
110 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIETY 0 7 4 0 - 7 4 5 9 / 1 7 / $ 3 3 . 0 0 © 2 0 1 7 I E E E

Editor: Christof Ebert
Vector Consulting Services
christof.ebert@vector.com

SOFTWARE
TECHNOLOGY

COMPUTER GAMES ARE RICH, com-
plex, and frequently large-scale soft-
ware applications. They’re a signi� -
cant, interesting, and often compelling
domain for innovative research in soft-
ware engineering (SE) techniques and
technologies. Computer games are pro-
gressively changing the everyday world
in many positive ways. Game develop-
ers, whether focusing on entertainment
market opportunities or game-based ap-
plications in nonentertainment domains
such as education, healthcare, defense,
or scienti� c research (that is, serious

games), thus share a common interest in
how best to engineer game software.

 Here, I examine aspects of contempo-
rary computer game SE. To supplement
this description, the sidebars present a
brief look at game development technol-
ogies and a case study in applying com-
puter game SE techniques.

What Game Developers
Should Know
There are many different and distinct
types of games, game systems, and
gameplay, much like there are many dif-

Practices and
Technologies in
Computer Game
Software Engineering
Walt Scacchi

Computer games are at the forefront of software engineering.
Games software engineering, although often neglected in curricula,
poses huge challenges such as time to market, complexity,
collaborative development, and performance. Game development
ranges from entertainment, with games being more sophisticated
and complex than movies, to serious games used for education
in universities and industry. Here, Walt Scacchi introduces us
to computer game software engineering with technologies and
a hands-on case study. I look forward to hearing from both
readers and prospective column authors. —Christof Ebert

SOFTWARE TECHNOLOGY

JANUARY/FEBRUARY 2017 | IEEE SOFTWARE 111

GAME DEVELOPMENT TECHNOLOGIES

Computer games might well be the quintessential domain for computer science and software engineering R&D. Why? Modern
multiplayer online games must address core issues in just about every major area of computer science research and education.
Such games entail the development, integration, and balancing of software capabilities drawn from many areas. These areas
include algorithm design and complexity, AI, computer graphics, computer-supported cooperative work or play, database man-
agement systems, human–computer interaction and interface design, OSs and resource or storage management, networking,
programming- or scripting-language design and interpretation, and performance monitoring. Few other software application
arenas demand such technical mastery and integration skill. Yet game development is expected to rely on such mastery and
provide gameplay that most players � nd satisfying, fun, and engaging.

Computer games are thus an excellent domain for which to research and develop new ways and means for software engi-
neering. Accordingly, there are many kinds of commercial or open source software development kits, engines, services, and
approaches for producing, delivering, and evolving computer games of different genres.

Table A provides a small sample of possibilities that serve as a starting point. Interested software professionals and stu-
dents should also go online and search for the software technologies that best match their interests in, constraints on, and
enthusiasm for developing computer games.

TA
B

L
E

 A Some technologies for computer game software engineering.*

Game SDK or game
engine motif

Commercial
examples

Game
development
features

Open source
software
alternatives

Development or
target platforms

Common game
genres

HTML5 or web Construct 2,
GameSalad

Rule-based, UI
event processing

EaselJS,
GDevelop, Kiwi.js,
Phaser

Computers or
devices with web
browsers

2D web-browser-
based games

Game-genre-
speci� c

Adventure Game
Studio, Minecraft,
RPG Maker, SAGE

Genre-based UI,
user experience

Freeciv, Minetest,
Ren’Py, Quest,
Stratagus

Networked PCs Adventure and
role-playing
games, real-time
strategy games,
visual novels

Library, framework,
or runtime
environment

GameMaker,
libGDX, Microsoft
XNA

Game
programming
primitives, open
APIs

ANX, Cocos2d,
OGRE

PCs 2D or 3D single-
user or multiuser
games

Game modding
(modifying)

Half-Life,
Neverwinter
Nights, Unreal

Modi� cation or
reuse of working
games

Doom, Quake,
Quake Arena

Networked PCs Depends on the
originating game

Game IDE CryEngine,
Source, Unity,
Unreal Engine,
UDK

Production quality
work� ow

Blender, Torque
3D

PCs Mass-market
games, 3D � rst-
person action and
shooter games

Cloud-based or
MMOG service

Amazon
Lumberyard,
Facebook, Steam,
Twitch

Scalable services
and secure
e-commerce

OpenSimulator,
Worldforge

PCs, consoles,
Internet-
connected
smartphones

eSports, free-
to-play games,
MMOGs

*SDK stands for software development kit; MMOG stands for massively multiplayer online game.

