\qquad CC 7/8 Date \qquad Period \qquad

Drawing Triangles (7.G.2 Draw)

Using a ruler and protractor/angle ruler, draw and label the triangle with the following properties.

1. $\overline{A B}=2 \mathrm{in} ., \angle C A B=45^{\circ}$ and $\overline{A C}=1.5 \mathrm{in}$.
2. $\angle A B C=45^{\circ}, \angle B C A=45^{\circ}$, and $\overline{B C}=2.5 \mathrm{in}$.
3. $\angle B C A=60^{\circ}, \overline{B C}=1.5 \mathrm{in}$., and $\overline{A C}=1.5 \mathrm{in}$.
4. $\angle A B C=50^{\circ}, \angle B C A=70^{\circ}$, and $\overline{B C}=2 \mathrm{in}$.

Tips:

- Draw a quick sketch of the triangle with labeled vertices, lengths, and angles to help you get started
- $\angle a b c$ could also be called $\angle b$

Tools:

To measure an angle with an angle ruler:

- First place the rivet over the vertex.
- Set the center line of the arm marked as a ruler on the first side of the angle.
- Swing the other arm counterclockwise until its center line lies on the second side of the angle.
- Read the angle measure on the circular ruler.

Another tool for measuring angles in degrees is the protractor. It is usually semi-circular and has a scale in degrees. The protractor below shows how to measure $\angle A V B$.

\qquad
\qquad Period \qquad

Unique, Not Unique, and Impossible Triangles (7.G. 2 Identify)

1. A triangle has sides of $\mathbf{1 5}$ and 27. The measurement of the longest side is missing. Ted says that one possibility for the unknown side length is 50 . Do you agree with Ted? Why or why not?
2. A triangle has sides of 15 and 27. The measurement of the longest side is missing. Ted says that one possibility for the unknown side length is 40 . Do you agree with Ted? Why or why not?
3. Is a triangle with angle measures $40^{\circ}, 30^{\circ}$, and 120° possible? Explain why or why not.
4. Is a triangle with angle measures $85^{\circ}, 35^{\circ}$, and 60° possible? Explain why or why not.
5. A triangle has a 60° angle, a 60° angle and a side $\mathbf{2}$ centimeters in length.

Select True or False for each statement about this type of triangle.

Statement	True	False
The triangle must be an equilateral triangle.		
More than one triangle can be made with these measures.		
The triangle must contain an angle measuring 75°.		

6. A triangle has a 40° angle, a 120° angle and a side $\mathbf{2 . 5}$ centimeters in length.

Select True or False for each statement about this type of triangle.

Statement	True	False
The triangle must be an isosceles triangle.		
More than one triangle can be made with these measures.		
The triangle must contain an angle measuring 20°.		

Impossible to Make a Triangle:

- If the sum of the two shorter sides is less than or equal to the length of the longest side

- If the sum of the angles in the triangle are less than or more than 180°

More than One Possible Triangle (not unique):

- If you are given 3 angles (angle - angle - angle, AAA)
- If you are given 2 sides and an angle, where the angle is not in between the sides (side -side-angle, SSA)
- If you are given 2 angles and a side or 2 sides and an angle, but not a specific order/arrangement

Unique Triangles:

- If you are given 3 side lengths, where the sum of the two shorter sides is greater than the length of the longest side (side-side-side, SSS)

- If you are given a side in between two angles (angle-side-angle, ASA)

$$
\angle A B C=40^{\circ}, \angle B C A=70^{\circ} \text {, and } \overline{B C}=1 \mathrm{in} .
$$

- If you are given an angle in between two sides (side-angle-side, SAS)

$$
\overline{A B}=1 \text { inch }, \overline{B C}=1.5 \text { inch, and } \angle C B A=35^{\circ}
$$

\qquad
\qquad Period \qquad

Angle Relationships (7.G.5)

For each problem, write and solve an equation to find the value of x. Then, use that value to find the measure of $\angle A B C$. The diagrams are not to scale.
2. $\angle A B C=$

Definition:

Two angles are complementary if the sum of their measures is 90°.

Example:

Angle ABC is complementary to Angle CBD, so $5 x+2+33=90$

Definition:

Two angles are supplementary if the sum of their measures is 180°.

Example:

Angle $A B C$ is supplementary to Angle CBD, so

$$
3+4 x+61=180
$$

Definition:

Two angles are vertical if they are formed from two intersecting lines.
Vertical angles are equal in measure.

