being phonon-electron interaction, is heavily suppressed at low

temperatures. The main remaining dephasing mechanism is governed by the fluctuations of

the magnetic field created by fluctuations of environmental nuclear spins. There are two

techniques, namely the zero first-order Zeeman shift and/or dynamical decoupling [95], to

mitigate the effect of these fluctuations and to achieve a large nuclear spin coherence time

(see Table 4.3). This makes these ions good candidates for quantum storage.

Moreover, non-Kramers ions allow engineering of different absorption profiles by spectral

hole burning [89, 184]. The hole-burning technique allows isolation of an ensemble of identical

ions within the spectral window with a bandwidth determined by the ground state hyperfine

splitting [185]. In addition to the creation of the individual ion ensembles for the memory, the

application of selective hole burning may create frequency shifted separate ensembles required

for dispersion compensation for the proposed scheme. However, operational wavelengths for

both of these ions lay in the visible range, which may require quantum wavelength conversion

for communication application.

The Er3+ ion with telecom compatible 4I15/2 →4 I13/2 transition is a natural choice for a

quantum memory for quantum repeaters. However, Er+3 being the Kramers ion with non-

zero electronic spin exhibits strong phonon relaxation, which limits the lifetime of the ground

hyperfine states up to several milliseconds. Meanwhile, it was found that the presence of a

large enough magnetic field suppresses resonant phonon relaxation [182]. The coherence time

of hyperfine levels of 167Er3+ isotope in Y2SiO5 was extended to ∼ 1.3 s [182]. In this regime,

an effective hole burning and ground state spin polarization of 167Er3+ are achievable. The

inhomogeneous broadening of 180 MHz [186] in turn would allow engineering of independent

57



memory and dispersion compensation ensembles in Er3+ : Y2SiO5. Overall, this crystal is the

promising candidate for realization of the broadband impedance-matched telecom memory.

After choosing an appropriate material, we would like to specify possible cavity designs

that could provide the required impedance matching. The easiest solution would be to place

an RE doped crystal into an existing Fabry-Perot resonator [74, 175]. This external Fabry-

Perot design is characterized by large intra-cavity losses due to scattering at the surfaces of

the crystal. The losses are inevitable even for anti-reflective coated crystals, so we do not

consider the external Fabry-Perot further.

Two more designs are the monolithic Fabry-Perot, where the crystal surfaces are reflective-

coated to create the Fabry-Perot resonator within the crystal [187, 174], and the whispering

gallery mode (WGM) resonator [188], where WGM is milled from the RE doped crystal.

The losses for both of them are limited by the bulk Y2SiO5 losses per round trip and are

estimated to be 7 · 10−4cm−1 for visible light [187]. These losses are due to material absorp-

tion as authors [187] claim, and they dominate over fundamental losses due to Rayleigh and

Brillouin scattering [189]. The resulting quality factors of monolithic and WGM resonators

are comparable. The experimental simplicity of the monolithic design makes it the preferable

choice for the cavity 3.

Finally, we make estimations on feasibility of experimental realization on 9 mm mono-

lithic cavity created from Y2SiO5 crystal [187] doped with isotopicaly purified 167Er+3. The

inhomogeneous broadening of the sample allows implementation of the memory unit and

dispersion sample. The option is to optically burn the sample into two frequency separated

ensembles within the inhomogeneous broadening profile. In this case the optical linewidth

of transition can be made arbitrary small down to homogenous linewidth ∼ 10 kHz [191].

We propose to burn memory ensemble with the optical linewidth of 10 MHz and dispersion

compensation with the linewidth of 1 MHz. The compensation medium should contain as

much as 55% of number atoms as a memory unit. The reflectivity of the front and back

3We do not consider the recently demonstrated photonic-bandgap cavity [190], since its linewidth is larger
than inhomogenous broadening and does not fit requirements of the proposed scheme.
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mirrors 99.2% and 99.95% provides the inverse photon lifetime to be κ/2π ∼ 6.3 MHz with

a cavity volume ∼ 1mm3. This design provides averaged single photon cavity-atom coupling

constant of g/(2π) ∼ 100 Hz, and together with ion density ∼ 2 ·1010mm−1 it gives the total

number of ions within the cavity mode 2·1010. All other relevant parameters are summarized

in the Table 4.2.

Work λ Efficiency Lifetime Delay-bandwidth product Storage media

[192] 1342 nm 33% 0.22 s ∼ 105 87Rb
[93] 1367 nm 7% 0.1 s ∼ 105 87Rb
[84] 1532 nm 1% 5 ns 40 Er doped fiber
[47] 1536 nm 40% 16 µs 10 Er:YSO
[193] 1536 nm 0.2 % 450 ns ∼ 2 Er:YSO
[194] 1566 nm 14% 15 µs 375 Optomechanics
[195] 1539 nm 0.001 % 10 µs ∼ 103 167Er:YSO

Table (4.4) Recent telecom quantum memory realizations.

The scheme promises the 90% efficiency bandwidth extension from 4 MHz in usual

impedance match scheme to 10 MHz in single control field settings with additional noise

less than 0.01 per pulse. Taking into account the coherence time of the Erbium hyperfine

levels the resulted delay-bandwidth product can reach ∼ 107 in telecom compatible material.

The use of phase modulated control field may open the avenue for extending the bandwidth

up to 80 MHz. The proposed scheme may surpass the current telecom quantum memories

presented in the Table 4.4.

4.7 Conclusion

In this work we propose the white cavity approach for implementation of the off-resonant

broadband Raman quantum memory in a high-Q optical resonator. The idea is based on

extending the impedance matching for broader frequency range by additional compensating

dispersion. While the proposed “impedance matched white cavity” is a general concept, here

we study particular absorption and dispersion realization via two independent Λ schemes.

One scheme provides reversible Raman two-photon absorption, while the other is responsi-
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ble for dispersion compensation associated with Raman gain. We have analyzed a principle

scheme of such QM and found that it is possible to increase the quantum storage band-

width by more than an order of magnitude. We showed that the noise introduced by the

compensation dispersion is low enough to operate in a quantum regime.

Extra dispersion associated with additional Raman gain pumps allows further exten-

sion of the bandwidth of the impedance matched cavity in exchange of absorption profile

uniformity. The feasible solid state materials for experimental realizations are discussed.
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Chapter 5

Raman noises in gradient echo

memory

5.1 Introduction

The noise in the QM is a fundamental problem, which may stop the memory from being

useful in storing arbitrary quantum states of light. Especially the problem of the noise

arises for QM based on Λ-atomic ensembles, where a strong classical laser field acts on

one transition. Depending on an atomic sample and used polarization the laser field can

simultaneously act on both transitions and produce a FWM between pump laser, signal,

and idler fields. The effect of FWM was studied in EIT based memories [196, 86] and it

was shown that the noise can be minimized for a homogeneous ensemble with a radiation-

limited optical linewidth. The noise induced by FWM was also studied in the Λ gradient-echo

memory, where it was shown that an off-resonant interaction together with an inhomogeneous

broadening may suppress the FWM [197].

In this chapter, we experimentally and theoretically study the Raman-scattering noise

in the gradient-echo memory scheme, this noise being similar to the four-wave mixing has

several distinct features. While FWM produces coherent amplification of the signal, the
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Figure (5.1) Schematic of the experiment used to observe GEM with co-rotating circular
polarized fields. BS: beam splitter, PBS: polarizing beam splitter, λ/2: half-wave plate, λ/4:
quarter-wave plate.

Raman noise is incoherent in its nature and has a unique dependence on the experimental

parameters. We experimentally show the properties of the noise and its contribution into the

quantum process of the memory. The developed theoretical model of the noise is presented

and is in good agreement with experimentally acquired data. The analysis of the model allows

to find operational conditions, where the noise can be minimized with a proper choice of the

detuning and the level scheme. The experimental data was taken from Connor Kupchak

[198].

5.2 Experiment

A schematic diagram of the experiment is shown in Figure 5.1. The memory was realized

in a warm vapor of isotopically pure Rubidium 87 contained in cylindrical glass cells with

anti-reflection coated windows affixed on both ends. The cell had dimensions of 20 cm length

and 25 mm diameter and contained 0.5 Torr of Kr buffer gas, similar to the vapor cell used

in References [199, 200]. The cells were situated in a temperature controlled oven at 74oC.

The control field was derived from a continuous-wave Ti:Sapphire laser (Coherent MBR-

110) with a linewidth < 100 kHz and was tuned to 795 nm on the D1 transition of 87Rb.

For our experiments the control field was typically blue-detuned by ∆s/2π = 1 − 2 GHz

from the
∣∣ 5S1/2,F = 2

〉
→
∣∣ 5P1/2,F

′ = 2
〉

transition. The probe field used for storage was

produced by a homemade external-cavity diode laser and was phase-locked near +2π · 6.83

GHz (87Rb ground state hyperfine splitting) to the control field using a phase-lock loop
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(PLL). The locking frequency was adjusted to the two-field resonance condition (δ = 0)

of the split magnetic sub-levels using a reference signal sent into the PLL. The two-field

interaction of these lasers created a Raman absorption line at the blue-detuning value ∆s

of the
∣∣ 5S1/2,F = 1

〉
→
∣∣ 5P1/2,F

′ = 2
〉

transition. For storage of the probe field, near-

Gaussian pulses of temporal width 2 µs were generated by use of an acousto-optic modulator

(AOM) in conjunction with a variable voltage attenuator.

A uniform magnetic field was applied to break the degeneracy of the Zeeman sublevels

such that the Raman absorption line corresponding to a specific three-level system could be

utilized for GEM. The absorption line was broadened with a variable-pitch solenoid that ran

longitudinally along the length of the cell. The Raman line was typically broadened to a

width of 500 kHz to match the spectral width of the probe field pulses (see Figure 5.3 c).

Using a home-made switch we were capable of reversing the direction of this gradient in a

time of < 500 ns, which was sufficient for typical lifetimes of our ground state coherence

time of about 1 µs.

Based on prior studies [199, 200], the optimal retrieval efficiency in a Λ-GEM system

utilized co-rotating circular polarized light fields. This polarization scheme causes a majority

of the population to occupy the |F = 1,mF = 1 〉 ground state. The control and probe fields

were overlapped using a 90:10 beamsplitter. After the memory cell, the strong control field

was separated from the weak probe by use of an isotopically pure 85Rb vapor cell of 10 cm

length with anti-reflection coated windows. For our detuning values the control field was

near resonant to the
∣∣ 5S1/2,F = 2

〉
→
∣∣ 5P1/2,F = 2, 3

〉
85Rb transition while the probe field

was far off-resonant to any transition. The filter cell was maintained at 115 ◦C that provided

a control field extinction of 55 dB and a probe field transmission of 85%.

Our setup allowed both heterodyne and homodyne detection modalities. The weak re-

trieved probe pulse was measured using a half-waveplate-PBS combination with the beams

in the output port impinging upon a balanced detector (Thorlabs PDB150A) operated at

a 3 MHz bandwidth. The oscillator beams used for both detections were derived from the
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Figure (5.2) Level diagram of the atomic transition. The green (solid) line is the input
signal field, the red arrows are the control fields, which act on the | 2 〉 → | 3 〉 transition
and spuriously act on the | 1 〉 → | 3 〉 transition with Rabi frequency ΩI . Here the carrying
frequency for the signal field is ωs = ω31 − ∆s and carrier frequency of the control field is
ωc = ω31 −∆s − ω21.

same laser generating the probe field. For heterodyne detection, the oscillator beam was

modulated at +5.1 MHz away from the probe using an AOM and was mixed with the probe

field after the memory process by means of a polarizing beam splitter (PBS). The light fields

were mixed before the filter cell to offset the effect of wave vector fluctuations caused by

the high temperature of the cell (as shown in Figure 5.1). Typically, visibilities of 97% were

achieved between the probe field and the oscillator beams. This detection scheme was used

for the classical measurements of the echo retrieval. For homodyne detection, the light field

was modulated at the same frequency as the signal field.