SOFTWARE TECHNOLOGY

112 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

THE BEAM GAME

Case studies can help elucidate
how to apply current practices and
technologies in computer game
software engineering (SE). In � ve
previous case studies, I focused on
software reuse and game repurpos-
ing.1 Here, I focus on a study inves-
tigating whether a STEM- literate
high-school student who was an
avid gamer could learn basic SE
concepts and practices.2 (STEM
stands for science, technology, en-
gineering, and math.)

First, I had a student, Mark
Yampolsky, identify a new game he
would develop and demonstrate that
could help his fellow students learn
a challenging STEM topic—beam
physics. Beam physics is central to
modern physics—for example, in the

design of simple optics as presented in
high-school physics and as the basis for advanced particle accelerators and quantum teleportation devices.

The study proceeded in an agile incremental manner whereby the student identi� ed functional or nonfunctional requirements
that could be translated into game mechanics that could be realized using an event-driven, rule-based-system architectural frame-
work. Such a framework is supported, for example, by 2D software development kits, such as Construct 2 and GameSalad (see
the sidebar “Game Development Technologies”), that support rapid prototyping of interactive media or games for deployment with
web browsers. By starting with an architectural framework and a software development kit, rather than a programming language,
the student could focus on identifying play input and display output events and event types (mouse clicks, object drag-and-drop,
game start and end, and so on). These events and event types could then trigger reactive rules that would update the gameplay
(display) space and points earned (or lost).

Figure A shows a screenshot of the resulting Beam game. Beam’s multilevel goals entail � nding either the shortest path or a
path routed to achieve certain outcomes. One outcome could be to minimize where to place and how to orient (rotate) optical de-
vices such as mirrors and lenses to ensure beam routing from the source to the target.

As the student developed Beam, issues or tradeoffs surfaced regarding how best to structure and refactor different rule sets.
Overall, this version of Beam uses seven rule sets entailing more than 180 event-update rules.2 Developing a new game with a
rule-based system such as Beam’s presents a classic software engineering problem: re� ning and evaluating architectural alterna-
tives. The Beam case study illustrates how SE concepts can mediate computer game development.

References
1. W. Scacchi, “Repurposing Gameplay Mechanics as a Technique for Developing Game-Based Virtual Worlds,” Computer Games and Software Engi-

neering, K.M. Cooper and W. Scacchi, eds., CRC Press, 2015, pp. 241–260.

2. M. Yampolsky and W Scacchi, “Learning Game Design and Software Engineering through a Game Prototyping Experience: A Case Study,” Proc. 5th

Int’l Workshop Games and Software Eng. (GAS 16), 2016, pp. 15–21.

FIGURE A. A screenshot of the Beam game.2 The player is placing mirrors to route

an optical beam from the upper-left source to the lower-left target.

SOFTWARE TECHNOLOGY

	 JANUARY/FEBRUARY 2017 | IEEE SOFTWARE � 113

ferent and distinct types of software
applications, information systems,
and systems for business. Under-
standing how to develop games for
a particular platform requires iden-
tifying what types (genres) of games
are commercially available. Popular
genres include action games, first-
person shooters, adventure games,
role-playing games, fighting games,
racing games, simulation games,
sports games, strategy and real-time
strategy games, music and rhythm
games, parlor games (board and
card games), puzzles, educational or
training games, and massively multi-
player online games (MMOGs).

This suggests that knowledge
about one type of game (for exam-
ple, role-playing games such as Dun-
geons & Dragons) doesn’t subsume,
contain, or provide the gameplay
experience, user interface, gameplay
scenarios, or player actions in other
types of games. So, being skilled in
software development for one type
of game (for example, a turn-tak-
ing role-playing game) doesn’t im-
ply ability or competence in devel-
oping software for another type of
game (for example, a continuous-
play twitch or action game). (Twitch
games test players’ reaction time.)
This is analogous to saying that just
because a developer is skilled in pay-
roll and accounting software doesn’t
mean that the developer is skilled
in enterprise database management
or e-commerce systems. The differ-
ences can be profound, and the de-
veloper skills and expertise can be
narrowly specialized.

Conversely, common games such
as card or board games raise the ob-
vious possibility of developing one
game engine that can be shared or
reused to support multiple games of
a single type—a game product line.
For example, checkers and chess are

played on an 8 × 8 checkerboard,
and player actions in both games
are basically the same (picking up
a piece and moving it to a square
allowed by the game rules), even
though the game pieces, rules, and
gameplay differ.

