## Regents Chemistry:

## Practice Packet Unit 7: Moles \& Stoichiometry



## PRACTICE PACKET: Unit 7 Moles \& Stoichiometry

For each word, provide a short but specific definition from YOUR OWN BRAIN! No boring textbook definitions. Write something to help you remember the word. Explain the word as if you were explaining it to an elementary school student. Give an example if you can. Don't use the words given in your definition! THESE ARE THE WORDS THAT WILL BE ASSESSED ON THE VOCABULARY QUIZ.

Diatomic element: $\qquad$
Polyatomic ion: $\qquad$
Binary compound: $\qquad$
Tertiary compound: $\qquad$
Subscript: $\qquad$
Mole: $\qquad$
Formula Mass:
Molar Mass (Gram Formula Mass): $\qquad$
Percent Composition: $\qquad$
Reaction: $\qquad$
Reactants: $\qquad$
Products: $\qquad$
Species: $\qquad$
Conservation of mass: $\qquad$
Conservation of Energy: $\qquad$
Conservation of Charge: $\qquad$
Balanced Equation: $\qquad$
Coefficient (in Reactions): $\qquad$
Mole Ratio: $\qquad$
Empirical Formula: $\qquad$
Molecular Formula: $\qquad$

## PRACTICE PACKET: Unit 7 Moles \& Stoichiometry

Synthesis reaction:
Decomposition reaction: $\qquad$
Double replacement reaction: $\qquad$
Single replacement reaction: $\qquad$

## PRACTICE PACKET: Unit 7 Moles \& Stoichiometry

## LESSON 1: Moles and Molar Mass

## Objective:

- Calculate Molar Mass (gram formula mass)

1. Fill in the table below

|  | Formula | Moles of each <br> atom | Total <br> moles of <br> atoms |  | Formula | Moles of each <br> atom | Total <br> moles of <br> atoms |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| a. | $\mathrm{HClO}_{3}$ | 1 mol of H atoms <br> 1 mol of Cl atoms <br> 3 mol of O atoms | 5 mol of <br> atoms | c. | $\mathrm{CaCl}_{2}$ |  |  |
| b. |  |  |  |  |  |  |  |
| $\mathrm{Mg}(\mathrm{OH})_{2}$ |  |  | d. | $\mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ |  |  |  |

Calculate the GRAM formula mass (molar mass) and don't forget the UNITS!!!

1. $\mathrm{CO}_{2}$
2. FeS
3. NaCl
4. $\mathrm{Al}_{2}\left(\mathrm{CO}_{3}\right)_{3}$
5. $\mathrm{SiO}_{2}$
6. $\mathrm{H}_{2} \mathrm{SO}_{4}$
7. $\mathrm{Al}_{2}\left(\mathrm{SO}_{3}\right)_{3}$
8. $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{4}$
9. $\mathrm{Fe}_{2} \mathrm{O}_{3}$
10. MgO
$\qquad$
$/ 10$
If you missed more than 2 , do the Additional Practice. If not, take the quiz!!

## ADDITIONAL PRACTICE LESSON 1:

Find the gram formula mass of the following: (Show all work)

1. MgO
2. $\mathrm{NaHCO}_{3}$
3. $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
4. $\mathrm{Al}_{2} \mathrm{O}_{3}$
5. $\mathrm{Ca}(\mathrm{OH})_{2}$
6. $\mathrm{CH}_{4}$
7. $\mathrm{NH}_{3}$
8. $\mathrm{H}_{2} \mathrm{O}_{2}$

## Lesson 2: Percent Composition

## Objective:

- Calculate Percent Composition
- Calculate Percent composition of a hydrate

Determine the \% composition of all elements in these compounds. Show all work!

1) ammonium sulfite

Formula: $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{3}$
Molar mass $\qquad$
$\qquad$ -

Mass of N
Mass of H $\qquad$
$\% \mathrm{~N}$ $\qquad$
$\% \mathrm{H}$ $\qquad$
Mass of S $\qquad$ $\%$ S $\qquad$
\%O $\qquad$
2) aluminum acetate

Formula: $\mathrm{Al}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{3}$
Molar mass $\qquad$
Mass of Al $\qquad$
Mass of C
Mass of H $\qquad$
$\qquad$
Mass of O $\qquad$
\%O $\qquad$
3) sodium bromide

Formula: NaBr
Molar mass $\qquad$
Mass of Na $\qquad$ $\% \mathrm{Na}$ $\qquad$
Mass of Br $\qquad$
$\% \mathrm{Br}$ $\qquad$

