e

DESIGN PATTERNS

Praise for Design Patterns

This book isn't an introduction to object-oriented technology or
design. Many books already do a good job of that. Thisisn't an
advanced treatise either. It'sabook of design patterns that describe
simple and elegant solutions to specific problems in object-oriented
software design.

Once you understand the design patterns and have had an "Aha!"
(and not just a"Huh?" experience with them, you won't ever think
about object-oriented design in the same way. Y ou'll have insights that
can make your own designs more flexible, modular, reusable, and
understandable - which iswhy you're interested in object-oriented
technology in thefirst place, right?

| ndex

111110] 2GS 5
OVERVIEW......cciiiiiiiiiiiiiiiiiiiieiiieiieeinieiiseineeessesseeesseeseessssesseesseessssssessssessssens 6
ABSTRACT FACTORYcccvviiiiiiiniinmniiniiniiimniiiiiiimiiimmiimiiimeiiseisesissssssssessseeen 10
Dl I e 14
=] 0 S 18
= 10 0] 24
CHAIN OF RESPONSIBILITY ...cootiiiiiiiiiiiniiiniisniisnissnnissssssssssssssssssssssssssss 28
COMMAND. ...ttt s s s s s s s s s s s s 32
COMPOSITE ...cciiiiiiiiiiiniiiniiiniiiiiiisssas 36
DECORATOR ...ttt 41
Y 07 0 N 47
FACTORY METHODciiiiiiiiiiniiinninnniiiniininnns 51
LI Y11 T O S 56
L\ 33 o 1 o I = 60
I =13 10 63
MEDIATORcoiiiiiiiinititiiinccnertee e asssees s asssse e s e s s ssanssassssassnns 67
MEMENTO... oot 72
NULL OBJECT ...ccoviiiineniiiieiniicsnnnniieesssssssansssessssssssssnsssesssssssssssssssssssssssns 75
OBJECT POOL.....ccitiiiiiiiiiiiiiniinniis s s ssssssssssss s 80
OBSERVERuueeiiiiiiiicntniitnninnenniecssnnaaessse s sasssses s s s s sssaassasessesnns 84
PRIVATE CLASS DATA ... cirrnnnnininnnnnnnnsnnss s 88
PROTOTYPEccoriiininnniiiiniicitneitieesssssssannnsessssssssasssseessssssssssnssssessssnns 90
310) S 94
SINGLETON......ccutiiiiiiiienniietiiicenttteesissssaansseess s aassssesssssssssnssasessasnns 97
L0 N I 101
R 1Y 1 105
TEMPLATE METHODccuuuuuunnininninnennnnnnnenneenneanneesaeesneessessseasseasseasseee. 109
Y 10 RS 113
ABOUT THE AUTHORcuuueriiiiiiiicttntitnennnsnnnnecc s sssnessse e s aannenes 119

Index |5

Overview

In software engineering, adesign pattern is ageneral repeatable
solution to acommonly occurring problem in software design. A design
pattern isn't afinished design that can be transformed directly into code.
It isadescription or template for how to solve a problem that can be used
in many different situations.

Design patterns can speed up the development process by providing
tested, proven development paradigms. Effective software design requires
considering issues that may not become visible until later in the
implementation. Reusing design patterns helps to prevent subtle issues
that can cause major problems and improves code readability for coders
and architects familiar with the patterns.

Often, people only understand how to apply certain software design
techniques to certain problems. These techniques are difficult to apply to
abroader range of problems. Design patterns provide general solutions,
documented in aformat that doesn't require specificstied to a particular
problem.

In addition, patterns allow developers to communicate using well-
known, well understood names for software interactions. Common design
patterns can be improved over time, making them more robust than ad-
hoc designs.

6 | Overview

Creational patterns

This design patternsis all about class instantiation. This pattern can be
further divided into class-creation patterns and object-creational patterns.
While class-creation patterns use inheritance effectively in the
instantiation process, object-creation patterns use delegation effectively
to get the job done.

Abstract Factory 10
Creates an instance of several families of classes

Builder 24
Separates object construction from its representation

Factory Method 51
Creates an instance of several derived classes

Object Pool 80
Avoid expensive acquisition and release of resources by recycling
objects that are no longer in use

Prototype 90
A fully initialized instance to be copied or cloned

Singleton 97
A class of which only a single instance can exist

Overview |7

Sructural patterns

This design patternsis all about Class and Object composition.
Structural class-creation patterns use inheritance to compose interfaces.
Structural object-patterns define ways to compose objects to obtain new
functionality.

Adapter 14
Match interfaces of different classes

Bridge 18
Separates an object’ s interface from its implementation

Composite 36
A tree structure of simple and composite objects

Decorator 41
Add responsibilities to objects dynamically

Facade 47
A single class that represents an entire subsystem

Flyweight 56
A fine-grained instance used for efficient sharing

Private Class Data 88
Restricts accessor/mutator access

Proxy 94
An object representing another object

8| Overview

Behavioral patterns

This design patternsis all about Class's objects communication.
Behavioral patterns are those patterns that are most specifically
concerned with communication between objects.

Chain of responsibility 28
A way of passing arequest between a chain of objects

Command 32
Encapsulate a command request as an object

Interpreter 60
A way to include language elements in a program

Iterator 63
Sequentially access the elements of a collection

Mediator 67
Defines ssimplified communication between classes

Memento 72
Capture and restore an object's interna state

Null Object 75
Designed to act as a default value of an object

Observer 84
A way of notifying change to a number of classes

State 101
Alter an object's behavior when its state changes

Strategy 105
Encapsulates an algorithm inside a class

Template method 109
Defer the exact steps of an algorithm to a subclass

Visitor 113
Defines a new operation to a class without change

Overview |9

Abstract Factory

| ntent

o Provide an interface for creating families of related or dependent
objects without specifying their concrete classes.

e A hierarchy that encapsulates. many possible "platforms’, and the
construction of a suite of "products’.

e The new operator considered harmful.

Problem

If an application isto be portable, it needs to encapsulate platform
dependencies. These "platforms" might include: windowing system,
operating system, database, etc. Too often, this encapsulatation is not
engineered in advance, and lots of #ifdef case statements with
optionsfor all currently supported platforms begin to procreate like
rabbits throughout the code.

Discussion

Provide alevel of indirection that abstracts the creation of families
of related or dependent objects without directly specifying their
concrete classes. The "factory" object has the responsibility for
providing creation services for the entire platform family. Clients
never create platform objects directly, they ask the factory to do that
for them.

This mechanism makes exchanging product families easy because
the specific class of the factory object appears only oncein the
application - where it isinstantiated. The application can wholesale
replace the entire family of products ssmply by instantiating a different
concrete instance of the abstract factory.

Because the service provided by the factory object is so pervasive,
itisroutinely implemented as a Singleton.

10 | Abstract Factory

Sructure

The Abstract Factory defines a Factory Method per product. Each
Factory Method encapsul ates the new operator and the concrete,
platform-specific, product classes. Each "platform” is then modeled
with a Factory derived class.

winterfaces
Class1 AbstractProductOne
L é'l 1
/ L [ProductOnePiatiormOne| [ProductOnePlatformTwo
sinterfaces
AbstractPlatform
winterfaces
PlatformQne PlatformTwo AbstractProductTwo
~+makeProductOne() 45
| +makeProductTwol) | |

-——

| ProductTwoPlatformOne ProducTwoPlatformTwo

|
|
|
return new ProductonerlatformTwo() |
|
|
l

return new ProductTwoPlatformTwo(]); ﬁ

Example

The purpose of the Abstract Factory isto provide an interface for
creating families of related objects, without specifying concrete classes.

This pattern is found in the sheet metal stamping equipment used in
the manufacture of Japanese automobiles. The stamping equipment is
an Abstract Factory which creates auto body parts. The same machinery
is used to stamp right hand doors, left hand doors, right front fenders,
left front fenders, hoods, etc. for different models of cars. Through the
use of rollers to change the stamping dies, the concrete classes produced
by the machinery can be changed within three minutes.

Abstract Factory | 11

StampingEquipment HCIInm {parts list for Model)

+siampPart()
FAN
|I'|I'Inde|3 Right Door Model3 Left Door Model3 Hood
[Modelz Right Door ModelZ Left Door 1| Model2 Hood ||
Model1 Right Door Modeld Left Door [[| Modell Hood [[]
+stampRigthDoor() +stampLeftDoon} HstampHood()

Check list

e Decideif "platform independence" and creation services are the
current source of pain.

e Map out amatrix of "platforms" versus "products”.

o Define afactory interface that consists of afactory method per
product.

o Define afactory derived class for each platform that encapsulates all
references to the new operator.

e Theclient should retire all references to new, and use the factory
methods to create the product objects.

Rules of thumb

Sometimes creational patterns are competitors: there are cases when
either Prototype or Abstract Factory could be used profitably.

At other times they are complementory: Abstract Factory might store
aset of Prototypes from which to clone and return product objects,
Builder can use one of the other patterns to implement which

12 | Abstract Factory

components get built. Abstract Factory, Builder, and Prototype can use
Singleton in their implementation.

Abstract Factory, Builder, and Prototype define afactory object that's
responsible for knowing and creating the class of product objects, and
make it a parameter of the system. Abstract Factory has the factory object
producing objects of several classes. Builder has the factory object
building a complex product incrementally using a correspondingly
complex protocol. Prototype has the factory object (aka prototype)
building a product by copying a prototype object.

Abstract Factory classes are often implemented with Factory Methods,
but they can also be implemented using Prototype.

Abstract Factory can be used as an alternative to Facade to hide
platform-specific classes.

Builder focuses on constructing a complex object step by step.
Abstract Factory emphasizes afamily of product objects (either simple or
complex). Builder returns the product as afina step, but as far asthe
Abstract Factory is concerned, the product gets returned immediately.

Often, designs start out using Factory Method (less complicated, more
customizable, subclasses proliferate) and evolve toward Abstract Factory,
Prototype, or Builder (more flexible, more complex) as the designer
discovers where more flexibility is needed.

Abstract Factory | 13

Adapter

| ntent

o Convert the interface of a classinto another interface clients expect.
Adapter lets classes work together that couldn't otherwise because of
incompatible interfaces.

e Wrap an existing class with anew interface.

e Impedance match an old component to a new system

Problem

An "off the shelf" component offers compelling functionality that
you would like to reuse, but its "view of the world" is not compatible
with the philosophy and architecture of the system currently being
developed.

Discussion

Reuse has always been painful and elusive. One reason has been the
tribulation of designing something new, while reusing something old.
There is aways something not quite right between the old and the new.
It may be physical dimensions or misalignment. It may be timing or
synchronization. It may be unfortunate assumptions or competing
standards.

It islike the problem of inserting a new three-prong electrical plug in
an old two-prong wall outlet — some kind of adapter or intermediary is
necessary.

14 | Adapter

Adapter is about creating an intermediary abstraction that translates,
or maps, the old component to the new system. Clients call methods on
the Adapter object which redirects them into callsto the legacy
component. This strategy can be implemented either with inheritance or
with aggregation.

Adapter functions as awrapper or modifier of an existing class. It
provides adifferent or trandated view of that class.

Sructure

Below, alegacy Rectangle component's display method expects to
receive "X, y, w, h" parameters. But the client wants to pass "upper left
x and y" and "lower right x and y". Thisincongruity can be reconciled
by adding an additional level of indirection —i.e. an Adapter object.

Client cinterface»

Shape

+displayiin xT, in 1, in X2, in y2)

[

wadaptees
Rectangle LegacyRectangle
Hdisplay(in x1, i y1, inx2, in y2) edisplay(in x1, In y1, in X2, In y2)

|
|
\
|

Delegate and map to adaptes I_\}

The Adapter could also be thought of as a"wrapper".

Adapter |15

NewApplication

‘Wrapper

Example

+doThis()

theWrappedOne doThat(); Ij

LegacyComponent

+doThatl)

The Adapter pattern allows otherwise incompatible classes to work
together by converting the interface of one classinto an interface
expected by the clients.

Socket wrenches provide an example of the Adapter. A socket
attaches to aratchet, provided that the size of the drive is the same.
Typical drive sizesin the United States are 1/2" and 1/4".

Obvioudly, a1/2" drive ratchet will not fit into a 1/4" drive socket
unless an adapter isused. A 1/2" to 1/4" adapter hasa 1/2" female
connection to fit on the 1/2" drive ratchet, and a 1/4" male connection to
fit in the 1/4" drive socket.

Ratchet

72" Drive (male)

Sockat

Adapter

-1/4"Drive (female)

172" Drive (female)

14" Drive (male)

=
-y

16 | Adapter

Check list

1. Identify the players. the component(s) that want to be
accommodated (i.e. the client), and the component that needs to
adapt (i.e. the adaptee).

2. |dentify the interface that the client requires.

3. Design a"wrapper” class that can "impedance match" the adaptee to
the client.

4. The adapter/wrapper class "has a" instance of the adaptee class.

5. The adapter/wrapper class "maps" the client interface to the adaptee
interface.

6. Theclient uses (is coupled to) the new interface

Rules of thumb

Adapter makes things work after they're designed; Bridge makes
them work before they are.

Bridge is designed up-front to let the abstraction and the
implementation vary independently. Adapter isretrofitted to make
unrelated classes work together.

Adapter provides a different interface to its subject. Proxy provides
the same interface. Decorator provides an enhanced interface.

Adapter is meant to change the interface of an existing object.
Decorator enhances another object without changing itsinterface.
Decorator is thus more transparent to the application than an adapter is.
As a conseguence, Decorator supports recursive composition, which
isn't possible with pure Adapters.

Facade defines a new interface, whereas Adapter reuses an old
interface. Remember that Adapter makes two existing interfaces work
together as opposed to defining an entirely new one.

Adapter |17

Bridge

| ntent

o Decouple an abstraction from its implementation so that the two can
vary independently.

o Publish interface in an inheritance hierarchy, and bury
implementation in its own inheritance hierarchy.

e Beyond encapsulation, to insulation

Problem

"Hardening of the software arteries" has occurred by using
subclassing of an abstract base class to provide aternative
implementations. This locksin compile-time binding between interface
and implementation. The abstraction and implementation cannot be
independently extended or composed.

M otivation

Consider the domain of "thread scheduling”.