So, being skilled in developing a
checkers game can suggest having
the skill to develop a similar game
such as chess, especially if both
games can use the same game engine
(the game’s runtime environment1).
However, this is likely only when the
game engine allows for distinct sets
of game rules and the distinct ap-
pearance of game pieces. That is, the
game engine must be designed for re-
use or extension, which isn’t always
an obvious engineering choice and
which increases game engine devel-
opment’s initial cost. Subsequently,
developing the software for different
kinds of games that are of the same
type or use the same game engine
requires a higher level of technical
skill and competence than designing
an individual game of a given type.

Understanding how game soft-
ware operates on a game platform
requires understanding gameplay
and player actions. Understanding
a game platform entails understand-
ing an embodied game device (for
example, the Apple iPhone, Micro-
soft Xbox One, or Nintendo Game
Boy) and the internal software run-
time environment that enables its
intended operation and data com-
munication. Developers must also
understand the game’s architectural
structure, how the game functions,
how the player controls the game
device through its interfaces (key-
board, buttons, stylus, and so on)
and video and audio output, and
how the interfaces and output affect
game data transmission and recep-
tion in a multiplayer game network.

Requirements Engineering
Understanding how best to elicit and
engineer computer game require-
ments is unsurprisingly a fertile area
for computer game SE research and
practice, much as it has been for
mainstream SE. However, relatively
few game development approaches
employ SE requirements develop-
ment methods such as use cases and
scenario-based design.

Many game developers in in-
dustry have reviewed the informal
game postmortems that first ap-
peared in Game Developer maga-
zine in the 1990s and currently ap-
pear on Gamasutra.com. Austin
Grossman’s edited collection of 50
or so postmortems revealed common
problems in game development proj-
ects.2 These problems cluster around
project software and content devel-
opment scheduling, budget shifts
(generally budget cuts), and other
nonfunctional requirements that
drift or shift in importance during
game development projects. None
of this should be surprising to expe-
rienced SE practitioners or project
managers, although it might be new
knowledge to SE students and new
self-taught game developers.

Similarly, software functional
requirements for computer games
most often come from the game pro-
ducers or developers, rather than
game players. However, nonfunc-
tional requirements (for example,
the game should be fun to play but
hard to master, and it should run on
mobile devices and the web) domi-
nate computer game development
and thus marginalize the systematic
engineering of functional game re-
quirements. Nonetheless, the prac-
tice of openly publishing and shar-
ing postproject descriptions and
hindsight rationalizations might
prove valuable as another kind of

SOFTWARE TECHNOLOGY

114	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

empirical SE data for further study,
as well as something to teach and
practice in SE education project
courses (as I discuss later).

Architecture Design
Computer games often represent
configurations of multiple software
components, libraries, and network
services. Consequently, computer
game software must have an archi­
tecture,1 and ideally this architec­
ture is explicitly represented and
documented as such. The architec­
ture might be proprietary and thus
protected by its developers as intel­
lectual property covered by trade
secrets and user license agreements.
However, there’s substantial educa­
tional value in having access to such
architectural renderings as a means
for quickly grasping key system de­
sign decisions and the modules that
participate in gameplay event pro­
cessing. This is one reason for inter­
est in games that are open to mod­
ding (modifying) or free or open
source software extensions.

But other architecture concerns
exist. For example, networked multi­
player games employ at least four
kinds of software or information
architectures:

•	 the static and dynamic runtime
architectures for a game engine,

•	 the architecture of the game
development frameworks or
software development kits that
embed a game’s development ar­
chitecture together with its game
engine,

•	 the architectural distribution
of software functionality and
data-processing services for the
games, and

•	 the informational and geograph­
ical architecture of the game
levels as designed play spaces.

Game system architecture can have
different configurations. For in­
stance, for the architectural distri­
bution of software functionality and
data-processing services, five system
configurations are common:

•	 a single server for multiple inter­
acting or turn-taking players;

•	 peer-to-peer networking;
•	 client-server networking for user

clients and play-space data ex­
change servers;

•	 distributed, replicated servers
for segmented user play sessions
through sharding; and

•	 cloud-based game content de­
livery, a play event or score da­
tabase, a game forum and chat
or voice services, analytics, and
commerce services.

In contrast, the focus on computer
games as interactive media often sees
little or no software architecture as
being relevant to game design. This is
especially true in the design of games
that assume a single-server architec­
ture or PC game runtime environ­
ment, rather than in game systems
in which distributed services must be
provided and system architecture is
critical.3 My point here is not to fo­
cus on the gap between game design
and game software (architecture) de­
sign as consisting of alternative views
but to draw attention to the need for
computer game SE to finds ways to
span the gap.