## Percent Composition of a Hydrate

4. Determine the percent by mass of water in the following hydrates using the chemical formula.
a. $\mathrm{Na}_{2} \mathrm{CO}_{3} \bullet 10 \mathrm{H}_{2} \mathrm{O} \quad(\mathrm{GFM}=286 \mathrm{~g})$
b. $\quad \mathrm{MgSO}_{4} \bullet 7 \mathrm{H}_{2} \mathrm{O} \quad(\mathrm{GFM}=246 \mathrm{~g})$

Determine the percent by mass of water in the following hydrates using the experimental data (masses).
c. Initial mass of hydrate: 9.5 g
d. Initial mass of hydrate: 5.3 g
Final mass of anhydrous salt: 3.77 g
Final mass of anhydrous salt: 4.1 g
5. What is the percent composition of water in $\mathrm{FeCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ ?

If you missed more than 1 , do the Additional Practice. If not, go on to the next hw video!!!

## ADDITIONAL PRACTICE LESSON 2

1. copper (II) hydroxide

Formula $\mathrm{Cu}(\mathrm{OH})_{2}$
Molar mass $\qquad$
2. magnesium carbonate

Formula: $\mathrm{MgCO}_{3}$
Molar mass $\qquad$
Formula: $\mathrm{MgCO}_{3}$
Molar mass
$\qquad$
Mass of O
Mass of H $\qquad$
\%H $\qquad$
Mass of Mg
$\% \mathrm{Mg}$ $\qquad$
Mass of C $\qquad$
\%C $\qquad$
Mass of O $\qquad$
2. If 125 grams of $\mathrm{BaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ is completely dehydrated, how many grams of anhydrous Barium Chloride will remain?

## ASSESS YOURSELF ON THIS ADDITIONAL PRACTICE:

If you missed any problems you should see me for extra help and/or re-watch the lesson video assignment

## Lesson 3: Calculating Moles

## Objective:

- Calculate the number of moles given the grams
- Calculate the number of grams given the moles

Solve for the mass given the moles. (Show your work)

1. $\quad 2.00$ moles of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
2. $\quad 5.00$ moles of $\mathrm{SrSO}_{4}$
3. 0.250 moles of $\mathrm{CH}_{4}$
4. $\quad 12.0$ moles of $\mathrm{SiO}_{2}$
5. $\quad 0.330$ moles of FeS
6. $\quad 1.50$ moles of MgO
7. $\quad 0.500$ moles of $\mathrm{ZnCl}_{2}$

Find the number of moles in the following measurements: (Show your work)
8. 900. grams $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
9. 24.5 grams $\mathrm{H}_{2} \mathrm{SO}_{4}$
10. 192 grams $\mathrm{SiO}_{2}$
11. 450. grams of $\mathrm{ZnCl}_{2}$
12. 22 grams of $\mathrm{CO}_{2}$
13. 20. grams of $\mathrm{Fe}_{2} \mathrm{O}_{3}$
14. 840. grams of $\mathrm{NaHCO}_{3}$

## ASSESS YOURSELF ON THIS LESSON:

## ADDITIONAL PRACTICE LESSON 3

1. What is the total number of moles in 80.0 grams of $\mathrm{C}_{2} \mathrm{H}_{5}$ ?
2. How many grams are in 0.500 moles of $\mathrm{CH}_{4}$ ?
3. How many grams are in 0.500 moles of $\mathrm{ZnCl}_{2}$
4. What is the total number of moles in 10. grams of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ ?
5. What is the total number of moles in 3.40 grams of $\mathrm{H}_{2} \mathrm{O}_{2}$
6. How many grams are in 0.100 moles of $\mathrm{NH}_{3}$

## Lesson 4: Balancing Reactions

## Objective:

- Assess and Balance chemical reactions using coefficients

1. Which equation represents conservation of mass?
(1) $\mathrm{H}_{2}+\mathrm{Cl}_{2} \rightarrow \mathrm{HCl}$
(2) $\mathrm{H}_{2}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{HCl}$
(3) $\mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}$
(4) $\mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$
2. A 4.86-gram sample of calcium reacted completely with oxygen to form 6.80 grams of calcium oxide. This reaction is represented by the balanced equation below. Determine the total mass of Oxygen that reacted.

$$
2 \mathrm{Ca}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CaO}(\mathrm{~s})
$$

Balance the Following Reactions:
Sum of Coefficients:
a) __C $(\mathrm{s})+\ldots \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{4} \quad(\mathrm{~g})$
b) $\qquad$ $\mathrm{Fe}(\mathrm{s})+\ldots \mathrm{O}_{2}(\mathrm{~g}) \rightarrow$ $\qquad$
$\qquad$
c) $\quad \ldots \mathrm{NaI}(\mathrm{s}) \quad \rightarrow \quad \ldots \mathrm{Na}(\mathrm{s})+\ldots \mathrm{I}_{2}(\mathrm{~s})$ $\qquad$
d) $\ldots \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{~s}) \quad \rightarrow \quad \ldots \mathrm{C}(\mathrm{s})+\ldots \ldots \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
e) $\ldots_{-} \mathrm{AgNO}_{3}(\mathrm{aq})+\ldots \ldots \mathrm{Cu}(\mathrm{s}) \rightarrow \ldots \ldots \mathrm{Ag}(\mathrm{s})+\ldots \ldots \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})$
f) $\ldots \_\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq})+\ldots \ldots \mathrm{HCl}(\mathrm{aq}) \rightarrow \ldots \ldots \mathrm{NaCl}(\mathrm{aq})+\ldots \ldots \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\ldots \ldots \mathrm{CO}_{2}(\mathrm{~g})$
g) __ $\mathrm{H}_{2}(\mathrm{~g})+\ldots \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \ldots{ }_{\mathrm{HCl}}^{\mathrm{H}}(\mathrm{g})$
h) $\ldots \mathrm{N}_{2}(\mathrm{~g})+\ldots \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \ldots \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$
i) ___ $\mathrm{CH}_{4}(\mathrm{~g})+\ldots \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \ldots \mathrm{CO}_{2}(\mathrm{~g})+\ldots \ldots \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

## ADDITIONAL PRACTICE LESSON 4

$$
\text { j) } \quad \ldots \mathrm{H}_{2}(\mathrm{~g})+\ldots \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \ldots \ldots \mathrm{HCl}(\mathrm{~g})
$$

k) __ $\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \quad$ _ $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\ldots \ldots \mathrm{O}_{2}(\mathrm{~g})$
l) $\quad \ldots \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s}) \quad \rightarrow \quad \ldots \mathrm{Al}+\ldots \mathrm{O}_{2}(\mathrm{~g})$
$\mathrm{m}) ~ \ldots \_\mathrm{CuO}(\mathrm{s})+\ldots \mathrm{C}(\mathrm{s}) \rightarrow+\ldots \mathrm{Cu}(\mathrm{s})+\ldots \ldots \mathrm{CO}_{2}(\mathrm{~g})$
n) __Ca(OH) $2(\mathrm{aq})+\ldots \mathrm{HCl}(\mathrm{aq}) \rightarrow \quad \ldots \mathrm{CaCl}_{2}(\mathrm{aq})+\ldots \ldots \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
18. Challenge:
$\ldots \_\mathrm{Fe}_{2} \mathrm{O}_{3}+\ldots$ CO $\rightarrow$ __ $\mathrm{Fe}+\ldots \mathrm{CO}_{2}$


## Types of Reactions

|  | Equation | Reactant(s) | Product(s) | Type of <br> Reaction |
| :---: | :---: | :---: | :---: | :---: |
| 1. | $\mathrm{Cl}_{2}+2 \mathrm{NaI} \rightarrow 2 \mathrm{NaCl}+\mathrm{I}_{2}$ | $\mathrm{Cl}_{2}$ and NaI | NaCl and $\mathrm{I}_{2}$ | Single <br> replacement |
| 2. | $\mathrm{HNO}_{3}+\mathrm{LiOH} \rightarrow \mathrm{HOH}+\mathrm{LiNO}_{3}$ |  |  |  |
| 3. | $2 \mathrm{NaN}_{3} \rightarrow 2 \mathrm{Na}+3 \mathrm{~N}_{2}$ |  |  |  |
| 4. | $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{K}_{2} \mathrm{SO}_{4} \rightarrow 2 \mathrm{KNO}_{3}+\mathrm{BaSO}_{4}$ |  |  |  |
| 5. | $\mathrm{BaO}+\mathrm{SO}_{3} \rightarrow \mathrm{BaSO}_{4}$ |  |  |  |
| 6. | $2 \mathrm{Al}^{2}+\mathrm{Fe}_{2} \mathrm{O}_{3} \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3}+2 \mathrm{Fe}^{2}$ |  |  |  |
| 7. | $\mathrm{P}_{4}+6 \mathrm{Cl}_{2} \rightarrow 4 \mathrm{PCl}_{3}$ |  |  |  |
| 8. | $2 \mathrm{CH}_{3} \mathrm{OH}_{(\mathrm{g})}+3 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{CO}_{2(\mathrm{~g})}+4 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$ |  |  |  |
| 9. | $2 \mathrm{CuO}_{(\mathrm{s})}+\mathrm{C}_{(\mathrm{s})} \rightarrow 2 \mathrm{Cu}_{(\mathrm{s})}+\mathrm{CO}_{2}$ |  |  |  |
| 10. | $2 \mathrm{C}_{8} \mathrm{H}_{18(\mathrm{l})}+25 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 16 \mathrm{CO}_{2(\mathrm{~g})}+18 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$ |  |  |  |

