

Praise for Design Patterns
This book isn't an introduction to object-oriented technology or

design. Many books already do a good job of that. This isn't an
advanced treatise either. It's a book of design patterns that describe
simple and elegant solutions to specific problems in object-oriented
software design.

Once you understand the design patterns and have had an "Aha!"
(and not just a "Huh?" experience with them, you won't ever think
about object-oriented design in the same way. You'll have insights that
can make your own designs more flexible, modular, reusable, and
understandable - which is why you're interested in object-oriented
technology in the first place, right?

Index | 5

Index

INDEX .. 5
OVERVIEW ... 6

ABSTRACT FACTORY .. 10
ADAPTER ... 14
BRIDGE .. 18
BUILDER .. 24
CHAIN OF RESPONSIBILITY ... 28
COMMAND .. 32
COMPOSITE ... 36
DECORATOR .. 41
FACADE ... 47
FACTORY METHOD .. 51
FLYWEIGHT .. 56
INTERPRETER ... 60
ITERATOR .. 63
MEDIATOR .. 67
MEMENTO ... 72
NULL OBJECT ... 75
OBJECT POOL ... 80
OBSERVER ... 84
PRIVATE CLASS DATA ... 88
PROTOTYPE ... 90
PROXY ... 94
SINGLETON .. 97
STATE .. 101
STRATEGY .. 105
TEMPLATE METHOD .. 109
VISITOR ... 113

ABOUT THE AUTHOR ... 119

6 | Overview

Overview

In software engineering, a design pattern is a general repeatable
solution to a commonly occurring problem in software design. A design
pattern isn't a finished design that can be transformed directly into code.
It is a description or template for how to solve a problem that can be used
in many different situations.

Design patterns can speed up the development process by providing
tested, proven development paradigms. Effective software design requires
considering issues that may not become visible until later in the
implementation. Reusing design patterns helps to prevent subtle issues
that can cause major problems and improves code readability for coders
and architects familiar with the patterns.

Often, people only understand how to apply certain software design
techniques to certain problems. These techniques are difficult to apply to
a broader range of problems. Design patterns provide general solutions,
documented in a format that doesn't require specifics tied to a particular
problem.

In addition, patterns allow developers to communicate using well-
known, well understood names for software interactions. Common design
patterns can be improved over time, making them more robust than ad-
hoc designs.

Overview | 7

Creational patterns
This design patterns is all about class instantiation. This pattern can be

further divided into class-creation patterns and object-creational patterns.
While class-creation patterns use inheritance effectively in the
instantiation process, object-creation patterns use delegation effectively
to get the job done.

Abstract Factory 10
Creates an instance of several families of classes

Builder 24
Separates object construction from its representation

Factory Method 51
Creates an instance of several derived classes

Object Pool 80
Avoid expensive acquisition and release of resources by recycling
objects that are no longer in use

Prototype 90
A fully initialized instance to be copied or cloned

Singleton 97
A class of which only a single instance can exist

8 | Overview

Structural patterns
This design patterns is all about Class and Object composition.

Structural class-creation patterns use inheritance to compose interfaces.
Structural object-patterns define ways to compose objects to obtain new
functionality.

Adapter 14
Match interfaces of different classes

Bridge 18
Separates an object’s interface from its implementation

Composite 36
A tree structure of simple and composite objects

Decorator 41
Add responsibilities to objects dynamically

Façade 47
A single class that represents an entire subsystem

Flyweight 56
A fine-grained instance used for efficient sharing

Private Class Data 88
Restricts accessor/mutator access

Proxy 94
An object representing another object

Overview | 9

Behavioral patterns
This design patterns is all about Class's objects communication.

Behavioral patterns are those patterns that are most specifically
concerned with communication between objects.

Chain of responsibility 28

A way of passing a request between a chain of objects

Command 32
Encapsulate a command request as an object

Interpreter 60
A way to include language elements in a program

Iterator 63
Sequentially access the elements of a collection

Mediator 67
Defines simplified communication between classes

Memento 72
Capture and restore an object's internal state

Null Object 75
Designed to act as a default value of an object

Observer 84
A way of notifying change to a number of classes

State 101
Alter an object's behavior when its state changes

Strategy 105
Encapsulates an algorithm inside a class

Template method 109
Defer the exact steps of an algorithm to a subclass

Visitor 113
Defines a new operation to a class without change

10 | Abstract Factory

Abstract Factory

Intent
• Provide an interface for creating families of related or dependent

objects without specifying their concrete classes.

• A hierarchy that encapsulates: many possible "platforms", and the
construction of a suite of "products".

• The new operator considered harmful.

Problem
If an application is to be portable, it needs to encapsulate platform

dependencies. These "platforms" might include: windowing system,
operating system, database, etc. Too often, this encapsulatation is not
engineered in advance, and lots of #ifdef case statements with
options for all currently supported platforms begin to procreate like
rabbits throughout the code.

Discussion
Provide a level of indirection that abstracts the creation of families

of related or dependent objects without directly specifying their
concrete classes. The "factory" object has the responsibility for
providing creation services for the entire platform family. Clients
never create platform objects directly, they ask the factory to do that
for them.

This mechanism makes exchanging product families easy because
the specific class of the factory object appears only once in the
application - where it is instantiated. The application can wholesale
replace the entire family of products simply by instantiating a different
concrete instance of the abstract factory.

Because the service provided by the factory object is so pervasive,
it is routinely implemented as a Singleton.

Structure
The Abstract Factory defines a Factory Method per product. Each

Factory Method encapsulates the new operator and the concrete,
platform-specific, product classes. Each "platform" is then modeled
with a Factory derived class.

Example
The purpose of the Abstract Factory is to provide an interface for

creating families of related objects, without specifying concrete classes.

This pattern is found in the sheet metal stamping equipment used in
the manufacture of Japanese automobiles. The stamping equipment is
an Abstract Factory which creates auto body parts. The same machinery
is used to stamp right hand doors, left hand doors, right front fenders,
left front fenders, hoods, etc. for different models of cars. Through the
use of rollers to change the stamping dies, the concrete classes produced
by the machinery can be changed within three minutes.

Abstract Factory | 11

Check list
• Decide if "platform independence" and creation services are the

current source of pain.

• Map out a matrix of "platforms" versus "products".

• Define a factory interface that consists of a factory method per
product.

• Define a factory derived class for each platform that encapsulates all
references to the new operator.

• The client should retire all references to new, and use the factory
methods to create the product objects.

Rules of thumb
Sometimes creational patterns are competitors: there are cases when

either Prototype or Abstract Factory could be used profitably.
At other times they are complementory: Abstract Factory might store

a set of Prototypes from which to clone and return product objects,
Builder can use one of the other patterns to implement which

12 | Abstract Factory

Abstract Factory | 13

components get built. Abstract Factory, Builder, and Prototype can use
Singleton in their implementation.

Abstract Factory, Builder, and Prototype define a factory object that's
responsible for knowing and creating the class of product objects, and
make it a parameter of the system. Abstract Factory has the factory object
producing objects of several classes. Builder has the factory object
building a complex product incrementally using a correspondingly
complex protocol. Prototype has the factory object (aka prototype)
building a product by copying a prototype object.

Abstract Factory classes are often implemented with Factory Methods,

but they can also be implemented using Prototype.

Abstract Factory can be used as an alternative to Facade to hide

platform-specific classes.

Builder focuses on constructing a complex object step by step.

Abstract Factory emphasizes a family of product objects (either simple or
complex). Builder returns the product as a final step, but as far as the
Abstract Factory is concerned, the product gets returned immediately.

Often, designs start out using Factory Method (less complicated, more

customizable, subclasses proliferate) and evolve toward Abstract Factory,
Prototype, or Builder (more flexible, more complex) as the designer
discovers where more flexibility is needed.

Adapter

Intent
• Convert the interface of a class into another interface clients expect.

Adapter lets classes work together that couldn't otherwise because of
incompatible interfaces.

• Wrap an existing class with a new interface.

• Impedance match an old component to a new system

Problem
An "off the shelf" component offers compelling functionality that

you would like to reuse, but its "view of the world" is not compatible
with the philosophy and architecture of the system currently being
developed.

Discussion
Reuse has always been painful and elusive. One reason has been the

tribulation of designing something new, while reusing something old.
There is always something not quite right between the old and the new.
It may be physical dimensions or misalignment. It may be timing or
synchronization. It may be unfortunate assumptions or competing
standards.

It is like the problem of inserting a new three-prong electrical plug in
an old two-prong wall outlet – some kind of adapter or intermediary is
necessary.

14 | Adapter

Adapter is about creating an intermediary abstraction that translates,
or maps, the old component to the new system. Clients call methods on
the Adapter object which redirects them into calls to the legacy
component. This strategy can be implemented either with inheritance or
with aggregation.

Adapter functions as a wrapper or modifier of an existing class. It
provides a different or translated view of that class.

Structure
Below, a legacy Rectangle component's display method expects to

receive "x, y, w, h" parameters. But the client wants to pass "upper left
x and y" and "lower right x and y". This incongruity can be reconciled
by adding an additional level of indirection – i.e. an Adapter object.

The Adapter could also be thought of as a "wrapper".

Adapter | 15

Example
The Adapter pattern allows otherwise incompatible classes to work

together by converting the interface of one class into an interface
expected by the clients.

Socket wrenches provide an example of the Adapter. A socket
attaches to a ratchet, provided that the size of the drive is the same.
Typical drive sizes in the United States are 1/2" and 1/4".

Obviously, a 1/2" drive ratchet will not fit into a 1/4" drive socket
unless an adapter is used. A 1/2" to 1/4" adapter has a 1/2" female
connection to fit on the 1/2" drive ratchet, and a 1/4" male connection to
fit in the 1/4" drive socket.

16 | Adapter

Adapter | 17

Check list
1. Identify the players: the component(s) that want to be

accommodated (i.e. the client), and the component that needs to
adapt (i.e. the adaptee).

2. Identify the interface that the client requires.

3. Design a "wrapper" class that can "impedance match" the adaptee to
the client.

4. The adapter/wrapper class "has a" instance of the adaptee class.

5. The adapter/wrapper class "maps" the client interface to the adaptee
interface.

6. The client uses (is coupled to) the new interface

Rules of thumb
Adapter makes things work after they're designed; Bridge makes

them work before they are.

Bridge is designed up-front to let the abstraction and the

implementation vary independently. Adapter is retrofitted to make
unrelated classes work together.

Adapter provides a different interface to its subject. Proxy provides

the same interface. Decorator provides an enhanced interface.

Adapter is meant to change the interface of an existing object.

Decorator enhances another object without changing its interface.
Decorator is thus more transparent to the application than an adapter is.
As a consequence, Decorator supports recursive composition, which
isn't possible with pure Adapters.

Facade defines a new interface, whereas Adapter reuses an old

interface. Remember that Adapter makes two existing interfaces work
together as opposed to defining an entirely new one.

Bridge

Intent
• Decouple an abstraction from its implementation so that the two can

vary independently.

• Publish interface in an inheritance hierarchy, and bury
implementation in its own inheritance hierarchy.

• Beyond encapsulation, to insulation

Problem
"Hardening of the software arteries" has occurred by using

subclassing of an abstract base class to provide alternative
implementations. This locks in compile-time binding between interface
and implementation. The abstraction and implementation cannot be
independently extended or composed.

Motivation
Consider the domain of "thread scheduling".

There are two types of thread schedulers, and two types of operating
systems or "platforms". Given this approach to specialization, we have
to define a class for each permutation of these two dimensions. If we
add a new platform (say ... Java's Virtual Machine), what would our
hierarchy look like?

18 | Bridge

What if we had three kinds of thread schedulers, and four kinds of
platforms? What if we had five kinds of thread schedulers, and ten
kinds of platforms? The number of classes we would have to define is
the product of the number of scheduling schemes and the number of
platforms.

The Bridge design pattern proposes refactoring this exponentially
explosive inheritance hierarchy into two orthogonal hierarchies – one
for platform-independent abstractions, and the other for platform-
dependent implementations.

Discussion
Decompose the component's interface and implementation into

orthogonal class hierarchies. The interface class contains a pointer to
the abstract implementation class.

This pointer is initialized with an instance of a concrete
implementation class, but all subsequent interaction from the interface

Bridge | 19

20 | Bridge

class to the implementation class is limited to the abstraction maintained
in the implementation base class. The client interacts with the interface
class, and it in turn "delegates" all requests to the implementation class.

The interface object is the "handle" known and used by the client;
while the implementation object, or "body", is safely encapsulated to
ensure that it may continue to evolve, or be entirely replaced (or shared
at run-time.

Use the Bridge pattern when:

• you want run-time binding of the implementation,

• you have a proliferation of classes resulting from a coupled
interface and numerous implementations,

• you want to share an implementation among multiple objects,

• you need to map orthogonal class hierarchies.

Consequences include:

• decoupling the object's interface,

• improved extensibility (you can extend (i.e. subclass) the
abstraction and implementation hierarchies independently),

• hiding details from clients.

Bridge is a synonym for the "handle/body" idiom. This is a design
mechanism that encapsulates an implementation class inside of an
interface class.

The former is the body, and the latter is the handle. The handle is
viewed by the user as the actual class, but the work is done in the body.
"The handle/body class idiom may be used to decompose a complex
abstraction into smaller, more manageable classes. The idiom may
reflect the sharing of a single resource by multiple classes that control
access to it (e.g. reference counting)."

Structure
The Client doesn’t want to deal with platform-dependent details. The

Bridge pattern encapsulates this complexity behind an abstraction
"wrapper".

Bridge emphasizes identifying and decoupling "interface"
abstraction from "implementation" abstraction.

Example
The Bridge pattern decouples an abstraction from its

implementation, so that the two can vary independently.

A household switch controlling lights, ceiling fans, etc. is an
example of the Bridge. The purpose of the switch is to turn a device on
or off. The actual switch can be implemented as a pull chain, simple
two position switch, or a variety of dimmer switches.

Bridge | 21

Check list
1. Decide if two orthogonal dimensions exist in the domain. These

independent concepts could be: abstraction/platform, or
domain/infrastructure, or front-end/back-end, or
interface/implementation.

2. Design the separation of concerns: what does the client want, and
what do the platforms provide.

3. Design a platform-oriented interface that is minimal, necessary, and
sufficient. Its goal is to decouple the abstraction from the platform.

4. Define a derived class of that interface for each platform.

5. Create the abstraction base class that "has a" platform object and
delegates the platform-oriented functionality to it.

6. Define specializations of the abstraction class if desired.

Rules of thumb
Adapter makes things work after they're designed; Bridge makes

them work before they are.

22 | Bridge

Bridge | 23

Bridge is designed up-front to let the abstraction and the
im

tate, Strategy, Bridge (and to some degree Adapter) have similar
sol .

cture to solve different problems:
State allows an object's behavior to change along with its state, while
Bri so

egate the creation of their implementation
classes (instead of creating/coupling themselves directly), then the
design usually uses the Abstract Factory pattern to create the
implementation objects.

plementation vary independently. Adapter is retrofitted to make
unrelated classes work together.

S
ution structures. They all share elements of the "handle/body" idiom

They differ in intent - that is, they solve different problems.

The structure of State and Bridge are identical (except that Bridge

admits hierarchies of envelope classes, whereas State allows only one).
The two patterns use the same stru

dge's intent is to decouple an abstraction from its implementation
that the two can vary independently.

If interface classes del

24 | Builder

Builder

Intent
• Separate the construction of a complex object from its representation

so that the same construction process can create different
representations.

• Parse a complex representation, create one of several targets.

Problem
An application needs to create the elements of a complex aggregate.

The specification for the aggregate exists on secondary storage and one
of many representations needs to be built in primary storage.

Discussion
Separate the algorithm for interpreting (i.e. reading and parsing) a

stored persistence mechanism (e.g. RTF files) from the algorithm for
building and representing one of many target products (e.g. ASCII,
TeX, text widget). The focus/distinction is on creating complex
aggregates.

The "director" invokes "builder" services as it interprets the external
format. The "builder" creates part of the complex object each time it is
called and maintains all intermediate state. When the product is
finished, the client retrieves the result from the "builder".

Affords finer control over the construction process. Unlike creational
patterns that construct products in one shot, the Builder pattern
constructs the product step by step under the control of the "director".

Structure
The Reader encapsulates the parsing of the common input. The

Builder hierarchy makes possible the polymorphic creation of many
peculiar representations or targets.

Example
The Builder pattern separates the construction of a complex object

from its representation so that the same construction process can create
different representations.

This pattern is used by fast food restaurants to construct children's
meals. Children's meals typically consist of a main item, a side item, a
drink, and a toy (e.g., a hamburger, fries, Coke, and toy dinosaur). Note
that there can be variation in the content of the children's meal, but the
construction process is the same.

Whether a customer orders a hamburger, cheeseburger, or chicken,
the process is the same. The employee at the counter directs the crew to
assemble a main item, side item, and toy. These items are then placed in
a bag. The drink is placed in a cup and remains outside of the bag. This
same process is used at competing restaurants.

Builder | 25

Check list
1. Decide if a common input and many possible representations (or

outputs) is the problem at hand.

2. Encapsulate the parsing of the common input in a Reader class.

3. Design a standard protocol for creating all possible output
representations. Capture the steps of this protocol in a Builder
interface.

4. Define a Builder derived class for each target representation.

5. The client creates a Reader object and a Builder object, and registers
the latter with the former.

6. The client asks the Reader to "construct".

7. The client asks the Builder to return the result.

26 | Builder

Builder | 27

Rules of thumb
Sometimes creational patterns are complementory: Builder can use

one of the other patterns to implement which components get built.
Abstract Factory, Builder, and Prototype can use Singleton in their
implementations.

Builder focuses on constructing a complex object step by step.

Abstract Factory emphasizes a family of product objects (either simple
or complex). Builder returns the product as a final step, but as far as the
Abstract Factory is concerned, the product gets returned immediately.

Builder often builds a Composite.

Often, designs start out using Factory Method (less complicated,

more customizable, subclasses proliferate) and evolve toward Abstract
Factory, Prototype, or Builder (more flexible, more complex) as the
designer discovers where more flexibility is needed.

Chain of Responsibility

Intent
• Avoid coupling the sender of a request to its receiver by giving more

than one object a chance to handle the request. Chain the receiving
objects and pass the request along the chain until an object handles
it.

• Launch-and-leave requests with a single processing pipeline that
contains many possible handlers.

• An object-oriented linked list with recursive traversal.

Problem
There is a potentially variable number of "handler" or "processing

element" or "node" objects, and a stream of requests that must be
handled. Need to efficiently process the requests without hard-wiring
handler relationships and precedence, or request-to-handler mappings.

Discussion
Encapsulate the processing elements inside a "pipeline" abstraction;

and have clients "launch and leave" their requests at the entrance to the
pipeline.

28 | Chain of Responsibility

The pattern chains the receiving objects together, and then passes

any request messages from object to object until it reaches an object
capable of handling the message. The number and type of handler
objects isn't known a priori, they can be configured dynamically. The
chaining mechanism uses recursive composition to allow an unlimited
number of handlers to be linked.

Chain of Responsibility simplifies object interconnections. Instead
of senders and receivers maintaining references to all candidate
receivers, each sender keeps a single reference to the head of the chain,
and each receiver keeps a single reference to its immediate successor in
the chain.

Make sure there exists a "safety net" to "catch" any requests which
go unhandled.

Do not use Chain of Responsibility when each request is only
handled by one handler, or, when the client object knows which service
object should handle the request.

Structure
The derived classes know how to satisfy Client requests. If the

"current" object is not available or sufficient, then it delegates to the
base class, which delegates to the "next" object, and the circle of life
continues.

Chain of Responsibility | 29

Multiple handlers could contribute to the handling of each request.
The request can be passed down the entire length of the chain, with the
last link being careful not to delegate to a "null next".

Example
The Chain of Responsibility pattern avoids coupling the sender of a

request to the receiver by giving more than one object a chance to
handle the request. ATM use the Chain of Responsibility in money
giving mechanism.

30 | Chain of Responsibility

Chain of Responsibility | 31

Check list
1. The base class maintains a "next" pointer.

2. Each derived class implements its contribution for handling the
request.

3. If the request needs to be "passed on", then the derived class "calls
back" to the base class, which delegates to the "next" pointer.

4. The client (or some third party) creates and links the chain (which
may include a link from the last node to the root node).

5. The client "launches and leaves" each request with the root of the
chain.

6. Recursive delegation produces the illusion of magic.

Rules of thumb
Chain of Responsibility, Command, Mediator, and Observer, address

how you can decouple senders and receivers, but with different trade-
offs. Chain of Responsibility passes a sender request along a chain of
potential receivers.

Chain of Responsibility can use Command to represent requests as

objects.

Chain of Responsibility is often applied in conjunction with

Composite. There, a component's parent can act as its successor.

32 | Command

Command

Intent
• Encapsulate a request as an object, thereby letting you parameterize

clients with different requests, queue or log requests, and support
undoable operations.

• Promote "invocation of a method on an object" to full object status

• An object-oriented callback

Problem
Need to issue requests to objects without knowing anything about

the operation being requested or the receiver of the request.

Discussion
Command decouples the object that invokes the operation from the

one that knows how to perform it. To achieve this separation, the
designer creates an abstract base class that maps a receiver (an object)
with an action (a pointer to a member function). The base class contains
an execute method that simply calls the action on the receiver.

All clients of Command objects treat each object as a "black box" by
simply invoking the object's virtual execute method whenever the
client requires the object's "service".

A Command class holds some subset of the following: an object, a
method to be applied to the object, and the arguments to be passed when
the method is applied. The Command's "execute" method then causes
the pieces to come together.

Sequences of Command objects can be assembled into composite (or
macro) commands.

Structure
The client that creates a command is not the same client that

executes it. This separation provides flexibility in the timing and
sequencing of commands. Materializing commands as objects means

they can be passed, staged, shared, loaded in a table, and otherwise
instrumented or manipulated like any other object.

Command objects can be thought of as "tokens" that are created by
one client that knows what need to be done, and passed to another client
that has the resources for doing it.

Example
The Command pattern allows requests to be encapsulated as objects,

thereby allowing clients to be parameterized with different requests.

The "check" at a diner is an example of a Command pattern. The
waiter or waitress takes an order or command from a customer and
encapsulates that order by writing it on the check. The order is then
queued for a short order cook. Note that the pad of "checks" used by
each waiter is not dependent on the menu, and therefore they can
support commands to cook many different items.

Command | 33

Check list
1. Define a Command interface with a method signature like execute.

2. Create one or more derived classes that encapsulate some subset of
the following: a "receiver" object, the method to invoke, the
arguments to pass.

3. Instantiate a Command object for each deferred execution request.

4. Pass the Command object from the creator (aka sender) to the
invoker (aka receiver).

5. The invoker decides when to execute.

Rules of thumb
Chain of Responsibility, Command, Mediator, and Observer, address

how you can decouple senders and receivers, but with different trade-
offs. Command normally specifies a sender-receiver connection with a
subclass.

Chain of Responsibility can use Command to represent requests as

objects.

Command and Memento act as magic tokens to be passed around

and invoked at a later time. In Command, the token represents a request;
in Memento, it represents the internal state of an object at a particular

34 | Command

Command | 35

time. Polymorphism is important to Command, but not to Memento
because its interface is so narrow that a memento can only be passed as
a value.

Command can use Memento to maintain the state required for an

undo operation.

MacroCommands can be implemented with Composite.

A Command that must be copied before being placed on a history

list acts as a Prototype.

Two important aspects of the Command pattern: interface separation

(the invoker is isolated from the receiver), time separation (stores a
ready-to-go processing request that's to be stated later).

36 | Composite

Composite

Intent
• Compose objects into tree structures to represent whole-part

hierarchies. Composite lets clients treat individual objects and
compositions of objects uniformly.

• Recursive composition

• "Directories contain entries, each of which could be a directory."

• 1-to-many "has a" up the "is a" hierarchy

Problem
Application needs to manipulate a hierarchical collection of

"primitive" and "composite" objects. Processing of a primitive object is
handled one way, and processing of a composite object is handled
differently. Having to query the "type" of each object before attempting
to process it is not desirable.

Discussion
Define an abstract base class (Component) that specifies the

behavior that needs to be exercised uniformly across all primitive and
composite objects. Subclass the Primitive and Composite classes off of
the Component class. Each Composite object "couples" itself only to
the abstract type Component as it manages its "children".

Use this pattern whenever you have "composites that contain
components, each of which could be a composite".

Child management methods (addChild, removeChild) should
normally be defined in the Composite class. Unfortunately, the desire to
treat Primitives and Composites uniformly requires that these methods
be moved to the abstract Component class. See the Opinions section
below for a discussion of safety versus transparency issues.

Structure
Composites that contain Components, each of which could be a

Composite.

Menus that contain menu items, each of which could be a menu.

Row-column GUI layout managers that contain widgets, each of
which could be a row-column GUI layout manager.

Directories that contain files, each of which could be a directory.

Example
The Composite composes objects into tree structures and lets clients

treat individual objects and compositions uniformly.

Although the example is abstract, arithmetic expressions are
Composites. An arithmetic expression consists of an operand, an
operator (+ - * /), and another operand. The operand can be a number,
or another arithmetic expresssion. Thus, 2 + 3 and (2 + 3) + (4 * 6) are
both valid expressions.

Composite | 37

Check list
1. Ensure that your problem is about representing "whole-part"

hierarchical relationships.

2. Consider the heuristic, "Containers that contain containees, each of
which could be a container." For example, "Assemblies that contain
components, each of which could be an assembly." Divide your
domain concepts into container classes, and containee classes.

3. Create a "lowest common denominator" interface that makes your
containers and containees interchangeable. It should specify the
behavior that needs to be exercised uniformly across all containee
and container objects.

4. All container and containee classes declare an "is a" relationship to
the interface.

5. All container classes declare a one-to-many "has a" relationship to
the interface.

6. Container classes leverage polymorphism to delegate to their
containee objects.

7. Child management methods (addChild, removeChild) should
normally be defined in the Composite class. Unfortunately, the
desire to treat Leaf and Composite objects uniformly may require
that these methods be promoted to the abstract Component class. See
the Gang of Four for a discussion of these "safety" versus
"transparency" trade-offs.

38 | Composite

Composite | 39

Rules of thumb
Composite and Decorator have similar structure diagrams, reflecting

the fact that both rely on recursive composition to organize an open-
ended number of objects.

Composite can be traversed with Iterator. Visitor can apply an

operation over a Composite. Composite could use Chain of
Responsibility to let components access global properties through their
parent. It could also use Decorator to override these properties on parts
of the composition. It could use Observer to tie one object structure to
another and State to let a component change its behavior as its state
changes.

Composite can let you compose a Mediator out of smaller pieces

through recursive composition.

Decorator is designed to let you add responsibilities to objects

without subclassing. Composite's focus is not on embellishment but on
representation. These intents are distinct but complementary.
Consequently, Composite and Decorator are often used in concert.

Flyweight is often combined with Composite to implement shared

leaf nodes.

Opinions
The whole point of the Composite pattern is that the Composite can

be treated atomically, just like a leaf. If you want to provide an Iterator
protocol, fine, but I think that is outside the pattern itself. At the heart of
this pattern is the ability for a client to perform operations on an object
without needing to know that there are many objects inside.

Being able to treat a heterogeneous collection of objects atomically
(or transparently) requires that the "child management" interface be
defined at the root of the Composite class hierarchy (the abstract
Component class). However, this choice costs you safety, because
clients may try to do meaningless things like add and remove objects
from leaf objects. On the other hand, if you "design for safety", the
child management interface is declared in the Composite class, and you

40 | Composite

lose transparency because leaves and Composites now have different
interfaces.

Smalltalk implementations of the Composite pattern usually do not
have the interface for managing the components in the Component
interface, but in the Composite interface. C++ implementations tend to
put it in the Component interface. This is an extremely interesting fact,
and one that I often ponder. I can offer theories to explain it, but nobody
knows for sure why it is true.

My Component classes do not know that Composites exist. They
provide no help for navigating Composites, nor any help for altering the
contents of a Composite. This is because I would like the base class
(and all its derivatives) to be reusable in contexts that do not require
Composites. When given a base class pointer, if I absolutely need to
know whether or not it is a Composite, I will use dynamic_cast to
figure this out. In those cases where dynamic_cast is too expensive, I
will use a Visitor.

Common complaint: "if I push the Composite interface down into
the Composite class, how am I going to enumerate (i.e. traverse) a
complex structure?" My answer is that when I have behaviors which
apply to hierarchies like the one presented in the Composite pattern, I
typically use Visitor, so enumeration isn't a problem - the Visitor knows
in each case, exactly what kind of object it's dealing with. The Visitor
doesn't need every object to provide an enumeration interface.

Composite doesn't force you to treat all Components as Composites.
It merely tells you to put all operations that you want to treat
"uniformly" in the Component class. If add, remove, and similar
operations cannot, or must not, be treated uniformly, then do not put
them in the Component base class.

Remember, by the way, that each pattern's structure diagram doesn't
define the pattern; it merely depicts what in our experience is a common
realization thereof. Just because Composite's structure diagram shows
child management operations in the Component base class doesn't mean
all implementations of the pattern must do the same.

Decorator

Intent
• Attach additional responsibilities to an object dynamically.

Decorators provide a flexible alternative to subclassing for extending
functionality.

• Client-specified embellishment of a core object by recursively
wrapping it.

• Wrapping a gift, putting it in a box, and wrapping the box.

Problem
You want to add behavior or state to individual objects at run-time.

Inheritance is not feasible because it is static and applies to an entire
class.

Discussion
Suppose you are working on a user interface toolkit and you wish to

support adding borders and scroll bars to windows. You could define an
inheritance hierarchy like

Decorator | 41

But the Decorator pattern suggests giving the client the ability to
specify whatever combination of "features" is desired.

Widget* aWidget = new BorderDecorator(
 new HorizontalScrollBarDecorator(
 new VerticalScrollBarDecorator(
 new Window(80, 24))));
aWidget->draw();

This flexibility can be achieved with the following design

Another example of cascading (or chaining) features together to
produce a custom object might look like

Stream* aStream = new CompressingStream(
 new ASCII7Stream(
 new FileStream("fileName.dat")));
aStream->putString("Hello world");

The solution to this class of problems involves encapsulating the

original object inside an abstract wrapper interface. Both the decorator
objects and the core object inherit from this abstract interface. The
interface uses recursive composition to allow an unlimited number of
decorator "layers" to be added to each core object.

Note that this pattern allows responsibilities to be added to an object,
not methods to an object's interface. The interface presented to the
client must remain constant as successive layers are specified.

42 | Decorator

Also note that the core object's identity has now been "hidden"
inside of a decorator object. Trying to access the core object directly is
now a problem.

Structure
The client is always interested in CoreFunctionality.doThis().

The client may, or may not, be interested in OptionalOne.doThis()
and OptionalTwo.doThis(). Each of these classes always delegate to
the Decorator base class, and that class always delegates to the
contained "wrappee" object.

Example
The Decorator attaches additional responsibilities to an object

dynamically.

The ornaments that are added to pine or fir trees are examples of
Decorators. Lights, garland, candy canes, glass ornaments, etc., can be
added to a tree to give it a festive look. The ornaments do not change
the tree itself which is recognizable as a Christmas tree regardless of
particular ornaments used. As an example of additional functionality,
the addition of lights allows one to "light up" a Christmas tree.

Decorator | 43

Although paintings can be hung on a wall with or without frames,
frames are often added, and it is the frame which is actually hung on the
wall. Prior to hanging, the paintings may be matted and framed, with
the painting, matting, and frame forming a single visual component.

Check list
1. Ensure the context is: a single core (or non-optional) component,

several optional embellishments or wrappers, and an interface that is
common to all.

2. Create a "Lowest Common Denominator" interface that makes all
classes interchangeable.

3. Create a second level base class (Decorator) to support the optional
wrapper classes.

44 | Decorator

Decorator | 45

4. The Core class and Decorator class inherit from the LCD interface.

5. The Decorator class declares a composition relationship to the LCD
interface, and this data member is initialized in its constructor.

6. The Decorator class delegates to the LCD object.

7. Define a Decorator derived class for each optional embellishment.

8. Decorator derived classes implement their wrapper functionality -
and - delegate to the Decorator base class.

9. The client configures the type and ordering of Core and Decorator
objects.

Rules of thumb
Adapter provides a different interface to its subject. Proxy provides

the same interface. Decorator provides an enhanced interface.

Adapter changes an object's interface, Decorator enhances an

object's responsibilities. Decorator is thus more transparent to the client.
As a consequence, Decorator supports recursive composition, which
isn't possible with pure Adapters.

Composite and Decorator have similar structure diagrams, reflecting

the fact that both rely on recursive composition to organize an open-
ended number of objects.

A Decorator can be viewed as a degenerate Composite with only one

component. However, a Decorator adds additional responsibilities - it
isn't intended for object aggregation.

Decorator is designed to let you add responsibilities to objects

without subclassing. Composite's focus is not on embellishment but on
representation. These intents are distinct but complementary.
Consequently, Composite and Decorator are often used in concert.

Composite could use Chain of Responsibility to let components

access global properties through their parent. It could also use
Decorator to override these properties on parts of the composition.

46 | Decorator

Decorator and Proxy have different purposes but similar structures.
Both describe how to provide a level of indirection to another object,
and the implementations keep a reference to the object to which they
forward requests.

Decorator lets you change the skin of an object. Strategy lets you

change the guts.

Facade | 47

Facade

Intent
• Provide a unified interface to a set of interfaces in a subsystem.

Facade defines a higher-level interface that makes the subsystem
easier to use.

• Wrap a complicated subsystem with a simpler interface.

Problem
A segment of the client community needs a simplified interface to

the overall functionality of a complex subsystem.

Discussion
Facade discusses encapsulating a complex subsystem within a single

interface object. This reduces the learning curve necessary to
successfully leverage the subsystem. It also promotes decoupling the
subsystem from its potentially many clients. On the other hand, if the
Facade is the only access point for the subsystem, it will limit the
features and flexibility that "power users" may need.

The Facade object should be a fairly simple advocate or facilitator. It
should not become an all-knowing oracle or "god" object.

Structure
Facade takes a "riddle wrapped in an enigma shrouded in mystery",

and interjects a wrapper that tames the amorphous and inscrutable mass
of software.

SubsystemOne and SubsystemThree do not interact with the internal

components of SubsystemTwo. They use the SubsystemTwoWrapper
facade (i.e. the higher level abstraction).

48 | Facade

Example
The Facade defines a unified, higher level interface to a subsystem

that makes it easier to use.

Consumers encounter a Facade when ordering from a catalog. The
consumer calls one number and speaks with a customer service
representative. The customer service representative acts as a Facade,
providing an interface to the order fulfillment department, the billing
department, and the shipping department.

Check list
1. Identify a simpler, unified interface for the subsystem or component.

2. Design a 'wrapper' class that encapsulates the subsystem.

3. The facade/wrapper captures the complexity and collaborations of
the component, and delegates to the appropriate methods.

4. The client uses (is coupled to) the Facade only.

5. Consider whether additional Facades would add value.

Facade | 49

50 | Facade

Rules of thumb
Facade defines a new interface, whereas Adapter uses an old

interface. Remember that Adapter makes two existing interfaces work
together as opposed to defining an entirely new one.

Whereas Flyweight shows how to make lots of little objects, Facade

shows how to make a single object represent an entire subsystem.

Mediator is similar to Facade in that it abstracts functionality of

existing classes. Mediator abstracts/centralizes arbitrary
communications between colleague objects. It routinely "adds value",
and it is known/referenced by the colleague objects. In contrast, Facade
defines a simpler interface to a subsystem, it doesn't add new
functionality, and it is not known by the subsystem classes.

Abstract Factory can be used as an alternative to Facade to hide

platform-specific classes.

Facade objects are often Singletons because only one Facade object

is required.

Adapter and Facade are both wrappers; but they are different kinds

of wrappers. The intent of Facade is to produce a simpler interface, and
the intent of Adapter is to design to an existing interface. While Facade
routinely wraps multiple objects and Adapter wraps a single object;
Facade could front-end a single complex object and Adapter could wrap
several legacy objects.

Factory Method | 51

Factory Method

Intent
• Define an interface for creating an object, but let subclasses decide

which class to instantiate. Factory Method lets a class defer
instantiation to subclasses.

• Defining a "virtual" constructor.

• The new operator considered harmful.

Problem
A framework needs to standardize the architectural model for a

range of applications, but allow for individual applications to define
their own domain objects and provide for their instantiation.

Discussion
Factory Method is to creating objects as Template Method is to

implementing an algorithm. A superclass specifies all standard and
generic behavior (using pure virtual "placeholders" for creation steps),
and then delegates the creation details to subclasses that are supplied by
the client.

Factory Method makes a design more customizable and only a little
more complicated. Other design patterns require new classes, whereas
Factory Method only requires a new operation.

People often use Factory Method as the standard way to create
objects; but it isn't necessary if: the class that's instantiated never
changes, or instantiation takes place in an operation that subclasses can
easily override (such as an initialization operation).

Factory Method is similar to Abstract Factory but without the
emphasis on families.

Factory Methods are routinely specified by an architectural
framework, and then implemented by the user of the framework.

Structure
The implementation of Factory Method discussed in the Gang of

Four (below) largely overlaps with that of Abstract Factory. For that
reason, the presentation in this chapter focuses on the approach that has
become popular since.

An increasingly popular definition of factory method is: a static
method of a class that returns an object of that class' type. But unlike a
constructor, the actual object it returns might be an instance of a
subclass.

Unlike a constructor, an existing object might be reused, instead of a
new object created. Unlike a constructor, factory methods can have
different and more descriptive names (e.g.
Color.make_RGB_color(float red, float green, float blue)
and Color.make_HSB_color(float hue, float saturation, float
brightness)

52 | Factory Method

The client is totally decoupled from the implementation details of
derived classes. Polymorphic creation is now possible.

Example
The Factory Method defines an interface for creating objects, but lets

subclasses decide which classes to instantiate.

Injection molding presses demonstrate this pattern. Manufacturers of
plastic toys process plastic molding powder, and inject the plastic into
molds of the desired shapes. The class of toy (car, action figure, etc.) is
determined by the mold.

Factory Method | 53

Check list

1. If you have an inheritance hierarchy that exercises polymorphism,
consider adding a polymorphic creation capability by defining a
static factory method in the base class.

2. Design the arguments to the factory method. What qualities or
characteristics are necessary and sufficient to identify the correct
derived class to instantiate?

3. Consider designing an internal "object pool" that will allow objects
to be reused instead of created from scratch.

4. Consider making all constructors private or protected.

Rules of thumb
Abstract Factory classes are often implemented with Factory

Methods, but they can be implemented using Prototype.

Factory Methods are usually called within Template Methods.

Factory Method: creation through inheritance. Prototype: creation

through delegation.

Often, designs start out using Factory Method (less complicated,

more customizable, subclasses proliferate) and evolve toward Abstract

54 | Factory Method

Factory Method | 55

Factory, Prototype, or Builder (more flexible, more complex) as the
designer discovers where more flexibility is needed.

Prototype doesn't require subclassing, but it does require an Initialize

operation. Factory Method requires subclassing, but doesn't require
Initialize.

The advantage of a Factory Method is that it can return the same

instance multiple times, or can return a subclass rather than an object of
that exact type.

Some Factory Method advocates recommend that as a matter of

language design (or failing that, as a matter of style) absolutely all
constructors should be private or protected. It's no one else's business
whether a class manufactures a new object or recycles an old one.

The new operator considered harmful. There is a difference between

requesting an object and creating one. The new operator always creates
an object, and fails to encapsulate object creation. A Factory Method
enforces that encapsulation, and allows an object to be requested
without inextricable coupling to the act of creation.

56 | Flyweight

Flyweight

Intent
• Use sharing to support large numbers of fine-grained objects

efficiently.

• The Motif GUI strategy of replacing heavy-weight widgets with
light-weight gadgets.

Problem
Designing objects down to the lowest levels of system "granularity"

provides optimal flexibility, but can be unacceptably expensive in terms
of performance and memory usage.

Discussion
The Flyweight pattern describes how to share objects to allow their

use at fine granularities without prohibitive cost. Each "flyweight"
object is divided into two pieces: the state-dependent (extrinsic) part,
and the state-independent (intrinsic) part. Intrinsic state is stored
(shared) in the Flyweight object. Extrinsic state is stored or computed
by client objects, and passed to the Flyweight when its operations are
invoked.

An illustration of this approach would be Motif widgets that have
been re-engineered as light-weight gadgets. Whereas widgets are
"intelligent" enough to stand on their own; gadgets exist in a dependent
relationship with their parent layout manager widget.

Each layout manager provides context-dependent event handling,
real estate management, and resource services to its flyweight gadgets,
and each gadget is only responsible for context-independent state and
behavior.

Structure
Flyweights are stored in a Factory's repository. The client restrains

herself from creating Flyweights directly, and requests them from the

Factory. Each Flyweight cannot stand on its own. Any attributes that
would make sharing impossible must be supplied by the client
whenever a request is made of the Flyweight. If the context lends itself
to "economy of scale" (i.e. the client can easily compute or look-up the
necessary attributes), then the Flyweight pattern offers appropriate
leverage.

The Ant, Locust, and Cockroach classes can be light-weight
because their instance-specific state has been de-encapsulated, or
externalized, and must be supplied by the client.

Flyweight | 57

Example
The Flyweight uses sharing to support large numbers of objects

efficiently.

The public switched telephone network is an example of a
Flyweight. There are several resources such as dial tone generators,
ringing generators, and digit receivers that must be shared between all
subscribers. A subscriber is unaware of how many resources are in the
pool when he or she lifts the handset to make a call. All that matters to
subscribers is that a dial tone is provided, digits are received, and the
call is completed.

Check list
1. Ensure that object overhead is an issue needing attention, and, the

client of the class is able and willing to absorb responsibility
realignment.

2. Divide the target class's state into: shareable (intrinsic) state, and
non-shareable (extrinsic) state.

3. Remove the non-shareable state from the class attributes, and add it
the calling argument list of affected methods.

4. Create a Factory that can cache and reuse existing class instances.

5. The client must use the Factory instead of the new operator to
request objects.

6. The client (or a third party) must look-up or compute the non-
shareable state, and supply that state to class methods.

58 | Flyweight

Flyweight | 59

Rules of thumb
Whereas Flyweight shows how to make lots of little objects, Facade

shows how to make a single object represent an entire subsystem.

Flyweight is often combined with Composite to implement shared

leaf nodes.

Terminal symbols within Interpreter's abstract syntax tree can be

shared with Flyweight.

Flyweight explains when and how State objects can be shared.

60 | Interpreter

Interpreter

Intent
• Given a language, define a representation for its grammar along with

an interpreter that uses the representation to interpret sentences in
the language.

• Map a domain to a language, the language to a grammar, and the
grammar to a hierarchical object-oriented design.

Problem
A class of problems occurs repeatedly in a well-defined and well-

understood domain. If the domain were characterized with a
"language", then problems could be easily solved with an interpretation
"engine".

Discussion
The Interpreter pattern discusses: defining a domain language (i.e.

problem characterization) as a simple language grammar, representing
domain rules as language sentences, and interpreting these sentences to
solve the problem. The pattern uses a class to represent each grammar
rule. And since grammars are usually hierarchical in structure, an
inheritance hierarchy of rule classes maps nicely.

An abstract base class specifies the method interpret. Each
concrete subclass implements interpret by accepting (as an argument)
the current state of the language stream, and adding its contribution to
the problem solving process.

Structure
Interpreter suggests modeling the domain with a recursive grammar.

Each rule in the grammar is either a 'composite' (a rule that references
other rules) or a terminal (a leaf node in a tree structure). Interpreter
relies on the recursive traversal of the Composite pattern to interpret the
'sentences' it is asked to process.

Example
The Intepreter pattern defines a grammatical representation for a

language and an interpreter to interpret the grammar.

Musicians are examples of Interpreters. The pitch of a sound and its
duration can be represented in musical notation on a staff. This notation
provides the language of music. Musicians playing the music from the
score are able to reproduce the original pitch and duration of each sound
represented.

Interpreter | 61

62 | Interpreter

Check list
1. Decide if a "little language" offers a justifiable return on investment.

2. Define a grammar for the language.

3. Map each production in the grammar to a class.

4. Organize the suite of classes into the structure of the Composite
pattern.

5. Define an interpret(Context) method in the Composite hierarchy.

6. The Context object encapsulates the current state of the input and
output as the former is parsed and the latter is accumulated. It is
manipulated by each grammar class as the "interpreting" process
transforms the input into the output.

Rules of thumb
Considered in its most general form (i.e. an operation distributed

over a class hierarchy based on the Composite pattern), nearly every use
of the Composite pattern will also contain the Interpreter pattern. But
the Interpreter pattern should be reserved for those cases in which you
want to think of this class hierarchy as defining a language.

Interpreter can use State to define parsing contexts.

The abstract syntax tree of Interpreter is a Composite (therefore

Iterator and Visitor are also applicable).

Terminal symbols within Interpreter's abstract syntax tree can be

shared with Flyweight.

The pattern doesn't address parsing. When the grammar is very

complex, other techniques (such as a parser) are more appropriate.

Iterator | 63

Iterator

Intent
• Provide a way to access the elements of an aggregate object

sequentially without exposing its underlying representation.

• The C++ and Java standard library abstraction that makes it possible
to decouple collection classes and algorithms.

• Promote to "full object status" the traversal of a collection.

• Polymorphic traversal

Problem
Need to "abstract" the traversal of wildly different data structures so that
algorithms can be defined that are capable of interfacing with each
transparently.

Discussion
An aggregate object such as a list should give you a way to access its

elements without exposing its internal structure. Moreover, you might
want to traverse the list in different ways, depending on what you need
to accomplish. But you probably don't want to bloat the List interface
with operations for different traversals, even if you could anticipate the
ones you'll require. You might also need to have more than one
traversal pending on the same list. And, providing a uniform interface
for traversing many types of aggregate objects (i.e. polymorphic
iteration) might be valuable.

The Iterator pattern lets you do all this. The key idea is to take the
responsibility for access and traversal out of the aggregate object and
put it into an Iterator object that defines a standard traversal protocol.

The Iterator abstraction is fundamental to an emerging technology
called "generic programming". This strategy seeks to explicitly separate
the notion of "algorithm" from that of "data structure". The motivation
is to: promote component-based development, boost productivity, and
reduce configuration management.

As an example, if you wanted to support four data structures (array,
binary tree, linked list, and hash table) and three algorithms (sort, find,
and merge), a traditional approach would require four times three
permutations to develop and maintain. Whereas, a generic programming
approach would only require four plus three configuration items.

Structure
The Client uses the Collection class’ public interface directly. But

access to the Collection’s elements is encapsulated behind the
additional level of abstraction called Iterator. Each Collection derived
class knows which Iterator derived class to create and return. After that,
the Client relies on the interface defined in the Iterator base class.

Example
The Iterator provides ways to access elements of an aggregate object

sequentially without exposing the underlying structure of the object.

Files are aggregate objects. In office settings where access to files is
made through administrative or secretarial staff, the Iterator pattern is
demonstrated with the secretary acting as the Iterator. Several television
comedy skits have been developed around the premise of an executive

64 | Iterator

trying to understand the secretary's filing system. To the executive, the
filing system is confusing and illogical, but the secretary is able to
access files quickly and efficiently.

On early television sets, a dial was used to change channels. When
channel surfing, the viewer was required to move the dial through each
channel position, regardless of whether or not that channel had
reception. On modern television sets, a next and previous button are
used. When the viewer selects the "next" button, the next tuned channel
will be displayed.

Consider watching television in a hotel room in a strange city. When
surfing through channels, the channel number is not important, but the
programming is. If the programming on one channel is not of interest,
the viewer can request the next channel, without knowing its number.

Check list
1. Add a create_iterator method to the "collection" class, and grant

the "iterator" class privileged access.

2. Design an "iterator" class that can encapsulate traversal of the
"collection" class.

3. Clients ask the collection object to create an iterator object.

4. Clients use the first(), is_done(), next(), and current_item()
protocol to access the elements of the collection class.

Iterator | 65

66 | Iterator

Rules of thumb
The abstract syntax tree of Interpreter is a Composite (therefore

Iterator and Visitor are also applicable).

Iterator can traverse a Composite. Visitor can apply an operation

over a Composite.

Polymorphic Iterators rely on Factory Methods to instantiate the

appropriate Iterator subclass.

Memento is often used in conjunction with Iterator. An Iterator can

use a Memento to capture the state of an iteration. The Iterator stores
the Memento internally.

Mediator

Intent
• Define an object that encapsulates how a set of objects interact.

Mediator promotes loose coupling by keeping objects from
referring to each other explicitly, and it lets you vary their
interaction independently.

• Design an intermediary to decouple many peers.

• Promote the many-to-many relationships between interacting
peers to "full object status".

Problem
We want to design reusable components, but dependencies between

the potentially reusable pieces demonstrates the "spaghetti code"
phenomenon (trying to scoop a single serving results in an "all or
nothing clump").

Discussion
In Unix, permission to access system resources is managed at three

levels of granularity: world, group, and owner. A group is a collection
of users intended to model some functional affiliation. Each user on the
system can be a member of one or more groups, and each group can
have zero or more users assigned to it. Next figure shows three users
that are assigned to all three groups.

Mediator | 67

If we were to model this in software, we could decide to have User
objects coupled to Group objects, and Group objects coupled to User
objects. Then when changes occur, both classes and all their instances
would be affected.

An alternate approach would be to introduce "an additional level of
indirection" - take the mapping of users to groups and groups to users,
and make it an abstraction unto itself. This offers several advantages:
Users and Groups are decoupled from one another, many mappings can
easily be maintained and manipulated simultaneously, and the mapping
abstraction can be extended in the future by defining derived classes.

Partitioning a system into many objects generally enhances

reusability, but proliferating interconnections between those objects
tend to reduce it again. The mediator object: encapsulates all
interconnections, acts as the hub of communication, is responsible for
controlling and coordinating the interactions of its clients, and promotes
loose coupling by keeping objects from referring to each other
explicitly.

The Mediator pattern promotes a "many-to-many relationship
network" to "full object status". Modelling the inter-relationships with
an object enhances encapsulation, and allows the behavior of those
inter-relationships to be modified or extended through subclassing.

An example where Mediator is useful is the design of a user and
group capability in an operating system. A group can have zero or more
users, and, a user can be a member of zero or more groups. The

68 | Mediator

Mediator pattern provides a flexible and non-invasive way to associate
and manage users and groups.

Structure

Colleagues (or peers) are not coupled to one another. Each talks to
the Mediator, which in turn knows and conducts the orchestration of the
others. The "many to many" mapping between colleagues that would
otherwise exist, has been "promoted to full object status". This new
abstraction provides a locus of indirection where additional leverage
can be hosted.

Example
The Mediator defines an object that controls how a set of objects

interact. Loose coupling between colleague objects is achieved by
having colleagues communicate with the Mediator, rather than with
each other.

Mediator | 69

The control tower at a controlled airport demonstrates this pattern
very well. The pilots of the planes approaching or departing the terminal
area communicate with the tower rather than explicitly communicating
with one another. The constraints on who can take off or land are
enforced by the tower. It is important to note that the tower does not
control the whole flight. It exists only to enforce constraints in the
terminal area.

Check list
1. Identify a collection of interacting objects that would benefit from

mutual decoupling.

2. Encapsulate those interactions in the abstraction of a new class.

3. Create an instance of that new class and rework all "peer" objects to
interact with the Mediator only.

4. Balance the principle of decoupling with the principle of distributing
responsibility evenly.

5. Be careful not to create a "controller" or "god" object.

Rules of thumb
Chain of Responsibility, Command, Mediator, and Observer, address

how you can decouple senders and receivers, but with different trade-

70 | Mediator

Mediator | 71

offs. Chain of Responsibility passes a sender request along a chain of
potential receivers.

Command normally specifies a sender-receiver connection with a
subclass. Mediator has senders and receivers reference each other
indirectly. Observer defines a very decoupled interface that allows for
multiple receivers to be configured at run-time.

Mediator and Observer are competing patterns. The difference

between them is that Observer distributes communication by
introducing "observer" and "subject" objects, whereas a Mediator object
encapsulates the communication between other objects. We've found it
easier to make reusable Observers and Subjects than to make reusable
Mediators.

On the other hand, Mediator can leverage Observer for dynamically

registering colleagues and communicating with them.

Mediator is similar to Facade in that it abstracts functionality of

existing classes. Mediator abstracts/centralizes arbitrary communication
between colleague objects, it routinely "adds value", and it is
known/referenced by the colleague objects (i.e. it defines a
multidirectional protocol).

In contrast, Facade defines a simpler interface to a subsystem, it
doesn't add new functionality, and it is not known by the subsystem
classes (i.e. it defines a unidirectional protocol where it makes requests
of the subsystem classes but not vice versa).

72 | Memento

Memento

Intent
• Without violating encapsulation, capture and externalize an object's

internal state so that the object can be returned to this state later.

• A magic cookie that encapsulates a "check point" capability.

• Promote undo or rollback to full object status.

Problem
Need to restore an object back to its previous state (undo or rollback

operations).

Discussion
The client requests a Memento from the source object when it needs

to checkpoint the source object's state. The source object initializes the
Memento with a characterization of its state.

The client is the "care-taker" of the Memento, but only the source
object can store and retrieve information from the Memento (the
Memento is "opaque" to the client and all other objects). If the client
subsequently needs to "rollback" the source object's state, it hands the
Memento back to the source object for reinstatement.

An unlimited "undo" and "redo" capability can be readily
implemented with a stack of Command objects and a stack of Memento
objects.

The Memento design pattern defines three distinct roles:

1. Originator - the object that knows how to save itself.

2. Caretaker - the object that knows why and when the Originator
needs to save and restore itself.

3. Memento - the lock box that is written and read by the
Originator, and shepherded by the Caretaker.

Structure

Example
The Memento captures and externalizes an object's internal state so

that the object can later be restored to that state.

This pattern is common among do-it-yourself mechanics repairing
drum brakes on their cars. The drums are removed from both sides,
exposing both the right and left brakes. Only one side is disassembled
and the other serves as a Memento of how the brake parts fit together.
Only after the job has been completed on one side is the other side
disassembled. When the second side is disassembled, the first side acts
as the Memento.

Memento | 73

74 | Memento

Check list
1. Identify the roles of “caretaker” and “originator”.

2. Create a Memento class and declare the originator a friend.

3. Caretaker knows when to "check point" the originator.

4. Originator creates a Memento and copies its state to that Memento.

5. Caretaker holds on to (but cannot peek into) the Memento.

6. Caretaker knows when to "roll back" the originator.

7. Originator reinstates itself using the saved state in the Memento.

Rules of thumb
Command and Memento act as magic tokens to be passed around

and invoked at a later time. In Command, the token represents a request;
in Memento, it represents the internal state of an object at a particular
time. Polymorphism is important to Command, but not to Memento
because its interface is so narrow that a memento can only be passed as
a value.

Command can use Memento to maintain the state required for an

undo operation.

Memento is often used in conjunction with Iterator. An Iterator can

use a Memento to capture the state of an iteration. The Iterator stores
the Memento internally.

Null Object | 75

Null Object

Intent
The intent of a Null Object is to encapsulate the absence of an object

by providing a substitutable alternative that offers suitable default do
nothing behavior. In short, a design where "nothing will come of
nothing"

Use the Null Object pattern when:

• an object requires a collaborator. The Null Object pattern does
not introduce this collaboration--it makes use of a
collaboration that already exists

• some collaborator instances should do nothing
• you want to abstract the handling of null away from the client

Problem
Given that an object reference may be optionally null, and that the

result of a null check is to do nothing or use some default value, how
can the absence of an object — the presence of a null reference — be
treated transparently?

Discussion
Sometimes a class that requires a collaborator does not need the

collaborator to do anything. However, the class wishes to treat a
collaborator that does nothing the same way it treats one that actually
provides behavior.

Consider for example a simple screen saver which displays balls that
move about the screen and have special color effects. This is easily
achieved by creating a Ball class to represent the balls and using a
Strategy pattern to control the ball's motion and another Strategy pattern
to control the ball's color.

It would then be trivial to write strategies for many different types of
motion and color effects and create balls with any combination of those.
However, to start with you want to create the simplest strategies

possible to make sure everything is working. And these strategies could
also be useful later since you want as strategies as possible strategies.

Now, the simplest strategy would be no strategy. That is do nothing,

don't move and don't change color. However, the Strategy pattern
requires the ball to have objects which implement the strategy
interfaces. This is where the Null Object pattern becomes useful.

Simply implement a NullMovementStrategy which doesn't move
the ball and a NullColorStrategy which doesn't change the ball's
color. Both of these can probably be implemented with essentially no
code. All the methods in these classes do "nothing". They are perfect
examples of the Null Object Pattern.

The key to the Null Object pattern is an abstract class that defines
the interface for all objects of this type. The Null Object is implemented
as a subclass of this abstract class. Because it conforms to the abstract
class' interface, it can be used any place this type of object is needed. As
compared to using a special "null" value which doesn't actually
implement the abstract interface and which must constantly be checked
for with special code in any object which uses the abstract interface.

It is sometimes thought that Null Objects are over simple and
"stupid" but in truth a Null Object always knows exactly what needs to

76 | Null Object

be done without interacting with any other objects. So in truth it is very
"smart."

Structure

Client

• requires a collaborator

AbstractObject

• declares the interface for Client's collaborator
• implements default behavior for the interface common to all

classes, as appropriate

RealObject

• defines a concrete subclass of AbstractObject whose
instances provide useful behavior that Client expects

NullObject

• provides an interface identical to AbstractObject's so that a
null object can be substituted for a real object

• implements its interface to do nothing. What exactly it
means to do nothing depends on what sort of behavior
Client is expecting

• when there is more than one way to do nothing, more than
one NullObj ct class may be required e

Rules of thumb
The Null Object class is often implemented as a Singleton. Since a

null object usually does not have any state, its state can't change, so

Null Object | 77

78 | Null Object

multiple instances are identical. Rather than use multiple identical
instances, the system can just use a single instance repeatedly.

If some clients expect the null object to do nothing one way and

some another, multiple NullObject classes will be required. If the do
nothing behavior must be customized at run time, the NullObject class
will require pluggable variables so that the client can specify how the
null object should do nothing (see the discussion of pluggable adaptors
in the Adapter pattern). This may generally be a symptom of the
AbstractObject not having a well defined (semantic) interface.

A Null Object does not transform to become a Real Object. If the

object may decide to stop providing do nothing behavior and start
providing real behavior, it is not a null object. It may be a real object
with a do nothing mode, such as a controller which can switch in and
out of read-only mode. If it is a single object which must mutate from a
do nothing object to a real one, it should be implemented with the State
pattern or perhaps the Proxy pattern. In this case a Null State may be
used or the proxy may hold a Null Object.

The use of a null object can be similar to that of a Proxy, but the two

patterns have different purposes. A proxy provides a level of indirection
when accessing a real subject, thus controlling access to the subject. A
null collaborator does not hide a real object and control access to it, it
replaces the real object. A proxy may eventually mutate to start acting
like a real subject. A null object will not mutate to start providing real
behavior, it will always provide do nothing behavior.

A Null Object can be a special case of the Strategy pattern. Strategy

specifies several ConcreteStrategy classes as different approaches for
accomplishing a task. If one of those approaches is to consistently do
nothing, that ConcreteStrategy is a NullObject. For example, a
Controller is a View's Strategy for handling input, and NoController is
the Strategy that ignores all input.

A Null Object can be a special case of the State pattern. Normally,

each ConcreteState has some do nothing methods because they're not
appropriate for that state. In fact, a given method is often implemented

Null Object | 79

to do something useful in most states but to do nothing in at least one
state. If a particular ConcreteState implements most of its methods to
do nothing or at least give null results, it becomes a do nothing state and
as such is a null state.

A Null Object can be used to allow a Visitor to safely visit a

hierarchy and handle the null situation.

Null Object is a concrete collaborator class that acts as the

collaborator for a client which needs one. The null behavior is not
designed to be mixed into an object that needs some do nothing
behavior. It is designed for a class which delegates to a collaborator all
of the behavior that may or may not be do nothing behavior.

80 | Object Pool

Object Pool

Intent
Object pooling can offer a significant performance boost; it is most

effective in situations where the cost of initializing a class instance is
high, the rate of instantiation of a class is high, and the number of
instantiations in use at any one time is low.

Problem
Object pools (otherwise known as resource pools) are used to

manage the object caching. A client with access to a Object pool can
avoid creating a new Objects by simply asking the pool for one that has
already been instantiated instead. Generally the pool will be a growing
pool, i.e. the pool itself will create new objects if the pool is empty, or
we can have a pool, which restricts the number of objects created.

It is desirable to keep all Reusable objects that are not currently in
use in the same object pool so that they can be managed by one
coherent policy. To achieve this, the Reusable Pool class is designed to
be a singleton class.

Discussion
The Object Pool lets others "check out" objects from its pool, when

those objects are no longer needed by their processes, they are returned
to the pool in order to be reused.

However, we don't want a process to have to wait for a particular
object to be released, so the Object Pool also instantiates new objects as
they are required, but must also implement a facility to clean up unused
objects periodically.

Structure
The general idea for the Connection Pool pattern is that if instances

of a class can be reused, you avoid creating instances of the class by
reusing them.

Reusable - Instances of classes in this role collaborate with other
objects for a limited amount of time, and then they are no longer needed
for that collaboration.

Client - Instances of classes in this role use Reusable objects.

ReusablePool - Instances of classes in this role manage Reusable
objects for use by Client objects.

Usually, it is desirable to keep all Reusable objects that are not
currently in use in the same object pool so that they can be managed by
one coherent policy. To achieve this, the ReusablePool class is
designed to be a singleton class. Its constructor(s) are private, which
forces other classes to call its getInstance method to get the one
instance of the ReusablePool class.

A Client object calls a ReusablePool object's acquireReusable
method when it needs a Reusable object. A ReusablePool object
maintains a collection of Reusable objects. It uses the collection of
Reusable objects to contain a pool of Reusable objects that are not
currently in use.

If there are any Reusable objects in the pool when the
acquireReusable method is called, it removes a Reusable object from
the pool and returns it. If the pool is empty, then the acquireReusable
method creates a Reusable object if it can. If the acquireReusable
method cannot create a new Reusable object, then it waits until a
Reusable object is returned to the collection.

Client objects pass a Reusable object to a ReusablePool object's
releaseReusable method when they are finished with the object. The
releaseReusable method returns a Reusable object to the pool of
Reusable objects that are not in use.

Object Pool | 81

In many applications of the Object Pool pattern, there are reasons for
limiting the total number of Reusable objects that may exist. In such
cases, the ReusablePool object that creates Reusable objects is
responsible for not creating more than a specified maximum number of
Reusable objects. If ReusablePool objects are responsible for limiting
the number of objects they will create, then the ReusablePool class will
have a method for specifying the maximum number of objects to be
created. That method is indicated in the above diagram as
setMaxPoolSize.

Example
Do you like bowling? If you do, you probably know that you should
change your shoes when you getting the bowling club. Shoe shelf is
wonderful example of Object Pool. Once you want to play, you'll get
your pair (aquireReusable) from it. After the game, you'll return shoes
back to the shelf (releaseReusable).

82 | Object Pool

Object Pool | 83

Check list
1. Create ObjectPool class with private array of Objects inside

2. Create acquare and release methods in ObjectPool class

3. Make sure that your ObjectPool is Singleton

Rules of thumb
The Factory Method pattern can be used to encapsulate the creation

logic for objects. However, it does not manage them after their creation,
the object pool pattern keeps track of the objects it creates.

Object Pools are usually implemented as Singletons.

84 | Observer

Observer

Intent
• Define a one-to-many dependency between objects so that when one

object changes state, all its dependents are notified and updated
automatically.

• Encapsulate the core (or common or engine) components in a
Subject abstraction, and the variable (or optional or user interface)
components in an Observer hierarchy.

• The "View" part of Model-View-Controller.

Problem
A large monolithic design does not scale well as new graphing or

monitoring requirements are levied.

Discussion
Define an object that is the "keeper" of the data model and/or

business logic (the Subject). Delegate all "view" functionality to
decoupled and distinct Observer objects. Observers register themselves
with the Subject as they are created. Whenever the Subject changes, it
broadcasts to all registered Observers that it has changed, and each
Observer queries the Subject for that subset of the Subject's state that it
is responsible for monitoring.

The protocol described above specifies a "pull" interaction model.
Instead of the Subject "pushing" what has changed to all Observers,
each Observer is responsible for "pulling" its particular "window of
interest" from the Subject. The "push" model compromises reuse, while
the "pull" model is less efficient.

Issues that are discussed, but left to the discretion of the designer,
include: implementing event compression (only sending a single change
broadcast after a series of consecutive changes has occurred), having a
single Observer monitoring multiple Subjects, and ensuring that a
Subject notify its Observers when it is about to go away.

The Observer pattern captures the lion's share of the Model-View-
Controller architecture that has been a part of the Smalltalk community
for years.

Structure

Subject represents the core (or independent or common or engine)
abstraction. Observer represents the variable (or dependent or optional
or user interface) abstraction. The Subject prompts the Observer objects
to do their thing. Each Observer can call back to the Subject as needed.

Example
The Observer defines a one-to-many relationship so that when one

object changes state, the others are notified and updated automatically.

Some auctions demonstrate this pattern. Each bidder possesses a
numbered paddle that is used to indicate a bid. The auctioneer starts the
bidding, and "observes" when a paddle is raised to accept the bid. The
acceptance of the bid changes the bid price which is broadcast to all of
the bidders in the form of a new bid.

Observer | 85

Check list

1. Differentiate between the core (or independent) functionality and the
optional (or dependent) functionality.

2. Model the independent functionality with a "subject" abstraction.

3. Model the dependent functionality with an "observer" hierarchy.

4. The Subject is coupled only to the Observer base class.

5. The client configures the number and type of Observers.

6. Observers register themselves with the Subject.

7. The Subject broadcasts events to all registered Observers.

8. The Subject may "push" information at the Observers, or, the
Observers may "pull" the information they need from the Subject.

Rules of thumb
Chain of Responsibility, Command, Mediator, and Observer, address

how you can decouple senders and receivers, but with different trade-
offs. Chain of Responsibility passes a sender request along a chain of
potential receivers. Command normally specifies a sender-receiver
connection with a subclass. Mediator has senders and receivers

86 | Observer

Observer | 87

reference each other indirectly. Observer defines a very decoupled
interface that allows for multiple receivers to be configured at run-time.

Mediator and Observer are competing patterns. The difference

between them is that Observer distributes communication by
introducing "observer" and "subject" objects, whereas a Mediator object
encapsulates the communication between other objects. We've found it
easier to make reusable Observers and Subjects than to make reusable
Mediators.

On the other hand, Mediator can leverage Observer for dynamically

registering colleagues and communicating with them.

88 | Private Class Data

Private Class Data

Intent
• Control write access to class attributes

• Separate data from methods that use it

• Encapsulate class data initialization

• Providing new type of final - final after constructor

Problem
A class may expose its attributes (class variables) to manipulation

when manipulation is no longer desirable, e.g. after construction. Using
the private class data design pattern prevents that undesirable
manipulation.

A class may have one-time mutable attributes that cannot be
declared final. Using this design pattern allows one-time setting of those
class attributes.

The motivation for this design pattern comes from the design goal of
protecting class state by minimizing the visibility of its attributes (data).

Discussion
The private class data design pattern seeks to reduce exposure of

attributes by limiting their visibility.

It reduces the number of class attributes by encapsulating them in
single Data object. It allows the class designer to remove write privilege
of attributes that are intended to be set only during construction, even
from methods of the target class.

Structure
The private class data design pattern solves the problems above by

extracting a data class for the target class and giving the target class
instance an instance of the extracted data class.

Check list
1. Create data class. Move to data class all attributes that need hiding.

2. Create in main class instance of data class.

3. Main class must initialize data class through the data class's
constructor.

4. Expose each attribute (variable or property) of data class through a
getter.

5. Expose each attribute that will change in further through a setter.

Private Class Data | 89

90 | Prototype

Prototype

Intent
• Specify the kinds of objects to create using a prototypical instance,

and create new objects by copying this prototype.

• Co-opt one instance of a class for use as a breeder of all future
instances.

• The new operator considered harmful.

Problem
Application "hard wires" the class of object to create in each "new"

expression.

Discussion
Declare an abstract base class that specifies a pure virtual "clone"

method, and, maintains a dictionary of all "cloneable" concrete derived
classes. Any class that needs a "polymorphic constructor" capability:
derives itself from the abstract base class, registers its prototypical
instance, and implements the clone operation.

The client then, instead of writing code that invokes the "new"
operator on a hard-wired class name, calls a "clone" operation on the
abstract base class, supplying a string or enumerated data type that
designates the particular concrete derived class desired.

Structure
The Factory knows how to find the correct Prototype, and each

Product knows how to spawn new instances of itself.

Example
The Prototype pattern specifies the kind of objects to create using a

prototypical instance. Prototypes of new products are often built prior to
full production, but in this example, the prototype is passive and does
not participate in copying itself.

The mitotic division of a cell - resulting in two identical cells - is an
example of a prototype that plays an active role in copying itself and
thus, demonstrates the Prototype pattern. When a cell splits, two cells of
identical genotvpe result. In other words, the cell clones itself.

Prototype | 91

92 | Prototype

Check list
1. Add a clone method to the existing "product" hierarchy.

2. Design a "registry" that maintains a cache of prototypical objects.
The registry could be encapsulated in a new Factory class, or in
the base class of the "product" hierarchy.

3. Design a factory method that: may (or may not) accept
arguments, finds the correct prototype object, calls clone on that
object, and returns the result.

4. The client replaces all references to the new operator with calls to
the factory method.

Rules of thumb
Sometimes creational patterns are competitors: there are cases when

either Prototype or Abstract Factory could be used properly. At other
times they are complementory: Abstract Factory might store a set of
Prototypes from which to clone and return product objects. Abstract
Factory, Builder, and Prototype can use Singleton in their
implementations.

Abstract Factory classes are often implemented with Factory

Methods, but they can be implemented using Prototype.
Factory Method: creation through inheritance. Protoype: creation

through delegation.

Often, designs start out using Factory Method (less complicated,

more customizable, subclasses proliferate) and evolve toward Abstract
Factory, Protoype, or Builder (more flexible, more complex) as the
designer discovers where more flexibility is needed.

Prototype doesn't require subclassing, but it does require an

"initialize" operation. Factory Method requires subclassing, but doesn't
require Initialize.

Designs that make heavy use of the Composite and Decorator

patterns often can benefit from Prototype as well.

Prototype | 93

Prototype co-opts one instance of a class for use as a breeder of all
future instances.

Prototypes are useful when object initialization is expensive, and

you anticipate few variations on the initialization parameters. In this
context, Prototype can avoid expensive "creation from scratch", and
support cheap cloning of a pre-initialized prototype.

Prototype is unique among the other creational patterns in that it

doesn't require a class – only an object. Object-oriented languages like
Self and Omega that do away with classes completely rely on
prototypes for creating new objects.

94 | Proxy

Proxy

Intent

• Provide a surrogate or placeholder for another object to control
access to it.

• Use an extra level of indirection to support distributed, controlled, or
intelligent access.

• Add a wrapper and delegation to protect the real component from
undue complexity.

Problem
You need to support resource-hungry objects, and you do not want

to instantiate such objects unless and until they are actually requested
by the client.

Discussion
Design a surrogate, or proxy, object that: instantiates the real object

the first time the client makes a request of the proxy, remembers the
identity of this real object, and forwards the instigating request to this
real object. Then all subsequent requests are simply forwarded directly
to the encapsulated real object.

There are four common situations in which the Proxy pattern is
applicable.

1. A virtual proxy is a placeholder for "expensive to create" objects.
The real object is only created when a client first
requests/accesses the object.

2. A remote proxy provides a local representative for an object that
resides in a different address space. This is what the "stub" code
in RPC and CORBA provides.

3. A protective proxy controls access to a sensitive master object.
The "surrogate" object checks that the caller has the access
permissions required prior to forwarding the request.

4. A smart proxy interposes additional actions when an object is
accessed. Typical uses include:

o Counting the number of references to the real object so that it
can be freed automatically when there are no more references
(aka smart pointer),
o Loading a persistent object into memory when it's first
referenced,
o Checking that the real object is locked before it is accessed to
ensure that no other object can change it.

Structure
By defining a Subject interface, the presence of the Proxy object

standing in place of the RealSubject is transparent to the client.

Example
The Proxy provides a surrogate or place holder to provide access to

an object.

A check or bank draft is a proxy for funds in an account. A check
can be used in place of cash for making purchases and ultimately
controls access to cash in the issuer's account.

Proxy | 95

Check list
1. Identify the leverage or "aspect" that is best implemented as a

wrapper or surrogate.

2. Define an interface that will make the proxy and the original
component interchangeable.

3. Consider defining a Factory that can encapsulate the decision of
whether a proxy or original object is desirable.

4. The wrapper class holds a pointer to the real class and implements
the interface.

5. The pointer may be initialized at construction, or on first use.

6. Each wrapper method contributes its leverage, and delegates to the
wrappee object.

Rules of thumb
Adapter provides a different interface to its subject. Proxy provides

the same interface. Decorator provides an enhanced interface.

Decorator and Proxy have different purposes but similar structures.

Both describe how to provide a level of indirection to another object,
and the implementations keep a reference to the object to which they
forward requests.

96 | Proxy

Singleton | 97

Singleton

Intent
• Ensure a class has only one instance, and provide a global point of

access to it.

• Encapsulated "just-in-time initialization" or "initialization on first
use".

Problem
Application needs one, and only one, instance of an object.

Additionally, lazy initialization and global access are necessary.

Discussion
Make the class of the single instance object responsible for creation,

initialization, access, and enforcement. Declare the instance as a private
static data member. Provide a public static member function that
encapsulates all initialization code, and provides access to the instance.

The client calls the accessor function (using the class name and
scope resolution operator) whenever a reference to the single instance is
required.

Singleton should be considered only if all three of the following
criteria are satisfied:

• Ownership of the single instance cannot be reasonably assigned

• Lazy initialization is desirable

• Global access is not otherwise provided for

If ownership of the single instance, when and how initialization
occurs, and global access are not issues, Singleton is not sufficiently
interesting.

The Singleton pattern can be extended to support access to an
application-specific number of instances.

The "static member function accessor" approach will not support
subclassing of the Singleton class. If subclassing is desired, refer to the
discussion in the book.

Structure

Make the class of the single instance responsible for access and

"initialization on first use". The single instance is a private static
attribute. The accessor function is a public static method.

Example
The Singleton pattern ensures that a class has only one instance and

provides a global point of access to that instance. It is named after the
singleton set, which is defined to be a set containing one element.

The office of the President of the United States is a Singleton. The
United States Constitution specifies the means by which a president is
elected, limits the term of office, and defines the order of succession. As
a result, there can be at most one active president at any given time.
Regardless of the personal identity of the active president, the title, "The
President of the United States" is a global point of access that identifies
the person in the office.

98 | Singleton

Singleton | 99

Check list
1. Define a private static attribute in the "single instance" class.

2. Define a public static accessor function in the class.

3. Do "lazy initialization" (creation on first use) in the accessor
function.

4. Define all constructors to be protected or private.

5. Clients may only use the accessor function to manipulate the
Singleton.

Rules of thumb
Abstract Factory, Builder, and Prototype can use Singleton in their

implementation.

Facade objects are often Singletons because only one Facade object

is required.

State objects are often Singletons.

The advantage of Singleton over global variables is that you are

absolutely sure of the number of instances when you use Singleton, and,
you can change your mind and manage any number of instances.

The Singleton design pattern is one of the most inappropriately used

patterns. Singletons are intended to be used when a class must have
exactly one instance, no more, no less. Designers frequently use
Singletons in a misguided attempt to replace global variables. A
Singleton is, for intents and purposes, a global variable. The Singleton
does not do away with the global, it merely renames it.

When is Singleton unnecessary? Short answer - most of the time.

Long answer: when it's simpler to pass an object resource as a reference
to the objects that need it, rather than letting objects access the resource
globally.

The real problem with Singletons is that they give you such a good
excuse not to think carefully about the appropriate visibility of an

100 | Singleton

object. Finding the right balance of exposure and protection for an
object is critical for maintaining flexibility.

Our group had a bad habit of using global data, so I did a study

group on Singleton. The next thing I know Singletons appeared
everywhere and none of the problems related to global data went away.

The answer to the global data question is not "Make it a Singleton".
The answer is, "Why in the hell are you using global data?" Changing
the name doesn't change the problem.

In fact, it may make it worse because it gives you the opportunity to
say, "Well I'm not doing that, I'm doing this" – even though this and that
are the same thing.

State | 101

State

Intent
• Allow an object to alter its behavior when its internal state changes.

The object will appear to change its class.

• An object-oriented state machine

• wrapper + polymorphic wrappee + collaboration

Problem
A monolithic object's behavior is a function of its state, and it must

change its behavior at run-time depending on that state. Or, an
application is characterixed by large and numerous case statements that
vector flow of control based on the state of the application.

Discussion
The State pattern is a solution to the problem of how to make

behavior depend on state.

• Define a "context" class to present a single interface to the
outside world.

• Define a State abstract base class.

• Represent the different "states" of the state machine as derived
classes of the State base class.

• Define state-specific behavior in the appropriate State derived
classes.

• Maintain a pointer to the current "state" in the "context" class.

• To change the state of the state machine, change the current
"state" pointer.

The State pattern does not specify where the state transitions will be
defined. The choices are two: the "context" object, or each individual
State derived class. The advantage of the latter option is ease of adding
new State derived classes. The disadvantage is each State derived class
has knowledge of (coupling to) its siblings, which introduces
dependencies between subclasses.

A table-driven approach to designing finite state machines does a
good job of specifying state transitions, but it is difficult to add actions
to accompany the state transitions. The pattern-based approach uses
code (instead of data structures) to specify state transitions, but it does a
good job of accomodating state transition actions.

Structure
The state machine's interface is encapsulated in the "wrapper" class.

The wrappee hierarchy's interface mirrors the wrapper's interface with
the exception of one additional parameter.

The extra parameter allows wrappee derived classes to call back to
the wrapper class as necessary. Complexity that would otherwise drag
down the wrapper class is neatly compartmented and encapsulated in a
polymorphic hierarchy to which the wrapper object delegates.

Example
The State pattern allows an object to change its behavior when its

internal state changes.

This pattern can be observed in a vending machine. Vending
machines have states based on the inventory, amount of currency

102 | State

deposited, the ability to make change, the item selected, etc. When
currency is deposited and a selection is made, a vending machine will
either deliver a product and no change, deliver a product and change,
deliver no product due to insufficient currency on deposit, or deliver no
product due to inventory depletion.

Check list
1. Identify an existing class, or create a new class, that will serve as the

"state machine" from the client's perspective. That class is the
"wrapper" class.

2. Create a State base class that replicates the methods of the state
machine interface. Each method takes one additional parameter: an
instance of the wrapper class. The State base class specifies any
useful "default" behavior.

3. Create a State derived class for each domain state. These derived
classes only override the methods they need to override.

4. The wrapper class maintains a "current" State object.

5. All client requests to the wrapper class are simply delegated to the
current State object, and the wrapper object's this pointer is passed.

6. The State methods change the "current" state in the wrapper object
as appropriate.

State | 103

104 | State

Rules of thumb
State objects are often Singletons.

Flyweight explains when and how State objects can be shared.

Interpreter can use State to define parsing contexts.

Strategy has 2 different implementations, the first is similar to State.

The difference is in binding times (Strategy is a bind-once pattern,
whereas State is more dynamic).

The structure of State and Bridge are identical (except that Bridge

admits hierarchies of envelope classes, whereas State allows only one).
The two patterns use the same structure to solve different problems:
State allows an object's behavior to change along with its state, while
Bridge's intent is to decouple an abstraction from its implementation so
that the two can vary independently.

The implementation of the State pattern builds on the Strategy

pattern. The difference between State and Strategy is in the intent. With
Strategy, the choice of algorithm is fairly stable. With State, a change in
the state of the "context" object causes it to select from its "palette" of
Strategy objects.

Strategy

Intent
• Define a family of algorithms, encapsulate each one, and make them

interchangeable. Strategy lets the algorithm vary independently from
the clients that use it.

• Capture the abstraction in an interface, bury implementation details
in derived classes.

Problem
One of the dominant strategies of object-oriented design is the

"open-closed principle".

Figure demonstrates how this is routinely achieved - encapsulate
interface details in a base class, and bury implementation details in
derived classes. Clients can then couple themselves to an interface, and
not have to experience the upheaval associated with change: no impact
when the number of derived classes changes, and no impact when the
implementation of a derived class changes.

A generic value of the software community for years has been,
"maximize cohesion and minimize coupling". The object-oriented
design approach shown in figure is all about minimizing coupling.

Strategy | 105

Since the client is coupled only to an abstraction (i.e. a useful fiction),
and not a particular realization of that abstraction, the client could be
said to be practicing "abstract coupling" . an object-oriented variant of
the more generic exhortation "minimize coupling".

A more popular characterization of this "abstract coupling" principle
is "Program to an interface, not an implementation".

Clients should prefer the "additional level of indirection" that an
interface (or an abstract base class) affords. The interface captures the
abstraction (i.e. the "useful fiction") the client wants to exercise, and the
implementations of that interface are effectively hidden.

Structure
The Interface entity could represent either an abstract base class, or

the method signature expectations by the client. In the former case, the
inheritance hierarchy represents dynamic polymorphism. In the latter
case, the Interface entity represents template code in the client and the
inheritance hierarchy represents static polymorphism.

Example
A Strategy defines a set of algorithms that can be used

interchangeably.

106 | Strategy

Modes of transportation to an airport is an example of a Strategy.
Several options exist such as driving one's own car, taking a taxi, an
airport shuttle, a city bus, or a limousine service. For some airports,
subways and helicopters are also available as a mode of transportation
to the airport. Any of these modes of transportation will get a traveler to
the airport, and they can be used interchangeably. The traveler must
chose the Strategy based on tradeoffs between cost, convenience, and
time.

Check list
1. Identify an algorithm (i.e. a behavior) that the client would prefer to

access through a "flex point".

2. Specify the signature for that algorithm in an interface.

3. Bury the alternative implementation details in derived classes.

4. Clients of the algorithm couple themselves to the interface.

Rules of thumb
Strategy is like Template Method except in its granularity.

State is like Strategy except in its intent.

Strategy lets you change the guts of an object. Decorator lets you

change the skin.

Strategy | 107

108 | Strategy

State, Strategy, Bridge (and to some degree Adapter) have similar

solution structures. They all share elements of the 'handle/body' idiom.
They differ in intent - that is, they solve different problems.

Strategy has 2 different implementations, the first is similar to State.

The difference is in binding times (Strategy is a bind-once pattern,
whereas State is more dynamic).

Strategy objects often make good Flyweights.

Template Method | 109

Template Method

Intent
• Define the skeleton of an algorithm in an operation, deferring some

steps to client subclasses. Template Method lets subclasses redefine
certain steps of an algorithm without changing the algorithm's
structure.

• Base class declares algorithm 'placeholders', and derived classes
implement the placeholders.

Problem
Two different components have significant similarities, but

demonstrate no reuse of common interface or implementation. If a
change common to both components becomes necessary, duplicate
effort must be expended.

Discussion
The component designer decides which steps of an algorithm are

invariant (or standard), and which are variant (or customizable). The
invariant steps are implemented in an abstract base class, while the
variant steps are either given a default implementation, or no
implementation at all. The variant steps represent "hooks", or
"placeholders", that can, or must, be supplied by the component's client
in a concrete derived class.

The component designer mandates the required steps of an
algorithm, and the ordering of the steps, but allows the component
client to extend or replace some number of these steps.

Template Method is used prominently in frameworks. Each
framework implements the invariant pieces of a domain's architecture,
and defines "placeholders" for all necessary or interesting client
customization options. In so doing, the framework becomes the "center
of the universe", and the client customizations are simply "the third rock
from the sun". This inverted control structure has been affectionately
labelled "the Hollywood principle" - "don't call us, we'll call you".

Structure

The implementation of template_method is: call step_one, call
step_two, and call step_three. step_two is a "hook" method – a
placeholder. It is declared in the base class, and then defined in derived
classes. Frameworks (large scale reuse infrastructures) use Template
Method a lot. All reusable code is defined in the framework's base
classes, and then clients of the framework are free to define
customizations by creating derived classes as needed.

Example
The Template Method defines a skeleton of an algorithm in an

operation, and defers some steps to subclasses.

110 | Template Method

Home builders use the Template Method when developing a new
subdivision. A typical subdivision consists of a limited number of floor
plans with different variations available for each. Variation is
introduced in the later stages of construction to produce a wider variety
of models.

Check list
1. Examine the algorithm, and decide which steps are standard and

which steps are peculiar to each of the current classes.

2. Define a new abstract base class to host the "don't call us, we'll call
you" framework.

3. Move the shell of the algorithm (now called the "template method")
and the definition of all standard steps to the new base class.

4. Define a placeholder or "hook" method in the base class for each
step that requires many different implementations. This method can
host a default implementation – or – it can be defined as abstract
(Java) or pure virtual (C++).

5. Invoke the hook method(s) from the template method.

Template Method | 111

112 | Template Method

6. Each of the existing classes declares an "is-a" relationship to the new
abstract base class.

7. Remove from the existing classes all the implementation details that
have been moved to the base class.

8. The only details that will remain in the existing classes will be the
implementation details peculiar to each derived class.

Rules of thumb
Strategy is like Template Method except in its granularity.

Template Method uses inheritance to vary part of an algorithm.
Strategy uses delegation to vary the entire algorithm.

Strategy modifies the logic of individual objects. Template Method
modifies the logic of an entire class.

Factory Method is a specialization of Template Method.

Visitor | 113

Visitor

Intent
• Represent an operation to be performed on the elements of an object

structure. Visitor lets you define a new operation without changing
the classes of the elements on which it operates.

• The classic technique for recovering lost type information.

• Do the right thing based on the type of two objects.

• Double dispatch

Problem
Many distinct and unrelated operations need to be performed on

node objects in a heterogeneous aggregate structure. You want to avoid
"polluting" the node classes with these operations. And, you don't want
to have to query the type of each node and cast the pointer to the correct
type before performing the desired operation.

Discussion
Visitor's primary purpose is to abstract functionality that can be

applied to an aggregate hierarchy of "element" objects. The approach
encourages designing lightweight Element classes - because processing
functionality is removed from their list of responsibilities. New
functionality can easily be added to the original inheritance hierarchy by
creating a new Visitor subclass.

Visitor implements "double dispatch". OO messages routinely
manifest "single dispatch" - the operation that is executed depends on:
the name of the request, and the type of the receiver. In "double
dispatch", the operation executed depends on: the name of the request,
and the type of TWO receivers (the type of the Visitor and the type of
the element it visits).

The implementation proceeds as follows. Create a Visitor class
hierarchy that defines a pure virtual visit method in the abstract base
class for each concrete derived class in the aggregate node hierarchy.

114 | Visitor

Each visit method accepts a single argument - a pointer or reference to
an original Element derived class.

Each operation to be supported is modelled with a concrete derived
class of the Visitor hierarchy. The visit methods declared in the
Visitor base class are now defined in each derived subclass by
allocating the "type query and cast" code in the original implementation
to the appropriate overloaded visit method.

Add a single pure virtual accept method to the base class of the
Element hierarchy. accept is defined to receive a single argument - a
pointer or reference to the abstract base class of the Visitor hierarchy.

Each concrete derived class of the Element hierarchy implements the
accept method by simply calling the visit method on the concrete
derived instance of the Visitor hierarchy that it was passed, passing its
"this" pointer as the sole argument.

Everything for "elements" and "visitors" is now set-up. When the
client needs an operation to be performed, he creates an instance of the
Vistor object, calls the accept method on each Element object, and
passes the Visitor object.

The accept method causes flow of control to find the correct
Element subclass. Then when the visit method is invoked, flow of
control is vectored to the correct Visitor subclass. accept dispatch plus
visit dispatch equals double dispatch.

The Visitor pattern makes adding new operations (or utilities) easy -
simply add a new Visitor derived class. But, if the subclasses in the
aggregate node hierarchy are not stable, keeping the Visitor subclasses
in sync requires a prohibitive amount of effort.

An acknowledged objection to the Visitor pattern is that is represents
a regression to functional decomposition - separate the algorithms from
the data structures. While this is a legitimate interpretation, perhaps a
better perspective/rationale is the goal of promoting non-traditional
behavior to full object status.

Structure
The Element hierarchy is instrumented with a "universal method

adapter". The implementation of accept in each Element derived class

is always the same. But – it cannot be moved to the Element base class
and inherited by all derived classes because a reference to this in the
Element class always maps to the base type Element.

When the polymorphic firstDispatch method is called on an
abstract First object, the concrete type of that object is "recovered".
When the polymorphic secondDispatch method is called on an abstract
Second object, its concrete type is "recovered". The application
functionality appropriate for this pair of types can now be exercised.

Visitor | 115

Example
The Visitor pattern represents an operation to be performed on the

elements of an object structure without changing the classes on which it
operates.

This pattern can be observed in the operation of a taxi company.
When a person calls a taxi company (accepting a visitor), the company
dispatches a cab to the customer. Upon entering the taxi the customer,
or Visitor, is no longer in control of his or her own transportation, the
taxi (driver) is.

116 | Visitor

Check list
1. Confirm that the current hierarchy (known as the Element hierarchy)

will be fairly stable and that the public interface of these classes is
sufficient for the access the Visitor classes will require. If these
conditions are not met, then the Visitor pattern is not a good match.

2. Create a Visitor base class with a visit(ElementXxx) method for
each Element derived type.

3. Add an accept(Visitor) method to the Element hierarchy. The
implementation in each Element derived class is always the same –
accept(Visitor v) { v.visit(this); }. Because of cyclic
dependencies, the declaration of the Element and Visitor classes will
need to be interleaved.

4. The Element hierarchy is coupled only to the Visitor base class, but
the Visitor hierarchy is coupled to each Element derived class. If the
stability of the Element hierarchy is low, and the stability of the
Visitor hierarchy is high; consider swapping the 'roles' of the two
hierarchies.

Visitor | 117

118 | Visitor

5. Create a Visitor derived class for each "operation" to be performed
on Element objects. visit implementations will rely on the
Element's public interface.

6. The client creates Visitor objects and passes each to Element objects
by calling accept.

Rules of thumb
The abstract syntax tree of Interpreter is a Composite (therefore

Iterator and Visitor are also applicable).

Iterator can traverse a Composite. Visitor can apply an operation
over a Composite.

The Visitor pattern is like a more powerful Command pattern
because the visitor may initiate whatever is appropriate for the kind of
object it encounters.

The Visitor pattern is the classic technique for recovering lost type
information without resorting to dynamic casts.

About The Author | 119

About The Author

My name is Alexander Shvets. I have been working with software for 12
years, including 7 years of commercial experience. At the University of
Melbourne, I earned degrees in software engineering and psychology, and
earned a Ph.D with a thesis on "Design Reuse in Software Engineering
and Human-Computer Interaction." I live in Kyiv and consult on software
development issues in banking and healthcare.

You can find my contact data at my homepage (http://sourcemaking.com)

http://sourcemaking.com/

	Index
	Overview
	Creational patterns
	Structural patterns
	Behavioral patterns

	Abstract Factory
	Intent
	Problem
	Discussion
	Structure
	Example
	Check list
	Rules of thumb

	Adapter
	Intent
	Problem
	Discussion
	Structure
	Example
	Check list
	Rules of thumb

	Bridge
	Intent
	Problem
	Motivation
	Discussion
	Structure
	Example
	Check list
	Rules of thumb

	Builder
	Intent
	Problem
	Discussion
	Structure
	Example
	Check list
	Rules of thumb

	Chain of Responsibility
	Intent
	Problem
	Discussion
	Structure
	Example
	Check list
	Rules of thumb

	Command
	Intent
	Problem
	Discussion
	Structure
	Example
	Check list
	Rules of thumb

	Composite
	Intent
	Problem
	Discussion
	Structure
	Example
	Check list
	Rules of thumb
	Opinions

	Decorator
	Intent
	Problem
	Discussion
	Structure
	Example
	Check list
	Rules of thumb

	Facade
	Intent
	Problem
	Discussion
	Structure
	Example
	Check list
	Rules of thumb

	Factory Method
	Intent
	Problem
	Discussion
	Structure
	Example
	Check list
	Rules of thumb

	Flyweight
	Intent
	Problem
	Discussion
	Structure
	Example
	Check list
	Rules of thumb

	Interpreter
	Intent
	Problem
	Discussion
	Structure
	Example
	Check list
	Rules of thumb

	Iterator
	Intent
	Problem
	Discussion
	Structure
	Example
	Check list
	Rules of thumb

	Mediator
	Intent
	Problem
	Discussion
	Structure
	Example
	Check list
	Rules of thumb

	Memento
	Intent
	Problem
	Discussion
	Structure
	Example
	Check list
	Rules of thumb

	Null Object
	Intent
	Problem
	Discussion
	Structure
	Rules of thumb

	Object Pool
	Intent
	Problem
	Discussion
	Structure
	Example
	Check list
	Rules of thumb

	Observer
	Intent
	Problem
	Discussion
	Structure
	Example
	Check list
	Rules of thumb

	Private Class Data
	Intent
	Problem
	Discussion
	Structure
	Check list

	Prototype
	Intent
	Problem
	Discussion
	Structure
	Example
	Check list
	Rules of thumb

	Proxy
	Intent
	Problem
	Discussion
	Structure
	Example
	Check list
	Rules of thumb

	Singleton
	Intent
	Problem
	Discussion
	Structure
	Example
	Check list
	Rules of thumb

	State
	Intent
	Problem
	Discussion
	Structure
	Example
	Check list
	Rules of thumb

	Strategy
	Intent
	Problem
	Structure
	Example
	Check list
	Rules of thumb

	Template Method
	Intent
	Problem
	Discussion
	Structure
	Example
	Check list
	Rules of thumb

	Visitor
	Intent
	Problem
	Discussion
	Structure
	Example
	Check list
	Rules of thumb

	About The Author
	Blank Page