Playtesting
Computer games that potentially in­
volve millions of players will consis­
tently and routinely manifest bugs.
Again, this is part of the puzzle of
any complex SE effort; games are
no exception. However, the user ex­
perience, and thus user satisfaction,
might be key to driving viral social

media that help promote game sales
and adoption. So, paying close at­
tention to bugs and features in game
development and usability might be
key to a game development studio’s
economic viability.

Furthermore, as decades of de­
veloper experience with large-scale
software applications have shown,
most users can’t articulate their
needs or requirements in advance
but can assess whether what’s pro­
vided meets their needs. So, the de­
velopment of large-scale, high-cost
computer games that take years to
produce and person-decades (or
person-centuries) of developer ef­
fort could change from monolithic
product development lifecycles to
ones that are much more agile, in­
cremental, and driven by user feed­
back based on progressively refined
or enhanced game version (or proto­
type) releases.

Early and ongoing game playtest­
ing will likely become a central facet
of computer game SE, as will tools
and techniques for collecting, analyz­
ing, and visualizing game playtesting
data.4 This is one area in which com­
puter game SE might substantially
diverge from early computer game
development approaches, much like
agile methods often displace the wa­
terfall method. So, computer game
developers, much like mainstream
software engineers, are moving to­
ward incremental development, rapid
release, and user playtesting to drive
new product versions.

Reuse and Repurposing
Systematic software reuse could be
considered in multiple SE activi­
ties (requirements, architecture, de­
sign, code, build and release, and
test cases) for a single game or game
product line. For example, many
successful games become franchises

SOFTWARE TECHNOLOGY

JANUARY/FEBRUARY 2017 | IEEE SOFTWARE 115

through the production and release
of extension packs (that provide
new game content or play levels)
or sequels (for example, Quake II
and Quake III). Whether or how to
employ software-product-line con-
cepts and methods in widespread
computer game business models is
unclear and underexplored. A new
successful computer game product
might have been developed and re-
leased in ways that sought to mini-
mize software production costs.
In that way, the software company
could avoid the investment neces-
sary to make the software archi-
tecture reusable and extensible and
the component modules replaceable
or upgradable without discarding
much of the software developed up
to that point. This means that SE ap-
proaches to computer game product
lines might be recognized in hind-
sight as missed opportunities, at
least for a given game franchise.

Reuse could reduce development
costs and improve quality and pro-
ductivity, as it often does in main-
stream SE. Commercial computer
game development often relies on
third-party software components
(for example, game engines) or mid-
dleware products (for example, AI
libraries for nonplayer characters),
which are perhaps its most visible
forms of software reuse. Game soft-
ware development kits, game en-
gines, procedural game content gen-
eration tools, and game middleware
services are all undergoing active
R&D in industry and academia. (For
additional details, see the sidebar
“Game Development Technologies.”)

Game engines are perhaps the
best success story for computer game
software reuse. However, commer-
cial game development studios and
independent game developers some-
times avoid adopting commercially

available game engines because they
believe that the engines’ character-
istic patterns or mechanics would
overly restrict their game’s develop-
ment patterns or gameplay mechan-
ics. If that happened, players might
feel that such games offer a deriva-
tive play experience rather than an
original one.

Nevertheless, the future of reus-
able game development techniques
might include catalogs of patterns

or antipatterns for game require-
ments, architecture and design
patterns for game software prod-
uct lines, and online repositories
of reusable game assets organized
by standardized ontologies. You
can � nd other approaches to reuse
in free or open source software for
computer game development and in
game software repurposing. Addi-
tional sources are the emerging AI
or computational-intelligence meth-
ods for automated or semiauto-
mated content generation and level
design that appear in IEEE Trans-
actions on Computational Intelli-
gence and AI in Games.

Runtime Services and
Scalability Infrastructures
Computer games range from small-
scale, standalone smartphone apps
to large-scale, distributed, real-time
MMOGs. They’re sometimes played
by millions of users, so large-scale,
big data approaches to gameplay

analytics and data visualization be-
come essential for engineering sus-
tained gameplay and deployment
support.4 Prior knowledge of the
development of multiplayer-game
software systems and networking
services might be essential for SE
students learning to develop social
or mobile MMOGs.

To engage players and promote
the adoption and ongoing use of such
large and upward- or downward-

scalable applications, com puter game
SE techniques have signi� cant poten-
tial but require further articulation
and re� nement. Questions are just
emerging regarding the integration
of game playtesting and user play
analytic techniques with large-scale,
big data applications. Similarly, the
question of how best to design back-
end game data management capabili-
ties or remote middleware gameplay
services also points to SE challenges
for networked- software-systems en-
gineering, as has been recognized
within the history of networked-
game software development.