Example:

Angle $A B C$ is vertical to Angle DBE, so

$$
2 x+1=49
$$

Definition:

Two angles are adjacent if they have a common side and vertex.

Example:

Angle ABC, Angle CBD, and Angle DBA are adjacent so

$$
2 x+27+45+206=360
$$

\qquad
\qquad
\qquad

Interior and Exterior Angles (8.G.5 part 1)

Find the measure of each angle labeled x.
1.

2.

3.

4.

Use the equation to calculate the angle sum for the the following polygons.
5. 24-sided polygon
6. 43-sided polygon

Find the measure of angle b.

Definitions:

interior angle: the angle inside a polygon formed by two adjacent sides of the polygon
exterior angle: an extension of one side of the polygon at the vertex of a polygon

Examples:

Interior Angle Sum of a Polygon:

the equation relating the number of polygon sides (N) to the interior angle sum (T) is:

$$
T=180(N-2)
$$

\qquad
\qquad
\qquad

Parallel and Transversal Angle Relationships (8.G.5 part 2)

Without using an angle ruler, find the missing angle measures (labeled with letters) in the diagrams below. Show any calculations. Figures may not be drawn to scale.
1.

$$
\begin{aligned}
& \angle b= \\
& \angle c= \\
& \angle d=
\end{aligned}
$$

Without using an angle ruler, label the fourteen missing angle measures in the diagrams below. Show any calculations. Figures may not be drawn to scale.
2.

3.

Definition:	Example:
Corresponding Angles are...	
\bullet on the same side of two parallel lines	ex: $\angle 1=142^{\circ}$
\bullet on the same side of the transversal	

Definition:
Alternate Interior Angles are...
- between a pair of parallel lines
- on opposite sides of the transversal
- congruent (equal)

Example:

Alternate Exterior Angles are...

- outside the parallel lines
- on opposite sides of the transversal
- congruent (equal)

Example:
ex: $\angle 1=94^{\circ}$

\qquad
\qquad Period \qquad

Opposite Quantities (7.NS.1a)

1. Which of the following describe a situation where the combination results in zero? There may be more than one correct answer.
A. Alison ran 3.5 miles and burned 450 calories. When she finished she ate a taco that was 425 calories.
B. The chef made 4 dozen pancakes. There were 16 customers that ordered and ate 3 pancakes each.
C. Julie owes her sister $\$ 25$. She gives her $\$ 17$ on Tuesday and $\$ 8$ on Friday.
D. The Math Magicians are playing Math Fever! They get a 100-point question wrong, a 250 -point question right, and a 350-point question wrong.
E. In the desert, the temperature at noon was 112 degrees. Over the course of the next 10 hours, the temperature decreased 12 degrees per hour.
2. At right is a picture of an atom, and the protons and neutrons that make up the nucleus. A proton has a charge of $+\mathbf{1}$, while an electron has a charge of $\mathbf{- 1}$. The charge of an atom at rest is zero. The element gold has 79 protons. How many electrons does it have?

Opposite Quantities (7.NS.1a)

Definition:

Each negative number can be paired with a positive number. These two numbers are called opposites because they are the same distance from zero on the number line, but in different directions.

Examples:
Integers are also used in chemistry. For example, a hydrogen atom has one proton, which has a charge of $^{+} 1$, and one electron, which has a charge of ${ }^{-} 1$. The total charge of a hydrogen atom is ${ }^{+} 1+^{-} 1$, or 0 .

You owe susie $\$ 9$, and pay her $\$ 9$.

In Math Fever, you get a 100-pt question right, then a 100-pt question wrong.
\qquad
\qquad
\qquad

Real World Addition and Subtraction (7.NS.1b, 7.NS.1c)

Model the following number sentences using a number line. Find the answer to the number sentence.

1. $-4+7=$
2. $3+-9=$

3. A number line is shown below. The numbers 0 and 1 are marked on the line, as are two other numbers, a and b. Assume the number line is drawn to scale.