5.3 Theoretical model

Here we present the key points for the description of the memory protocol and the

noise generation mechanism. The GEM protocol is based on the conversion of signal field

Ês(t, z) into slowly varying collective Raman coherence R̂†12(t, z′) by two-photon transition

between closely-spaced levels | 1 〉 and | 2 〉 via the excited level | 3 〉. In contrast to EIT-based

memories the GEM protocol is less sensitive to the waveform control of the control field, since
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the created Raman coherence controllably dephases due to applied linear frequency gradient

β along the atomic sample. As the result of the dephasing, the absence of mean coherence

suppresses the coherent emission of the atomic excitation back into the signal mode. The

reverse of the frequency gradient brings Raman coherence in phase while the applied pump

converts it back into the signal field.

In the previous studies the protocol is claimed to be noiseless [199], however we show

that the initial non-perfect preparation of the atomic sample leads to unwanted noise in the

signal channel. Remarkably the problem occurs for the pumping scheme used extensively in

the experiments [200, 199], where the control field was applied “long enough” to depopulate

level | 2 〉. Unfortunately, the control field, acting on transition | 2 〉 → | 3 〉 (Figure 5.2)

with detuning ∆c and Rabi-frequency Ωs, simultaneously acts on transition | 1 〉 → | 3 〉 with

detuning ∆I and Rabi-frequency ΩI. An auxiliary stationary population on level | 2 〉 is

created and is scattered back into the signal mode. The effect may be enhanced by use of a

particular transition and pump polarization in favor of experimental convenience as we show

later. The effect is especially strong in some experimentally convenient schemes of pump

polarization as we show later.

The properties of generated noise can be analyzed by the set of coupled equations for

the signal field and the Raman coherence. Mathematically the signal field is described

by a bosonic field operator with commutation relation [Ês(t, z), Ê†s (t, z′)] = δ(z − z′). In

turn the Raman coherence is presented by a continuous atomic flip operator parameter-

ized by position z. The collective nature of the operator is imprinted in the commutator

[R̂12(t, z), R̂†12(t, z′)] = δ(z−z′)
n

(
R̂11 − R̂22

)
, where n is a linear atomic density.

Adiabatic elimination of the upper level | 3 〉 gives the following Heisenberg-Langevin
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equations [201]:

(
∂

∂t
+ γ̃12 + iβz + i∆AC

)
R̂12(t, z) = −i gsΩ

∗
c

(∆s + iγ13)
Ês(t, z) + F̂n(t, z) (5.1)(

∂

∂t
+ c

∂

∂z
+ icδk

)
Ês(t, z) = −ic ngs

(∆s + iγ13)

(
ΩcR̂12(t, z) + iF̂13(t, z)e−i(kc−ks)z

)
(5.2)

where δk =
(

n| gs |2
(∆s+iγ13)

+ (kc − ks)
)

is the dispersion relation for the signal field, kc (ks) are the

wave vector modulo of the control (signal) fields, γij are the coherence decay rates, gs is the

signal field coupling constant on the | 1 〉 → | 3 〉 transition, and ∆AC =
(
− |ΩI |2∆I

∆2
I +γ232

+ |Ωc |2∆s

∆2
s+γ231

)
is an AC-Stark shift that is induced by the applied control field acting on both transitions.

Decay of coherence is strongly connected to an optical pumping, that leads to a modified

decay rate on the | 1 〉 → | 2 〉 transition: γ̃12 = γ12 +
(
|ΩI |2γ32
∆2

I +γ232
+ |Ωc |2γ31

∆2
s+γ231

)
. The last terms

in equations (5.1) and (5.2) are continuous Langevin noise operators responsible for Raman

scattering, and F̂n(t, z) is a sum of delta-correlated noise operators:

F̂n(t, z) =
ΩI

∆I − iγ32

eikczF̂32(t, z) +
Ω∗c

∆s + iγ13

e−i(kc−ks)zF̂13(t, z) + F̂12(t, z). (5.3)

Langevin operators corresponding to the decay of the upper level are included in the decay

process of long-lived coherence. The diffusion coefficients can be obtained using generalized

Einstein relations [15]:

〈F̂ †12(t, z)F̂12(t′, z′)〉 = δ(t− t′)δ(z − z
′)

n

(
2γ12〈R̂22(t, z)〉+ r32〈R̂33(t, z)〉

)
(5.4)

〈F̂ †12(t, z)F̂13(t′, z′)〉 = δ(t− t′)δ(z − z
′)

n
(γ13 − γ23 + γ12)〈R̂23(t, z)〉 (5.5)

〈F̂ †13(t, z)F̂13(t′, z′)〉 = δ(t− t′)δ(z − z
′)

n
(2γ13 − r23 − r13) 〈R̂33(t, z)〉 (5.6)

〈F̂ †13(t, z)F̂12(t′, z′)〉 = δ(t− t′)δ(z − z
′)

n
(γ13 − γ23 + γ12)〈R̂32(t, z)〉, (5.7)

where rij are the spontaneous emission rates between levels | i 〉 and | j 〉.

Mean noise operators require averaged populations, which are estimated as a redistribu-
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tion of atoms by the control field. Thus we search for the steady-state solution of Heisenberg

equations including pump on both transitions | 1 〉 → | 3 〉 and | 2 〉 → | 3 〉, the resulted av-

eraged atomic population in the presence of Doppler broadening is presented in Figure 5.3.

While the account of Doppler broadening change the atomic population by few percents, the

effect of relatively small inhomogeneous broadening ∆in = βL ∼ 1 MHz (L -length of an

atomic sample) of level | 2 〉 is negligibly small for steady state optical pumping and can be

neglected. The power of control field has no significant effect on the distribution of popu-

lation, since it is mainly dictated by a ratio of the corresponding optical pumping rates. In

our case the control field acts on both transitions, and Rabi frequencies are only different by

a Clebsh-Gordon coefficient and the pumping ratio stays constant, ΩI/Ωc =
√

3. While in

principle we can include additional excited hyperfine level
∣∣ 5P1/2, F = 1

〉
, its contribution

only slightly changes the decay rate to | 2 〉.

The opposite situation happens for the dependence of the population on the detuning:

the increase in a blue-shifted detuning of the control field reduces pumping rate for level | 1 〉,

while increasing the pumping rate for level | 2 〉 due to ‘more resonant’ action on transition

| 1 〉 → | 3 〉. As the result, the population of level | 2 〉 reaches 10− 20%, when detuning is in

a range ∆s/(2π) ∼ 1− 1.5 GHz.

The absorption spectrum presented in Figure 5.3c has several asymmetrical features on

the edges of the line. We attribute this to spatial modulation of a pump amplitude along

the atomic cell Ω(z) = Ωc(1 + ε cos
(

2πz
l

+ φ
)
) with the modulation depth ε ≈ 0.23, spatial

period l = 1.35 m, and phase φ ≈ 0.64π. The longitudinal inhomogeneous broadening maps

this modulation into the absorption spectrum as the different parts of atomic sample provide

various Raman absorption strengths. While the spatial modulation can be included into the

analysis straightforwardly, it mainly modify the noise spectral density on the edge of the

memory operational band. For the Gaussian pulses used for storage the effect of spatial

modulation becomes insignificant as its main contribution is outside of the used band. For

the sake of simplicity further on we present the model without this effect.
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Figure (5.3) (a) Population of level | 1 〉 as a function of detuning with power P=250
mW. (b) In this figure we show that populations in all three levels are constant for all
experimentally available pumping powers. (c) The experimental absorption line (red) and
theoretical model (blue).

The solution of Eqs. (5.1)–(5.2) is obtained in the Fourier domain Ês(ω, z) =
∫
dτ Ês(t, z)e

−iωτ

and in the co-moving reference frame τ = t− z/c, Z = z:

Ês(ω, z) =Ês(ω,−L/2)e−iδk(z+L/2) exp

{
− OD · |Ωc |2 γ13

i∆in(∆s + iγ13)2
· ζ(ω, z,−L/2)

}
−

−
∫ Z

−L/2
dz′F̂s(ω, z

′)e−iδk(z−z′) exp

{
− OD · |Ωc |2 γ13

i∆in(∆s + iγ13)2
· ζ(ω, z, z′)

}
(5.8)

where we introduced the resonant optical depth OD = nL| gs |2
γ13

and function ζ(ω, z, z′) =

log
(
γ̃12+iβz+i∆AC−iω
γ̃12+iβz′+i∆AC−iω

)
is responsible for the profile of inhomogeneous broadening. The second

line of Equation 5.8 contains a modified Langevin noise operator:

F̂s(ω, z) =
ings

(∆s + iγ13)

(
ΩcF̂n(ω, z)

(γ̃12 + iβZ + i∆AC − iω)
+ iF̂13(ω, z)e−i(kc−ks)z

)
. (5.9)

The resulted model allows us to analyze the noises generated spontaneously in the system due

to imperfect experimental conditions. The population on level | 2 〉 appears due to imperfect

optical pumping or due to strong control field transferring atoms during the writing stage.
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5.4 Noise analysis

5.4.1 Dominating noise mechanism

First, to distinguish the Raman scattering from the four-wave mixing, the several de-

pendencies of the noise on experimental parameters are analyzed. FWM is known to be a

coherent process which is extremely sensitive to spatial phase-matching, and the noise power

contribution from FWM should follow the same behaviour. As a crude test for the presence

of FWM, we observed the effect of spatial-mode mismatch on the efficiency and noise (Figure

5.4c). In this measurement, the control field alignment was first optimized for the highest

efficiency and then subsequently misaligned from the point on the 90:10 beam splitter where

the control field was combined with the probe (Figure 5.1). Noise values correspond to the

vacuum-seeded case, meaning no signal (or probe) field was present. From Figure 5.4 it can

be seen that as the control field becomes further misaligned the efficiency drops off mono-

tonically, and this is in contrast to the extra noise which stays almost constant with a slight

increase near 2 mrad. This behavior of the extra noise is what one would expect under FWM

conditions, where the gain exhibits its peak value for a non-zero angle between the k-vectors

of the fields [202]. However, it should be noted that despite this angular dependence, the

recorded extra noise level in this measurement was always greater than 1 dB. This signifies

to us that while FWM processes may be present and is a main contributing factor to the

extra noise. Simultaneously with this there still exists at least one other noise mechanism.

To investigate FWM in our system further, we look at the dependence of the gain peaks

present in the Raman spectroscopy versus the single photon detuning (Figure 5.4a) and

control field power (Figure 5.4b). First, we use the same experimental configuration except

the applied magnetic gradient, and quantify the gain by recording its maximum value as a

function of the mentioned parameters. If FWM is the reason for the extra noise, we expect

the classical FWM peak to behave in a similar fashion to the quantum extra noise as a

function of the experimental parameters. The behavior of the gain with respect to control
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Figure (5.4) Maximum value of the gain peak observed in the vapour cell containing 0.5
Torr Kr buffer gas at 74 ◦C as a function of
(a) single field detuning and (b) control field power. (c) Efficiency and extra noise as a
function of control field misalignment.1

field power is shown in Figure 5.4b, where we see that the gain is absent until about 200 mW

at which point it increases substantially. These results possibly indicate that a minimum

Rabi frequency is necessary before one can observe gain. 2

More importantly, this behavior with the control field power is in disagreement with the

plot of the extra noise in Figure 5.6c, where the observed extra noise was present even at

control field powers of 100 mW. From these findings we can conclude that while FWM is

present in our system and is in all likelihood a contributing factor to the observed extra

noise, there exists at least one other mechanism which is induced by the control field. This

brings us to the other noise possible source such as incoherent Raman scattering. Further

we consider the spectral properties of the emitted noise with and without applied magnetic

gradient.