The ongoing emphasis on com-
puter games that realize playful,
fun, social, or learning experiences
across gameplay platforms leads
naturally to interdisciplinary ap-
proaches to computer game SE. In
such approaches, psychologists, soci-
ologists, anthropologists, and econo-
mists could provide expertise on de-
� ning new gameplay requirements

Computer games are a growth-
oriented domain at the forefront of
software engineering.

SOFTWARE TECHNOLOGY

116 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

and experimental designs to assess
user experience quality.

Furthermore, the emergence of
online fantasy sports, along with
eSports (for example, team- versus-
team or player-versus-player com-
petitions for prizes or championship
rankings) and professional-level tour-
naments for games such as Counter-
Strike: Global Offensive, Dota 2, or
League of Legions, points to other
computer game SE challenges. These
challenges include cheat prevention,
latency equalization, statistical scor-
ing systems, complex data analytics,4
play data visualization, and stream-
ing video broadcasts (for example,
through MLG.TV or Twitch) that
support balanced game systems with
performance (monitoring) equalized
for professional-level tournaments.
Similarly, the emergence of games de-
veloped for VR or augmented-reality

UIs and user experiences, such as
Pokemon Go, suggests opportunities
for engineering game software that
exploits the new devices and sensors
available through the UI, along with
the engagement affordances these
user experiences offer.

Computer Games
and SE Education
SE faculty who teach project-
oriented SE courses increasingly have
sought to better motivate and engage
students through game software de-
velopment projects, as most CS stu-
dents are literate in computer games
and gameplay. The use of game de-
velopment projects for SE capstone
project courses is now widespread.

For educators teaching software
engineering education (SEE) project
courses, it might be valuable for their
students to become engaged with
computer game SE through exposure
to the history of computer game soft-
ware development or by reviewing
recent advances in computer game SE
fundamentals and SEE.5 For exam-
ple, C. Shaun Longstreet and Kendra
Cooper, Alf Wang and Brian Wu,
and others have incorporated con-
temporary SE practices such as soft-
ware architecture and model-driven
development within game-based SE
project courses.5 In addition, Tao Xie
and his colleagues at Microsoft and
others have developed game-based
software- testing competitions.5

Similarly, whether to structure
projects as massively open online
courses or competitive, interteam
game jams also merits consideration.
Such competitions can be testbeds
for empirical SE (or SEE) studies—
for example, when project teams
consist of students who take on dif-
ferent development roles, with each
team comprising members with com-
parable roles and experience.

C omputer game SE is a
growth-oriented domain
at the forefront of software

engineering. A new generation of soft-
ware engineers will take on the tech-
nical challenges involved in facilitat-
ing the development, deployment,
and evolution of computer games as
complex software systems that sup-
port global cultural-media practices.
Readers interested in further exploring
computer game SE practices and tech-
nologies might also � nd the cited refer-
ences helpful for learning about game
design practices,3 common approaches
and mistakes in game production,2

game engine and runtime environment
architectures,1 gameplay data analyt-
ics and visualization techniques,4 or
recent advances in computer game SE
research and education.5

References
1. J. Gregory, Game Engine Architec-

ture, A K Peters / CRC Press, 2009.

2. A. Grossman, ed., Postmortems from

Game Developer: Insights from the

Developers of Unreal Tournament,

Black and White, Age of Empires,

and Other Top-Selling Games, Focal

Press, 2003.

3. J. Schell, The Art of Game Design: A

Book of Lenses, CRC Press, 2008.

4. M. Seif El-Nasr, A. Drachen, and

A. Canossa, eds., Game Analytics:

Maximizing the Value of Player

Data, Springer, 2013.

5. K.M. Cooper and W. Scacchi, eds.,

Computer Games and Software En-

gineering, CRC Press, 2015.

WALT SCACCHI is a senior research scientist

and research faculty member at the Institute

for Software Research and the director of re-

search at the Institute for Virtual Environments

and Computer Games, both at the University of

California, Irvine. Contact him at wscacchi@

ics.uci.edu.

mult-22-03-c1 Cover-1 July 12, 2016 4:40 PM

http://www.computer.org

ju
ly

–s
ep

te
m

be
r

20
16

IEEE M

u
ltiM

ed
ia

Ju
ly–Sep

tem
b

er 2
0

1
6

❚ Q
uality M

o
d

elin
g

V
o

lu
m

e 2
3

 N
u

m
b

er 3

IEEE MultiMedia serves the
community of scholars,

developers, practitioners,
and students who are
interested in multiple

media types and work in
fields such as image and
video processing, audio

analysis, text retrieval, and
data fusion.

Read It Today!

www.computer.org
/multimedia

