Practice Test: Gas Laws

1.	Perform the following conversions of pressure units: $1.6 \times 10^5 \text{ torr} = \phantom{00000000000000000000000000000000000$							
				[D] 2.1×10^2	[E] 2.1×10^3			
2.	A sample of helium gas occupies 2.65 L at 1.20 atm. What pressure would this sample of gas exert in a 1.50-L container at the same temperature?							
	[A] 3.31 atm	[B] 1.20 atm	[C] 2.12 atm	[D] 0.679 atm	[E] none of these			
3.	A sample of helium gas occupies 12.4 L at 23°C and 0.956 atm. What volume will it occupy at 40°C and 0.956 atm?							
	[A] 7.13 L	[B] 11.7 L	[C] 21.6 L	[D] 13.1 L	[E] none of these			
4.	A balloon has a volume of 1.20 L at 24.0°C. The balloon is heated to 48.0°C. Calculate the new volume of the balloon.							
	[A] 2.40 L	[B] 1.70 L	[C] 1.30 L	[D] 2.10 L	[E] 1.20 L			
5.	If the temperature of an ideal gas is raised from 100°C to 200°C, while the pressure remains constant, the volume							
	[A] remains the	same [B]	doubles [C	goes to 1/2 the or	iginal volume			
	[D] increases by	y a factor of 100	[E] none of	these				
6.	A 4.37-g sample of a certain diatomic gas occupies a volume of 3.00 L at 1.00 atm and a temperature of 45°C. Identify this gas.							
	[A] O ₂	[B] F ₂	[C] Cl ₂	[D] H ₂	[E] N ₂			
7.	. What do the initials STP stand for, and what are the numerical values of each?							
8.	. What is the numerical value of the molar volume of any gas at STP?							
9.	An oxygen sample has a volume of 4.50 L at 27°C and 800.0 torr. How many oxygen molecules does it contain?							
	[A] 5.8×10^{22}	[B]	1.16×10^{22}	[C] 1.16 ×	$\times 10^{23}$			
	[D] 2.32×10^{24}	[E]	none of these					
10.	Mercury vapor contains Hg atoms. What is the volume of 200. g of mercury vapor at 822 K and 0.500 atm?							
	[A] 82.2 L	[B] 67.2 L	[C] 329 L	[D] 135 L	[E] none of these			

11.	Zinc metal is added to hydrochloric acid to generate hydrogen gas and is collected over a liquid whose vapor pressure is the same as pure water at 20.0°C (18 torr). The volume of the mixture is 1.7 L, and its total pressure is 0.810 atm. Determine the number of moles of hydrogen gas present in the sample.							
	[A] 0.056 mol	[B] 42 mol		[C] 22 mol	[D] 1.3	3 mol	[E] 0.82 mol	
12.	A vessel with an internal volume of 10.0 L contains 2.80 g of nitrogen gas, 0.403 g of hydrogen gas, and 79.9 g of argon gas. At 25°C, what is the pressure (in atm) inside the vessel?							
	[A] 2.38 atm	[B] 6.43 atr	n	[C] 0.471 atm	[D] 3.2	20 atm	[E] 5.62 atm	
13.	. What would happen to the average kinetic energy of the molecules of a gas sample if the temperature of the sample increased from 20°C to 40°C?							
	[A] It would double.		[B] It would become half its value.					
	[C] It would decrease.		[D] It would increase.		[[E] two of these		
14.	Which conditions	of P and T and	re mo	st ideal for a gas?	1			
	[A] low P , high T		[B] high P , low T		[[C] high P , high T		
	[D] depends on t	the gas	[E] 1	ow P , low T				
15.	An ideal gas is a hypothetical substance consisting of particles with volume and attraction for one another.							
	[A] large; strong		[B] small; weak		[[C] zero; no		
	[D] small; strong	5	[E] 1	arge; weak				
16.	C_2H_4 reacts with O_2 according to the following equation: $C_2H_4(g) + 3O_2(g) \rightarrow 2CO_2(g) + 2H_2O(g)$ What volume of oxygen at STP is needed to react with 1.50 mol of C_2H_4 ? [A] 33.6 L [B] 67.2 L [C] not enough information given [D] 4.50 L [E] 101 L							
17.	Given the equation $2KClO_3(s) \rightarrow 2K$ A 3.00-g sample of collected. What v [A] 608 mL	on $CCl(s) + 3O_2(s)$ of $CClO_3$ is d	ecom gen g			ng 100% y		

- 18. Describe the relationship between the following variables, including graphs.
 - a. P and V
 - b. V and T
 - c. P and T
- 19. These two containers of gas contain 0.5 moles of gas each (not necessarily drawn to scale):

Both gases have a temperature of 93.8 K and have a pressure of 132 kPa.

- a. Which box contains more molecules? How many times more?
- b. Which gas has the greater volume? How many times greater?
- c. Which gas has the greater mass? How many times greater?