5.4.2 Raman noise analysis

In Figure 5.5a we observe three distinct noise peaks corresponding to the non-degenerate

Raman scattering peaks with magnitudes decreasing in accordance with the anticipated pop-

ulation distribution due to the pumping scheme. By applying a sufficient uniform magnetic

field, the noise peaks that are not resonant to desired Raman transition can be moved out-

1The plots and captions were taken from C. Kupchak thesis [198].
2The presented experimental study was done by C. Kupchak
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side the bandwidth of the homodyne detector, but the noise corresponding to the resonant

Raman absorption line used for GEM remains within the spectrum of the pulse. Under the

conditions for optimal retrieval efficiency this resonant noise peak can be as high as 7 dB

depending on the operating conditions. When performing GEM with the applied gradient

magnetic field, the single noise peak is broadened and subsequently reduced to a magnitude

of 1 dB spread uniformly over the spectral width of the pulse (Figure 5.5b).

Figure (5.5) Homodyne spectrum (a) near-resonant and (b) resonant to the probe field
as measured in the steady state configuration (i.e. no switching of the magnetic fields) with
the gradient magnetic field being present. The resolution bandwidth of a spectrum analyzer
was set to 30 kHz. The shot noise trace corresponds to only LO being sent to the homodyne
detector. (c) The spectrum of noise photons. In red is the experimental data, blue and green
lines are theoretical fits for two different Zeeman sublevels.

The experimentally acquired homodyne’s noise power (Fig. 5.5 (b)) is converted into

number of photons per frequency unit assuming no correlation within a frequency band.

The acquired 10-base logarithmic difference between the shot noise and the observed signal

is linearly rescaled by (10x/10−1)/2. Division by 2 converts the value into number of photons

in frequency band, since for non-squeezed light quadrature variance proportional to twice

the photon number 〈Q2 〉 ≈ 〈 1 + 2n̂ 〉.

Next we compare experimentally acquired noise to the model of Raman scattering pre-

sented above. The noise spectrum is modelled as the output of atomic sample in case of

the vacuum input for the field operator (Eq. 5.8) and is presented in Figure 5.5c. The only

nonzero contribution into the power spectrum is from the corresponding Langevin operators:

〈Ê†s (t, L/2)Ês(t, L/2)〉 =

∫
〈 n̂(ω) 〉e−iωτdω, (5.10)
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whereas the spectrum is

〈 n̂(ω) 〉 =

L/2∫∫
−L/2

dz′dz′′〈F̂ †s (ω, z′′)F̂s(ω, z
′)〉·

exp

{
−OD γ13 |Ωc |2

i∆in

·
(
ζ(ω, L/2, z′)

(∆s + iγ13)2
− ζ∗(ω, L/2, z′′)

(∆s − iγ13)2

)}
. (5.11)

We can see from Equations (5.3), (5.9) and (5.11), that the strongest contribution into the

noise power comes from the F̂12(ω, z) operator responsible for the ground state decoher-

ence, since it is proportional to the population of level | 2 〉 and does not have any Raman

suppression coefficient in the form of Ωc/∆s or ΩI/∆I .

Though our formulas are general with a few assumptions, which we have mentioned above,

in our calculations we confined ourselves to 87Rb used in the experiment. All parameters

necessary for calculations are presented in Table 5.1. The Rabi Frequency ratio |ΩI | / |Ωc | =
√

3 together with the detuning of the control fields ∆s dictates the optical pumping rate and

prepared population. Since the rate depends as∼ |ΩC(I) |2
∆s(I)

the extra detuning due to hyperfine

splitting ω21 = 2π ·6.8 GHz cannot fully compensate the repumping from the
∣∣ 5S1/2,F = 1

〉
back to

∣∣ 5S1/2,F = 2
〉
. As the result, only ∼ 85% of the total population is distributed on∣∣ 5S1/2,F = 1

〉
manifold. The redundant population on level |F = 2 〉 in conjunction with

the decoherence γ12 produces the Raman scattering noise presented in Figure 5.5c.

The further increase of the detuning results in larger intensity of the Raman scattering

in the signal mode in conjunction with larger population on level |F = 2 〉. The dependence

of averaged photon number in a signal mode on detuning is presented in Figure 5.6a. The

experimental data is averaged over five samples and integrated over the Gaussian waveform.

The similar argument applies for power dependence of the noise (Figure 5.6b), but in this

case the increase of the noise comes not from the population increase, but from the increased

scattering rate, as it scales nonlinearly with power as seen from Equations 5.3 and 5.8.

Moreover, we perform polarization analysis of the noise by projecting its polarization
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on superposition of co- and counter-rotating polarizations with respect to the control field

(|φ 〉 = cos θ |σ+ 〉 + sin θ |σ− 〉) by rotating the quarter-wave plate on an angle θ/2 at the

output of the memory unit. Our Raman scattering model matches the acquired noise as

function of polarization (see Figure 5.6c). The measured polarization |φ 〉 is mapped into

model as a superposition of coupling constants gs = g+ cos2 θ+g− sin2 θ in 5.9, where g+ and

g− are the coupling constants for σ+ and σ− polarization.

Figure (5.6) (a) An experimental extra noise as measured with increasing single field
detuning for vapour cells with 0.5 Torr Kr (red dots). Parameters used in calculations:
P=0.25 W, γ12 = 2π · 23.3 kHz, gs = 6.53

√
Hz. (b) Experimental points (red dots) for

extra noise as measured with increasing control field power for the vapour cells containing
0.5 Torr Kr buffer gas are given in blue color. An orange solid line represents theoretical
model. Parameters used in calculations: P=0.34 W, γ12 = 2π · 40 kHz, gs = 2.9

√
Hz . (c)

The polarization dependence of the integrated number of noise photons versus the analyzing
angle Selecting initially co-rotating circular polarization and rotating the quarter-wave plate
until the orthogonal circular polarization is selected.

γ12 γ13 γ23 r13 r23 Ωc ΩI ∆s ∆I ∆in

0.04 1.43 1.43 1.43 1.43 16.6 28.78 1330 5504 0.68

β, [MHz/m] n, [1/m2] L, [m] P, [W] Sc, [m2] Ss, [m2] gs, [
√

Hz]

2π· 3.2 4.5 · 1014 0.2 0.34 (*) 28 · 10−6 3 · 10−6 2.9 (*)

Table (5.1) Parameters used in calculations. (*) unless otherwise specified. The parame-
ters in the upper table are in MHz/(2π).
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Figure (5.7) Assuming constant magnetic field aligned along the propagation of the con-
trol and signal fields we present the possible Λ schemes to be utilized in GEM scheme for
co-rotating polarizations. For each Λ scheme the ratio |Ωc | / |ΩI | for σ+ polarization are
presented, whereas the control and signal fields are represented by the thick red line and
thin green respectively. (a) Available transitions for σ+ polarization in Rubidium 87. (b)
Available transitions for σ+ polarization in Rubidium 85.

5.5 Conclusion

We conducted the analysis of gradient echo memory noise performance in warm rubidium

vapor. At quantum efficiency of more than 80% we reveal, that depending on the experi-

mental conditions the memory produces 0.1-0.3 noise photons per pulse even for a vacuum

input. The mechanism responsible for the noise was identified as the Raman scattering from

the residual population.

Performing the noise analysis and its modeling we noticed two main factors responsible

for the noise. First, the intensity of Raman scattering is sensitive to the polarization and the

magnetic sublevels used for the Λ scheme. These factors strongly modify the control field

Rabi frequency ΩI on the signal transition. The straighforward way to exploit this fact is to

use different Λ scheme within 87Rb, which provides better ΩI/Ωc ratio. It can be done by

choosing states with suitable Clebsch-Gordan coefficients for a given polarization, examples

for 85Rb and 87Rb for co-rotating σ+ polarization are presented in Figure 5.7. From the
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symmetrical consideration if the pump has σ± polarization, the states providing the best

noise suppression are m = ∓1. The ratio of ΩI/Ωc = 1/
√

3 would result in 0.02 averaged

noise photons for vacuum input that is similar to the EIT-based memories [203].

Secondly, the blue-detuned control field resulted in higher pumping ratio for state | 2 〉,

which enhanced the Raman scattering rate on the signal transition. The use of red detuning

in theory would eliminate this problem. However, it may come at an expense of loosing the

convenient control field filtering, because the control field will no longer be in resonance with

a transition of 85Rb. By reversing the roles (of filtering and memory cell) of 85Rb and 87Rb

could result in the red-detuned memory with an atomic filtering. Moreover, the combination

of 85Rb with the low noise Λ scheme (see Figure 5.7), with the ratio of Rabi frequencies

ΩI/Ωc = 1/
√

5, theoretically decreases the number of noise photons below 0.01.

Employing the mentioned noise minimization in conjunction with long-lived spin-exchange

relaxation-free states [56] may open an avenue for realizing a noise-free efficient quantum

memory with a storage lifetime of a second in warm vapor.
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Chapter 6

Time-bin quantum random access

memory

6.1 Introduction

It is well known, that the construction of universal quantum computer and long-distance

communications pushes an intensive elaboration of the multi-qubit quantum memory. In

turn, the desire to involve the QM devices in a processing of quantum information encourages

the development of the control methods of QM operation. Quantum random access memory

(qRAM) represents one of the such promising devices. In contrast to a usual QM [51], the

qRAM provides the arbitrary access to the M data cells (|D1 〉 ... |DM 〉) by the quantum su-

perposition of the address states (|Ψa 〉 =
∑M

n=1 αn |ψan 〉): |Ψa 〉 qRAM−−−→
∑M

n=1 αn |ψan 〉 |Dn 〉

[2]. The qRAM holds the promise of the exponential enhancement for a number of data pro-

cessing tasks such as a quantum search over a classical database [204], discrete logarithms

[205], quantum Fourier transformation [2] and collision finding [206]. The first feasible qRAM

architecture was proposed by Giovanetti et al [207, 208] and developed [209] in the so-called

bucket-brigade architecture.

In the original proposal [207, 208], qRAM contains 2M − 1 nodes with M = 2m single
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qubit QM cells (where m = 1, 2, ... is a non-negative integer) and M − 1 quantum logical

elements routing the signal to the individual QM cells.

All the nodes are connected in a binary tree with logical elements are located in the front

nodes starting from the top while the last level of the tree is an array of QM cells (see Figure

6.1A). The addressing is performed via transfer of the address qubits one at a time through

the binary tree starting from the root node. Each logical element has three internal quantum

states. Initially all the elements are in the ‘wait’ states. The ‘wait’ state is switched into the

superposition of two other states | 0 〉 , | 1 〉 by the input address qubit. The logical element

in the state | 0 〉 or | 1 〉 acts as the switch that routes the following address qubit to the

next right or left set of the nodes respectively. The sequential input of all the address qubits

creates the route to the desired memory cells. By initializing all logical elements in the ‘wait’

state and sending address qubits one by one it is possible to build a route to the desired

memory cell. An example of three qubit addressing is presented in Figure 6.1A, where the

two nodes are in the state | 1 〉 and one - in the state | 0 〉.
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Figure (6.1) A) Each logical element in the bucket-brigade architecture [207] has three
internal states: | 0 〉, | 1 〉 and ”wait” state. While in the state | 0 〉 or | 1 〉, the logical element
routes the signals to up (left) or to down (right), respectively. The ’wait’ state is switched
into the superposition of two other states | 0 〉 , | 1 〉 by the input address qubit. B) The time-
bin qRAM architecture uses one multi time-mode QM cell and one logical element. The
quantum addressing is realized by using single photon distributed in M time-bin wavepackets
depending on the photonic wavepacket state at particular time t.
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Exponential speed up over the classical computation rate requires an operation of the

qRAM with sufficiently large number of the QM cells. At the same time a qRAM device

should be compact and easily integrable into the developing hybrid quantum circuits [210]

and network [211]. However, due to the large number of logical elements and QM cells,

the bucket-brigade qRAM scheme is faced with comprehensive difficulties in experimental

implementation that limits its practical feasibility. In this work, instead of M single qubit

QM cells used in the bucket-brigade scheme, we propose an atomic ensemble in cavity for

storage of M photonic qubits on the orthogonal temporal modes of the atomic coherence1

(see Figure 6.1B). This also allows us to reduce the number of the logical elements from

M − 1 to just one control four- (or three-) level atom. The logical element depending on its

state either permits the readout of the data from the memory cell or block it. Herein, the

quantum address operation is achieved by temporally synchronized coupling of the control

atom to the readable photonic qubit.