ThreadScheduler

£
[1
|PreemptiveThreadScheduler | | TimeSlicedThreadScheduler |

| | |
| UnixPTS | |'b‘-'|n:lnwsPTS| | UnixTSTS |

There are two types of thread schedulers, and two types of operating
systems or "platforms". Given this approach to specialization, we have
to define a class for each permutation of these two dimensions. If we
add a new platform (say ... Javas Virtual Machine), what would our
hierarchy look like?

18 | Bridge

ThreadScheduler
£

|Preemptiva111laad$chadul&r] ITImaSIi:adThll'eadtheduler |

VAN
I | | |

| UnixPTS | |WinduwsPT$] | UnixTSTS | |'WindwsT$TS|

| JVM_PTS JVM_TSTS

What if we had three kinds of thread schedulers, and four kinds of
platforms? What if we had five kinds of thread schedulers, and ten
kinds of platforms? The number of classes we would have to defineis
the product of the number of scheduling schemes and the number of
platforms.

The Bridge design pattern proposes refactoring this exponentially
explosive inheritance hierarchy into two orthogonal hierarchies— one
for platform-independent abstractions, and the other for platform-
dependent implementations.

ThreadScheduler

I
PreemptiveThreadScheduler

| ThreadScheduler_Implementation |

TimeSlicedThreadScheduler | |
[UnixPTS | |WinduwsPTs|

JYM_PTS

Discussion

Decompose the component's interface and implementation into
orthogonal class hierarchies. The interface class contains a pointer to
the abstract implementation class.

This pointer isinitialized with an instance of a concrete
implementation class, but all subsequent interaction from the interface

Bridge | 19

classto the implementation classis limited to the abstraction maintained
in the implementation base class. The client interacts with the interface
class, and it in turn "delegates” all requests to the implementation class.

The interface object is the "handle" known and used by the client;
while the implementation object, or "body", is safely encapsulated to
ensure that it may continue to evolve, or be entirely replaced (or shared
at run-time.

Use the Bridge pattern when:
¢ you want run-time binding of the implementation,

* you have aproliferation of classes resulting from a coupled
interface and numerous implementations,

e you want to share an implementation among multiple objects,
¢ you heed to map orthogonal class hierarchies.

Consequences include:
e decoupling the object's interface,

e improved extensibility (you can extend (i.e. subclass) the
abstraction and implementation hierarchies independently),

¢ hiding details from clients.

Bridgeis a synonym for the "handle/body" idiom. Thisisadesign
mechanism that encapsulates an implementation class inside of an
interface class.

The former is the body, and the latter is the handle. The handleis
viewed by the user as the actual class, but the work is done in the body.
"The handle/body class idiom may be used to decompose a complex
abstraction into smaller, more manageable classes. The idiom may
reflect the sharing of a single resource by multiple classes that control
accessto it (e.g. reference counting).”

20| Bridge

Sructure

The Client doesn’t want to deal with platform-dependent details. The
Bridge pattern encapsulates this complexity behind an abstraction
"wrapper".

Bridge emphasizes identifying and decoupling "interface"
abstraction from "implementation" abstraction.

Client

InterfaceEncapsulation

- thelmplemsant

InterfaceEncapsulation

= =doThis()

T

InterfaceSpecialization

thelmplement.doThizOne();
thelmplement.doThisTwaol);

i

Example

“FrdoThisOnel)
+daThis Twal)

AN

ImplementationOne

ImplementationTwo

+doThisOne()
+daThisTwo()

The Bridge pattern decouples an abstraction from its
implementation, so that the two can vary independently.

A household switch controlling lights, ceiling fans, etc. isan
example of the Bridge. The purpose of the switch isto turn adevice on
or off. The actual switch can be implemented as a pull chain, smple
two position switch, or avariety of dimmer switches.

Bridge | 21

[
[
I Switch Switchlmplementation |
[

|
e [
I Fomn O) |
: +OFF() +OFF() |
P N N [
o I I I

Check list

1. Decideif two orthogonal dimensions exist in the domain. These
independent concepts could be: abstraction/platform, or
domain/infrastructure, or front-end/back-end, or
interface/implementation.

2. Design the separation of concerns: what does the client want, and
what do the platforms provide.

3. Design aplatform-oriented interface that is minimal, necessary, and
sufficient. Its goal is to decouple the abstraction from the platform.

4. Define aderived class of that interface for each platform.

5. Create the abstraction base classthat "has a" platform object and
delegates the platform-oriented functionality to it.

6. Define specializations of the abstraction classif desired.

Rules of thumb

Adapter makes things work after they're designed; Bridge makes
them work before they are.

22| Bridge

Bridge is designed up-front to let the abstraction and the
implementation vary independently. Adapter isretrofitted to make
unrelated classes work together.

State, Strategy, Bridge (and to some degree Adapter) have similar
solution structures. They all share elements of the "handle/body" idiom.
They differ inintent - that is, they solve different problems.

The structure of State and Bridge are identical (except that Bridge
admits hierarchies of envelope classes, whereas State allows only one).

The two patterns use the same structure to solve different problems:
State allows an object's behavior to change along with its state, while
Bridge'sintent is to decouple an abstraction from its implementation so
that the two can vary independently.

If interface classes delegate the creation of their implementation
classes (instead of creating/coupling themselves directly), then the
design usually uses the Abstract Factory pattern to create the
implementation objects.

Bridge | 23

Builder

| ntent

o Separate the construction of a complex object from its representation
so that the same construction process can create different
representations.

e Parse acomplex representation, create one of several targets.

Problem

An application needs to create the elements of a complex aggregate.
The specification for the aggregate exists on secondary storage and one
of many representations needs to be built in primary storage.

Discussion

Separate the algorithm for interpreting (i.e. reading and parsing) a
stored persistence mechanism (e.g. RTF files) from the algorithm for
building and representing one of many target products (e.g. ASCII,
TeX, text widget). The focus/distinction is on creating complex
aggregates.

The "director" invokes "builder" services asit interprets the external
format. The "builder" creates part of the complex object each timeitis
called and maintains al intermediate state. When the product is
finished, the client retrieves the result from the "builder".

Affords finer control over the construction process. Unlike creational
patterns that construct products in one shot, the Builder pattern
constructs the product step by step under the control of the "director”.

Sructure

The Reader encapsulates the parsing of the common input. The
Builder hierarchy makes possible the polymorphic creation of many
peculiar representations or targets.

24 | Builder

Converter

Reader - theConverier
+makeline()
+makeParagraphi)
+pameTpuH} +makaTable()
+oatDocument()
AN

ASClIConverter | | PostScriptConverter | | PDFConverter

for each element read E.
swich element.type
case PARAGRAPH
theConverter.makeParagraph(element)
case LIST
theConverter.makeList({element)
case TABLE
theConverter.makeTabla(eTement)

Example

The Builder pattern separates the construction of acomplex object
from its representation so that the same construction process can create
different representations.

This pattern is used by fast food restaurants to construct children's
meals. Children's mealstypically consist of amain item, asideitem, a
drink, and atoy (e.g., ahamburger, fries, Coke, and toy dinosaur). Note
that there can be variation in the content of the children's meal, but the
construction process is the same.

Whether a customer orders a hamburger, cheeseburger, or chicken,
the processis the same. The employee at the counter directs the crew to
assemble amain item, side item, and toy. These items are then placed in
abag. Thedrink is placed in a cup and remains outside of the bag. This
same process is used at competing restaurants.

Builder |25

Customer Cashier Restaurant crew
(client) (director) (builder)

Order kid's meal | |
| |

| Build .;

Build

e

Build

Build

K

Gel meal

W

Check list

1. Decideif acommon input and many possible representations (or
outputs) isthe problem at hand.

2. Encapsulate the parsing of the common input in a Reader class.

3. Design astandard protocol for creating al possible output
representations. Capture the steps of this protocol in a Builder
interface.

4. Define aBuilder derived class for each target representation.

5. The client creates a Reader object and a Builder object, and registers
the latter with the former.

6. The client asks the Reader to "construct".
7. The client asks the Builder to return the result.

26 | Builder

Rules of thumb

Sometimes creational patterns are complementory: Builder can use
one of the other patterns to implement which components get built.
Abstract Factory, Builder, and Prototype can use Singleton in their
implementations.

Builder focuses on constructing a complex object step by step.
Abstract Factory emphasizes afamily of product objects (either simple
or complex). Builder returns the product as afinal step, but as far asthe
Abstract Factory is concerned, the product gets returned immediately.

Builder often builds a Composite.

Often, designs start out using Factory Method (less complicated,
more customizable, subclasses proliferate) and evolve toward Abstract
Factory, Prototype, or Builder (more flexible, more complex) asthe
designer discovers where more flexibility is needed.

Builder |27

Chain of Responsibility

| ntent

e Avoid coupling the sender of areguest to its receiver by giving more
than one object a chance to handle the request. Chain the receiving

objects and pass the request along the chain until an object handles
it.

e Launch-and-leave requests with a single processing pipeline that
contains many possible handlers.

e An object-oriented linked list with recursive traversal.

Problem

Thereis apotentially variable number of "handler" or "processing
element” or "node" objects, and a stream of requests that must be
handled. Need to efficiently process the requests without hard-wiring
handler relationships and precedence, or request-to-handler mappings.

Fequest
e
| Client |l
|Prooesaing elementl |Pru:=e-ssir|g element
IPranassIng element | | Processing elemeant I

Discussion

Encapsulate the processing elementsinside a "pipeline" abstraction;
and have clients "launch and leave" their requests at the entrance to the
pipeline.

28 | Chain of Responsibility

Processing
element

Processing
element

Processing
element

Processing
elemeant

The pattern chains the receiving objects together, and then passes
any reguest messages from object to object until it reaches an object
capable of handling the message. The number and type of handler
objectsisn't known a priori, they can be configured dynamically. The
chaining mechanism uses recursive composition to allow an unlimited
number of handlers to be linked.

Chain of Responsibility simplifies object interconnections. | nstead
of senders and receivers maintaining referencesto all candidate
receivers, each sender keeps a single reference to the head of the chain,
and each receiver keeps a single reference to its immediate successor in
the chain.

Make sure there exists a"safety net” to "catch™ any requests which
go unhandled.

Do not use Chain of Responsibility when each request is only
handled by one handler, or, when the client object knows which service
object should handle the request.

Sructure

The derived classes know how to satisfy Client requests. If the
"current” object is not available or sufficient, then it delegates to the
base class, which delegates to the "next" object, and the circle of life
continues.

Chain of Responsibility |29

= nextHandler— Handler

+hiandlel)

Lll

I

nextHandker handle(): ﬁ

HandlerOne HandlerTwo

+handle(}

If | can handle request
Nhandle it

glse
super handle();

Multiple handlers could contribute to the handling of each request.
The reguest can be passed down the entire length of the chain, with the
last link being careful not to delegate to a"null next".

Example

The Chain of Responsibility pattern avoids coupling the sender of a
request to the receiver by giving more than one object a chance to
handle the request. ATM use the Chain of Responsibility in money

giving mechanism.

30 | Chain of Responsibility

Check list

1. The base class maintains a"next" pointer.

2. Each derived class implements its contribution for handling the
request.

3. If therequest needs to be "passed on", then the derived class "calls
back" to the base class, which delegates to the "next" pointer.

4. Theclient (or some third party) creates and links the chain (which
may include alink from the last node to the root node).

5. The client "launches and leaves' each request with the root of the
chain.

6. Recursive delegation produces the illusion of magic.

Rules of thumb

Chain of Responsibility, Command, Mediator, and Observer, address
how you can decouple senders and receivers, but with different trade-
offs. Chain of Responsibility passes a sender request along a chain of
potential receivers.

Chain of Responsibility can use Command to represent requests as
objects.

Chain of Responsihility is often applied in conjunction with
Composite. There, acomponent's parent can act as its successor.

Chain of Responsibility |31

Command

| ntent

o Encapsulate arequest as an object, thereby letting you parameterize
clients with different requests, queue or log requests, and support
undoabl e operations.

e Promote "invocation of a method on an object” to full object status
e An object-oriented callback

Problem

Need to issue requests to objects without knowing anything about
the operation being requested or the receiver of the regquest.

Discussion

Command decouples the object that invokes the operation from the
one that knows how to perform it. To achieve this separation, the
designer creates an abstract base class that maps areceiver (an object)
with an action (a pointer to a member function). The base class contains
an execute method that simply calls the action on the receiver.

All clients of Command objects treat each object as a "black box" by
simply invoking the object's virtual execute method whenever the
client requires the object's "service".

A Command class holds some subset of the following: an object, a
method to be applied to the object, and the arguments to be passed when
the method is applied. The Command's "execute" method then causes
the pieces to come together.

Sequences of Command objects can be assembled into composite (or
macro) commands.

Sructure

The client that creates a command is hot the same client that
executes it. This separation provides flexibility in the timing and
sequencing of commands. Materializing commands as objects means

32| Command

they can be passed, staged, shared, loaded in atable, and otherwise
instrumented or manipulated like any other object.

Client winteracar el
Callbackinterface
+executel] FdoT his{)
+doThat()
: % targetDbject = receiverObject;
| targetMathod = mathodPaointar,
| -targetObject
T
|
| |CallbackOne CallbackTwo :
: GargetMetod |_____ |
| +eonstructonreceiverObject, methodPointer)
| +exacute()
: -------------- -
Callbackinterface loken = 'use Java reflection or

{f G+ or Delphi pointer
it member functicn
targetObject targetMethod();

new CallbackTwo(new Recelver(), "doThis™):
... the token object is passed o another

... object and that object calls
loken.execute();

Command objects can be thought of as "tokens" that are created by
one client that knows what need to be done, and passed to another client
that has the resources for doing it.

Example

The Command pattern allows requests to be encapsulated as objects,
thereby allowing clients to be parameterized with different requests.

The "check" at adiner is an example of a Command pattern. The
waiter or waitress takes an order or command from a customer and
encapsulates that order by writing it on the check. The order is then
gueued for a short order cook. Note that the pad of "checks" used by
each waiter is not dependent on the menu, and therefore they can
support commands to cook many different items.