Using the number line above, decide if each answer will be positive, negative, or zero.

$$
\begin{array}{ll}
a+b=_ & b+1= \\
a+-b=\square & a \cdot b+1= \\
|a+b|=\square & a+-2=
\end{array}
$$

4. Decide whether each of the following statements is true or false. Give examples to support your choice.
A. The sum of two negative numbers is always negative.
B. The sum of a positive number and a negative number is always negative.
C. The difference of two negative numbers is always negative.
D. A negative number minus a positive number is always negative.
5. Which of the following expressions below are equivalent to $\mathbf{- 1 5}+\mathbf{1 2}$? Circle ALL that apply.
A. $12+15$
B. $15+-12$
C. $-15--12$
D. $-15-12$

Definition: Number Line Models

1. Scale the number line.
2. Draw a vertical segment above the number line for the $1^{\text {st }}$ number.
3. If the operation is increasing, draw an arrow to the right; if the operation is decreasing, draw an arrow to the left.
4. The arrow should be the length of the $2^{\text {nd }}$ number, and labeled.
5. Draw a vertical segment above the number line for the answer.
6. Complete the number sentence.

Examples:
$-10+3=-7$
$8+-2=6$
$-5-10=-15$

Definition: absolute value
A number's distance from zero on a number line, and the value of a number when its sign is ignored.

Example:

In some situations, such as driving, it makes more sense to describe an overall distance without including the direction. You can find the Arroyos' overall distance by taking the absolute value of the difference between the two points on the number line.

You can write two absolute value expressions to represent the distance between 25 and 80:

$$
|25-80|=\left.\right|^{-} 55 \mid=55 \text { and }|80-25|=|55|=55
$$

Definition: additive inverse
Any subtraction sentence can be rewritten as addition by changing the operation and changing the sign of the second number.

Example:
Rewrite this subtraction problem into an addition problem, then solve.

$$
9--12=9+12=21
$$

\qquad
\qquad
\qquad

Addition and Subtraction of Rational Numbers (7.NS. 1d)

Find each sum or difference. Show work for problems with fractions and decimals.

1. $-8+-11=$
2. $12-30=$
3. $16+-4=$
4. $-15--7=$
5. $-6+-9=$
6. $-3-5=$
7. $-4+11=$
8. $-6--14=$
9. $8+-15=$
10. $-11.8+2.6=$
11. $-6.1-3.998=$
12. $-5.8--4.79=$
13. $8.4+-1.61=$
14. $\frac{2}{3}--2 \frac{4}{9}=$
15. $3 \frac{3}{5}+-2 \frac{1}{2}=$
16. $-1 \frac{1}{3}+1 \frac{4}{11}=$
17. $-3 \frac{1}{6}--2 \frac{4}{9}=$

Algorithm:
add numbers with the SAME SIGN

1. Ignore the signs and add the two numbers
2. Give the answer the sign of the two numbers
add numbers with DIFFERENT SIGNS
3. Ignore the signs and subtract the two numbers
4. Give the answer the sign of the greatest absolute value

Examples:

$$
{ }^{+} 2+{ }^{+} 7={ }^{+} 9 \quad-6+{ }^{-} 5=-11 \quad-2+{ }^{+} 7={ }^{+} 5 \quad-6+{ }^{+} 5=-1
$$

Algorithm:
subtract numbers with the SAME SIGN

1. Ignore the signs and subtract the two numbers
2. If the first number (with the sign) is greater, the answer is positive and if the second number (with the sign) is greater, the answer is negative
subtract numbers with DIFFERENT SIGNS
3. Ignore the signs and add the two numbers
4. Give the answer the sign of the first number

Example:

$$
-2-{ }^{-} 7={ }^{+} 5 \quad+5-{ }^{+} 6=-1 \quad \mid+2-{ }^{-} 7={ }^{+} 9 \quad-5-{ }^{+} 6=-11
$$

\qquad
\qquad

Real World Multiplication and Division (7.NS.2a, 7.NS.2b)

1. Use the distributive property to write an expression equal to each of the following expression. Solve parts (a) and (b).
a. $-3(7+-9)$
b. $(-2 \cdot-6)-(-2 \cdot-11)$
c. $4(x+-8)$
d. $x(-10+1)$
2. Mark takes 6 friends to play paintball. It costs $\$ 10.25$ to play and $\$ 8.75$ to rent the equipment, per person. Include units with your answer.
a. Write a number sentence and find the total cost for all 7 people. Include units with your answer.
b. Using the distributive property, write a new equivalent number sentence that finds the total cost.
3. A football team loses an average of 3 yards per play. How many yards have they lost after 4 plays? Show your work and include units with your answer.
4. Select ALL values equal to $-\frac{2}{9}$.
A. $-\frac{-2}{9}$
B. $-\frac{-2}{-9}$
C. $\frac{-2}{-9}$
D. $\frac{-2}{9}$
E. $\frac{2}{-9}$
5. Together, siblings Brandon, Brooke, Trent, and Trisha owe their parents $\boldsymbol{\$ 1 0 0}$. How much does each sibling owe if they share the debt equally? Show your work and include units with your answer.