The control atom is suited in the front cavity which is connected with the neighboring

resonant cavity containing the QM atomic ensemble (see Figure 6.2). The atomic transitions

| gc 〉 ↔ | ec 〉 and | gc 〉 ↔ | ac 〉 are strongly coupled to the front cavity modes â1 and âd while

the fourth ground level | au 〉 is decoupled from the cavity modes. The coherent control of the

atomic states can provide a quantum turnstile for transfer of the photonic qubits to/from the

atomic ensemble. If the control atom state is far off the resonance with the front cavity modes

(i.e. the atom stays on the fourth level), the incoming photon will be ideally transmitted into

the QM cell, or retrieved, respectively, into the free space. Thus by initializing the control

atom into the off-resonance state, it is possible to record (and retrieve) many (M � 1)

photonic qubits subsequently into the atomic ensemble. However, if the control atom is in

the ground state resonant to the front cavity mode â1, the incoming/retrieved photon will

be reflected back.

For the implementation of qRAM operation, we control the atomic state by a single

1 Spatial QM modes can be also exploited in this proposal and this opportunity will improve the practical
implementation of the proposed scheme. However this issue deserves special further analysis.

78



photon state which is distributed in a superposition of M temporal wavepackets (i.e. it is a M

time-bin photon) |Ψa 〉f =
∑M

n=1 αn |ψan 〉f . Herein, |ψan 〉f is the n−th photonic wavepacket

and related to control the readout of n−th photon qubit from the atomic ensemble. Each

photon wavepacket can control the state of logical element for writing and readout stages of

the QM operation. Thus, the multi-time bin photon plays the role of the address state in

the qRAM operation. It is worth noting that from the functional point of view this qRAM

architecture with M stored qubits and one logical element is equivalent to the bucket-brigade

qRAM with M − 1 logical elements and M cells of single qubit QMs. Below we describe the

physical processes providing the qRAM operation.

It is possible to use a number of the multi-atomic QMs for the proposed qRAM scheme.

However, in this work we focus on the photon echo technique [31, 129] which can provides a

multi-qubit capacity [212] due to the inhomogeneous broadening (IB) of the resonant atomic

transition.

Such technique has been successfully demonstrated for the multi-mode storage of single

photon fields [213, 214] and more than 1000 temporal light pulses [45]. Moreover, the photon

echo QM technique has demonstrated the record quantum efficiency [127, 39, 215, 216]

that gives a credit for realization of the controlled perfect light-atom dynamics. Recently

the photon echo QM has been further developed [217, 173] and successfully demonstrated

[218, 219] for small atomic ensembles in the impedance matching cavities. This approach

opens the opportunities for implementation of compact multi-qubit QM devices. Such photon

echo QM scheme is also applicable in the microwave spectral range [220, 221, 222, 223, 224]

for the integration into quantum computer schemes [225] and it can work with intensive

quantum light fields [226, 227].

In the second section, we describe physical properties of the proposed scheme. First,

we study the case of a single photon storage as the basic QM benchmark. After that we

present the solution of the dynamical equations for the various stages of qRAM operations.

Based on the obtained analytical solutions, we present the set of physical conditions (Eqs.
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6.12,6.13,6.14) allowing effective multi-qubit quantum storage for subsequent qRAM oper-

ations. In the third section, we describe the quantum addressing protocol based on the

time-reversible mapping of multi-time-bin single photon state on the control atom. Finally,

we discuss implementation of the proposed qRAM scheme by using current optical and

microwave techniques and we outline the potential advantages that are feasibly achievable

experimentally.

6.2 Scheme

6.2.1 Single photon storage

The diagram of the proposed qRAM scheme is shown in Figure 6.2. We have analyzed

Address

Data

Figure (6.2) Free propagating modes b̂(ω) are coupled to a resonant field modes â1 and âd
of the double sided front cavity. This cavity contains a single four-level atom with the optical
transitions: | gc 〉 ↔ | ec 〉 is resonant to the cavity mode â1 and | gc 〉 ↔ | ac 〉 is resonant to
the addressed cavity mode âd. The atomic transition | gc 〉 ↔ | ec 〉 is characterized by the
frequency ω0, the coupling constant g1 and by the decay rate γ due to the interaction with
the bath field modes ĉm(ν) (there are similar parameters for the transition | gc 〉 ↔ | ac 〉
); κ is the decay rate of the cavity mode into the free propagating modes b̂(ω), the arrow
aligned with Ω indicates the control laser field with the Rabi frequency on the transition
| ac 〉 ↔ | au 〉. The other side of the front cavity mode â1 is coupled (with the rate f2) to
the second cavity mode â2. The QM atoms have the inhomogeneous broadening ∆in of the
resonant line and the collective coupling constant

√
Ng2 for the interaction with the cavity

mode â2.
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the quantum storage of an input single photon wave packet:

|ψin(t) 〉f =

∫
dνα0

ν(t)b̂
†(ν) | 0 〉f , (6.1)

which is launched into the first cavity in the presence of the control three-level atom. Am-

plitudes α0
ν = αν(−∞) characterize the state of the input photon wave packet with normal-

ization value
∫
dν |α0

ν |
2

= 1. b̂†(ν) and b̂(ν) are the creation and annihilation operators of

ν-th field mode where
[
b̂(ν), b̂†(ν ′)

]
= δ(ν − ν ′); | 0 〉f is the vacuum state of these modes.

Assuming that the control atom and all QM atoms are in their respective ground states

| gc 〉 and | g 〉 ≡
∏N

j=1 | gj 〉, the initial wave function takes the form

|Ψ(t→ −∞) 〉 = |ψin(t) 〉f | gc 〉 | g 〉 . (6.2)

The subsequent dynamics of resonant light-atom interactions is described by the wave func-

tion (see Appendix B.1):

|Ψ(t) 〉 =

(
βcŜ

c
+ +

N∑
j=1

βjŜ
j
+ + α1â

†
1 + α2â

†
2 + αdâ

†
d

+

∫
dναν b̂

†(ν) +
∑
m

∫
dωrmν ĉ

†
m(ν)

)
| 0 〉f | gc 〉 | g 〉 , (6.3)

with normalization

| βc |2 + |α1 |2 + |α2 |2 + |αd |2 +
N∑
j=1

| βj |2 +

∫
dν |αν |2 +

∑
m

∫
dν | rmν |

2 = 1 (6.4)

and initial conditions βc(−∞) = βj(−∞) = α1,2(−∞) = rmν (−∞) = 0. In Eq. 6.3 we

describe the atomic dynamics by effective spins 1/2, where Ŝj+, Ŝj− and Ŝc+, Ŝc− are the

ladder spin operators of j-th memory atom and the control atom respectively; â†1,2 and â1,2

are creation and annihilation operators of the 1-st and 2-nd cavity field modes; ĉm(ν), ĉ†m(ν)

are the bosonic operators of the bath modes interacting with the control atom in the first
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cavity (
[
ĉm(ν), ĉ†n(ν ′)

]
= δm,nδ(ν − ν ′)).

Figure (6.3) Spectral transfer function in the logarithmic scale 10 log ε(ν/κ) for the single
photon storage (blue solid line) and for the blockade (red dashed line). The wide spectral
window for the photonic storage is implementing by three impedance matching conditions
(6.12, 6.13, 6.14). The strength of the blockade of the memory process is represented by the
single-atom cooperativity factor C = 10 and γ = κ.

Using the well-known input-output formalism [33], we solve the Schrödinger equation

for the wave function |Ψ(t) 〉 (see Appendix B.1). Here, we obtain the following atomic

amplitudes

βj(∆j, t) = i
√

2πκ
g2

f2

F (∆j)α
0
∆j
e−i(∆j−i/T2)t, (6.5)

for the sufficiently large interaction time t > δt, where δt is a temporal duration of the input

photon wavepacket:

F (∆) =
f 2

2

(Ng2
2G̃(∆)− i∆)(κ

2
+

ig21
∆−δ+iγ/2 − i∆) + f 2

2

, (6.6)

where G̃(∆) =
∫
dν G(ν)

1/T2+i(ν−∆)
, G(ν) is the formfactor of the IB-resonant line, T2 is the

decoherence time of the atomic ensemble in QM, f2 is the coupling constant between two

cavities,
√
Ng2 is the collective interaction constant between the second cavity mode and

atoms, κ is the linewidth of the first cavity, and γ is the linewidth of the control atom (see

Appendix B.1). We have used the continuous limit for the large number of atoms in QM:∑N
j=1 ...→ N

∫
d∆G(∆)... and βj(∆j, τ)→ β(∆, τ).
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We find the probability of the photon transfer in QM using Eq. 6.5:

Pa(t > δt) =
N∑
j=1

|βj(t)|2 = N

∫ ∞
−∞

d∆G(∆) | β(∆, t) |2 =

∫ ∞
−∞

d∆ε(∆)|α0
∆|2. (6.7)

As it is seen in Eq. 6.7, the qRAM can be characterized by its spectral efficiency

ε(∆) = 2πNκ

∣∣∣∣ g2

f2

∣∣∣∣2G(∆) |F (∆) |2 (6.8)

for the single photon storage. For simplicity, but without compromising the generalization,

we assume IB to be Lorentzian G(ν) ≡ GL(ν) = ∆in

π(ν2+∆2
in)

with bandwidth ∆in. For the

narrow bandwidth of the input photon field (δωf ∼ δt−1 � κ,∆in), we find that the following

resonant quantum efficiency

ε(∆ ≈ 0) =
4Cpm

(1 + Cpm + γ2C
δ2+(γ/2)2

)2 + ( 2δγC
δ2+(γ/2)2

)2
, (6.9)

determines the main properties of qRAM, where C =
g21
κγ

is the well-known single-atom

cooperativity factor. We have also introduced a cooperativity factor of photonic molecule:

Cpm = | f2 |2 /
(
κ
Ng2

2

2∆in

)
. (6.10)

We note that a strong interaction of two closely placed cavities creates a photonic molecule,

which plays an important role in the controlled photon transfer in the atomic ensemble.

The photonic molecular factor Cpm characterizes the relative strength of dynamical and

dissipative processes of a photon distributed in two coupled resonant cavities. Here, the f2-

constant determines oscillation frequency of the photon between two quantum states of the

photonic molecule: the photon exists in either the first or in the second cavity. Parameters

κ and Ng2
2/(2∆in) characterize the decay processes of a photon in these two cavities.

By analyzing Eq. 6.9, we find two basic regimes of the qRAM operation: 1) storage (or
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retrieval) of a single photon in the QM ensemble and 2) blockade of these processes.

6.2.2 Impedance matching conditions

Perfect storage is possible for large spectral detuning of the control atom | δ | � γC. It

can be achieved by transferring the atom to the third ancillary state | au 〉 (see Figure 6.2).

In this case the resonant storage efficiency (6.9) is:

ε(0) || δ |�γC≡ εR(0) = 4Cpm/(1 + Cpm)2, (6.11)

that demonstrates the ideal recording (index “R”) of a photon into the QM ensemble for

Cpm = 1, (6.12)

which we call as the first impedance matching (IM) condition of the effective qRAM where

ε(0) = 1 that provides an efficient quantum storage for resonant frequency (∆ = 0). We note

that the first IM condition coincides formally with the impedance matching photon echo QM

[217, 173] although the photon storage occurs in the presence of the additional cavity in front

and the condition is related to the property of the photonic molecule. At the same time, the

impedance photon echo QM [217, 173] is characterized by different coupling constants: by

the collective atomic coupling constant
√
N | g2 | and by the decay constants κ and ∆in, where

κ is responsible for the photon leakage from the cavity and ∆in determines the decay rate of

the excited atomic coherence. These parameters satisfy the condition κ∆in = 2N | g2 |2. It is

possible to generalize the values pertinent to this condition and facilitate its implementation

by using the off-resonant Raman echo QM scheme [228].

The IM condition modifies several different physical parameters and we will see how the

condition can lead to implementation of broadband qRAM operation. Analyzing ε(ν) for
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the transfer process we found the second

N | g2 |2

∆in

=
∆inκ/2

(∆in + κ/2)
, (6.13)

and the third

∆in = κ/2, (6.14)

IM conditions, where the highest quantum efficiency ε(ν) gets almost ideally flat spectral

behavior (see Figure 6.3) around ν ≈ 0 that is expressed in the equation

εR(ν) =
1

1 + ( ν
κ/2

)6
, (6.15)

and which provides an efficient transfer of the broadband input single photon field in QM

atomic ensemble. This process transfers the input photon wave function (6.2) into the atomic

state |Ψ(t > δt) 〉 ∼= | 0 〉f | au 〉c
(∑N

j=1 βj(t)Ŝ
j
+

)
| g 〉.

The three IM conditions provide the broadband one way storage for many photon qubits

flying one by one into the QM cell. The large bandwidth is a result of the specific (almost

equal, i.e. N |g2|2
∆in

= κ
4
) coupling of the photonic molecule with the free propagating light

modes and with the QM atoms.

6.2.3 Photonic transfer blockade

In the case of the resonant interaction with the control atom, when the atom remains in

the state | g 〉c where δ = 0, we find from Eq. 6.11

ε(0)|δ=0
≡ εB(0) = 4Cpm/(1 + Cpm + 4C)2, (6.16)
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that in turn leads to

εB(0)|Cpm=1
= (1 + 2C)−2, (6.17)

if the first IM condition 6.12 holds. By taking the single-atom cooperativity factor C from the

experimental data [210] for the single atom in the optical Fabry-Perot cavity C ≡ Copt = 30

and for the superconducting qubit in the moderate microwave resonator C ≡ Cµw = 300, it

is possible to achieve blockade with εB,opt = 2.6 · 10−4 and εB,µw ≈ 3 · 10−6.

The most important benchmark of the photon blockade is a reflection of the input photon

field. The direct usage of the input-output relationship αin(ν) + αout(ν) =
√
κα1(ν) and the

relation α1(ν) = A1,in(ν)αin(ν) (see A1,in(ν) in the Appendix B.1) leads to

αout(ν) = fBl(ν)αin(ν), (6.18)

where

fB(ν) =
iκ

ν + iκ
2
− g21

ν−δ+iγ/2 −
f22

ν+iNg22G̃(ν)

− 1. (6.19)

Here for a sufficiently narrow spectral width of the stored light (|ν| < κ) and the resonant

interaction with control atoms (δ ∼= 0) we obtain

fB(|ν| < κ) |δ=0→

(
1

1+Cpm

2
+ 2C

− 1

)
. (6.20)

Taking into account the first IM condition Cpm = 1 we find for Eq. 6.18

αout = − 2C

(1 + 2C)
αin. (6.21)

The reflection 6.21 is valid with high accuracy within the memory bandwidth ∼ κ (see Fig.
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6.3). Inserting the same values for the single-atom cooperativity factor we obtain
∣∣∣ αoutαin

∣∣∣2 =

0.983 and 0.996 for C ≡ Copt = 30 and C ≡ Cµw = 300, respectively, that is a rather strong

photonic blockade.

6.2.4 Echo photon retrieval

Implementing the CRIB procedure for the retrieval of the stored single photon field, we

invert the atomic detuning ∆j → −∆j at the time t = τ . In general, one might also use

some other experimental methods for rephasing the atomic coherence, such as AFC- or silent

echo protocols (i.e. the protocols using the atomic systems with natural IB of resonant line).

However, we furhere consider CRIB due to its perfect time reversibility.

Initially all free propagation modes and three cavity modes (â1, âd, â2) are in the vacuum

state and the control atom is in the ground state | gc 〉, while there is an excited QM atomic

coherence determined by the atomic amplitudes βj(∆j, τ). We find the wave function (see

the Appendix B.2) of the light-atomic system for the time t� 2τ with the following spectral

photonic amplitude αν(t):

αν(t) =− 2πκN

∣∣∣∣ g2

f2

∣∣∣∣2GL(ν)FS(−ν)FR(ν) · α0
−νe

−iν(t−2τ)−2τ/T2 , (6.22)

where indices S,R denote the storage and the retrieval stages. In turn, the states | gc 〉 and

| au 〉 of the single atom correspond to blockade (B) and transfer (T) regimes. If the control

atom stays in the state | au 〉c (i.e., S,R→ T ), we find from Eq. 6.22 the following quantum

efficiency of the photon retrieval:

εecho|δωf≤0.2κ
∼=

16C2
pme

−4τ/T2

(1 + Cpm)4
|
Cpm=1

= e−4τ/T2 , (6.23)

where the amplitude of the irradiated photon field is αν(t) ∼= −α0
−ν exp{−iν(t−2τ)−2τ/T2},

that indicates the perfect time-reversal retrieval of the initial single photon state under the
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condition of the long-lived coherence time 2τ/T2 � 1. The probability of the photon retrieval

for the different decoherence time T2 and pulse duration δt is presented in Figure 6.4.

Figure (6.4) Efficiency of the echo photon retrieval as a function of the Gaussian pulse
duration δt (in units δtκ) for different atomic relaxation times T2: T2κ = 102 (blue, solid
line); T2κ = 103 (red, long dashed line); T2κ = 104 (black, short dashed line) when the three
IM conditions hold.

If the control atom is prepared in the ground state | gc 〉 and δ = 0, the photon retrieval

is blocked. In this case, there is a following equation for the photon emission probability:

εecho = e−4τ/T2

∫ ∞
−∞

d∆εR(∆)εB(∆)|αo∆|2|δωf≤0.2κ,Cpf=1
∼=

e−4τ/T2

(1 + 2C)2
|C≥10

< 0.0023, (6.24)

which describes the strong blockade of the storage state, when the echo photon is efficiently

reabsorbed by the QM atomic ensemble. At the same time, the atomic amplitudes grasp

the additional π-shift: β(∆, τ)ei∆tt<2τ → −β(∆, τ)ei∆te
−(t−τ)/T2
t>2τ as a result of the echo photon

reabsorption.

6.3 Quantum addressing

Here we demonstrate a method for the quantum addressing of the retrieval stage by

assuming rather large time T2 of the atomic coherence (T2κ ≥ 104, see Figure 6.4). Let us

suppose that initially M photon qubits in the state
∏M

n=1 |ψin,m(t− tm) 〉f were stored, one
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storage

retrieval

storage

retrieval

...
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storage

retrieval

storage

retrieval

...

A)

B)

Figure (6.5) Quantum addressing is accomplished by the temporal synchronization be-
tween the external quantum control of four-level atom and the readout of M photonic states
from the QM cell. A) The control atom is transferred into the superposition of states | g 〉c
and | au 〉c via lambda-transition by the address single photon in the presence of laser pulse
sequence Ω(t). The address single photon is represented by M time-bin wavepackets entering
the left cavity. The stored M photonic states are symbolically depicted by M pulses in the
right cavity. B) The retrieved state describes the entangled two-photon field in the sequence
of M wavepacket pairs flying from the qRAM cell. The irradiated field contains the data and
address photons. The two-photon field is also entangled with the quantum data remaining
in the QM atomic ensemble. The control atom is returned to the ground state after the
whole procedure.
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by one, in the atomic ensemble. After the storage qRAM is in the state

| qRAM1 〉 = |QM 〉 | au 〉c , (6.25)

where

|QM 〉 = Ŝ+
(M)(t− tM)...Ŝ+

(1)(t− t1) | g 〉 , (6.26)

then Ŝ+
(m)(t− tm) =

∑N
j=1 β

(m)
j (∆j, t− tm)Ŝj+ describes a collective single atomic excitation

caused by the absorption of the m-th photonic qubit at the time t ≈ tm.

All M atomic excited coherences are decoupled from each other due to M � N and

strong reciprocal dephasing. Such separable quantum state of M qubits in qRAM can be

formally represented as the product |QM 〉 =
∏M

m=1 |Dm 〉, where M states are orthogonal

〈Dm′ |Dm 〉 ∼ δm,m′ . The state |Dm 〉 can be interpreted as the state of m-th qubit in the

multi-qubit QM cell, where tm is a time-label of this qubit.

In the case of m′ qubit readout, the quantum state of qRAM transforms as follows:

| 0 〉f | qRAM1 〉 → − |ψin,m′ 〉f Ŝ
+
(M)(t− tM)

...Ŝ+
(m′+1)(t− tm′+1)Ŝ+

(m′−1)(t− tm′−1)

...Ŝ+
(1)(t− t1) | auc 〉 | g 〉

≡ − |ψin,m′ 〉f | auc 〉 | ∅m′ 〉
M∏

m6=m′
|Dm 〉 . (6.27)

The photon retrieval is possible, since the control atom is in the state | auc 〉. As it is seen

in Eq. 6.27, the M − 1 qubits are still stored in the QM, while m′-qubit has been irradiated

into the free space associated with the quantum state |ψin,m′ 〉f , | ∅m′ 〉 represents an empty

m′ cell of the QM.

Analogously, if the m′-th and the m′′-th stored qubits are irradiated one by one from
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qRAM, the output state will be with two retrieved photon qubits and two empty cells:

| 0 〉f | qRAM1 〉 → |ψin,m′ 〉f |ψin,m′′ 〉f | auc 〉 | ∅m′ 〉 | ∅m′′ 〉
M∏

m 6=m′,m′′
|Dm 〉 . (6.28)

Before the addressing the control atom stays in the state | gc 〉:

| qRAM2 〉 = |QM 〉 | gc 〉 . (6.29)

For the quantum addressing we use a single photon wave packet distributed in M time-bins

(M coinciding with the number of photon qubits stored in the QM) that is described by the

following quantum superposition:

|Ψa 〉f =
M∑
n=1

αn |ψan(t) 〉f , (6.30)

|ψan(t) 〉f = |ψa[−(t− (n− 1)τo − tc)] 〉f (6.31)

where
∑

n |αn |
2 = 1. The input wave packet is represented by a wavefunction

|ψa(t) 〉f =

∫
dzg(t− z/c, δzf )e−iω(t−z/c)â†(z) | 0 〉f (6.32)

where â†(z) is field with commutation relationship [â(z), â†(z′)] = δ(z − z′), g(t) describes

the temporal shape of the photon wave packet. We assume the duration of each time-bin is

much smaller than the distance between two nearest time-bins δz/c � T0, δz is its spatial

longitudinal size. The states in Eq. 6.30 are orthogonal f〈ψan(t) |ψam(t) 〉f = δn,m. We also

assume that the carrier frequency of an address photon coincides with the frequency of the

front cavity mode âd. Thus, the initial state before addressing is |Ψin 〉 = |Ψa 〉f | qRAM2 〉.

