Regents Chemistry:

Practice Packet:

Unit 2: Matter

Vocabulary: \qquad
Lesson 1: \qquad
Lesson 2: \qquad
Lesson 3: \qquad
Lesson 4: \qquad

VOCABULARY

For each word, provide a short but specific definition from YOUR OWN BRAIN! No boring textbook definitions. Write something to help you remember the word. Explain the word as if you were explaining it to an elementary school student. Give an example if you can. Don't use the words given in your definition!

Alloy:
Amalgam:
Aqueous: \qquad
Atom: \qquad
Change: \qquad
Chemical Property:
Chromatography: \qquad
Compound: \qquad
Diatomic element: \qquad
Distillation: \qquad
Element: \qquad
Extensive: \qquad
Filtration: \qquad
Gas: \qquad
Heterogeneous Mixture: \qquad
Homogeneous Mixture: \qquad
Intensive: \qquad
Liquid: \qquad
Matter: \qquad
Mixture: \qquad
Physical Property: \qquad
Solid: \qquad
Solution: \qquad
Temperature: \qquad
Tincture: \qquad

Lesson 1: Types of Matter

Objective:

- Differentiate between compounds, mixtures and elements
- Determine if a mixture is homogeneous or heterogeneous
- Identify the number of atoms and molecules in a substance based upon the chemical formula

Classify each of the following with the combination of terms listed below.
pure substance - element
pure substance - compound

1. $\mathrm{HCl}(\mathrm{aq})$
2. $\mathrm{Cl}_{2}(\mathrm{~g})$
3. $\mathrm{CH}_{2}(\mathrm{OH})_{2}(\mathrm{aq})$
4. $\mathrm{Na}(\mathrm{s})$
5. $\mathrm{Hg}(\mathrm{l})$
mixture - homogeneous
mixture - heterogeneous
6. soil
7. Matter that is composed of two or more different elements chemically combined in a fixed proportion is classified as
(1) a compound
(2) an element
(3) a mixture
(4) a solution
8. A compound differs from an element in that a compound
(1) is homogeneous
(2) has a definite composition
(3) has a definite melting point
(4) can be decomposed by a chemical reaction
9. A compound differs from a mixture in that a compound always has a
(1) homogeneous composition
(2) maximum of two elements
(3) minimum of three elements
(4) heterogeneous composition
10. A heterogeneous material may be
(1) an element
(2) a compound
(3) a pure substance
(4) a mixture
11. Which statement is an identifying characteristic of a mixture?
(1) a mixture can consist of a single element
(2) a mixture can be separated by physical means
(3) a mixture must have a definite composition by weight
(4) a mixture must be homogeneous
12. Which must be a mixture of substances?
(1) solid
(2) liquid
(3) gas
(4) solution
13. Which substance can be decomposed by chemical means?
(1) aluminum
(2) octane
(3) silicon
(4) xenon
14. Which substance can be decomposed by chemical means?
(1) ammonia
(2) oxygen
(3) phosphorus
(4) silicon
15. Which substance can not be broken down by a chemical reaction?
(1) ammonia
(2) argon
(3) methane
(4) water
16. Two substances, A and Z, are to be identified. Substance A can not be broken down by a chemical change. Substance Z can be broken down by a chemical change. What can be concluded about these substances?
(1) Both substances are elements.
(2) Both substances are compounds.
(3) Substance A is an element and substance Z is a compound.
(4) Substance A is a compound and substance Z is an element.

Interpreting Chemical Formulas

19. How many atoms of the element sodium (Na) are there in one $\mathrm{Na}_{2} \mathrm{~S}$? \qquad
20. How many atoms of each type of element in the formulas?

ASSESS YOURSELF ON THIS LESSON:
If you missed more than 3 , do the Additional Practice. If not, go on to the next hw video!!!

ADDITIONAL PRACTICE LESSON 1:

1. Which terms are used to identify pure substances?
(1) an element and a mixture
(2) an element and a compound
(3) a solution and a mixture
(4) a solution and a compound
2. Two different samples decompose when heated. Only one of the samples is soluble in water. Based on this information, these two samples are
(1) both the same element
(2) two different elements
(3) both the same compound
(4) two different compounds
3. Tetrachloromethane, CCl_{4}, is classified as a
(1) compound because the atoms of the elements are combined in a fixed proportion
(2) compound because the atoms of the elements are combined in a proportion that varies
(3) mixture because the atoms of the elements are combined in a fixed proportion
(4) mixture because the atoms of the elements are combined in a proportion that varies
4. The table below shows the mass and volume data for four samples of substances at the same temperature and pressure.

Masses and Volumes of Four Samples

Sample	Mass (g)	Volume (mL)
A	30.	60.
B	40.	50.
C	45	90.
D	90.	120.