Definition: distributive property
A math rule that shows how multiplication combines with addition or subtraction:

$$
a(b+c)=a b+a c \text { and } a(b-c)=a b-a c
$$

You can use the distributive property to go between factored form and expanded form.
Examples:
factored form
$-3(4+8) \quad=\quad(-3 \bullet 4)+(-3 \bullet 8)$ $2(n-6)$
$=\quad(2 \bullet n)-(2 \bullet 6)$
$-5(3-2)=-5 \cdot 3--5 \cdot 2$
$(-6 \cdot 2)-(-6 \cdot 3)=-6(2-3)$
$-5(x+-2)=-5 \cdot x+-5 \cdot-2$
expanded form
$(-3 \cdot x)+(-3 \cdot 6)=-3(x+6)$

Notes:
Note on Notation You know that a rational number is any number that you can write in the form $\frac{p}{q}$, where p and q are integers and $q \neq 0$. When a rational number is negative, the negative sign can be associated with the numerator, the denominator, or the entire fraction. For positive integers a and b,

$$
\frac{-a}{b}=\frac{a}{-b}=-\frac{a}{b}
$$

Example:
For example, suppose $a=6$ and $b=2$.

$$
\frac{-6}{2}=\frac{6}{-2}=-\frac{6}{2}=-3
$$

\qquad
\qquad
\qquad

Multiplication and Division of Rational Numbers (7.NS. 2c, 7.NS. 2d)

Find each quotient or product. Show work for problems with fractions and decimals.

1. $-8 \cdot 6=$
2. $\frac{-45}{-5}=$
3. $-12 \cdot-4=$
4. $-15 \div 3=$
5. $7 \cdot-4=$
6. $60 \div-6=$
7. $8.31 \cdot-3.4=$
8. $-3.3 \div 4=$
9. $-7.7 \cdot-1.5=$
10. $5 \frac{5}{6} \div-3 \frac{1}{3}=$
11. $-1 \frac{1}{4} \cdot 1 \frac{1}{2}=$
12. $-1 \frac{1}{2} \div-5 \frac{2}{5}=$

Find the decimal equivalent. Show your work.
13. $\frac{-7}{-12}=$
14. $\frac{5}{-8}=$
15. $\frac{-11}{3}=$
16. $\frac{-13}{-8}=$

Algorithm: multiply numbers with the SAME SIGN 1. Ignore the signs and multiply the numbers 2. The answer will be positive	multiply numbers with DIFFERENT SIGNS 1. Ignore the signs and multiply the numbers 2. The answer will be negative
Examples:	
$2 \cdot 7=14-6 \cdot-5=30$	$2 \cdot-7=-14-6 \cdot 5=-30$

Algorithm: divide numbers with the same sign 1. Ignore the signs and divide the numbers 2. The answer will be positive	divide numbers with different signs 1. Ignore the signs and divide the numbers 2. The answer will be negative
Example:	
$-14 \div-7=2 \quad 30 \div 6=5$	$14 \div-7=-2 \quad-30 \div 6=-5$

Algorithm:

1. Put numerator underneath
2. Put denominator in front
3. Use long division until process ends in zero or starts to repeat
4. If decimal is repeating, draw repeating line over the shortest repeating element

Examples:

\qquad CC 7/8

Date \qquad Period \qquad

Order of Operations (7.NS.3)

Find the value of each expression. Show all steps.

1. $-12 \div-2 \cdot(4-5)$
2. $2-6-(-1+12 \div 3)$
3. $-4 \cdot-1+(2--5)^{2}$
4. $6-\left(16 \div(5-3)^{2}+5\right)$
5. $-3 \frac{1}{6} \cdot\left(\frac{3}{2}--1 \frac{3}{4}-2 \frac{1}{4}\right)$
6. $3.1 \cdot(-2.3-0.4)-1.083$

Order of Operations (7.NS.3)

Algorithm:

Order of Operations

1. Compute all expressions within parentheses or brackets first.

Note: To avoid confusion, you use brackets in sentences that contain many parentheses.
2. Compute all numbers with exponents.
3. Then compute all multiplications and divisions in order from left to right.
4. Then compute all additions and subtractions in order from left to right.