We run the rephasing of the coherences in atomic ensemble by inverting the frequency

detuning of each atom ∆j → −∆j as is depicted in Fig. 6.5. Before the recovery of the first

atomic coherence at the time t ≈ t1 we also map the first addressing wave packet (n = 1:
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1 ≤ n ≤M) on the superposition of the atomic states | gc 〉 and | auc 〉 via Raman transition

with the help of control field Ω0(t− t1) as it is sketched in Fig. 6.5:

|Ψin 〉 → |Ψ1 〉 = | 0 〉out,f

M∏
m=1

|Dm 〉
(
| gc 〉

M∑
n=2

αn |ψan 〉f − α1 | auc 〉 | 0 〉f
)
, (6.33)

where | 0 〉out,f denotes the vacuum state of the output light field modes.

In particular, the highly efficient mapping of the addressed photon wave packet on the

control atom state | auc 〉 is possible for an exponentially rising shape g(−t) [11] of the photon

wavepacket. The exponential shape g(t) corresponds to the typical photon irradiation of a

single two-level emitter. To prevent the leakage of the address photon into the QM atomic

ensemble we use the second front cavity mode âd for the off-resonant coherent population

transfer, as it is depicted in Figure 6.5A and Figure 6.5B. Herein, the address photon wave

packet is coupled with the control atom state | auc 〉 due to the Raman interaction via excited

optical state | ac 〉 in the presence of laser control field Ω(t).

The atomic rephasing will lead to the transfer of the 1-st atomic state |D1 〉 into the freely

propagating photon wave packet or return back to phase shifted atomic state in the case of

the atomic blockade. These two alternatives of the qRAM operation happen in accordance

with earlier analysis of the two basic regimes (1-st or 2-nd) determined by two control atom

states (| gc 〉 or | auc 〉). Eventually these two quantum alternatives lead to the following

transformation of the initial state |Ψ1 〉 after the rephasing of the first atomic coherence and

retrieval of the first qubit into the free space photon modes:

|Ψ1 〉 → |Ψ2 〉 =
M∏
m=2

|Dm 〉 {α1 | auc 〉 | ∅1 〉 |ψin,1 〉f + | gc 〉 |D1 〉 | 0 〉out,f

M∑
n=2

αn |ψan 〉f}.

(6.34)

Next we return the control atom from the state | auc 〉 to the initial state | gc 〉 through

the retrieval of the first time-bin photon wave packet by way of applying an additional laser
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pulse on the transition | auc 〉 → | ac 〉 (see Figure 6.5). This transfer leads to the following

transition

|Ψ2 〉 → |Ψ3 〉 =
M∏
m=2

|Dm 〉 | gc 〉 {−α1 | ∅1 〉 |ψa1 〉f |ψin,1 〉f

+ |D1 〉 | 0 〉out,f

M∑
n=2

αn |ψan 〉f}. (6.35)

As it is seen in Eq. 6.35, the irradiation of the first addressing photon component and

first qubit are correlated. We repeat this process one by one for the second and all others

M − 2 time-bin addressing wave packets what leads to the following final state:

|Ψin 〉
qRAM−−−→ |Ψout 〉 = − | gc 〉

M∑
n

αn |ψan 〉f |ψin,n 〉f | ∅n 〉
M∏
m6=n

|Dm 〉 . (6.36)

The final state 6.36 is the result of the pure unitary evolution leading to the quantum

superposition of M two-photon states - |ψan 〉f , |ψin,n 〉f with amplitudes αn determined by

the addressing state accomplishing the qRAM operation on the multi-qubit QM cell. We

note that other (M − 1) stored qubits |Dm 〉 also become entangled with the irradiated two

photon qubits. The performed analysis is valid for an arbitrary quantum state 6.26 stored in

the QM atoms. Eq. (6.36) describes the implementation of qRAM operation [207, 208, 209]

in the scheme of impedance matching photon echo QM controlled by a single four-level atom.

6.4 Possible experimental implementations

Nowadays implementation of the proposed qRAM in the circuit and nano-optical schemes

seems feasible. All the basic hardware elements for the proposed qRAM design are already

under active development in the circuit QED. These are systems of two coupled cavities with

quantum emitters [229], the multi-qubit echo memory of the spin ensemble in the cavity [221,

222, 223, 224], the coherent population transfer of the single artificial atom [230, 231, 232].
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The technique of the multi-time-bin photon generation, which was successfully demonstrated

in the cavity QED [233], can be also applied in microwave domain [230, 234]. For the optical

domain there are several potential candidates: quantum dots (QD) in coupled photonic

crystal nano-cavities [235], nanofibers coupled to cavities with solid-state emitters (like NV

centers in diamond, QD, rare-earth ions doped crystals) [236], or natural atoms [237, 238].

The photon state (6.30) can be prepared by linear optics, photon echo QM technique [239],

by the Raman quantum memory [240], or by the stimulated rapid adiabatic passage, that

has been successfully demonstrated to have a high efficiency [233].

It is worth noting that an efficient qRAM implementation requires further improvement

of the quantum transistor protocol based on a single atom in a cavity. Various developing

protocols of photon routing [241] can be applied for better photon addressing. The passive

routing [242, 243, 238], which does not require any control fields, seems especially promising.

Finally, we note that the proposed time-bin qRAM can be also developed for off-resonant

Raman atomic transitions that will provide direct quantum storage on a long-lived atomic

transition.

6.5 Conclusion

We have proposed the time-bin qRAM based on the single multi-qubit QM cell. The

qRAM scheme contains two coupled cavities along with a control four-level atom and the

QM resonant atomic ensemble. The multimodality is achieved by combining the time-domain

control of the single four-level atom in the front cavity together with the photon echo multi-

qubit QM. For the qRAM control we have used the multi-time bin single photon state to

perform the quantum addressing without binary tree bifurcation trip inherent to the “bucket-

brigade” architecture [207, 208, 209]. This single photon state puts the control atom in the

superposition of the transfer and blockade regimes thereby providing a selective readout of

the photonic qubits stored in the QM cell. Herein, the qRAM can be principally realized
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without “bucket-brigade” architecture by using the proposed quantum control of single multi-

qubit QM unit. This technique avoids the complex control on many single-qubit QM cells

that previously seems to be difficult for implementation.

We have found a series of impedance matching conditions on the physical parameters

of the qRAM scheme. Fulfillment of these conditions provides the broadband and efficient

implementation of the studied processes. The maximal efficiency of the qRAM is achieved

when the cooperativity parameter of the excited photonic molecule equals to unity and this

can be experimentally realized. The performed analysis can be extended to various options

of the photon echo QM protocols in the impedance matching cavities. The proposed qRAM

can be implemented with current circuit and cavity QED technologies. Moreover, our scheme

is suitable for superconducting quantum computing and optical quantum communications.
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Chapter 7

Conclusion and discussion

Here we summarize the main results of the dissertation. In Chapter 1, we give a review

and outlook of different approaches to quantum memory. We present the physical principles

of all main atomic ensemble-based protocols. By introducing the memory performance cri-

teria and compare existing protocols to each other and show their benefits and drawbacks

in the context of application to quantum repeaters.

In Chapter 2, we present the necessary mathematical framework for the description of

the memory operation.

In Chapter 3, we present a proposed scheme for quantum memory based on a chirped

ring-cavity array. The scheme resembles the idea of the echo in AFC, where the role of

individual atomic ensembles with a given frequency is played by an array of cavities. The

equidistant spectral spacing of the cavities produces constructive interference for the input

pulse after the delay inversely proportional to the frequency spacing between the cavities.

The presence of the common waveguide allows to reach optimal coupling for converting the

input wavepacket into the the cavity array excitation at the finite coupling constant. We

compare the CRC memory to the existing coupled integrated spaced sequence of resonators

(SCISSOR) and show the supremacy of the CRC scheme in terms of delay time for a given

efficiency and lower coupling constant. The more elaborated non-uniform coupling of the
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cavities allows to substantially decrease the number of required cavities and open the avenue

for the efficient on-chip integrated memory [155].

In Chapter 4 we present the scheme for the extending the bandwidth of the impedance

matched Raman memory. The Raman interaction allows to map the light into the extremely

long lived ground state nuclear spin coherence of rare-earth ions. Unfortunately, the narrow

bandwidth of the Raman resonance allows operation only with long pulses at reasonable

parameters of the media. The proposed way to increase the bandwidth of the memory is

to use an additional dispersion, which extends the spectral zone of zero round trip phase

accumulation inside the cavity. The additional media compensates the cavity dispersion by

its refractive index, the similar effect is used for realization of the white light cavity. Next

we considered the memory unit to be Λ atomic media inside the impedance matched cavity

settings, the additional dispersion is implemented by an extra detuned ensemble of Λ unit

drived by a strong pump, which acts as a Raman amplifier. The resulted enhancement of

90 % bandwidth ranges from 2 to 12 fold increase for single to phase modulated pump. An

experimental implementation is discussed with Erbium ions doped in yttrium silicate crystal

host, which promises the potential to store the light on second time scale. The modeling of

the scheme with experimentally feasible parameters shows the promises of achieving delay-

bandwidth product on the order of 107 − 108 with telecom compatible material. An extra

noise introduced by the additional Λ scheme can be as low as 10−3 photons per pulse.

In Chapter 5 we present the results on the noise analysis of the GEM implemented with

warm rubidium 87 vapour. The memory performance was experimentally evaluated by opti-

cal homodyne tomography. The observed noise of 0.1 to 0.3 photons per pulse was attributed

to Raman scattering of the spurious population on the level intended for storage. This pop-

ulation appears as a result of the simultaneous action of the control field on both transitions.

The developed theoretical model demonstrates a good match with the experimental data.

The following analysis of the atomic Clebsh-Gordan coefficients showed, that the different

choice of the Λ scheme may decrease the noise by an order of magnitude while keeping an
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existing high efficiency. Employing the mentioned noise minimization may open an avenue

for realizing simple noise-free efficient quantum memory in a warm vapor.

In Chapter 6 we proposed the new scheme for the quantum random access memory. In

contrast to usual quantum memory, the quantum random access can provide the read out of

the quantum data in superposition defined by the quantum register. The proposed scheme

is based on the atomic ensemble and single atom suited in the coupled cavities. The atomic

ensemble plays the role of the memory and allows to store multiple time bin qubits, while

a single atom in the strong coupling regime controls the read out from the memory. The

mapping of the single photon distributed by the multiple time bins correspondingly to the

recorded data allows to put the control atom in to the superposition of two states for all

the recorded data independently. In turn, the single atom has two ground state, one is in

resonance with cavity and the other is not. While in the resonance the atom blocks the

light from entering the second cavity. Therefore the recalled light state from the memory

depends on the state of atom, if the atom is in one state the light is recalled, otherwise it is

returned into the memory. It was shown, that the proposed design is capable of operating

as quantum random access memory with constant scaling with number of used qubits. The

optimal physical parameters were presented.

The results presented in the thesis have a broad impact on development of quantum

memory. The results can be used for implementation of the quantum memory for quantum

repeater and beyond.
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[12] Alexey V. Gorshkov, Axel André, Mikhail D. Lukin, and Anders S. Sørensen. Photon

storage in Λ-type optically dense atomic media. ii. free-space model. Phys. Rev. A,

76:033805, Sep 2007.

[13] A. E. Kozhekin, K. Mølmer, and E. Polzik. Quantum memory for light. Phys. Rev. A,

62:033809, Aug 2000.

[14] J. Nunn, I. A. Walmsley, M. G. Raymer, K. Surmacz, F. C. Waldermann, Z. Wang, and

D. Jaksch. Mapping broadband single-photon wave packets into an atomic memory.

Phys. Rev. A, 75:011401, Jan 2007.

[15] M. O. Scully and S. M. Zubairy. Quantum Optics. Cambridge Univ. Press, 1997.

100



[16] J. Nunn, K. Reim, K. C. Lee, V. O. Lorenz, B. J. Sussman, I. A. Walmsley, and

D. Jaksch. Multimode memories in atomic ensembles. Phys. Rev. Lett., 101:260502,

2008.

[17] K. Tikhonov, K. Samburskaya, T. Golubeva, and Yu. Golubev. Storage and retrieval

of squeezing in multimode resonant quantum memories. Phys. Rev. A, 89:013811, Jan

2014.

[18] T. Golubeva, Yu. Golubev, O. Mishina, A. Bramati, J. Laurat, and E. Giacobino.

High-speed spatially multimode atomic memory. Phys. Rev. A, 83:053810, May 2011.

[19] T Golubeva, Y M Golubev, O Mishina, A Bramati, J Laurat, and E Giacobino. High

speed spatially multimode Λ-type atomic memory with arbitrary frequency detuning.

The European Physical Journal D, 66(10):275, 2012.

[20] Erhan Saglamyurek, Taras Hrushevskyi, Anindya Rastogi, Khabat Heshami, and Lind-

say J LeBlanc. Coherent storage and manipulation of broadband photons via dynam-

ically controlled Autler–Townes splitting. Nature Photonics, 12(12):774–782, 2018.

[21] Erhan Saglamyurek, Taras Hrushevskyi, Logan Cooke, Anindya Rastogi, and Lind-

say J. LeBlanc. Single-photon-level light storage in cold atoms using the autler-townes

splitting protocol. Phys. Rev. Research, 1:022004, Sep 2019.

[22] Thomas W Mossberg. Time-domain frequency-selective optical data storage. Optics

Letters, 7(2):77–79, 1982.

[23] E. L. Hahn. Spin echoes. Phys. Rev., 80:580–594, Nov 1950.

[24] N. A. Kurnit, I. D. Abella, and S. R. Hartmann. Observation of a photon echo. Phys.

Rev. Lett., 13:567–568, Nov 1964.

101



[25] N. Christensson, T. Polivka, A. Yartsev, and T. Pullerits. Photon echo spectroscopy

reveals structure-dynamics relationships in carotenoids. Phys. Rev. B, 79:245118, Jun

2009.

[26] Lap Van Dao, Craig Lincoln, Martin Lowe, and Peter Hannaford. Spectrally resolved

two-colour three-pulse photon echo studies of vibrational dynamics of molecules. Phys-

ica B: Condensed Matter, 327(1):123 – 128, 2003.

[27] Igor Osad’ko. Selective spectroscopy of single molecules, volume 69. Springer Science

& Business Media, 2013.

[28] VA Zuikov, VV Samartsev, and RG Usmanov. Correlation of the shape of light echo

signals with the shape of the excitation pulses. JETP Letters, 32:270–274, 1980.

[29] Masaharu Mitsunaga, Ryuzi Yano, and Naoshi Uesugi. Time- and frequency-domain

hybrid optical memory: 1.6-kbit data storage in eu3+:y2sio5. Opt. Lett., 16(23):1890–

1892, Dec 1991.

[30] V. V. Samartsev. Coherent optical spectroscopy of promising materials for solid-state

optical processors. Laser Physics, 20(2):383–446, 2010.
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[73] Mahmood Sabooni, Qian Li, Stefan Kröll, and Lars Rippe. Efficient quantum memory

using a weakly absorbing sample. Phys. Rev. Lett., 110:133604, Mar 2013.

[74] P Jobez, I Usmani, N Timoney, C Laplane, N Gisin, and M Afzelius. Cavity-enhanced

storage in an optical spin-wave memory. New Journal of Physics, 16(8):83005, 2014.

[75] Tian Zhong, Jonathan M Kindem, John G Bartholomew, Jake Rochman, Ioana

Craiciu, Evan Miyazono, Marco Bettinelli, Enrico Cavalli, Varun Verma, Sae Woo

Nam, Francesco Marsili, Matthew D Shaw, Andrew D Beyer, and Andrei Faraon.

Nanophotonic rare-earth quantum memory with optically controlled retrieval. Sci-

ence, 357(6358):1392–1395, 2017.

107



[76] Jinxian Guo, Xiaotian Feng, Peiyu Yang, Zhifei Yu, L Q Chen, Chun-Hua Yuan, and

Weiping Zhang. High-performance Raman quantum memory with optimal control in

room temperature atoms. Nature Communications, 10(1):148, 2019.

[77] Erwan Bimbard, Rajiv Boddeda, Nicolas Vitrant, Andrey Grankin, Valentina Parigi,

Jovica Stanojevic, Alexei Ourjoumtsev, and Philippe Grangier. Homodyne tomography

of a single photon retrieved on demand from a cavity-enhanced cold atom memory.

Phys. Rev. Lett., 112:033601, Jan 2014.

[78] A. Kuzmich, W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou, L.-M. Duan, and H. J.

Kimble. Generation of nonclassical photon pairs for scalable quantum communication

with atomic ensembles. Nature, 423(6941):731–734, Jun 2003.

[79] T Chanelière, D N Matsukevich, S D Jenkins, S.-Y. Lan, T A B Kennedy, and

A Kuzmich. Storage and retrieval of single photons transmitted between remote quan-

tum memories. Nature, 438(7069):833–836, 2005.
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[232] Mika A. Sillanpää, Jian Li, Katarina Cicak, Fabio Altomare, Jae I. Park, Raymond W.

Simmonds, G. S. Paraoanu, and Pertti J. Hakonen. Autler-townes effect in a super-

conducting three-level system. Phys. Rev. Lett., 103:193601, Nov 2009.

126



[233] Peter B R Nisbet-Jones, Jerome Dilley, Annemarie Holleczek, Oliver Barter, and Axel

Kuhn. Photonic qubits, qutrits and ququads accurately prepared and delivered on

demand. New Journal of Physics, 15(5):053007, 2013.

[234] M. Pechal, L. Huthmacher, C. Eichler, S. Zeytinoğlu, A. A. Abdumalikov, S. Berger,
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Appendix A

Raman noises

A.1 Spontaneous Emission

Let us consider spontaneous emission rate into the particular Zeeman sublevel |F,m 〉

from the whole hypefine manifold |F ′ 〉, and spontaneous emission could happen with any

polarization q. The Weisskopf-Wigner approach gives the emission rate as follows [15]:

rF ′,Fm =
ω3

0

3πε0~c3

∑
m′,q

∣∣∣ 〈F ′,m′ | ~̂d~eq |F,m 〉 ∣∣∣2 , (A.1)

where
~̂
d is a dipole moment operator, ~eq is a normalized polarization vector, and ω0 the

central frequency of the transition. By applying the Wigner-Eckart theorem A.1.1, we arrive

at

rF ′,Fm =
ω3

0

3πε0~c3

∣∣∣ 〈F | d̂ |F ′ 〉 ∣∣∣2∑
m′,q

 F ′ 1 F

−m′ q m


2

, (A.2)

where under the sum is squared 3-j symbol. Applying the theorem for the second time we

decompose the reduced dipole matrix element of total atomic angular momentum into a
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reduced dipole matrix element of total electron angular momentum:

rF ′,Fm =
ω3

0

3πε0~c3

∣∣∣ 〈 ξJ ′ | d̂ | ξJ 〉 ∣∣∣2 (2F + 1)(2F ′ + 1)

J
′ F ′ I

F J 1


2∑
m′,q

 F ′ 1 F

−m′ q m


2

,

(A.3)

where ξ stands for other atomic numbers besides J and m. 6-j symbol is represented by the

following matrix:

J
′ F ′ I

F J 1

 . (A.4)

The reduced dipole moment element is related to the lifetime by [244]:

ω3
0

3πε0~c3

∣∣∣ 〈 ξJ | d̂ | ξJ ′ 〉 ∣∣∣2 1

2J ′ + 1
= 1/τ. (A.5)

Thus

rF ′,Fm =
2J ′ + 1

τ
(2F + 1)(2F ′ + 1)

J
′ F ′ I

F J 1


2∑
m′,q

 F ′ 1 F

−m′ q m


2

. (A.6)

Lifetimes for Rubidium 87 atoms are τD2 = 26.24(4)ns and τD1 = 27.70(4)ns with nuclear

spin I = 3/2 [244]. The experiment was conducted on D1 line with level | 2 〉 corresponding

to the level with total atomic angular momentum F = 2 which 6-j symbol being equal to

− 1
2
√

5
, while | 1 〉 level corresponds to level having F = 1 and − 1

2
√

3
, respectively. The decay
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constants in this case can be expressed as

r13(F = 1→ F ′ = 2) =
(2 + 1)

27.7 ns

(
1

2
√

3

)2

= 2π · 1.43 MHz, (A.7)

r23(F = 2→ F ′ = 2) =
(2 · 2 + 1)

27.7 ns

(
1

2
√

5

)2

= 2π · 1.43 MHz, (A.8)

r13(F = 1→ F ′ = 1) =
3

27.7 ns

(
1

6

)2

= 2π · 0.48 MHz, (A.9)

r23(F = 2→ F ′ = 1) =
5

27.7 ns

(
1

2
√

3

)2

= 2π · 2.39 MHz. (A.10)

Sum of all decays is rsum = 2π · 5.73 MHz.

Let us consider D1 line, for which the total electron angular momentum is J = 1/2.

The atomic levels with total atomic angular momentum correspond to the memory levels:

| 1 〉 → |F = 1 〉, | 2 〉 → |F = 2 〉, and | 3 〉 → |F ′ = 2 〉, as shown in Figure 5.7. For

calculating the coupling constant we assume the signal mode has polarization ~eq (in spherical

basis) and the the atomic level | 1 〉 corresponds to sublevel of F = 1 manifold:

| gs |2 =
ω

2ε0~Sc

∣∣∣ 〈 1 | ~d~eq | 3 〉 ∣∣∣2 =
ω

2ε0~Sc
∑
m′

∣∣∣ 〈F = 1,m | ~d~eq |F ′ = 2,m′ 〉
∣∣∣2 = (A.11)

=
ω

2ε0~Sc
∑
m′

F 1 F ′

m q m′


2

| 〈n′J ′IF ′ | d |nJIF 〉 |2 (A.12)

=
ω

2ε0~Sc
∑
m′

F 1 F ′

m q m′


2

(2F + 1)(2F ′ + 1)

J
′ F ′ I

F J 1


2

| 〈 ξ′J ′ | d | ξJ 〉 |2 (A.13)

Assuming circular polarization σ± (q = ±1) and | 1 〉 = |F = 1,m = ±1 〉, upper level | 3 〉 =
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|F ′ = 2 〉 we get:

∑
m′

F 1 F ′

m q m′


2

= 1/5,

J
′ F ′ I

F J 1


2

= 1/12, (A.14)

∑
m′

F 1 F ′

m q m′


2

(2F + 1)(2F ′ + 1)

J
′ F ′ I

F J 1


2

=
1

4
. (A.15)

As another example, let’s consider circular polarization σ± (q = ±1) and | 2 〉 = |F = 2,m = ±1 〉,

upper level | 3 〉 = |F ′ = 2 〉 we get:

∑
m′

F 1 F ′

m q m′


2

= 1/15,

J
′ F ′ I

F J 1


2

= 1/20, (A.16)

∑
m′

F 1 F ′

m q m′


2

(2F + 1)(2F ′ + 1)

J
′ F ′ I

F J 1


2

=
1

12
. (A.17)

The coupling constant for the continuous field is calculated similarly as for a cavity with

effective volume to be a product of area and speed of light (V → Scc):

| gs |2 =
ω

2ε0~Sc
| 〈 ξ′J ′ | d | ξJ 〉 |2

4
=

1

τ

3

2

πc2

4Ssω2
, (A.18)

Analogously we find Rabi frequency of control field with amplitude |Ec | on the same | 1 〉 →

| 3 〉 transition:

Ω2
I =

E2
c

~2

∑
m′

F 1 F ′

m q m′


2

(2F + 1)(2F ′ + 1)

J
′ F ′ I

F J 1


2

| 〈 ξ′J ′ | d | ξJ 〉 |2

=
E2
c

~2

| 〈 ξ′J ′ | d | ξJ 〉 |2

4
. (A.19)
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While for circularly polarized control field on | 2 〉 → | 3 〉 is:

Ω2
s =

E2
c

~2

| 〈 ξ′J ′ | d | ξJ 〉 |2

12
. (A.20)

As the result the ratio between to Rabi frequencies is ΩI/Ωs =
√

3.

A.1.1 The Wigner-Eckart theorem

If the T kq is irreducible tensor component of rank k, then the Wigner-Eckart theorem

states [245]:

〈 ξJ ′m′ |T kq | ξJm 〉 = 〈 ξ′J ′ |T k | ξJ 〉 (−1)J
′−m′

 J ′ k J

−m′ q m

 . (A.21)

For the state composed of the two angular momentum the Wigner-Eckart theorem states

[245]:

〈 ξJ ′IF ′ |T k | ξJIF 〉 = (−1)J+I+F+1
√

(2F + 1)(2F ′ + 1)

J
′ F ′ I

F J 1

 〈 ξJ ′ |T k | ξJ 〉 .
(A.22)

A.2 Effect of spatial modulation

Adiabatic elimination of the upper level | 3 〉 gives the following Heisenberg-Langevin

equations [201]:

(γ̃12(z) + i(βz + i∆AC − ω)) R̂12(t, z) = −i gsΩ
∗
c(z)

(∆s + iγ13)
Ês(t, z), (A.23)

∂

∂z
Ês(t, z) = −i ngs

(∆s + iγ13)
Ωc(z)R̂12(t, z). (A.24)
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If we assume the phase matching holds e−iδkL ≈ 1, the full solution for the field is

Ês(ω, z) = Ês(ω,−L/2) exp

− z∫
−L/2

dz′
ng2

s Ω2(z′)

(∆s + iγ13)2 (γ̃12(z′) + i(βz′ + i∆AC(z′)− ω))

+

−
z∫

−L/2

dz′F̂s(ω, z
′) exp

(
−
∫ z

z′
dz′′

ng2
s Ω2(z′′)

(∆s + iγ13)2 (γ̃12(z′′) + i(βz′′ + ∆AC(z′′)− ω))

)
.

(A.25)

The spatial modulation of the pump we assume to be in the following form [198]:

Ω(z) = Ωc(1 + ε cos (kmz)). (A.26)

The modulation modifies the noise contribution to

〈n(ω) 〉 ∼
z∫∫
−L/2

dz′dz′′〈F̂ †s (ω, z′′)F̂s(ω, z
′)〉

· exp

−
z∫

z′

dx′
ng2

s Ω2(x′)

(∆s + iγ13)2 (γ̃12(x′)− i(βx′ + ∆AC(x′)− ω))


· exp

−
z∫

z′′

dx′′
ng2

s Ω2(x′′)

(∆s − iγ13)2 (γ̃12(x′′) + i(βx′′ + ∆AC(x′′)− ω))

 . (A.27)
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A.3 Simulation parameters

symbol Value Units
Formula

Reference
Parameter

T 74 C temperature
Sc 28·10−6 1/m2 Control field cross section
Ss 3·10−6 1/m2 Signal field cross section

σD 0.5 GHz
√

kT
m
· 10−6/λ width of the Doppler broadening

ω12 2π · 6834 MHz hyperfine splitting
r32 2π · 1.43 MHz decay rate of population
r31 2π · 1.43 MHz decay rate of population
γ13 2π · 1.43 MHz (r32 + r31)/2 coherence decay
γ23 2π · 1.43 MHz (r32 + r31)/2 coherence decay
γ12 2π · 40 kHz
∆s 2π · 1330 MHz
∆I 2π · 5504 MHz ω21 −∆s

n 4.5 · 1014 1/m3 atomic density
β 2π · 3.2 MHz/m magnetic gradient linear density
P 0.34 W power of control field
L 0.2 m length of sample

∆in 2π · 0.68 MHz βL inhomogeneous broadening

ν0 0.055 spatial modulation frequency

Ωc 2π · 16.6 MHz
√

P
ε0Sc·c

d23
2~ · 10−6 Rabi frequency of the control

field for P=0.34

ΩI 2π · 28.78 MHz εΩc
Rabi frequency of the control

field for P=0.34

ε
√

3 Ratio between coupling constants

Table (A.1) Parameters used to fit an experimental data
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Appendix B

Time-bin quantum random access

memory

B.1 Hamiltonian and equations of motions

Here we present the effective Hamiltonian of the analyzed system 6.3 under dipole and

rotating-wave approximations [15]. It consist from two parts Ĥ = Ĥ0 + Ĥ1, where

Ĥ0 = ~ω0

( N∑
j=1

Sjz + Scz + a†1a1 + a†2a2 +

∫
dω

(∑
m

ĉ†m(ω)ĉm(ω) + b†(ω)b(ω)

))
, (B.1)
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is the unperturbed Hamiltonian. The perturbation part is

Ĥ1 = ~
N∑

∆jŜ
j
z + ~δScz + ~

∫
dννb̂†(ω0 + ν)b̂(ω0 + ν)

+ ~
∑
m

∫
dννĉ†m(ω0 + ν)ĉm(ω0 + ν)+

+ ~
√

κ

2π

∫
dν(â†1b̂(ω0 + ν) +H.C.)

+ ~

(
g1â
†
1Ŝ

c
− + f2â

†
1â2 + g2

N∑
j=1

â†2Ŝ
j
− +H.C.

)

+ ~
√

γ

2π

∑
m

∫
dν
(
ĉm(ω0 + ν)Ŝc+ +H.C.

)
, (B.2)

where the first three terms are determined by the frequency detunings of the j-th atom ∆j in

QM, δ - of the control atom and the detuning ν of the free field modes. Four further terms

are the interactions between free field modes and the first cavity mode with the coupling

constant
√
κ/2π.

The interaction between the cavity mode and the control atom with the coupling constant

is g1. The interaction between the coupled cavity modes with the coupling constant is f2.

The interaction between the second cavity mode and the atoms with the coupling constant

g2. The operators Ŝ0
z and Ŝjz are the z projection of the spin 1/2 operators, Ŝj+, Ŝj− and Ŝ0

+,

Ŝ0
− are the transition spin operators of j-th and control atoms. The operators â†1,2 and â1,2 are

creation and annihilation operators of the 1-st and 2-nd cavity field modes. The operators

b†(ω), b(ω) are the bosonic operators of free propagating modes (
[
b(ω), b†(ω′)

]
= δ(ω−ω′)).

By assuming that the cavity modes, all the atoms and bath modes cm(ω) are in the ground

state, the initial wave function of the input single photon field is given by Eq. 6.1, the total

wavefunction is given by Eq. 6.3. After using the well-known input-output formalism we
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obtain the following system of equations [33]:

dα1

dt
= −ig1βc − if2α2 −

κ

2
α1 +

√
καin(t), (B.3)

dβc
dt

= −i(δ − iγ/2)βc − ig1α1, (B.4)

dα2

dt
= −ig2

N∑
j=1

βj − if2α1, (B.5)

dβj
dt

= −i(∆j − i/T2)βj − ig2α2, (B.6)

where we have added the weak phenomenological decay constant 1/T2 for the QM atomic

coherence which is caused by the interaction with the local fluctuating fields

αin(t) = − i√
2π

∫
dναoνe

−iνt. (B.7)

By integrating Eq. B.6 we find

βj(τ) = −ig2

τ∫
−∞

dt′α2(t′)e−i(∆j−i/T2)(τ−t′)
|limτ�δt

∼= −i2πg2α̃2(∆j)e
−i(∆j−i/T2)τ , (B.8)

where pulse duration of the light field δt is assumed to be short enough in comparison with

the atomic decoherence time of the atomic QM δt� T2. Inserting it into Eq. B.5 and using

the Fourier transform α1,2,in(t) =
∫
dνα̃1,2,in(ν) exp{−iνt}, and βc(t) =

∫
dνβ̃c(ν) exp{−iνt},

we obtain the following solution for the amplitudes of the control atom and two cavity modes:

β̃c = g1
α̃1

(ν − δ + iγ/2)
, (B.9)

α̃2(ν) = A2,1(ν)α̃1(ν), (B.10)

α̃1(ν) = A1,in(ν)α̃in(ν), (B.11)
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where

A1,in(ν) =
i
√
κ

ν + iκ/2− g21
(ν−δ+iγ/2)

− f22
ν+iNg22G̃(ν)

, (B.12)

A2,1(ν) =
f2

ν + iNg2
2G̃(ν)

. (B.13)

B.2 Readout stage

The system of light-atom dynamical equations during the readout stage is almost the

same as Eqs. B.3–B.6, except for the absence of the driving laser field and the inverted

inhomogeneous broadening at the time t = τ :

dα1

dt
= −ig1β1 − if2α2 −

κ

2
α1, (B.14)

dβc
dt

= −i(δ − iγ/2)βc − ig1α1, (B.15)

dα2

dt
= −ig2

N∑
j=1

βj − if2α1, (B.16)

dβj
dt

= i(∆j + i/T2)βj − ig2α2. (B.17)

By taking into account the initial condition at t = τ in accordance with Eq. 6.5 and α1 =

α2 = βc = 0 we have

βj(−∆j, τ) = i
√

2πκ
g2

f2

FS(∆j)α
0
∆j
e−i(∆j−i/T2)τ , (B.18)

before the rephasing of the atomic coherence. After solving the linear system of equations

B.14-B.17, we find the following spectral component of the irradiated single photon field

αν(t) =i
√

2πκ
g2

f2

FR(ν)β(ν, τ) ·GL(ν) exp{−iν(t− τ)− τ/T2}, (B.19)

where FR(ν) indicates the spectral transfer function for the readout stage.
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B.3 Blockade and wave function of the QM atomic sys-

tem

For the blockade regime during the retrieval, we find the following Fourier image for the

amplitude of the QM atomic excitation from the Eqs. B.14-B.17:

βB(∆, ν) =
1

1/T2 − iν − i∆
·
(
β(∆, 0) + ∆inJ(ν)(FB(ν)− 1)

∫
d∆′

G(∆′)β(∆′, 0)

−iν + i∆′

)
,

(B.20)

where the index “B” means the blockade regime and

J(ν) =
κ(κ− 2iν)

κ2 − 4iκν − 8ν2
. (B.21)

In the case of the strong atomic blockade 2 + 4C � 1:

βB(∆, ν) ∼=
1

1/T2 − iν − i∆
·
(
β0(∆, 0)e−i∆τ − 2∆2

inJ(ν)

(ν2 + ∆2
in)
β0(−ν, 0)eiντ−τ/T2

)
, (B.22)

where β0(−ν, 0) = i
√

2πκ g2
f2
F (−ν)α0

−νe
−τ/T2 . Since J(ν ≈ 0) ≈ 1 and τ � T2, we obtain

good recovery of the atomic amplitude for |ν| < κ:

βB(∆, |ν| < κ) |τ�T2= −
β(∆, 0)

1/T2 − iν − i∆
. (B.23)

As it is seen in Eq. B.23, the atomic dynamics during the irradiation and subsequent reab-

sorption of the echo pulse leads to the additional π-phase shift of the atomic coherence for

t� techo = 2τ .
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