Which two samples could consist of the same substance?
\qquad and \qquad

Interpreting Chemical Formulas

5. How many units of KCl are expressed by " 4 KCl "? \qquad
6. How many $\mathrm{Na}_{2} \mathrm{~S}$ are shown by " $3 \mathrm{Na}_{2} \mathrm{~S}$ "?
7. How many atoms of C , of H and of O are communicated by writing " $3 \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ "?
8. C : \qquad H: \qquad O: \qquad

ASSESS YOURSELF ON THIS ADDITIONAL PRACTICE: \qquad

Lesson 2: Separating a Mixture

Objective:

- Determine how to separate different types of mixtures

Substances in mixtures retain their own physical properties which can be used to physically separate the components. Complete the chart below...

Mixture	Separate by...	Physical Property
Example: Coffee	Boiling off the water, collecting it, leaving the coffee bean extract and sugar	Boiling point
 Soil		
Sugar \& Water		
Salt \& Sand		
 Rubbing Alcohol		

For each separation technique below, identify the physical property that is used and briefly describe the process:

Filtration: \qquad

Distillation: \qquad

Chromatography: \qquad

ASSESS YOURSELF ON THIS LESSON:

Lesson 3: Particle Diagrams

Objective:

- Differentiate between different types of particle diagrams
- Construct particle diagrams for pure substances and mixtures

Classify each of the pictures below by placing the correct label in the blanks below:
A= Element
$D=$ Mixture of compounds
B= Compound
$\mathrm{E}=$ Mixture of elements and compounds

$\mathrm{C}=$ Mixture of elements

Each circle represents an atom and each different color represents a different kind of atom. If two atoms are touching then they are bonded together. Then give an example for each (ex. \#1 $\mathrm{H}_{2} \mathrm{O}$)

1)

4)

7)

10)

13)

2)

5)

8)

11)
-

14)

3)

6)

9)

12)

15)

Drawing Particle Arrangements

16.) Draw a particle diagram for each of the following below. Then give an example for each.

17.) In terms of composition/type of atoms, what is the difference between a monatomic element, a diatomic element, and a diatomic compound?
18.) Use the following key for the question below:

Draw 4 molecules of compound $X_{2} Z$ in the box on the right

ASSESS YOURSELF ON THIS LESSON: \square /18
If you missed more than 3 , do the Additional Practice. If not, go on to the next hw video!!!

ADDITIONAL PRACTICE LESSON 3

Use the following key for the next two questions.

$$
\bigcirc=\text { element } X \quad O=\text { element } Z
$$

Draw 8 atoms of element X

Draw a Homogeneous mixture of element Z with element X (10 atoms of each element).

\square

LESSON 4: PROPERTIES AND CHANGES OF MATTER

Objective:

- Identify the states of matter
- Differentiate between physical and chemical changes
- Determine the phase of a substance @ STP using table S
- Construct particle diagrams for solids, liquids and gases

Directions: Complete the chart to the best of your ability.

1) Situation	Type of Change (\mathbf{P} or C)	Explanation: (Physical: Still the same substance) (chemical: A new substance formed)
2) Water freezing		
3) Decomposing of a dead organism		
4) Mixing the ingredients for a cake		
5) Rusting (corroding) of a nail		
6) Melting ice off a windshield		
7) Combustion (burning) of gasoline		
8) $\mathrm{CO}_{2}(\mathrm{~s}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$		
9) $\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightarrow \mathrm{H}_{2} \mathrm{O}$ (l)		
$\text { 10) } \mathrm{NaCl}(\mathrm{~s}) \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \mathrm{NaCl}(\mathrm{aq})$		

Room temperature in degrees Fahrenheit (${ }^{\circ} \mathrm{F}$) is about $72^{\circ} \mathrm{F}$. In degrees Celsius $\left({ }^{\circ} \mathrm{C}\right)$ this is about $25^{\circ} \mathrm{C}$. In the classroom you can observe all 3 states (solid, liquid, and gas) at the same temperature. This means that not all substances have the same phase at the same temperature. Scientists had to develop a term to refer to talk about substances under "normal" conditions. It is called STP. At STP, oxygen is a gas, while Cu is a solid. STP= STANDARD TEMPERATURE AND PRESSURE
11. Where can you find STP conditions in your Reference Table? Table \qquad
12. Standard temperature $=$ \qquad ${ }^{\circ} \mathrm{C}$ or \qquad K
13. Standard pressure $=$ \qquad kPa or \qquad atm
14. In your own words, summarize what STP is and why it is necessary.

		$\leftarrow \mathbf{M P} \rightarrow$		
Description	If temp is lower than the melting point, it has not melted yet.	If temp is higher than the melting point, it has melted already.	If temp is lower than the boiling point, it has not boiled yet.	If temp is higher than the boiling point, it has boiled already.
Resulting Phase	Solid	Liquid	Liquid	Gas

For Example:

Substance	Color	Melting Point $\left({ }^{\mathbf{}} \mathbf{C}\right)$	Boiling Point $\left({ }^{\mathbf{}} \mathbf{C}\right)$
Bromine	Red-Brown	-7	59
Chlorine	Green-yellow	-101	-34
Ethanol	Colorless	-117	78
Mercury	Silvery-white	-39	357
Neon	Colorless	-249	-246
Sulfur	Yellow	115	445
Water	Colorless	$\mathbf{0}$	$\mathbf{1 0 0}$

15) Which colorless substance is a liquid at $-30^{\circ} \mathrm{C}$? \qquad
16) Which colorless substance is a gas at $60^{\circ} \mathrm{C}$? \qquad
17) Which substance is a solid at $7{ }^{\circ} \mathrm{C}$?
18) Which element is a liquid when mercury boils?
\qquad
\qquad

Notice water's MP/BP! You will be expected to know this throughout the year! This refers to distilled water (pure $\mathrm{H}_{2} \mathrm{O}$), not tap water (what comes out of your sink that has extra substances in it).

Some physical properties (including melting and boiling point!) of the first 92 elements are listed on
Table \mathbf{S} in the reference tables. Suppose you were in Boston, MA (sea level) and it was cold enough to freeze water $\left(0^{\circ} \mathrm{C}\right)$.
What state of matter, would each of the following substances exist at?
(Note that Table S has MP/BP in Kelvin!)
19. Hydrogen
20. Lithium
21. Bromine
22. At $S T P$, which list of elements contains a solid, a liquid, and a gas?
(1) $\mathrm{Hf}, \mathrm{Hg}, \mathrm{He}$
(3) $\mathrm{Ba}, \mathrm{Br}_{2}, \mathrm{~B}$
(2) $\mathrm{Cr}, \mathrm{Cl}_{2}, \mathrm{C}$
(4) $\mathrm{Se}, \mathrm{Sn}, \mathrm{Sr}$

ASSESS YOURSELF ON THIS LESSON:

\qquad /18
If you missed more than 3 , do the Additional Practice. If not, go on to the next hw video!!!

ADDITIONAL PRACTICE LESSON 4:

1. The diagram below represents the starting materials (reactants) and ending materials (products) after a change has taken place. Was the change physical or chemical? Explain.

2. Given the particle diagram representing four molecules of a substance:

Key
$=$ atom of one element
= atom of a different element

Which particle diagram best represents this same substance after a physical change has taken place?

(1)

(2)

(3)

(4)

Common Sense Chemistry Review
 Can you apply what you've learned to seem smarter than you friends?

1. A student reads the packaging slip for the recent Amazon order and he was charged an extra fee for shipping a package over 20 kg . The student knows his package weighs 5 pounds and 5 pounds equals approximately 2260 grams. Should he be charged the fee?
2. Grandma needs to take a minimum of 1200 mg of calcium a day to help her bones. The Calcium vitamins you bought for her specifies that it provides a half of a gram of calcium per tablet. How many tablets does Grandma need to take?
3. Your friend created a raft to hang out on in the bay. The raft weighs 180 kg and measures 160.0 cm in length, 80.0 cm in width, and 20.0 cm in depth. Will the raft float in water with a density of $1.00 \mathrm{~g} / \mathrm{mL}$?
4. You are traveling in Canada in late May and want to paddleboard. The weather man reports that the water is going to be $12^{\circ} \mathrm{C}$ tomorrow. Will you freeze, boil, or survive in that water? Explain.
5. Why does all my milk say "homogenized' on the label? What does that imply?
6. Your friend wants to get all "gunk" out of the tap water at home and decides to use filter paper and a funnel to separate the water out because he wanted "filtered water." Will this work?
7. Your older sister in graduate school decorates her apartment with empty triple distilled whiskey bottles. What does triple distilled mean?
8. You took the top 20 quiz in social studies (graded out of 20 points) and earned a 16 . What is your percent error?
9. In terms of density or particle arrangement, why is nitrogen used rather than helium to extinguish a fire?
10. Alfred says that if you heat water to its boiling point oxygen gas will form. He shows you a pot of boiling water with vapors coming off. What is your rebuttal?
11. While preparing for your flight to England, you decide to weigh all your travel items. You weighed your toiletries on your mom's food scale and they totaled 327.97grams. You weighed all your clothes on the bathroom balance and they totaled 20,672.5 grams. The label on your new suitcase boasted a low weight of 1 kg . You get to the airport knowing the weight limit is 22 kg and mom is freaking out. You are cool as a cucumber. Why?