If you missed more than 2 , do the Additional Practice. If not, go on to the next hw video!!!

## ADDITIONAL PRACTICE LESSON 5

Identify the type of reaction (for practice, balance them as well):

1. $\mathrm{NO} \quad+\quad \mathrm{O}_{2} \quad \rightarrow \quad \mathrm{NO}_{2}$
2. $\mathrm{Ag}+\mathrm{S} \rightarrow \mathrm{Ag}_{2} \mathrm{~S}$
3. $\mathrm{Cu}(\mathrm{OH})_{2} \rightarrow \mathrm{CuO}+\mathrm{H}_{2} \mathrm{O}$
4. $\mathrm{KClO}_{3} \rightarrow \quad \mathrm{KCl}+\mathrm{O}_{2}$
5. $\mathrm{Al} \quad+\quad \mathrm{O}_{2} \quad \rightarrow \quad \mathrm{Al}_{2} \mathrm{O}_{3}$
6. $\mathrm{CO}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}$

If you missed more than 2 problems you should see me for extra help and/or re-watch the lesson video assignment

## Objective:

- Calculate mole ratios in a chemical formula

Use the formula below to answer questions 1-4

$$
3 \mathrm{Cu}+8 \mathrm{HNO}_{3} \rightarrow 3 \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{NO}+4 \mathrm{H}_{2} \mathrm{O}
$$

1. What is the mole ratio of copper to nitrogen monoxide in this reaction?
2. If 1.50 moles of copper are used, how many moles of NO are produced?
3. If 4.50 moles of $\mathrm{HNO}_{3}$ are used, how many moles of copper (II) nitrate are produced?
4. If 0.200 moles of NO are produced, how many moles of copper (II) nitrate produced?

Use the formula below to answer questions 5-7

$$
\mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{CO} \rightarrow 2 \mathrm{Fe}+2 \mathrm{CO}_{2}
$$

5. What is the mole ratio of Iron (III) oxide to carbon monoxide in this reaction?
6. If 3.00 moles of Iron (III) oxide are used, how many moles of Iron are formed?
7. If 8.56 moles of iron were produced, how many moles of the iron ore were used?

$$
3 \mathrm{Cu}+8 \mathrm{HNO}_{3} \rightarrow 3 \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{NO}+4 \mathrm{H}_{2} \mathrm{O}
$$

8. If 0.50 moles of water are produced, how many moles of copper were used?
9. If 0.300 moles of copper are mixed with 0.800 moles of $\mathrm{HNO}_{3}$, how many moles of NO will be formed?
10. If 20.0 moles of $\mathrm{HNO}_{3}$ react with 7.5 moles of copper, how many moles of water are produced?

## ADDITIONAL PRACTICE LESSON 6:

1. Given the balanced equation: $\mathbf{C a C O}_{3(\mathrm{~s})}+2 \mathbf{H C l}_{(\mathrm{aq})} \rightarrow \mathbf{C a C l}_{\mathbf{2 ( a q )}}+\mathbf{H}_{2} \mathrm{O}_{(\mathrm{I})}+\mathbf{C O}_{2(\mathrm{~g})}$

What is the total number of moles of $\mathrm{CO}_{2}$ produced when 20 . Moles of HCl is completely consumed?
2. Given the balanced equation: $\mathbf{F}_{2(\mathrm{~g})}+\mathbf{H}_{\mathbf{2}(\mathrm{g})} \rightarrow \mathbf{2} \mathbf{H F}_{(\mathrm{g})}$
a. What is the total mole ratio of $\mathrm{H}_{2(\mathrm{~g})}$ to $\mathrm{HF}_{(\mathrm{g})}$ in the reaction? $\qquad$
b. What is the total number of moles of $\mathrm{H}_{2}$ required to produce 2.5 Moles of HF ?
$\square$

## Lesson 7: Determining empirical and molecular formulas

## Objective:

- Determine the empirical formula from the molecular formula
- Determine the molecular formula from the empirical formula

Below is a list of formulas. Write the empirical formula (if not already empirical)

|  | Formula | Empirical <br> formula <br> (simplest ratio) |
| :---: | :---: | :---: |
| 1. | $\mathrm{C}_{4} \mathrm{H}_{10}$ |  |
| 2. | $\mathrm{C}_{3} \mathrm{H}_{6}$ |  |
| 3. | $\mathrm{~N}_{2} \mathrm{O}_{4}$ |  |
| 4. | $\mathrm{Na}_{2} \mathrm{SO}_{4}$ |  |
| 5. | $\mathrm{C}_{6} \mathrm{H}_{10}$ |  |
| 6. | $\mathrm{Al}_{2} \mathrm{O}_{3}$ |  |
| 7. | $\mathrm{NH}_{4} \mathrm{NO}_{3}$ |  |
| 8. | $\mathrm{C}_{11} \mathrm{H}_{22} \mathrm{O}_{11}$ |  |

Calculate the molecular formula from the empirical
9. What is the molecular formula of a compound that has a mass of 276 and an empirical formula of $\mathrm{NO}_{2}$ ?
10. What is the molecular formula of a compound that has a mass of 56 g and an empirical formula of $\mathrm{CH}_{2}$ ?
11. What is the molecular formula of a compound that has a mass of 51 g and an empirical formula of HO?
12. What is the molecular formula of a compound that has a mass of 289 g and an empirical formula of $\mathrm{NH}_{3}$ ?
13. What is the molecular formula of a compound with a mass of 760 g and an empirical formula of $\mathrm{Cr}_{2} \mathrm{O}_{3}$ ?

ASSESS YOURSELF ON THIS LESSON: $\qquad$
If you missed more than 3 , do the Additional Practice. If not, go on to the next hw video!!!

## ADDITIONAL PRACTICE LESSON 7

|  | Formula | Empirical <br> formula <br> (simplest ratio) |
| :---: | :---: | :---: |
| 1. | $\mathrm{~K}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ |  |
| 2. | $\mathrm{~S}_{2} \mathrm{O}_{4}$ |  |
| 3. | $\mathrm{CH}_{4}$ |  |
| 4. | $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{O}_{2}$ |  |

5. What is the molecular formula of a compound that has a mass of 126 g and an empirical formula of $\mathrm{SO}_{2}$ ?
6. What is the molecular formula of a compound that has a mass of 248 g and an empirical formula of $\mathrm{NO}_{3}$ ?
7. Determine the empirical formula of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$

6 Which pair consists of a molecular formula and its corresponding empirical formula?
A) $\mathrm{C}_{2} \mathrm{H}_{2}$ and $\mathrm{CH}_{3} \mathrm{CH}_{3}$
B) $\mathrm{C}_{6} \mathrm{H}_{6}$ and $\mathrm{C}_{2} \mathrm{H}_{2}$
C) $\mathrm{P}_{4} \mathrm{O}_{10}$ and $\mathrm{P}_{2} \mathrm{O}_{5}$
D) $\mathrm{SO}_{2}$ and $\mathrm{SO}_{3}$

7 Given the structural formula:


8 What is the empirical formula of this compound?
A) $\mathrm{CH}_{3} \mathrm{O}$
B) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}$
C) $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}_{2}$
D) $\mathrm{C}_{8} \mathrm{H}_{20} \mathrm{O}_{4}$

The molecular formula of glucose is $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$. What is the empirical formula of glucose?
A) CHO
B) $\mathrm{CH}_{2} \mathrm{O}$
C) $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
D) $\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{O}_{12}$

9 Which pair of compounds has the same empirical formula?
A) $\mathrm{C}_{2} \mathrm{H}_{2}$ and $\mathrm{C}_{6} \mathrm{H}_{6}$
B) $\mathrm{C}_{2} \mathrm{H}_{6}$ and $\mathrm{C}_{3} \mathrm{H}_{8}$
C) $\mathrm{CH}_{3} \mathrm{OH}$ and $\mathrm{C}_{2} \mathrm{H} 5 \mathrm{OH}$
D) $\mathrm{CH}_{3} \mathrm{CHO}$ and $\mathrm{CH}_{3} \mathrm{COOH}$

10 A compound has the empirical formula $\mathrm{CH}_{2} \mathrm{O}$ and a gram-formula mass of 60 . grams per mole. What is the molecular formula of this compound?
A) $\mathrm{CH}_{2} \mathrm{O}$
B) $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$
C) $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}$
D) $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{4}$

11 A compound whose empirical formula is $\mathrm{NO}_{2}$ could have a molecular mass of
A) 23
B) 39
C) 92
D) 120

12 A compound has a molecular mass of 54 and an empirical formula of C 2 H 3 . What is the molecular formula of the compound?
A) $\mathrm{C}_{2} \mathrm{H}_{3}$
B) $\mathrm{C}_{4} \mathrm{H}_{6}$
C) $\mathrm{C}_{5} \mathrm{H}_{8}$
D) $\mathrm{C}_{6} \mathrm{H}_{10}$

13 Which chemical formula is both an empirical formula and a molecular formula?
(A) $\mathrm{CH}_{4}$
B) $\mathrm{C}_{2} \mathrm{H}_{6}$
C) $\mathrm{CH}_{3} \mathrm{COOH}$
D) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOCH}_{3}$

14 The empirical formula of a compound is $\mathrm{CH}_{2}$. The molecular formula of this compound could be
A) $\mathrm{CH}_{4}$
B) $\mathrm{C}_{2} \mathrm{H}_{2}$
C) $\mathrm{C}_{2} \mathrm{H}_{4}$
D) $\mathrm{C}_{3} \mathrm{H}_{3}$

A compound contains nitrogen and oxygen in the mole ratio of $1: 1$. The molecular mass of this compound could be
A) 14
B) 16
C) 30
D) 40

## Regents Review Questions

19. Which equation shows a conservation of mass?
A) $\mathrm{Na}+\mathrm{Cl}_{2} \rightarrow \mathrm{NaCl}$
B) $\mathrm{Al}+\mathrm{Br}_{2} \rightarrow \mathrm{AlBr} 3$
C) $\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2}+\mathrm{O}_{2}$
D) $\mathrm{PCl}_{5} \rightarrow \mathrm{PCl}_{3}+\mathrm{Cl}_{2}$
20. All chemical reactions have a conservation of
A) mass, only
B) mass and charge, only
C) charge and energy, only
D) mass, charge, and energy

Given the incomplete equation for the combustion of ethane:
21. $\quad 2 \mathrm{C}_{2} \mathrm{H}_{6}+7 \mathrm{O}_{2} \rightarrow 4 \mathrm{CO}_{2}+6$ $\qquad$
What is the formula of the missing product?
A) $\mathrm{CH}_{3} \mathrm{OH}$
B) HCOOH
C) $\mathrm{H}_{2} \mathrm{O}$
D) $\mathrm{H}_{2} \mathrm{O}_{2}$
22.

Which chemical equation is correctly balanced?
A) $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
B) $\mathrm{N}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{NH}_{3}(\mathrm{~g})$
C) $2 \mathrm{NaCl}(\mathrm{s}) \rightarrow \mathrm{Na}$ (s) $+\mathrm{Cl}_{2}$ (g)
D) $2 \mathrm{KCl}(\mathrm{s}) \rightarrow 2 \mathrm{~K}(\mathrm{~s})+\mathrm{Cl}_{2}(\mathrm{~g})$
23. Given the unbalanced equation:

$$
-\mathrm{Fe}_{2} \mathrm{O}_{3}+\_\mathrm{CO} \rightarrow \_\mathrm{Fe}+\ldots \mathrm{CO}_{2}
$$

When the equation is correctly balanced using the smallest whole-number coefficients, what is the coefficient of CO ?
A) 1
B) 2
C) 3
D) 4
24. Given the unbalanced equation:
$-\mathrm{Al}_{+}+\mathrm{CuSO}_{4} \rightarrow-\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}+\__{-} \mathrm{Cu}$
25. When the equation is balanced using the smallest whole-number coefficients, what is the coefficient of Al ?
A) 1
B) 2
C) 3
D) 4

Given the unbalanced equation:
$-\mathrm{Mg}\left(\mathrm{ClO}_{3}\right)_{2}(\mathrm{~s}) \rightarrow-\mathrm{MgCl}_{2}(\mathrm{~s})+\ldots \mathrm{O}_{2}(\mathrm{~g})$
26. What is the coefficient of $\mathrm{O}_{2}$ when the equation is balanced correctly using the smallest whole number coefficients?
A) 1
B) 2
C) 3
D) 4