[1]	[D]
[2]	[C]
[3]	[D]
[4]	[C]
[5]	[E]
[6]	[B]
[7]	standard temperature = 273 K pressure = 1 atm
[8]	22.4 L/mol
[9]	[C]
[10]	[D]
[11]	[A]
[12]	[E]
[13]	[D]
[14]	[A]
[15]	[C]
[16]	[E]
[17]	[B]

(2)
$$V_{1}=2.65L$$
 $V_{2}=1.50L$ $P_{2}=?$ $P_{1}V_{1}=P_{2}V_{2}$ $P_{2}=\frac{p_{1}V_{1}}{V_{2}}$

$$P_{z} = \frac{V_{1} V_{1}}{V_{2}}$$

$$= (1.20 \text{ atm})(2.65 \text{ L})$$

$$= (1.50 \text{ L})$$

$$= 2.12 \text{ atm}$$

3)
$$P_1 = 0.956 \text{ atm}$$
 $P_2 = 0.956 \text{ atm}$
 $V_1 = 12.4 \text{ L}$ $V_2 = ?$
 $T_1 = 23^{\circ}\text{C}$ $T_2 = 40 + 273 =$
 $= 300\text{K}$
 $\frac{12.4 \text{ L}}{300 \text{ K}} = \frac{\text{Vz}}{3(3 \text{ K})}$
 $V_2 = 12.9 \text{ L}$

(5)
$$100^{\circ}C \rightarrow 200^{\circ}C$$

= $373K \rightarrow 473K$

$$\frac{473}{373} = 1.27 \times \text{greater}$$
Temp goes up by factor of 1-27 x,
thus volume will go up by factor of 1.27,

(10) (a) find moles (b) use PV=nRT

(a) $200.9 \times \frac{1 \text{ mol}}{700.599} = 0.997 \text{ mol}$

N= 0.997 mel P= 0.5 atm

T = 822/5 R=0.082/ Latin

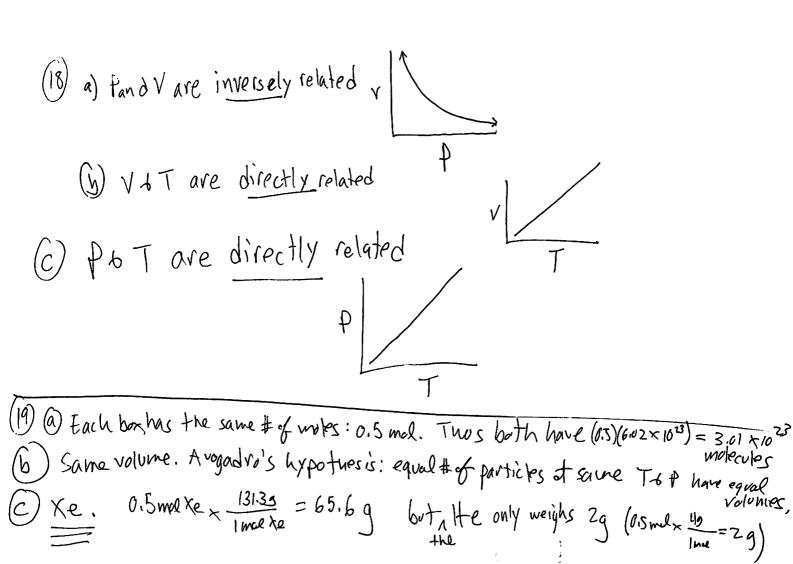
PV=NRT

 $V = \frac{n27}{p} = \frac{(0.997 \text{ me})(0.082) \frac{\text{Latm}}{\text{Kmee}} \sqrt{822K}}{0.500 \text{ atm}}$ = (135 L)

Vapor pressure fliquid = 18 terr * 1 atm = 0.0237 atm

PTOT = 0.810 atm PHZ = PTOT - Plienid = 0.810 atm - 0.0237 atm = 0.786 atm

V= 1.7 L


T = 293 K

R 0.0821 Latin

N = 7

 $N = \frac{PV}{PT} = \frac{(0.786 \text{ atm})(1.7L)}{(0.0821 \frac{\text{Latm}}{\text{K moe}})(293K)} = 0.0556 \text{ mol}$

Z93K->313K Temp goes up, so A.K.E. goes up. (Aug K.E. is measured as temperature.) 313 = 1.07 thus a.k.e. would increase by a factor of 1.07X (14) For apart = ideal behavior = high Temp + low P (15) zero, no (6) 1.50 mcl CzH4x 3molOz x 22.4 LOZ 1012 Oz (17) 3.00g KClO3 x 1 mol KClO3 x 3 mol OZ = 0.0367 mol OZ = 0.0367 mol OZ n= 0.0367 maloz P=0.982 atm T = 24 + 273 = 297 KR= 0.0821 Latin = $V = \frac{nRT}{p} = \frac{(0.0367 \text{ mae})(0.0821 \frac{\text{Latin}}{\text{Kince}})(297 \text{K})}{0.982 \text{ atm}}$ = 0.911 L + 1000 ml = 911 = 911 me

19. These two containers of gas contain 0.5 moles of gas each (not necessarily drawn to scale):

18. Describe the relationship between the following variables, including graphs.

0.5 mol He

a. P and Vb. V and Tc. P and T

0.5 mol Xe

Both gases have a temperature of 93.8 K and have a pressure of 132 kPa.

- a. Which box contains more molecules? How many times more?
- b. Which gas has the greater volume? How many times greater?
- c. Which gas has the greater mass? How many times greater?