Command |33

Customer Waitress Order Cook
(client) (invoker) {command) (receiver)

Order()

PlaceOrder()

W

Order #2295

Cook()

S A —

W

Check list

1. Define a Command interface with a method signature like execute.

2. Create one or more derived classes that encapsulate some subset of
the following: a"receiver" object, the method to invoke, the
arguments to pass.

3. Instantiate a Command object for each deferred execution request.

4. Passthe Command object from the creator (aka sender) to the
invoker (akareceiver).

5. Theinvoker decides when to execute.

Rules of thumb

Chain of Responsibility, Command, Mediator, and Observer, address
how you can decouple senders and receivers, but with different trade-
offs. Command normally specifies a sender-receiver connection with a
subclass.

Chain of Responsibility can use Command to represent requests as
objects.

Command and Memento act as magic tokens to be passed around
and invoked at alater time. In Command, the token represents a request;
in Memento, it represents the internal state of an object at a particular

34 | Command

time. Polymorphism is important to Command, but not to Memento
becauseitsinterface is so narrow that a memento can only be passed as
avalue.

Command can use Memento to maintain the state required for an
undo operation.

MacroCommands can be implemented with Composite.

A Command that must be copied before being placed on a history
list acts as a Prototype.

Two important aspects of the Command pattern: interface separation
(the invoker is isolated from the receiver), time separation (stores a
ready-to-go processing request that's to be stated later).

Command |35

Composite

| ntent

o Compose objectsinto tree structures to represent whole-part
hierarchies. Composite lets clients treat individual objects and
compositions of objects uniformly.

¢ Recursive composition
o "Directories contain entries, each of which could be a directory."

e 1-to-many "hasa' up the"isa' hierarchy

Problem

Application needs to manipulate a hierarchical collection of
"primitive" and "composite” objects. Processing of a primitive object is
handled one way, and processing of a composite object is handled
differently. Having to query the "type" of each object before attempting
to processit is not desirable.

Discussion

Define an abstract base class (Component) that specifies the
behavior that needs to be exercised uniformly across all primitive and
composite objects. Subclass the Primitive and Composite classes off of
the Component class. Each Composite object "couples' itself only to
the abstract type Component as it manages its "children”.

Use this pattern whenever you have "composites that contain
components, each of which could be a composite".

Child management methods (addchi Id, removecChi Id) should
normally be defined in the Composite class. Unfortunately, the desire to
treat Primitives and Composites uniformly requires that these methods
be moved to the abstract Component class. See the Opinions section
below for adiscussion of safety versus transparency iSssues.

36 | Composite

Sructure

Composites that contain Components, each of which could be a
Composite.

ainterfacen
Component
+odo This()
Leaf Composite -glements
- K
FdoThis() I;g%’.ﬁ;‘:?ﬂ”[” B
|

1

flcontainer functionality
for each element

elements(i].doThis();

Menus that contain menu items, each of which could be a menu.

Row-column GUI layout managers that contain widgets, each of
which could be arow-column GUI layout manager.

Directories that contain files, each of which could be adirectory.

Example

The Composite composes objectsinto tree structures and lets clients
treat individual objects and compositions uniformly.

Although the example is abstract, arithmetic expressions are
Composites. An arithmetic expression consists of an operand, an
operator (+ - * /), and another operand. The operand can be a number,
or another arithmetic expresssion. Thus, 2+ 3 and (2 + 3) + (4 * 6) are
both valid expressions.

Composite | 37

ArithmeticExpression

+ +[)
.
& w
i) /+\
2 .
I\
| | i 8
MNumericOperand CompositeOperand
o

Check list

1

Ensure that your problem is about representing "whole-part"
hierarchical relationships.

Consider the heuristic, "Containers that contain containees, each of
which could be a container." For example, "Assemblies that contain
components, each of which could be an assembly." Divide your
domain conceptsinto container classes, and containee classes.

. Create a"lowest common denominator” interface that makes your

containers and containees interchangeable. It should specify the
behavior that needs to be exercised uniformly across all containee
and container objects.

All container and containee classes declare an "isa" relationship to
the interface.

All container classes declare a one-to-many "has a" relationship to
the interface.

Container classes leverage polymorphism to delegate to their
containee objects.

Child management methods (addchi Id, removecChi Id) should
normally be defined in the Composite class. Unfortunately, the
desireto treat Leaf and Composite objects uniformly may require
that these methods be promoted to the abstract Component class. See
the Gang of Four for adiscussion of these "safety" versus
"transparency” trade-offs.

38 | Composite

Rules of thumb

Composite and Decorator have similar structure diagrams, reflecting
the fact that both rely on recursive composition to organize an open-
ended number of objects.

Composite can be traversed with Iterator. Visitor can apply an
operation over a Composite. Composite could use Chain of
Responsibility to let components access global properties through their
parent. It could also use Decorator to override these properties on parts
of the composition. It could use Observer to tie one object structure to
another and State to let a component change its behavior asits state
changes.

Composite can let you compose a Mediator out of smaller pieces
through recursive composition.

Decorator is designed to let you add responsibilities to objects
without subclassing. Composite's focus is not on embellishment but on
representation. These intents are distinct but complementary.
Consequently, Composite and Decorator are often used in concert.

Flyweight is often combined with Composite to implement shared
leaf nodes.

Opinions

The whole point of the Composite pattern is that the Composite can
be treated atomically, just like aleaf. If you want to provide an Iterator
protocol, fine, but | think that is outside the pattern itself. At the heart of
this pattern is the ability for a client to perform operations on an object
without needing to know that there are many objects inside.

Being ableto treat a heterogeneous collection of objects atomically
(or transparently) requires that the "child management” interface be
defined at the root of the Composite class hierarchy (the abstract
Component class). However, this choice costs you safety, because
clients may try to do meaningless things like add and remove objects
from leaf objects. On the other hand, if you "design for safety”, the
child management interface is declared in the Composite class, and you

Composite | 39

lose transparency because leaves and Composites now have different
interfaces.

Smalltalk implementations of the Composite pattern usually do not
have the interface for managing the components in the Component
interface, but in the Composite interface. C++ implementations tend to
put it in the Component interface. Thisis an extremely interesting fact,
and onethat | often ponder. | can offer theories to explain it, but nobody
knows for sure why it istrue.

My Component classes do not know that Composites exist. They
provide no help for navigating Composites, nor any help for altering the
contents of a Composite. Thisis because | would like the base class
(and all its derivatives) to be reusable in contexts that do not require
Composites. When given a base class pointer, if | absolutely need to
know whether or not it isa Composite, | will use dynamic_cast to
figure this out. In those cases where dynamic_cast iStoo expensive, |
will use aVisitor.

Common complaint: "if | push the Composite interface down into
the Composite class, how am | going to enumerate (i.e. traverse) a
complex structure?' My answer is that when | have behaviors which
apply to hierarchies like the one presented in the Composite pattern, |
typically use Visitor, so enumeration isn't a problem - the Visitor knows
in each case, exactly what kind of object it's dealing with. The Visitor
doesn't need every abject to provide an enumeration interface.

Composite doesn't force you to treat all Components as Composites.
It merely tellsyou to put al operations that you want to treat
"uniformly" in the Component class. If add, remove, and similar
operations cannot, or must not, be treated uniformly, then do not put
them in the Component base class.

Remember, by the way, that each pattern's structure diagram doesn't
define the pattern; it merely depicts what in our experience is a common
realization thereof. Just because Composite's structure diagram shows
child management operations in the Component base class doesn't mean
all implementations of the pattern must do the same.

40 | Composite

Decor ator

| ntent

o Attach additional responsibilities to an object dynamically.
Decorators provide aflexible alternative to subclassing for extending

functionality.

e Client-specified embellishment of a core object by recursively

wrapping it.

e Wrapping agift, putting it in abox, and wrapping the box.

Problem

Y ou want to add behavior or state to individual objects at run-time.
Inheritance is not feasible because it is static and appliesto an entire

class.

Discussion

Suppose you are working on a user interface toolkit and you wish to
support adding borders and scroll bars to windows. Y ou could define an

inheritance hierarchy like

Window

+drawy}

L

AN

I
Window_With_Vertical_Scrollbar |

|'ﬂl'indt.'m_'|ﬂ|llith_Border |

JAN

|winduw_mh_ﬂorizmw_scmubar |

7

Window_With_Vertical_and_ Horizontal_Scrollbar |

ﬁ}.

|'o‘.I'In:lnw_'l.'ﬁth_ﬂ'erﬂnal_and_Harlmntal_S:mIlhar_and_Barder

Decorator |41

But the Decorator pattern suggests giving the client the ability to
specify whatever combination of "features' is desired.

Widget* aWidget = new BorderDecorator(
new HorizontalScrollBarDecorator(
new VerticalScrollBarDecorator(
new Window(80, 24)))):
awWidget->draw();

Thisflexibility can be achieved with the following design

winterfaces
LCD
+olraw()
[|
Window Decorator
Hdrawl) +draw }
I I |
| Border | | VerticalSB | |HorizontalSB |

Another example of cascading (or chaining) features together to
produce a custom object might look like

Stream* aStream = new CompressingStream(

new ASCII17Stream(

new FileStream('fileName.dat"™)));
aStream->putString("Hello world”);

The solution to this class of problems involves encapsulating the
origina object inside an abstract wrapper interface. Both the decorator
objects and the core object inherit from this abstract interface. The
interface uses recursive composition to allow an unlimited number of
decorator "layers' to be added to each core object.

Note that this pattern allows responsibilities to be added to an object,
not methods to an object's interface. The interface presented to the
client must remain constant as successive layers are specified.

42 | Decorator

Also note that the core object's identity has now been "hidden"
inside of a decorator object. Trying to access the core object directly is
now a problem.

Sructure

The client isaways interested in CoreFunctionality.doThis().
The client may, or may not, be interested in OptionalOne.doThis()
and optionalTwo.doThis(). Each of these classes always delegate to
the Decorator base class, and that class always delegates to the
contained "wrappee" object.

sintarfaces
Interface
+do This()
| |
CoreFunctionality OptionalWrapper -wrappee
PUE—
+doThis() LdoThis() [~~~ wrapes.doThis();

7aY
| | |

OptionalOne | | OptionalTwo OptionalThree

= = =

FdoThis() rdoThis(} daThis()

Hoptional functionality,
Nprovided by this class
super.doThis();

Jimore optional functionality

| I p—

Example

The Decorator attaches additional responsibilitiesto an object
dynamically.

The ornaments that are added to pine or fir trees are examples of
Decorators. Lights, garland, candy canes, glass ornaments, etc., can be
added to atreeto give it afestive look. The ornaments do not change
the treeitself which is recognizable as a Christmas tree regardl ess of
particular ornaments used. As an example of additional functionality,
the addition of lights allows one to "light up" a Christmas tree.

Decorator |43

Although paintings can be hung on awall with or without frames,
frames are often added, and it is the frame which is actually hung on the
wall. Prior to hanging, the paintings may be matted and framed, with
the painting, matting, and frame forming a single visual component.

VisualComponent

+hang()

Painting Decorator

+hang() +thang()

Check list

1. Ensurethe context is. asingle core (or non-optional) component,
several optional embellishments or wrappers, and an interface that is
common to all.

2. Create a"Lowest Common Denominator" interface that makes al
classes interchangeable.

3. Create asecond level base class (Decorator) to support the optional
wrapper classes.

44 | Decorator

4. The Core class and Decorator class inherit from the LCD interface.

5. The Decorator class declares a composition relationship to the LCD
interface, and this data member isinitialized in its constructor.

6. The Decorator class delegatesto the LCD object.
7. Define a Decorator derived class for each optional embellishment.

8. Decorator derived classes implement their wrapper functionality -
and - delegate to the Decorator base class.

9. Theclient configures the type and ordering of Core and Decorator
objects.

Rules of thumb

Adapter provides a different interface to its subject. Proxy provides
the same interface. Decorator provides an enhanced interface.

Adapter changes an object's interface, Decorator enhances an
object's responsibilities. Decorator is thus more transparent to the client.
As a consequence, Decorator supports recursive composition, which
isn't possible with pure Adapters.

Composite and Decorator have similar structure diagrams, reflecting
the fact that both rely on recursive composition to organize an open-
ended number of abjects.

A Decorator can be viewed as a degenerate Composite with only one
component. However, a Decorator adds additional responsibilities - it
isn't intended for object aggregation.

Decorator is designed to let you add responsibilities to objects
without subclassing. Composite's focus is not on embellishment but on
representation. These intents are distinct but complementary.
Consequently, Composite and Decorator are often used in concert.

Composite could use Chain of Responsihility to let components
access global properties through their parent. It could also use
Decorator to override these properties on parts of the composition.

Decorator |45

Decorator and Proxy have different purposes but similar structures.
Both describe how to provide alevel of indirection to another object,
and the implementations keep a reference to the object to which they

forward requests.

Decorator lets you change the skin of an object. Strategy letsyou
change the guts.

46 | Decorator

Facade

| ntent

¢ Provide aunified interface to a set of interfacesin a subsystem.
Facade defines a higher-level interface that makes the subsystem
easier to use.

e Wrap acomplicated subsystem with asimpler interface.

Problem

A segment of the client community needs a simplified interface to
the overall functionality of a complex subsystem.

Discussion
Facade discusses encapsulating a complex subsystem within asingle
interface object. This reduces the learning curve necessary to
successfully leverage the subsystem. It also promotes decoupling the
subsystem from its potentially many clients. On the other hand, if the
Facade is the only access point for the subsystem, it will limit the
features and flexibility that "power users' may need.

The Facade object should be afairly simple advocate or facilitator. It
should not become an all-knowing oracle or "god" object.

Sructure

Facade takes a "riddle wrapped in an enigma shrouded in mystery",
and interjects awrapper that tames the amorphous and inscrutable mass
of software.

Facade | 47

Facade
= Optional
Tl — — =3 additional
'?'t” Facade

SubsystemOne and SubsystemThree do not interact with the internal

components of SubsystemTwo. They use the SubsystemTwoWrapper
facade (i.e. the higher level abstraction).

All the complexity of this entire
sub-system is encapsulated in

a single wrapper class and
it's simple interface
SubsystemOne !

SubsystemThree
\ |

] é,——"'-‘/
SubsystemTwoWrapper

+primeT hieDirective()

PlasmaConduit / \L

Holodeck
WarpCore

JefferiesTube

v

DilithiumChamber

Weapon

Transporter

|
TurboLift PhaserBack

PhotonTorpedo

48 | Facade

Example

The Facade defines a unified, higher level interface to a subsystem
that makes it easier to use.

Consumers encounter a Facade when ordering from a catalog. The
consumer calls one number and speaks with a customer service
representative. The customer service representative acts as a Facade,
providing an interface to the order fulfillment department, the billing
department, and the shipping department.

/xl

-h- :

[Order Fulfilment| [Biling | [Shipping

Check list

Identify asimpler, unified interface for the subsystem or component.

Lo

2. Design a'wrapper’ class that encapsulates the subsystem.

3. Thefacade/wrapper captures the complexity and collaborations of
the component, and delegates to the appropriate methods.

4. The client uses (is coupled to) the Facade only.
5. Consider whether additional Facades would add value.

Facade |49

Rules of thumb

Facade defines a new interface, whereas Adapter uses an old
interface. Remember that Adapter makes two existing interfaces work
together as opposed to defining an entirely new one.

Whereas Flyweight shows how to make lots of little objects, Facade
shows how to make a single object represent an entire subsystem.

Mediator is similar to Facade in that it abstracts functionality of
existing classes. Mediator abstracts/centralizes arbitrary
communications between colleague objects. It routinely "adds value",
and it is known/referenced by the colleague objects. In contrast, Facade
defines a simpler interface to a subsystem, it doesn't add new
functionality, and it is not known by the subsystem classes.

Abstract Factory can be used as an alternative to Facade to hide
platform-specific classes.

Facade objects are often Singletons because only one Facade object
isrequired.

Adapter and Facade are both wrappers; but they are different kinds
of wrappers. The intent of Facade is to produce asimpler interface, and
the intent of Adapter isto design to an existing interface. While Facade
routinely wraps multiple objects and Adapter wraps a single object;
Facade could front-end a single complex object and Adapter could wrap
several legacy objects.

50 | Facade

Factory Method

I ntent

o Define an interface for creating an object, but let subclasses decide
which class to instantiate. Factory Method lets a class defer
instantiation to subclasses.

e Defining a"virtual" constructor.

e The new operator considered harmful.

Problem

A framework needs to standardize the architectural model for a
range of applications, but allow for individual applicationsto define
their own domain objects and provide for their instantiation.

Discussion
Factory Method is to creating objects as Template Method isto
implementing an algorithm. A superclass specifies al standard and
generic behavior (using pure virtual "placeholders’ for creation steps),
and then delegates the creation details to subclasses that are supplied by
the client.

Factory Method makes a design more customizable and only alittle
more complicated. Other design patterns require new classes, whereas
Factory Method only requires a new operation.

People often use Factory Method as the standard way to create
objects; but it isn't necessary if: the class that's instantiated never
changes, or instantiation takes place in an operation that subclasses can
easily override (such as an initialization operation).

Factory Method is similar to Abstract Factory but without the
emphasis on families.

Factory Methods are routinely specified by an architectural
framework, and then implemented by the user of the framework.

Factory Method | 51

Sructure

The implementation of Factory Method discussed in the Gang of
Four (below) largely overlaps with that of Abstract Factory. For that
reason, the presentation in this chapter focuses on the approach that has
become popular since.

sinterface:s
Framework

+makeProduct) @ Product

| Product | | T |

A ApplicationOne ApplicationTwo

HmakeProduct) | Product +makeProduct) : Product
ProduatTwo -

I
|
I
|

retum new ProductCne): B‘

Anincreasingly popular definition of factory method is: astatic
method of aclass that returns an object of that class type. But unlike a
constructor, the actual object it returns might be an instance of a
subclass.

Unlike a constructor, an existing object might be reused, instead of a
new object created. Unlike a constructor, factory methods can have

different and more descriptive names (e.g.
Color.make_RGB_color(float red, float green, float blue)
and Color._make HSB_color(float hue, float saturation, float
brightness)

Vstatic makeProduct]) - Product - — — and decide which derived

43 object to create and retum.

52 | Factory Method

ainterfaces
Product Evaluate arguments ﬁ

Theclient istotally decoupled from the implementation details of
derived classes. Polymorphic creation is now possible.

.ll.ll...
PoyT— prmr——— aProduct makeObject(); Ij
Abstraction |~ '

+nommalfdathod|)
+Hmake Qyect{) © Froduct

- aProduct

JAN

| | Product
ConcreteOne ConcreteTwo

+makeObject() | Product T
|
|

retum new ProductCne(); ﬁ ProductOne ProductTwo

Example

The Factory Method defines an interface for creating objects, but lets
subclasses decide which classes to instantiate.

Injection molding presses demonstrate this pattern. Manufacturers of
plastic toys process plastic molding powder, and inject the plastic into
molds of the desired shapes. The class of toy (car, action figure, etc.) is
determined by the mold.

Factory Method | 53

InjectionMold

tinject()

[IE.

ToyDinosaurMaold

+nject()

Check list

ToyCarMold

+Hinject()

(B

1. If you have an inheritance hierarchy that exercises polymorphism,
consider adding a polymorphic creation capability by defining a
static factory method in the base class.

2. Design the arguments to the factory method. What qualities or
characteristics are necessary and sufficient to identify the correct
derived classto instantiate?

3. Consider designing an internal "object pool” that will allow objects
to be reused instead of created from scratch.

4. Consider making all constructors private Or protected.

Rules of thumb

Abstract Factory classes are often implemented with Factory
Methods, but they can be implemented using Prototype.

Factory Methods are usually called within Template M ethods.

Factory Method: creation through inheritance. Prototype: creation

through delegation.

Often, designs start out using Factory Method (less complicated,
more customizable, subclasses proliferate) and evolve toward Abstract

54 | Factory Method

Factory, Prototype, or Builder (more flexible, more complex) as the
designer discovers where more flexibility is needed.

Prototype doesn't require subclassing, but it does require an Initialize
operation. Factory Method requires subclassing, but doesn't require
Initialize.

The advantage of a Factory Method is that it can return the same
instance multiple times, or can return a subclass rather than an object of
that exact type.

Some Factory Method advocates recommend that as a matter of
language design (or failing that, as a matter of style) absolutely all
constructors should be private or protected. It's no one else's business
whether a class manufactures a new object or recycles an old one.

The new operator considered harmful. There is a difference between
requesting an object and creating one. The new operator always creates
an object, and fails to encapsul ate object creation. A Factory Method
enforces that encapsulation, and allows an abject to be requested
without inextricable coupling to the act of creation.

Factory Method | 55

Flyweight

| ntent

e Use sharing to support large numbers of fine-grained objects
efficiently.

e The Motif GUI strategy of replacing heavy-weight widgets with
light-weight gadgets.

Problem

Designing objects down to the lowest levels of system "granularity”
provides optimal flexibility, but can be unacceptably expensive in terms
of performance and memory usage.

Discussion

The Flyweight pattern describes how to share objects to allow their
use at fine granularities without prohibitive cost. Each "flyweight"
object is divided into two pieces: the state-dependent (extrinsic) part,
and the state-independent (intrinsic) part. Intrinsic state is stored
(shared) in the Flyweight object. Extrinsic state is stored or computed
by client objects, and passed to the Flyweight when its operations are
invoked.

Anillustration of this approach would be Motif widgets that have
been re-engineered as light-weight gadgets. Whereas widgets are
"intelligent” enough to stand on their own; gadgets exist in a dependent
relationship with their parent layout manager widget.

Each layout manager provides context-dependent event handling,
real estate management, and resource services to its flyweight gadgets,
and each gadget is only responsible for context-independent state and
behavior.

Sructure

Flyweights are stored in a Factory's repository. The client restrains
herself from creating Flyweights directly, and requests them from the

56 | Flyweight

Factory. Each Flyweight cannot stand on its own. Any attributes that
would make sharing impossible must be supplied by the client
whenever arequest is made of the Flyweight. If the context lends itself
to "economy of scale” (i.e. the client can easily compute or look-up the
necessary attributes), then the Flyweight pattern offers appropriate

leverage.

Factory

+maker lyweight{}

cache

Flyweight

[shareableState 1/

+dolt)

The Ant, Locust, and Cockroach classes can be light-weight
because their instance-specific state has been de-encapsulated, or

externalized, and must be supplied by the client.

Client

Factory

+makelnsect{in iype, in state)

!

= cache

J

BillionSpecies

o This(in extrinsicState)

JAN

Locust

Cockroach

Ant

LinfrinsicState

LintrinsicState

intrinsicState

HdoThislin extrinsicState)

+doThis(in axtrinsicStata)

HdoThis(in exrinsicState)

Flyweight |57

Example

The Flyweight uses sharing to support large numbers of objects

efficiently.

The public switched telephone network is an example of a

Flyweight. There are several resources such as dial tone generators,
ringing generators, and digit receivers that must be shared between al
subscribers. A subscriber is unaware of how many resources arein the
pool when he or she lifts the handset to make acall. All that mattersto
subscribersisthat adial toneis provided, digits are received, and the
call is completed.

r T =
I Dial tone generator pool |

2e

e

Check list

1

Ensure that object overhead is an issue needing attention, and, the
client of the classis able and willing to absorb responsibility
realignment.

. Dividethetarget classs state into: shareable (intrinsic) state, and

non-shareable (extrinsic) state.

Remove the non-shareable state from the class attributes, and add it
the calling argument list of affected methods.

Create a Factory that can cache and reuse existing class instances.

5. The client must use the Factory instead of the new operator to

reguest objects.

Theclient (or athird party) must look-up or compute the non-
shareable state, and supply that state to class methods.

58 | Flyweight

Rules of thumb

Whereas Flyweight shows how to make lots of little objects, Facade
shows how to make a single object represent an entire subsystem.

Flyweight is often combined with Composite to implement shared
leaf nodes.

Terminal symbols within Interpreter's abstract syntax tree can be
shared with Flyweight.

Flyweight explains when and how State objects can be shared.

Flyweight |59

Interpreter

| ntent

e Given alanguage, define arepresentation for its grammar along with
an interpreter that uses the representation to interpret sentencesin
the language.

e Map adomain to alanguage, the language to a grammar, and the
grammar to a hierarchical object-oriented design.

Problem

A class of problems occurs repeatedly in awell-defined and well-
understood domain. If the domain were characterized with a
"language”, then problems could be easily solved with an interpretation
"engine".

Discussion

The Interpreter pattern discusses. defining a domain language (i.e.
problem characterization) as a simple language grammar, representing
domain rules as language sentences, and interpreting these sentences to
solve the problem. The pattern uses a class to represent each grammar
rule. And since grammars are usually hierarchical in structure, an
inheritance hierarchy of rule classes maps nicdly.

An abstract base class specifies the method interpret. Each
concrete subclass implements interpret by accepting (as an argument)
the current state of the language stream, and adding its contribution to
the problem solving process.

Sructure

Interpreter suggests modeling the domain with a recursive grammar.
Each rulein the grammar is either a'‘composite' (arule that references
other rules) or aterminal (aleaf node in atree structure). Interpreter
relies on the recursive traversal of the Composite pattern to interpret the
'sentences it is asked to process.

60 | Interpreter

Client winterfaces ol s
AbstractExpression _EEmen
rsolve(inout Context)

[|
Context TerminalExpression CompoundExpression

+solve(inout Context)

i perform "parent” functionality
il then delegate to each "child” elemeant

Il "Context” is data structure for
I holding input and output

Example

The Intepreter pattern defines a grammatical representation for a
language and an interpreter to interpret the grammar.

Musicians are examples of Interpreters. The pitch of asound and its
duration can be represented in musical notation on a staff. This notation
provides the language of music. Musicians playing the music from the
score are able to reproduce the original pitch and duration of each sound
represented.

PR U —— r [A Iq [

PR R RRLLR T LR =17 v 1 e

N

Musical notation
(AbsiractExpression)

- Y
-

! # H")| 3

Motas

{TerminalExprassion) Signatures

Interpreter | 61

Check list

1. Decideif a"little language" offers ajustifiable return on investment.
2. Define agrammar for the language.

3. Map each production in the grammar to a class.

4

. Organize the suite of classes into the structure of the Composite
pattern.

o

Define an interpret(Context) method in the Composite hierarchy.

6. The Context object encapsulates the current state of the input and
output as the former is parsed and the latter is accumulated. It is
manipulated by each grammar class as the "interpreting” process
transforms the input into the output.

Rules of thumb

Considered in its most general form (i.e. an operation distributed
over aclass hierarchy based on the Composite pattern), nearly every use
of the Composite pattern will aso contain the Interpreter pattern. But
the Interpreter pattern should be reserved for those cases in which you
want to think of this class hierarchy as defining alanguage.

Interpreter can use State to define parsing contexts.

The abstract syntax tree of Interpreter isa Composite (therefore
Iterator and Visitor are aso applicable).

Terminal symbols within Interpreter's abstract syntax tree can be
shared with Flyweight.

The pattern doesn't address parsing. When the grammar is very
complex, other techniques (such as a parser) are more appropriate.

62 | Interpreter

|terator

I ntent

e Provide away to access the elements of an aggregate object
sequentially without exposing its underlying representation.

e The C++ and Java standard library abstraction that makes it possible
to decouple collection classes and algorithms.

e Promoteto "full object status' the traversal of a collection.

e Polymorphic traversa

Problem

Need to "abstract” the traversal of wildly different data structures so that
algorithms can be defined that are capable of interfacing with each
transparently.

Discussion

An aggregate object such as alist should give you away to accessits
elements without exposing itsinternal structure. Moreover, you might
want to traverse the list in different ways, depending on what you need
to accomplish. But you probably don't want to bloat the List interface
with operations for different traversals, even if you could anticipate the
onesyou'l require. Y ou might also need to have more than one
traversal pending on the same list. And, providing a uniform interface
for traversing many types of aggregate objects (i.e. polymorphic
iteration) might be valuable.

The Iterator pattern lets you do all this. The key ideaisto take the
responsibility for access and traversal out of the aggregate object and
put it into an Iterator object that defines a standard traversal protocol.

The Iterator abstraction is fundamental to an emerging technology
called "generic programming". This strategy seeks to explicitly separate
the notion of "algorithm" from that of "data structure”. The motivation
isto: promote component-based development, boost productivity, and
reduce configuration management.

Iterator |63

Asan example, if you wanted to support four data structures (array,
binary tree, linked list, and hash table) and three algorithms (sort, find,
and merge), atraditional approach would require four times three
permutations to devel op and maintain. Whereas, a generic programming
approach would only require four plus three configuration items.

Sructure

The Client uses the Collection class' public interface directly. But
access to the Collection’s elementsis encapsul ated behind the
additional level of abstraction called Iterator. Each Collection derived
class knows which Iterator derived class to create and return. After that,
the Client relies on the interface defined in the Iterator base class.

Client Collection

+oreate TraversalObject!) - TraversalAbstraction

L —

TraversalAbstraction ListCallection MapCollection

irst) ";UEEIETIEH‘E]FSE“Gb_IEC!{] ForeateTraversalObject() [~

+next() | I
HisDone() ' 1

!
LF‘ ! return new ListTraversal{this); I_\}

MapTraversal ListTraversal

Example

The Iterator provides waysto access elements of an aggregate object
sequentially without exposing the underlying structure of the object.

Files are aggregate objects. In office settings where accessto filesis
made through administrative or secretarial staff, the Iterator pattern is
demonstrated with the secretary acting as the Iterator. Severa television
comedy skits have been developed around the premise of an executive

64 | Iterator

———————————]

trying to understand the secretary's filing system. To the executive, the
filing system is confusing and illogical, but the secretary is able to
access files quickly and efficiently.

On early television sets, adial was used to change channels. When
channel surfing, the viewer was required to move the dial through each
channel position, regardless of whether or not that channel had
reception. On modern television sets, a next and previous button are
used. When the viewer selects the "next" button, the next tuned channel
will be displayed.

Consider watching television in ahotel room in a strange city. When
surfing through channels, the channel number is not important, but the
programming is. If the programming on one channel is not of interest,
the viewer can request the next channel, without knowing its number.

ChannelFrequencies
Channellterator

+method Of Traversal()
next()
Fprevicus()

—--..‘ O
TunedChannel
o ———— ChannelSelector

+methodCfTraversal()

Check list

1. Add acreate_iterator method to the "collection" class, and grant
the "iterator" class privileged access.

2. Design an "iterator" class that can encapsulate traversal of the
"collection" class.

3. Clients ask the collection object to create an iterator object.

4, Clientsusethe first(), is_done(), next(), and current_item()
protocol to access the elements of the collection class.

Iterator | 65

Rules of thumb

The abstract syntax tree of Interpreter isa Composite (therefore
Iterator and Visitor are aso applicable).

Iterator can traverse a Composite. Visitor can apply an operation
over a Composite.

Polymorphic Iterators rely on Factory Methods to instantiate the
appropriate Iterator subclass.

Memento is often used in conjunction with Iterator. An Iterator can
use a Memento to capture the state of an iteration. The Iterator stores
the Memento internaly.

66 | Iterator

M ediator

I ntent

e Define an object that encapsulates how a set of objectsinteract.
Mediator promotes |oose coupling by keeping objects from
referring to each other explicitly, and it lets you vary their
interaction independently.

e Design an intermediary to decouple many peers.

¢ Promote the many-to-many relationships between interacting
peersto "full object status'.

Problem

We want to design reusable components, but dependencies between
the potentially reusable pieces demonstrates the " spaghetti code”
phenomenon (trying to scoop asingle serving resultsin an "all or
nothing clump").

Discussion

In Unix, permission to access system resources is managed at three
levels of granularity: world, group, and owner. A group is a collection
of usersintended to model some functional affiliation. Each user on the
system can be a member of one or more groups, and each group can
have zero or more users assigned to it. Next figure shows three users
that are assigned to all three groups.

Jack

b
O
=

o
el

Larmry D

2

o
0

A
@]
0]
|

Alex

Mediator |67

If we were to model thisin software, we could decide to have User
objects coupled to Group objects, and Group objects coupled to User
objects. Then when changes occur, both classes and al their instances
would be affected.

An alternate approach would be to introduce "an additional level of
indirection” - take the mapping of usersto groups and groups to users,
and make it an abstraction unto itself. This offers several advantages:
Users and Groups are decoupled from one another, many mappings can
easily be maintained and manipulated simultaneously, and the mapping
abstraction can be extended in the future by defining derived classes.

Jack \\ pasy
\ USERS ADM
10
GROUPS ~ | G |
Lary MAPPING DEV

//
£ &

Alex ROOT

Partitioning a system into many objects generally enhances
reusability, but proliferating interconnections between those objects
tend to reduce it again. The mediator object: encapsulates all
interconnections, acts as the hub of communication, is responsible for
controlling and coordinating the interactions of its clients, and promotes
loose coupling by keeping objects from referring to each other
explicitly.

The Mediator pattern promotes a "many-to-many relationship
network™ to "full object status®. Modelling the inter-relationships with
an object enhances encapsulation, and allows the behavior of those
inter-relationships to be modified or extended through subclassing.

An example where Mediator is useful isthe design of auser and
group capability in an operating system. A group can have zero or more
users, and, a user can be a member of zero or more groups. The

68 | Mediator

Mediator pattern provides a flexible and non-invasive way to associate
and manage users and groups.

Consumer

Structure
Client
W
Producer Mediator
- nolify() =15tmfe{}
Heratrived)

~sf+natify()

Colleagues (or peers) are not coupled to one another. Each talks to
the Mediator, which in turn knows and conducts the orchestration of the
others. The "many to many" mapping between colleagues that would
otherwise exist, has been "promoted to full object status'. This new
abstraction provides alocus of indirection where additional leverage

can be hosted.
Client Intermediary - manager Widget
== HdoThis()
|
|
]
I high level interface for client Table Tree CheckBox

if 1) delegate to all "coleagues”
{f 2) manage all coupling and
' collaboration

Example

The Mediator defines an object that controls how a set of objects
interact. Loose coupling between colleague objects is achieved by
having colleagues communicate with the Mediator, rather than with
each other.

Mediator | 69

The control tower at a controlled airport demonstrates this pattern
very well. The pilots of the planes approaching or departing the terminal
area communicate with the tower rather than explicitly communicating
with one another. The constraints on who can take off or land are
enforced by the tower. It isimportant to note that the tower does not
control the whole flight. It exists only to enforce constraintsin the
terminal area.

ATC Mediator

e

b N
Flight 747

Flight 1011 Flight 112

S

Flight 7E7

‘r >//d)l

Check list

1. Identify acollection of interacting objects that would benefit from
mutual decoupling.

2. Encapsulate those interactions in the abstraction of a new class.

3. Create an instance of that new class and rework all "peer" objects to
interact with the Mediator only.

4. Balance the principle of decoupling with the principle of distributing
responsibility evenly.

5. Be careful not to create a " controller" or "god" object.

Rules of thumb

Chain of Responsibility, Command, Mediator, and Observer, address
how you can decouple senders and receivers, but with different trade-

70 | Mediator

offs. Chain of Responsibility passes a sender request along a chain of
potentia receivers.

Command normally specifies a sender-receiver connection with a
subclass. Mediator has senders and receivers reference each other
indirectly. Observer defines a very decoupled interface that allows for
multiple receiversto be configured at run-time.

Mediator and Observer are competing patterns. The difference
between them is that Observer distributes communication by
introducing "observer" and "subject" objects, whereas a Mediator object
encapsul ates the communication between other objects. We've found it
easier to make reusable Observers and Subjects than to make reusable
Mediators.

On the other hand, Mediator can leverage Observer for dynamically
registering colleagues and communicating with them.

Mediator is similar to Facade in that it abstracts functionality of
existing classes. Mediator abstracts/centralizes arbitrary communication
between colleague objects, it routingly "adds value”, and it is
known/referenced by the colleague objects (i.e. it defines a
multidirectional protocol).

In contrast, Facade defines a simpler interface to a subsystem, it
doesn't add new functionality, and it is not known by the subsystem
classes (i.e. it defines a unidirectional protocol where it makes requests
of the subsystem classes but not vice versa).

Mediator |71

Memento

I ntent
e Without violating encapsulation, capture and externalize an object's
internal state so that the object can be returned to this state later.
e A magic cookie that encapsulates a "check point" capability.

¢ Promote undo or rollback to full object status.

Problem

Need to restore an object back to its previous state (undo or rollback
operations).

Discussion

The client requests a Memento from the source object when it needs
to checkpoint the source object's state. The source object initializes the
Memento with a characterization of its state.

The client isthe "care-taker" of the Memento, but only the source
object can store and retrieve information from the Memento (the
Memento is "opaque" to the client and all other objects). If the client
subsequently needs to "rollback” the source object's state, it hands the
Memento back to the source object for reinstatement.

An unlimited "undo" and "redo" capability can be readily
implemented with a stack of Command objects and a stack of Memento
objects.

The Memento design pattern defines three distinct roles:
1. Originator - the object that knows how to save itself.

2. Caretaker - the object that knows why and when the Originator
needs to save and restore itself.

3. Memento - the lock box that iswritten and read by the
Originator, and shepherded by the Caretaker.

72 | Memento

Sructure

Originater | 3 Memento
Fslate |-slate

+sathamento]) == +getSiatal)
— —f+createMementol) : +setSiate()
|

[—
* slate = m->gatState();
return new Mementolstate);

Example

The Memento captures and externalizes an object'sinternal state so
that the object can later be restored to that state.

This pattern is common among do-it-yourself mechanics repairing
drum brakes on their cars. The drums are removed from both sides,
exposing both the right and left brakes. Only one side is disassembled
and the other serves as a Memento of how the brake parts fit together.
Only after the job has been completed on one sideis the other side
disassembled. When the second side is disassembled, the first side acts
as the Memento.

Mechanic

+removelppositeBrakeDrumi)

return{brakeReference)

Leave intact until
brakes on Side1 are
Completed

Memento | 73

Check list

Identify the roles of “caretaker” and “originator”.

Create a Memento class and declare the originator afriend.
Caretaker knows when to "check point" the originator.

Originator creates a Memento and copies its state to that Memento.
Caretaker holds on to (but cannot peek into) the Memento.

Caretaker knows when to "roll back" the originator.

N o g M w D PRE

Originator reinstates itself using the saved state in the Memento.

Rules of thumb

Command and Memento act as magic tokens to be passed around
and invoked at alater time. In Command, the token represents a request;
in Memento, it represents the internal state of an object at a particular
time. Polymorphism is important to Command, but not to Memento
because itsinterface is so narrow that a memento can only be passed as
avaue.

Command can use Memento to maintain the state required for an
undo operation.

Memento is often used in conjunction with Iterator. An Iterator can
use a Memento to capture the state of an iteration. The Iterator stores
the Memento internaly.

74 | Memento

Null Object

I ntent

The intent of a Null Object is to encapsulate the absence of an object
by providing a substitutabl e alternative that offers suitable default do
nothing behavior. In short, a design where "nothing will come of
nothing"

Use the Null Object pattern when:

» anobject requires a collaborator. The Null Object pattern does
not introduce this collaboration--it makes use of a
collaboration that already exists

» some collaborator instances should do nothing

e you want to abstract the handling of null away from the client

Problem

Given that an object reference may be optionally null, and that the
result of anull check isto do nothing or use some default value, how
can the absence of an object — the presence of anull reference — be
treated transparently?

Discussion

Sometimes a class that requires a collaborator does not need the
collaborator to do anything. However, the class wishes to treat a
collaborator that does nothing the same way it treats one that actually
provides behavior.

Consider for example a simple screen saver which displays balls that
move about the screen and have special color effects. Thisis easily
achieved by creating a Ball class to represent the balls and using a
Strategy pattern to control the ball's motion and another Strategy pattern
to control the ball's color.

It would then be trivial to write strategies for many different types of
motion and color effects and create balls with any combination of those.
However, to start with you want to create the simplest strategies

Null Object |75

possible to make sure everything is working. And these strategies could
also be useful later since you want as strategies as possible strategies.

Ball

-ballMotionSirategy

-ballColorStrategy

HsatBallMoticnStrategylin motionStrategy - BallMotionStrategy)
+setBallColorStrategy({in colorStrategy : BallColorStrategy)

Hupdate()
BallMotionStrategy BallColorStrategy
Hmove(in ball @ Ball) +changeColor(in ball : Ball)
NullBallMotionStrategy NullBallColorSirategy
Hmove(in ball : Ball) +changeColorin ball : Bally

Now, the simplest strategy would be no strategy. That is do nothing,
don't move and don't change color. However, the Strategy pattern
requires the ball to have objects which implement the strategy
interfaces. Thisiswhere the Null Object pattern becomes useful.

Simply implement a Nul IMovementStrategy Which doesn't move
the ball and aNulIColorStrategy which doesn't change the ball's
color. Both of these can probably be implemented with essentially no
code. All the methods in these classes do "nothing". They are perfect
examples of the Null Object Pattern.

The key to the Null Object pattern is an abstract class that defines
the interface for al objects of thistype. The Null Object isimplemented
as asubclass of this abstract class. Because it conforms to the abstract
class interface, it can be used any place this type of object is needed. As
compared to using a specia "null" value which doesn't actually
implement the abstract interface and which must constantly be checked
for with special code in any object which uses the abstract interface.

It is sometimes thought that Null Objects are over simple and
"stupid" but in truth a Null Object always knows exactly what needsto

76 | Null Object

be done without interacting with any other objects. So in truth it is very
"smart."

Structure
Uses AbstractObject
—————— -
Hracuest])
AN

RealObject NullObjeet

+request() Frequest]) [] do nothing
Client

e requires acollaborator

AbstractObject
« declarestheinterface for Client's collaborator

o implements default behavior for the interface common to all
classes, as appropriate

RealObject
o defines a concrete subclass of Abstractobject whose

instances provide useful behavior that Client expects

NullObject
e providesan interface identical to Abstractobjects SO that a

null object can be substituted for areal object

e implementsitsinterface to do nothing. What exactly it
means to do nothing depends on what sort of behavior
Client is expecting

o when there is more than one way to do nothing, more than
one Nullobject class may be required

Rules of thumb

The Null Object class is often implemented as a Singleton. Since a
null object usually does not have any state, its state can't change, so

Null Object |77

multiple instances are identical. Rather than use multiple identical
instances, the system can just use a single instance repeatedly.

If some clients expect the null object to do nothing one way and
some another, multiple Nul 10bject classes will be required. If the do
nothing behavior must be customized at run time, the Nul l10bject class
will require pluggable variables so that the client can specify how the
null object should do nothing (see the discussion of pluggable adaptors
in the Adapter pattern). This may generally be a symptom of the
AbstractObject not having awell defined (semantic) interface.

A Null Object does not transform to become a Real Object. If the
object may decide to stop providing do nothing behavior and start
providing real behavior, it is not anull object. It may be areal object
with a do nothing mode, such as a controller which can switch in and
out of read-only mode. If it is asingle object which must mutate from a
do nothing object to areal one, it should be implemented with the State
pattern or perhaps the Proxy pattern. In this case a Null State may be
used or the proxy may hold a Null Object.

The use of anull object can be similar to that of a Proxy, but the two
patterns have different purposes. A proxy provides aleve of indirection
when accessing areal subject, thus controlling access to the subject. A
null collaborator does not hide areal object and control accesstoit, it
replaces the real object. A proxy may eventually mutate to start acting
like areal subject. A null object will not mutate to start providing real
behavior, it will always provide do nothing behavior.

A Null Object can be a special case of the Strategy pattern. Strategy
specifies several ConcreteStrategy classes as different approaches for
accomplishing atask. If one of those approaches isto consistently do
nothing, that ConcreteStrategy isaNullObject. For example, a
Controller isaView's Strategy for handling input, and NoControl ler iS
the Strategy that ignores al input.

A Null Object can be a special case of the State pattern. Normally,
each ConcreteState has some do nothing methods because they're not
appropriate for that state. In fact, a given method is often implemented

78 | Null Object

to do something useful in most states but to do nothing in at least one
state. If aparticular ConcreteState implements most of its methods to
do nothing or at least give null results, it becomes a do nothing state and
assuchisanull state.

A Null Object can be used to alow a Visitor to safely visit a
hierarchy and handle the null situation.

Null Object is a concrete collaborator class that acts as the
collaborator for a client which needs one. The null behavior is not
designed to be mixed into an object that needs some do nothing
behavior. It is designed for a class which delegates to a collaborator al
of the behavior that may or may not be do nothing behavior.

Null Object |79

Object Pool

| ntent

Object pooling can offer a significant performance boost; it is most
effective in situations where the cost of initializing a classinstanceis
high, the rate of instantiation of aclassis high, and the number of
instantiations in use at any onetimeislow.

Problem

Object pools (otherwise known as resource pools) are used to
manage the abject caching. A client with access to a Object pool can
avoid creating a new Objects by simply asking the pool for one that has
aready been instantiated instead. Generally the pool will be agrowing
pool, i.e. the pool itself will create new objects if the pool is empty, or
we can have a pool, which restricts the number of objects created.

It isdesirable to keep all Reusable objects that are not currently in
use in the same object pool so that they can be managed by one
coherent policy. To achieve this, the Reusable Pool classis designed to
be a singleton class.

Discussion

The Object Pool |ets others "check out" objects from its pool, when
those objects are no longer needed by their processes, they are returned
to the pool in order to be reused.

However, we don't want a process to have to wait for a particular
object to be released, so the Object Pool also instantiates new objects as
they are required, but must also implement a facility to clean up unused
objects periodicaly.

Sructure

The genera ideafor the Connection Pool pattern isthat if instances
of aclass can be reused, you avoid creating instances of the class by
reusing them.

80 | Object Pool

ReusablePool

ReusablaPool getinstance(). acquareReusakile() rreusables

» +slatle getinstance() : ReusablePool

+acquireReusablal) | Reusable
+releaseReusablelin a : Reusable)
+eeiMaxPoolSize(in size)

Reusable - Instances of classesin this role collaborate with other
objects for alimited amount of time, and then they are no longer needed
for that collaboration.

Client - Instances of classesin thisrole use Reusable objects.

ReusablePool - Instances of classesin this role manage Reusable
objects for use by Client objects.

Usually, it is desirable to keep all Reusable objects that are not
currently in use in the same object pool so that they can be managed by
one coherent policy. To achieve this, the ReusablePool classis
designed to be a singleton class. Its constructor(s) are private, which
forces other classesto call its getlnstance method to get the one
instance of the ReusablePool class.

A Client object calls aReusablePool object's acquireReusable
method when it needs aReusable object. A ReusablePool object
maintains a collection of Reusable objects. It uses the collection of
Reusable objectsto contain a pool of Reusable objects that are not
currently in use.

If there are any Reusable objects in the pool when the
acquireReusable method is called, it removes aReusable object from
the pool and returnsit. If the pool is empty, then the acquireReusable
method creates aReusable object if it can. If the acquireReusable
method cannot create a new Reusable object, then it waits until a
Reusable object is returned to the collection.

Client objects pass a Reusable object to aReusablePool object's
releaseReusable method when they are finished with the object. The
releaseReusable method returns aReusable object to the pool of
Reusable objects that are not in use.

Object Pool |81

In many applications of the Object Pool pattern, there are reasons for
limiting the total number of Reusable objects that may exist. In such
cases, the ReusablePool object that creates Reusable objectsis
responsible for not creating more than a specified maximum number of
Reusable objects. If ReusablePool objects are responsible for limiting
the number of objects they will create, then the ReusablePool class will
have a method for specifying the maximum number of objectsto be
created. That method is indicated in the above diagram as
setMaxPoolSize.

Example

Do you like bowling? If you do, you probably know that you should
change your shoes when you getting the bowling club. Shoe shelf is
wonderful example of Object Pool. Once you want to play, you'll get
your pair (aguireReusable) from it. After the game, you'll return shoes
back to the shelf (releaseReusable).

1 « myshoes = shelf.acquireshoes(); 2. client.wear(myshoes) ;

SHELF (OBJECT POOL)

HOT GIRL (CLIENT)

G...

4 s« Shelf.releaseshoes(myshoes); 3 . client.playO);

82 | Object Pool

Check list

1. Create ObjectPool classwith private array of Objectsinside
2. Create acquare and release methodsin ObjectPool class

3. Make sure that your objectPool is Singleton

Rules of thumb

The Factory Method pattern can be used to encapsulate the creation
logic for objects. However, it does not manage them after their creation,
the object pool pattern keeps track of the objectsit creates.

Object Pools are usually implemented as Singletons.

Object Pool |83

Observer

| ntent

o Define a one-to-many dependency between objects so that when one
object changes state, al its dependents are notified and updated
automatically.

e Encapsulate the core (or common or engine) componentsin a
Subject abstraction, and the variable (or optional or user interface)
components in an Observer hierarchy.

e The"View" part of Model-View-Controller.

Problem

A large monolithic design does not scale well as new graphing or
monitoring requirements are levied.

Discussion

Define an object that is the "keeper" of the data model and/or
business logic (the Subject). Delegate all "view" functionality to
decoupled and distinct Observer objects. Observers register themselves
with the Subject as they are created. Whenever the Subject changes, it
broadcasts to all registered Observers that it has changed, and each
Observer queries the Subject for that subset of the Subject's state that it
is responsible for monitoring.

The protocol described above specifies a"pull" interaction model.
Instead of the Subject "pushing” what has changed to all Observers,
each Observer isresponsible for "pulling” its particular "window of
interest” from the Subject. The "push" model compromises reuse, while
the "pull” model isless efficient.

Issues that are discussed, but |eft to the discretion of the designer,
include: implementing event compression (only sending a single change
broadcast after a series of consecutive changes has occurred), having a
single Observer monitoring multiple Subjects, and ensuring that a
Subject notify its Observers when it is about to go away.

84 | Observer

The Observer pattern captures the lion's share of the Model-View-
Controller architecture that has been a part of the Smalltalk community
for years.

Sructure
Subject views = | Observer
madel

+atiachiin Observer) Rt el
| —{rsetStateq) éll
| +getState() [1
: ViewOne ViewTwo
I
I = update) +update()

fior each view in views I
v.updata() l

model getsiatal); ﬁ

Subject represents the core (or independent or common or engine)
abstraction. Observer represents the variable (or dependent or optional
or user interface) abstraction. The Subject prompts the Observer objects
to do their thing. Each Observer can call back to the Subject as needed.

Example

The Observer defines a one-to-many relationship so that when one
object changes state, the others are notified and updated automatically.

Some auctions demonstrate this pattern. Each bidder possesses a
numbered paddle that is used to indicate a bid. The auctioneer starts the
bidding, and "observes' when apaddieisraised to accept the bid. The
acceptance of the bid changes the bid price which is broadcast to all of
the biddersin the form of anew bid.

Observer |85

Auctioneer (Subject)

1. Accept Bid 2. Broadcast New High Bid

v v

& &

Bidders (Observers)

Check list

1

Differentiate between the core (or independent) functionality and the
optional (or dependent) functionality.

Model the independent functionality with a"subject” abstraction.
Model the dependent functionality with an "observer” hierarchy.
The Subject is coupled only to the Observer base class.

The client configures the number and type of Observers.

Observers register themselves with the Subject.

. The Subject broadcasts eventsto all registered Observers.

The Subject may "push” information at the Observers, or, the
Observers may "pull" the information they need from the Subject.

Rules of thumb

Chain of Responsibility, Command, Mediator, and Observer, address

how you can decouple senders and receivers, but with different trade-
offs. Chain of Responsibility passes a sender request along a chain of
potential receivers. Command normally specifies a sender-receiver
connection with a subclass. Mediator has senders and receivers

86 | Observer

reference each other indirectly. Observer defines avery decoupled
interface that allows for multiple receiversto be configured at run-time.

Mediator and Observer are competing patterns. The difference
between them is that Observer distributes communication by
introducing "observer" and "subject" objects, whereas a Mediator object
encapsul ates the communication between other objects. We've found it
easier to make reusable Observers and Subjects than to make reusable
Mediators.

On the other hand, Mediator can leverage Observer for dynamically
registering colleagues and communicating with them.

Observer | 87

Private Class Data

| ntent

e Control write access to class attributes
e Separate data from methods that use it
e Encapsulate class datainitialization

e Providing new type of final - final after constructor

Problem

A class may exposeits attributes (class variables) to manipulation
when manipulation is no longer desirable, e.g. after construction. Using
the private class data design pattern prevents that undesirable
mani pul ation.

A class may have one-time mutable attributes that cannot be
declared final. Using this design pattern allows one-time setting of those
class attributes.

The motivation for this design pattern comes from the design goal of
protecting class state by minimizing the visibility of its attributes (data).

Discussion

The private class data design pattern seeks to reduce exposure of
attributes by limiting their visibility.

It reduces the number of class attributes by encapsulating them in
single Data object. It allows the class designer to remove write privilege
of attributes that are intended to be set only during construction, even
from methods of the target class.

Sructure

The private class data design pattern solves the problems above by
extracting a data class for the target class and giving the target class
instance an instance of the extracted data class.

88 | Private Class Data

MainClass

Fattribute
Fattribute?
lattributed
+oetAttnbute()
+oatattib

}
ass(in atirl, in attr2, in atird) - Main

MainClass
e -data - DataClass
iipesraploddami _FWeinClass(in Akl Tn a2, In 23] - MeinClass
in constructor
A
All attributes fuat DataClass
attr are private. :
MainClass uses getters ﬁ 3 _jﬁzm;:;
to get their values. e
+getAtiribute1()
+getAtiribute ()
+getAtiributed()
+DataClass(in atir, in atr2, in attr3) : DaaClass
Check list

1. Create dataclass. Move to data class all attributes that need hiding.
2. Createin main classinstance of data class.

3. Main class must initialize data class through the data class's
constructor.

4. Expose each attribute (variable or property) of data class through a
getter.

5. Expose each attribute that will change in further through a setter.

Private Class Data | 89

Prototype

| ntent

o Specify the kinds of objects to create using a prototypical instance,
and create new objects by copying this prototype.

e Co-opt oneinstance of aclassfor use as a breeder of all future
instances.

e The new operator considered harmful.

Problem

Application "hard wires" the class of object to create in each "new"
expression.

Discussion

Declare an abstract base class that specifies a pure virtual "clone"
method, and, maintains a dictionary of al "cloneabl€" concrete derived
classes. Any class that needs a " polymorphic constructor” capability:
derivesitself from the abstract base class, registersits prototypical
instance, and implements the clone operation.

The client then, instead of writing code that invokes the " new"
operator on a hard-wired class name, callsa"clone" operation on the
abstract base class, supplying a string or enumerated data type that
designates the particular concrete derived class desired.

Sructure

The Factory knows how to find the correct Prototype, and each
Product knows how to spawn new instances of itself.

90 | Prototype

each Image derived class
registering an instance of itself

T

I

] - cloneReqistry
ImageHandler

clonerRegistry is populatad ﬁ

Image

- images

+populatelmages()
|
I
I

*clone{) : Image

FAY

[1

ImageOne Image Two

imageas[naxt] =
clonerRegistry getilookupkey) clone(); rclonal) -

ImageOne

return rew ImageCne(this); I}]

Example

The Prototype pattern specifies the kind of objects to create using a
prototypical instance. Prototypes of new products are often built prior to
full production, but in this example, the prototype is passive and does

not participate in copying itself.

The mitotic division of acell - resulting in two identical cells- isan

example of a prototype that plays an activerole

in copying itself and

thus, demonstrates the Prototype pattern. When a cell splits, two cells of

identical genotvpe result. In other words, the cel

Cell

[+ Spiit()

T

| clonesitsalf.

SingleCellOrganism

+Splitf}

Prototype | 91

Check list

1. Add aclone method to the existing "product” hierarchy.

2. Designa'registry"” that maintains a cache of prototypical objects.
The registry could be encapsulated in anew Factory class, or in
the base class of the "product” hierarchy.

3. Design afactory method that: may (or may not) accept
arguments, finds the correct prototype object, calls clone on that
object, and returns the resuilt.

4. Theclient replaces al referencesto the new operator with callsto
the factory method.

Rules of thumb

Sometimes creational patterns are competitors: there are cases when
either Prototype or Abstract Factory could be used properly. At other
times they are complementory: Abstract Factory might store a set of
Prototypes from which to clone and return product objects. Abstract
Factory, Builder, and Prototype can use Singleton in their
implementations.

Abstract Factory classes are often implemented with Factory
Methods, but they can be implemented using Prototype.

Factory Method: creation through inheritance. Protoype: creation
through delegation.

Often, designs start out using Factory Method (less complicated,
more customizable, subclasses proliferate) and evolve toward Abstract
Factory, Protoype, or Builder (more flexible, more complex) as the
designer discovers where more flexibility is needed.

Prototype doesn't require subclassing, but it does require an
"initialize" operation. Factory Method requires subclassing, but doesn't
require Initialize.

Designs that make heavy use of the Composite and Decorator
patterns often can benefit from Prototype as well.

92 | Prototype

Prototype co-opts one instance of a class for use as a breeder of all
future instances.

Prototypes are useful when object initialization is expensive, and
you anticipate few variations on the initialization parameters. In this
context, Prototype can avoid expensive "creation from scratch”, and
support cheap cloning of a pre-initialized prototype.

Prototype is unique among the other creational patternsin that it
doesn't require a class — only an object. Object-oriented languages like
Self and Omegathat do away with classes completely rely on
prototypes for creating new objects.

Prototype | 93

Proxy

| ntent

e Provide a surrogate or placeholder for another object to control
accessto it.

e Usean extralevel of indirection to support distributed, controlled, or
intelligent access.

e Add awrapper and delegation to protect the real component from
undue complexity.

Problem

Y ou need to support resource-hungry objects, and you do not want
to instantiate such objects unless and until they are actually requested
by the client.

Discussion

Design a surrogate, or proxy, object that: instantiates the real object
the first time the client makes a request of the proxy, remembers the
identity of thisreal object, and forwards the instigating request to this
real object. Then all subsequent requests are simply forwarded directly
to the encapsulated real object.

There are four common situations in which the Proxy patternis
applicable.

1. A virtual proxy isaplaceholder for "expensiveto create" objects.
Thereal object is only created when aclient first
requests/accesses the object.

2. A remote proxy provides alocal representative for an object that
residesin adifferent address space. Thisiswhat the "stub” code
in RPC and CORBA provides.

94 | Proxy

3. A protective proxy controls access to a sensitive master object.
The "surrogate” object checks that the caller has the access
permissions required prior to forwarding the request.

4. A smart proxy interposes additional actions when an object is

accessed. Typical usesinclude:

o Counting the number of referencesto the real object so that it
can be freed automatically when there are no more references

(aka smart pointer),

o Loading apersistent object into memory when it'sfirst

referenced,

o Checking that the real object islocked beforeit is accessed to

ensure that no other object can changeit.

Sructure

By defining a Subject interface, the presence of the Proxy object
standing in place of the Real Subject is transparent to the client.

Subject

+dolf)

[
Proxy

wrapes

]

RealSubject

— Jrdoi)

I Optional functionality
i wrapee->dolt();

&—=n

i Optional functionality

Example

2rdaltf)

The Proxy provides a surrogate or place holder to provide accessto

an object.

A check or bank draft is aproxy for fundsin an account. A check
can be used in place of cash for making purchases and ultimately

controls access to cash in the issuer's account.

Proxy |95

Payment

+Amount)

FundsPaidFromAccount CheckProxy

Check list

1. Identify the leverage or "aspect” that is best implemented asa
wrapper or surrogate.

2. Define an interface that will make the proxy and the original
component interchangeable.

3. Consider defining a Factory that can encapsulate the decision of
whether a proxy or origina object is desirable.

4. The wrapper class holds a pointer to the real class and implements
the interface.

5. The pointer may beinitialized at construction, or on first use.
6. Each wrapper method contributes its leverage, and delegates to the
wrappee object.
Rules of thumb

Adapter provides a different interface to its subject. Proxy provides
the same interface. Decorator provides an enhanced interface.

Decorator and Proxy have different purposes but similar structures.
Both describe how to provide alevel of indirection to another object,
and the implementations keep a reference to the object to which they
forward requests.

96 | Proxy

Singleton

I ntent

e Ensure aclass has only one instance, and provide a global point of
accessto it.
o Encapsulated "just-in-time initialization” or "initialization on first

use".
Problem

Application needs one, and only one, instance of an object.
Additionally, lazy initialization and global access are necessary.

Discussion
Make the class of the single instance object responsible for creation,
initialization, access, and enforcement. Declare the instance as a private

static data member. Provide a public static member function that
encapsulates al initialization code, and provides access to the instance.

The client calls the accessor function (using the class name and
scope resolution operator) whenever areference to the single instanceis
required.

Singleton should be considered only if all three of the following
criteriaare satisfied:

e Ownership of the single instance cannot be reasonably assigned
e Lazyinitialization is desirable
e Global accessis not otherwise provided for

If ownership of the single instance, when and how initialization
occurs, and global access are hot issues, Singleton is not sufficiently
interesting.

The Singleton pattern can be extended to support access to an
application-specific number of instances.

The "static member function accessor” approach will not support
subclassing of the Singleton class. If subclassing is desired, refer to the
discussion in the book.

Singleton |97

Sructure

Singleton

Make the class of the single instance responsible for access and
"initialization on first use". The single instance is a private static
attribute. The accessor function is a public static method.

+static instance()

GlobalResource
Lthielnstance : GlobalResource
petinstance() ;| GlobalResource

Example

The Singleton pattern ensures that a class has only one instance and
provides aglobal point of access to that instance. It is named after the
singleton set, which is defined to be a set containing one el ement.

The office of the President of the United Statesis a Singleton. The
United States Constitution specifies the means by which apresident is
elected, limits the term of office, and defines the order of succession. As
aresult, there can be at most one active president at any given time.
Regardless of the personal identity of the active president, thetitle, "The
President of the United States" isaglobal point of access that identifies
the person in the office.

Goverment

+Election() : Govermant

Retum unique instance ﬁ

98 | Singleton

Check list

1. Defineaprivate static attribute in the "single instance" class.
2. Defineapublic static accessor function in the class.

3. Do "lazy initiaization" (creation on first use) in the accessor
function.

4, Define all constructorsto be protected or private.

5. Clients may only use the accessor function to manipulate the
Singleton.

Rules of thumb

Abstract Factory, Builder, and Prototype can use Singleton in their
implementation.

Facade objects are often Singletons because only one Facade object
isrequired.

State objects are often Singletons.

The advantage of Singleton over global variablesisthat you are
absolutely sure of the number of instances when you use Singleton, and,
you can change your mind and manage any number of instances.

The Singleton design pattern is one of the most inappropriately used
patterns. Singletons are intended to be used when a class must have
exactly one instance, no more, no less. Designers frequently use
Singletons in a misguided attempt to replace global variables. A
Singleton is, for intents and purposes, a global variable. The Singleton
does not do away with the global, it merely renamesit.

When is Singleton unnecessary? Short answer - most of the time.
Long answer: when it's simpler to pass an object resource as a reference
to the objects that need it, rather than letting objects access the resource
globally.

The real problem with Singletonsis that they give you such a good
excuse not to think carefully about the appropriate visibility of an

Singleton |99

object. Finding the right balance of exposure and protection for an
object is critical for maintaining flexibility.

Our group had abad habit of using global data, so | did a study
group on Singleton. The next thing I know Singletons appeared
everywhere and none of the problems related to global data went away.

The answer to the global data question is not "Make it a Sngleton”.
The answer is, "Why in the hell are you using global data?' Changing
the name doesn't change the problem.

Infact, it may make it worse because it gives you the opportunity to
say, "Well I'm not doing that, I'm doing this" — even though this and that
are the same thing.

100 | Singleton

State

I ntent

o Allow an object to ater its behavior when itsinternal state changes.
The object will appear to change its class.

¢ An object-oriented state machine

e wrapper + polymorphic wrappee + collaboration
Problem

A monolithic object's behavior is afunction of its state, and it must
change its behavior at run-time depending on that state. Or, an
application is characterixed by large and numerous case statements that
vector flow of control based on the state of the application.

Discussion

The State pattern is a solution to the problem of how to make
behavior depend on state.

e Definea"context" classto present asingle interface to the
outside world.

e Define a State abstract base class.

* Represent the different "states" of the state machine as derived
classes of the State base class.

o Define state-specific behavior in the appropriate State derived
classes.

e Maintain apointer to the current "state" in the "context" class.

e To change the state of the state machine, change the current
"state” pointer.

The State pattern does not specify where the state transitions will be
defined. The choices are two: the "context" object, or each individual
State derived class. The advantage of the latter option is ease of adding
new State derived classes. The disadvantage is each State derived class
has knowledge of (coupling to) its siblings, which introduces
dependencies between subclasses.

State | 101

A table-driven approach to designing finite state machines does a
good job of specifying state transitions, but it is difficult to add actions
to accompany the state transitions. The pattern-based approach uses
code (instead of data structures) to specify state transitions, but it does a
good job of accomodating state transition actions.

Sructure

The state machine's interface is encapsulated in the "wrapper" class.
The wrappee hierarchy's interface mirrors the wrapper's interface with
the exception of one additional parameter.

The extra parameter allows wrappee derived classes to call back to
the wrapper class as necessary. Complexity that would otherwise drag
down the wrapper classis neatly compartmented and encapsulated in a
polymorphic hierarchy to which the wrapper object delegates.

| Client

Ny
Context

current State

= = =tahext()
| +zatState(in State)

+goMext(in context)y

JAN

current.goNext(this); Il\] StateOne StateTwo StateThree

r {+oohext{in contend)

contaxt satState(StataTwo); Ij

Example

The State pattern allows an object to change its behavior when its
internal state changes.

This pattern can be observed in a vending machine. Vending
machines have states based on the inventory, amount of currency

102 | State

deposited, the ability to make change, the item selected, etc. When
currency is deposited and a selection is made, a vending machine will
either deliver a product and no change, deliver a product and change,
deliver no product due to insufficient currency on deposit, or deliver no
product due to inventory depletion.

VendingMachineState

VendingDepositState VendingStockState

S Y

-!a,'.:-a-\l
/L, _'H.

a &

12 L -

Check list

1. Identify an existing class, or create a new class, that will serve asthe
"state machine" from the client's perspective. That classisthe
"wrapper" class.

2. Create a State base class that replicates the methods of the state
machine interface. Each method takes one additional parameter: an
instance of the wrapper class. The State base class specifies any
useful "default” behavior.

3. Create a State derived class for each domain state. These derived
classes only override the methods they need to override.

4. Thewrapper class maintains a"current” State object.

5. All client requests to the wrapper class are simply delegated to the
current State object, and the wrapper object's this pointer is passed.

6. The State methods change the "current” state in the wrapper object
as appropriate.

State | 103

Rules of thumb

State objects are often Singletons.
Flyweight explains when and how State objects can be shared.
Interpreter can use State to define parsing contexts.

Strategy has 2 different implementations, the first is similar to State.
The difference isin binding times (Strategy is a bind-once pattern,
whereas State is more dynamic).

The structure of State and Bridge are identical (except that Bridge
admits hierarchies of envelope classes, whereas State allows only one).
The two patterns use the same structure to solve different problems:
State allows an object's behavior to change along with its state, while
Bridge'sintent is to decouple an abstraction from its implementation so
that the two can vary independently.

The implementation of the State pattern builds on the Strategy
pattern. The difference between State and Strategy isin the intent. With
Strategy, the choice of algorithm isfairly stable. With State, a changein
the state of the "context" object causes it to select from its "palette” of
Strategy objects.

104 | State

Strategy

I ntent

o Defineafamily of algorithms, encapsulate each one, and make them
interchangeable. Strategy lets the algorithm vary independently from
the clients that use it.

o Capture the abstraction in an interface, bury implementation details
in derived classes.

Problem

One of the dominant strategies of object-oriented design isthe
"open-closed principle”.

Figure demonstrates how thisis routinely achieved - encapsulate
interface detailsin a base class, and bury implementation detailsin
derived classes. Clients can then couple themselves to an interface, and
not have to experience the upheaval associated with change: no impact
when the number of derived classes changes, and no impact when the
implementation of aderived class changes.

program to an interface, not an implementation Ij

|
sinterfaces i
; open for extension ﬁ
Abstraction |- — — “ closed for modification

+doSomethingy)
ImplementationOne ImplementationTwo
+doSomething() +doSomethingl)

A generic value of the software community for years has been,
"'maximize cohesion and minimize coupling”. The object-oriented
design approach shown in figureis all about minimizing coupling.

Strategy | 105

Since the client is coupled only to an abstraction (i.e. a useful fiction),
and not a particular realization of that abstraction, the client could be
said to be practicing "abstract coupling” . an object-oriented variant of
the more generic exhortation "minimize coupling”.

A more popular characterization of this "abstract coupling” principle
is"Program to an interface, not an implementation”.

Clients should prefer the "additional level of indirection” that an
interface (or an abstract base class) affords. The interface captures the
abstraction (i.e. the "useful fiction") the client wantsto exercise, and the
implementations of that interface are effectively hidden.

Sructure

The Interface entity could represent either an abstract base class, or
the method signature expectations by the client. In the former case, the
inheritance hierarchy represents dynamic polymorphism. In the latter
case, the Interface entity represents template code in the client and the
inheritance hierarchy represents static polymorphism.

| Client

3
Context Interface
- stratagy ;
--abgaorithim(}
I |
ImplementationOne ImplementationTwo
+algorithmi) +algorithimi()

Example

A Strategy defines a set of algorithmsthat can be used
interchangeably.

106 | Strategy

Modes of transportation to an airport is an example of a Strategy.
Several options exist such as driving one's own car, taking ataxi, an
airport shuttle, a city bus, or alimousine service. For some airports,
subways and helicopters are a so available as a mode of transportation
to the airport. Any of these modes of transportation will get atraveler to
the airport, and they can be used interchangeably. The traveler must
chose the Strategy based on tradeoffs between cost, convenience, and
time.

TransportationToAirport - = Strategies(Options)

Personal Car Taxi City Bus

Check list

1. Identify an algorithm (i.e. a behavior) that the client would prefer to
access through a "flex point”.

2. Specify the signature for that algorithm in an interface.
3. Bury the alternative implementation detailsin derived classes.
4. Clients of the algorithm couple themselves to the interface.
Rules of thumb
Strategy is like Template Method except in its granularity.

State islike Strategy except in itsintent.

Strategy lets you change the guts of an object. Decorator letsyou
change the skin.

Strategy | 107

State, Strategy, Bridge (and to some degree Adapter) have similar
solution structures. They all share elements of the ‘handle/body’ idiom.
They differ in intent - that is, they solve different problems.

Strategy has 2 different implementations, the first is similar to State.
The difference isin binding times (Strategy is a bind-once pattern,

whereas State is more dynamic).

Strategy objects often make good Flyweights.

108 | Strategy

Template Method

I ntent

o Define the skeleton of an agorithm in an operation, deferring some
steps to client subclasses. Template Method lets subclasses redefine
certain steps of an algorithm without changing the agorithm's
structure.

e Base class declares algorithm 'placeholders, and derived classes
implement the placeholders.

Problem

Two different components have significant similarities, but
demonstrate no reuse of common interface or implementation. If a
change common to both components becomes necessary, duplicate
effort must be expended.

Discussion

The component designer decides which steps of an algorithm are
invariant (or standard), and which are variant (or customizable). The
invariant steps are implemented in an abstract base class, while the
variant steps are either given a default implementation, or no
implementation at al. The variant steps represent "hooks", or
"placeholders’, that can, or must, be supplied by the component's client
in a concrete derived class.

The component designer mandates the required steps of an
algorithm, and the ordering of the steps, but alows the component
client to extend or replace some number of these steps.

Template Method is used prominently in frameworks. Each
framework implements the invariant pieces of adomain's architecture,
and defines "placeholders’ for all necessary or interesting client
customization options. In so doing, the framework becomes the "center
of the universe", and the client customizations are ssmply "the third rock
from the sun". Thisinverted control structure has been affectionately
labelled "the Hollywood principle” - "don't call us, well call you".

Template Method | 109

Sructure

FrameworkClass
stepOne|);
+iemplateMethod() |- — J stepTwo{);
+atepOne() stepThree();
+stepTwa()
+stapThraal)
ApplicationClassOne ApplicationClassTwo
rtstepTwol) +stepTwol)

The implementation of template_method is: call step_one, call
step_two, and call step_three. step_two isa"hook" method —a
placeholder. It is declared in the base class, and then defined in derived

classes. Frameworks (large scale reuse i

nfrastructures) use Template

Method alot. All reusable code is defined in the framework's base
classes, and then clients of the framework are free to define
customizations by creating derived classes as needed.

SortAlgorithm
Client processArayl):
= tsort() — — — —| compare()

H#compare) returndrray();
HreturmArray)
+processAarayl)

SortAscending SortDescending

+itcompare() H#compare()

Example

The Template Method defines a skeleton of an algorithm in an
operation, and defers some steps to subclasses.

110 | Template Method

Home builders use the Template Method when devel oping a new

subdivision. A typical subdivision consists of alimited number of floor
plans with different variations available for each. Variation is
introduced in the later stages of construction to produce awider variety
of models.

Add front stairs

Basic structure

P

B
i
B

Add flags

Add front stairs,
flags and tower

Check list

1

Examine the algorithm, and decide which steps are standard and
which steps are peculiar to each of the current classes.

Define a new abstract base class to host the "don't call us, well call
you" framework.

Move the shell of the algorithm (now called the "template method")
and the definition of all standard steps to the new base class.

Define a placeholder or "hook™" method in the base class for each
step that requires many different implementations. This method can
host a default implementation — or — it can be defined as abstract
(Java) or purevirtual (C++).

. Invoke the hook method(s) from the template method.

Template Method | 111

6. Each of the existing classes declares an "is-a' relationship to the new
abstract base class.

7. Remove from the existing classes all the implementation details that
have been moved to the base class.

8. Theonly details that will remain in the existing classes will be the
implementation details peculiar to each derived class.

Rules of thumb

Strategy is like Template Method except in its granul arity.

Template Method uses inheritance to vary part of an algorithm.
Strategy uses delegation to vary the entire algorithm.

Strategy modifies the logic of individual objects. Template Method
modifies the logic of an entire class.

Factory Method is a specialization of Template Method.

112 | Template Method

Visitor

| ntent

* Represent an operation to be performed on the elements of an object
structure. Visitor lets you define a new operation without changing
the classes of the elements on which it operates.

e Theclassic technique for recovering lost type information.
e Do theright thing based on the type of two objects.
e Double dispatch

Problem

Many distinct and unrelated operations need to be performed on
node objects in a heterogeneous aggregate structure. Y ou want to avoid
"polluting” the node classes with these operations. And, you don't want
to have to query the type of each node and cast the pointer to the correct
type before performing the desired operation.

Discussion

Visitor's primary purpose is to abstract functionality that can be
applied to an aggregate hierarchy of "element” objects. The approach
encourages designing lightweight Element classes - because processing
functionality is removed from their list of responsibilities. New
functionality can easily be added to the original inheritance hierarchy by
creating a new Visitor subclass.

Visitor implements "doubl e dispatch”. OO messages routinely
manifest "single dispatch” - the operation that is executed depends on:
the name of the request, and the type of the receiver. In "double
dispatch", the operation executed depends on: the name of the request,
and the type of TWO receivers (the type of the Visitor and the type of
the element it visits).

The implementation proceeds as follows. Create a Visitor class
hierarchy that defines a pure virtual visit method in the abstract base
class for each concrete derived class in the aggregate node hierarchy.

Visitor | 113

Each visit method accepts a single argument - a pointer or reference to
an origina Element derived class.

Each operation to be supported is modelled with a concrete derived
class of the Visitor hierarchy. The visit methods declared in the
Visitor base class are now defined in each derived subclass by
alocating the "type query and cast" code in the original implementation
to the appropriate overloaded visit method.

Add asingle pure virtual accept method to the base class of the
Element hierarchy. accept is defined to receive asingle argument - a
pointer or reference to the abstract base class of the Visitor hierarchy.

Each concrete derived class of the Element hierarchy implements the
accept method by simply calling the visit method on the concrete
derived instance of the Visitor hierarchy that it was passed, passing its
"this" pointer as the sole argument.

Everything for "elements’ and "visitors' is now set-up. When the
client needs an operation to be performed, he creates an instance of the
Vistor object, calls the accept method on each Element object, and
passes the Visitor object.

The accept method causes flow of control to find the correct
Element subclass. Then when the visit method isinvoked, flow of
control is vectored to the correct Visitor subclass. accept dispatch plus
visit dispatch equals double dispatch.

The Visitor pattern makes adding new operations (or utilities) easy -
simply add anew Visitor derived class. But, if the subclassesin the
aggregate node hierarchy are not stable, keeping the Visitor subclasses
in sync requires a prohibitive amount of effort.

An acknowledged objection to the Visitor pattern isthat is represents
aregression to functional decomposition - separate the algorithms from
the data structures. While thisis alegitimate interpretation, perhaps a
better perspective/rationale isthe goal of promoting non-traditional
behavior to full object status.

Sructure

The Element hierarchy isinstrumented with a"universal method
adapter”. The implementation of accept in each Element derived class

114 | Visitor

is aways the same. But — it cannot be moved to the Element base class
and inherited by all derived classes because areference to this in the
Element class always maps to the base type Element.

winterfaces
Element

FaY

ElememntOne

ElementTweo

Haccapt{in v @ Visitor)

w.visit(this);

winterfaces
Visitor
+silin & ! ElameantOng)
+yisitfin e | Elammant Twa)

|
sintarfacesVisitarOne

+uisilfin e ; Ef-emarrl'ﬂna-}
+uisll(in e : Element Two)

Tha concrale lypes of the

Element and Visitor objects have
been "recovered”. Perform the work
aprogriate for their pair of types.

When the polymorphic firstDispatch method is called on an
abstract First object, the concrete type of that object is"recovered”.
When the polymorphic secondDispatch method is called on an abstract
Second object, its concrete typeis "recovered". The application
functionality appropriate for this pair of types can now be exercised.

Visitor | 115

First[] elements = {new FirstOnai},

I3

Saecond[] operations = {rew SacondThraa(), ...

for each element

elements(i] firstDispatch{ operations[0] J;

I

|

]
Client

First

|

#firstDispatch{in s : Second)

.f}

| |

Second

FirstOne

FirsiTwo FirsiThree

+HirstDispatchiin s | Second)

+eecondDispatch{in 1 - FirstOna)
HsecondDispatchiin - FirstTwo)
HsecondDispatchiin f 2 FirstThres)

i do the right thing based on

I — = 4 [the type of two objects:
i FirstOne and SecondThres

ﬁ

JAN
| I
SecondOne SecondTwo SecondThree
+secondDispatchiin f - I?irstl.‘.lnejl
+eecondDispatchiin f: FirstTwo)
HsecondDispatch{in f : FirstThrea)
Example

The Visitor pattern represents an operation to be performed on the
elements of an object structure without changing the classes on which it

operates.

This pattern can be observed in the operation of ataxi company.
When a person calls ataxi company (accepting a visitor), the company
dispatches a cab to the customer. Upon entering the taxi the customer,
or Visitor, isno longer in control of his or her own transportation, the
taxi (driver) is.

116 | Visitor

Cab company

dispatcher Customer Taxi
I | |
| SendCabi) | |
I rAcceplAVisitor) l |
| | Enter{Cab) RI
I | (visitCustomer) il
I I I
| I I
| I Transport{Customer) I
I = i
I | |
[I I

Check list

1. Confirm that the current hierarchy (known as the Element hierarchy)
will be fairly stable and that the public interface of these classesis
sufficient for the access the Visitor classes will require. If these
conditions are not met, then the Visitor pattern is not a good match.

2. Create aVisitor base class with avisit(Elementxxx) method for
each Element derived type.

3. Add an accept(Visitor) method to the Element hierarchy. The
implementation in each Element derived classis always the same —
accept(Visitor v) { v.visit(this); }. Becauseof cyclic
dependencies, the declaration of the Element and Visitor classes will
need to be interleaved.

4. The Element hierarchy is coupled only to the Visitor base class, but
the Visitor hierarchy is coupled to each Element derived class. If the
stability of the Element hierarchy islow, and the stability of the
Visitor hierarchy is high; consider swapping the 'roles’ of the two
hierarchies.

Visitor | 117

5. Create aVisitor derived class for each "operation” to be performed
on Element objects. visit implementations will rely on the
Element's public interface.

6. The client creates Visitor objects and passes each to Element objects
by calling accept.

Rules of thumb
The abstract syntax tree of Interpreter is a Composite (therefore

Iterator and Visitor are also applicable).

Iterator can traverse a Composite. Visitor can apply an operation
over a Composite.

The Visitor pattern islike a more powerful Command pattern
because the visitor may initiate whatever is appropriate for the kind of
object it encounters.

The Visitor pattern is the classic technique for recovering lost type
information without resorting to dynamic casts.

118 | Visitor

About The Author

My nameis Alexander Shvets. | have been working with software for 12
years, including 7 years of commercia experience. At the University of
Melbourne, | earned degrees in software engineering and psychology, and
earned a Ph.D with athesis on "Design Reuse in Software Engineering
and Human-Computer Interaction.” | live in Kyiv and consult on software
development issues in banking and healthcare.

Y ou can find my contact data at my homepage (http://sourcemaking.com)

About The Author | 119

http://sourcemaking.com/

	Index
	Overview
	Creational patterns
	Structural patterns
	Behavioral patterns

	Abstract Factory
	Intent
	Problem
	Discussion
	Structure
	Example
	Check list
	Rules of thumb

	Adapter
	Intent
	Problem
	Discussion
	Structure
	Example
	Check list
	Rules of thumb

	Bridge
	Intent
	Problem
	Motivation
	Discussion
	Structure
	Example
	Check list
	Rules of thumb

	Builder
	Intent
	Problem
	Discussion
	Structure
	Example
	Check list
	Rules of thumb

	Chain of Responsibility
	Intent
	Problem
	Discussion
	Structure
	Example
	Check list
	Rules of thumb

	Command
	Intent
	Problem
	Discussion
	Structure
	Example
	Check list
	Rules of thumb

	Composite
	Intent
	Problem
	Discussion
	Structure
	Example
	Check list
	Rules of thumb
	Opinions

	Decorator
	Intent
	Problem
	Discussion
	Structure
	Example
	Check list
	Rules of thumb

	Facade
	Intent
	Problem
	Discussion
	Structure
	Example
	Check list
	Rules of thumb

	Factory Method
	Intent
	Problem
	Discussion
	Structure
	Example
	Check list
	Rules of thumb

	Flyweight
	Intent
	Problem
	Discussion
	Structure
	Example
	Check list
	Rules of thumb

	Interpreter
	Intent
	Problem
	Discussion
	Structure
	Example
	Check list
	Rules of thumb

	Iterator
	Intent
	Problem
	Discussion
	Structure
	Example
	Check list
	Rules of thumb

	Mediator
	Intent
	Problem
	Discussion
	Structure
	Example
	Check list
	Rules of thumb

	Memento
	Intent
	Problem
	Discussion
	Structure
	Example
	Check list
	Rules of thumb

	Null Object
	Intent
	Problem
	Discussion
	Structure
	Rules of thumb

	Object Pool
	Intent
	Problem
	Discussion
	Structure
	Example
	Check list
	Rules of thumb

	Observer
	Intent
	Problem
	Discussion
	Structure
	Example
	Check list
	Rules of thumb

	Private Class Data
	Intent
	Problem
	Discussion
	Structure
	Check list

	Prototype
	Intent
	Problem
	Discussion
	Structure
	Example
	Check list
	Rules of thumb

	Proxy
	Intent
	Problem
	Discussion
	Structure
	Example
	Check list
	Rules of thumb

	Singleton
	Intent
	Problem
	Discussion
	Structure
	Example
	Check list
	Rules of thumb

	State
	Intent
	Problem
	Discussion
	Structure
	Example
	Check list
	Rules of thumb

	Strategy
	Intent
	Problem
	Structure
	Example
	Check list
	Rules of thumb

	Template Method
	Intent
	Problem
	Discussion
	Structure
	Example
	Check list
	Rules of thumb

	Visitor
	Intent
	Problem
	Discussion
	Structure
	Example
	Check list
	Rules of thumb

	About The Author
	Blank Page