Rules

To prepare you for solving equations, here's how we will do Order of Operations on our assignments:

- only one computation per step
- after each computation, rewrite the number sentence

■ simplify vertically \downarrow until you are left with one number

Examples:

$$
\begin{gathered}
6 \cdot(3-5)^{2}+8 \\
6 \cdot(-2)^{2}+8 \\
6 \cdot 4+8 \\
24+8 \\
32
\end{gathered}
$$

\qquad
\qquad Period \qquad

Similar Fiqures Problems (7.G.1 Solve)

Each pair of polygons are similar. Find the missing side length. Show your work to find and use scale factor.

1. scale factor \qquad missing side \qquad	2. scale factor \qquad missing side \qquad
3. scale factor \qquad missing side \qquad	4. scale factor \qquad missing side \qquad

5. A figure has a perimeter of 35 meters and an area of 75 meters ${ }^{2}$. A larger similar figure is created using a scale factor of 2.5.
a. What is the perimeter of the larger figure? Show your work.
b. What is the area of the larger figure? Show your work.
6. A figure has a perimeter of 30 feet and an area of 54 meters 2. A smaller similar figure is created using a scale factor of 0.75 .
a. What is the perimeter of the smaller figure? Show your work.
b. What is the area of the smaller figure? Show your work.

Similar Figures Problems (7.G. 1 Solve)

| Notes: |
| :--- | :--- |
| Area and Perimeter |
| How do we find the perimeter of a figure, if we know the
 perimeter of a similar figure and the scale factor between
 the two? |
| original perimeter scale factor |

\qquad
\qquad
\qquad

Making Scale Drawings (7.G.1 Reproduce)

1. Triangle B is sketched below. Triangle C is similar to Triangle B. The scale factor from B to C is 3.25 . Draw and label Triangle C on the grid below.

2. Mug's Hat and its coordinates are below. Apply
a scale factor of ($2.5 x, 2.5 y$) to find the new coordinates. Then, plot the coordinates of the similar figure on the grid at right.

	Mug's Hat	similar hat
Point	$(\boldsymbol{x}, \boldsymbol{y})$	$\mathbf{(2 . 5 x}, \mathbf{2 . 5 y})$
\boldsymbol{A}	$(1,1)$	
B	$(9,1)$	
C	$(6,2)$	
D	$(6,3)$	
E	$(4,3)$	
F	$(4,2)$	
G	$(1,1)$	

Making Scale Drawings (7.G.1 Reproduce)

Examples:

Draw a rectangle similar to Rectangle A, where the perimeter of the new rectangle is three times the perimeter of Rectangle A. Label the length and width.

\qquad CC 7/8

Date \qquad Period \qquad

Area of Composed Figures (7.G.6)

Find the area of the figures below by using the formulas for rectangles and triangles. Show all work.
1.

2.

3.

4.

Area of Composed Figures (7.G.6)

Formulas: $\boldsymbol{a r e a}=\frac{\boldsymbol{b} \boldsymbol{h}}{\mathbf{2}}$

Trimester 1 Final Practice CC 7/8

Name
Date \qquad Period \qquad a(7.RP.1)
a (7.RP.1)

Algorithm:

Examples:

Trimester 1 Final Practice CC 7/8

Name
Date \qquad Period \qquad
$\underline{\text { b(7.RP.2a) }}$

$\underline{b(7 . R P .2 a)}$

Algorithm:

Examples:

Trimester 1 Final Practice CC 7/8

Name
Date \qquad Period \qquad

c(7.RP.2c)

Algorithm:

Examples:

Trimester 1 Final Practice CC 7/8

Name
Date \qquad Period \qquad

$$
\underline{d}(7 . R P .2 d)
$$

Algorithm:

Examples:

Trimester 1 Final Practice CC 7/8

Name
Date \qquad Period \qquad

e(7.RP.3)

Algorithm:

Examples:

Trimester 1 Final Practice CC 7/8

Name
Date \qquad Period \qquad

f(7.EE.3)

f(7.EE.3)

Algorithm:

Examples:

