EsSAYS ON MANAGING SUCCESSFUL PROJECTS

'THE SOETWARE
'DEVELOPMENT
EDGE

]OE MARASCO

1 OREWC v MIKE Div U MANAGER, RATIONAL SOF . IBM

Praise for The Software
Development Edge

“This set of articles captures decades of ‘in-the-trenches’ experience across a
broad spectrum of software topics. Joe Marasco has the scars and the smarts
to articulate patterns of success that can satisfy a broad audience. He uses
mathematics, physics, common sense, and storytelling along with a no-candy-
coating style to provide unique perspectives on significant problems in
delivering software results as a business. Whether you are a computer science
theoretician, a frustrated software project manager, a successful businessman,
or a skeptical programmer, you will learn a lot from this compilation.”
—Walker Royce, author of Software Project Management:

A Unified Framework (Addison-Wesley), and Vice President, IBM Software
Services-Rational

“Joe Marasco’s readable essays on managing successful projects shows that
software development managers—mno different from all managers—must
embrace the fundamentals of management if they are to succeed: working
through people and process to be decisive, dealing with politics, keeping on
schedule, and, yes, shipping a well-developed product. Marasco uses plain
English to explain many integrated skills, ranging from estimating the time it
will take to really do things, to negotiating effectively, even to eloquently
describing three distinct phases of our personal development. He frequently
uses a “can we talk?” conversation with a fictional colleague, Roscoe Leroy,
in a Socratic dialogue to illustrate the two sides to a point in many areas
(reminiscent of Galileo’s writings to explain his then-heretical views); in this
case, Marasco’s advice will help technology professionals escape the clutches
of pervasive Dilbertian incompetence, and enable readers to be more effective
in our ever-changing world.”

—Carl Selinger; author of Stuff You Don’t Learn in Engineering School:
Skills for Success in the Real World (Wiley-IEEE Press), and Contributing
Editor, IEEE Spectrum magazine.

“This is a book loaded with practical experience distilled into insights useful
for every software manager, and for thoughtful software engineers. Joe brings
his keen observations on engineering, physics, software, and management to
bear on managing software projects, and the real-world practices and
problem-solving techniques required to be successful.”

—John Lovitt, Senior VP, Rational Software (retired)

“You don’t have to be in the software business to benefit from this book. This
is a book that any manager at any level can pick up at any point and enjoy at
any time. Highly recommended reading.”

—R. Max Wideman, Fellow, Project Management Institute, AEW Services,
Vancouver, Canada

“Marasco’s book makes for fascinating reading for anyone concerned with
management problems in general. The reader is introduced to simple
quantitative models, based on the author’s experience, that help in assessing
performance and choosing a roadmap to successful completion of a complex
project. In addition, the author’s use of anecdotes and his writing style make
for both an entertaining and informative read.”

—Professor Martin Lesser, Department of Mechanics, Royal Institute of
Technology (KTH), Stockholm

“Individually, each chapter is articulate, engaging, thought- provoking,
informative, and well informed. Collectively, much as a compilation of short
stories from a skilled, mature author, these chapters invite and help train the
reader to see into and to understand what is often only observed in passing or
scarcely noticed. Seeing the big picture in little things and identifying critical
components of the large landscape, Marasco’s analytic and synthetic skills
both impress and enlighten.”

—Stephen D. Franklin, University of California, Irvine

“Practical advice on project management expressed in an erudite and
entertaining style. The insights are an impressive synthesis of management
principles and practical experience that should contribute to improved project
management in any organizational activity.”

—Steven Globerman, Kaiser Professor of International Business, Western

Washington University

“Joe is an emotionally intelligent leader, and an insightful holistic systems
thinker. Both qualities come alive in his writing.”
—Yosi Amram, CEO Coach, and former Founder and CEO, Individual Inc.

and Valicert Inc.

“Joe Marasco has assembled a smorgasbord of thought-provoking material
that will appeal to anyone who deals with software projects and software
developers. Dip into the book at any place and savor new ideas about the
nature of software, how to motivate professionals, or one of many other
topics that will make you stop and think about your current notions. You
may not agree with everything Joe says, but you will respect his position
and probably change many of your ideas. Many of the chapters will be
required reading for my software engineering students.”

—Gary Pollice, Professor of Practice, Computer Science, Worcester

Polytechnic Institute

“A unique and passionate philosophical work, with wisdom distilled from both
academic and business careers.... A down-to-earth, subversive, and witty guide
for managing the software of machines and of the human soul. Joe shows how
the foremost ingredient for success and happiness, in business and in life, is
integrity.”

—Kate Jones, President, Kadon Enterprises, Inc. (www.gamepuzzles.com)

“Joe Marasco’s new book is not only a solid introduction in project
management discipline, but is also entertaining reading. Using very simple,
easy-to-understand-and-relate-to examples, he manages to uncover and
describe the most fundamental issues of successful team building and people
and project management. His book is a must-read for everyone who wants to
get a deeper insight and understanding of this discipline.”

—Boris Lublinsky, Enterprise Architect, CNA Insurance

“There isn’t a manager worth his salt who is going to look for salvation in a
‘how to’ book. What he is going to look for, however; is a nugget or two that
will help him out of a specific dilemma or, given time for reflection, provide
him with reinforcement that he is on the right track, or trigger thought
processes about new ways to solve stubborn, recurrent problems. Well,
Marasco provides a mother lode of nuggets for a manager to mine.”

—Bill Irwin, Retired Executive, High Technology Industry

www.gamepuzzles.com

This page intentionally left blank

The Software
Development Edge

This page intentionally left blank

The Software
Development Edge

Essays on Managing Successful Projects

Joe Marasco

A
\A4

Addison-Wesley

Upper Saddle River, NJ Boston ¢ Indianapolis ® San Francisco
New York ¢ Toronto ¢ Montreal ¢ London ¢ Munich e Paris « Madrid
Capetown ¢ Sydney ° Tokyo ¢ Singapore ® Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and the publisher was
aware of a trademark claim, the designations have been printed with initial capital letters or in
all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed
or implied warranty of any kind and assume no responsibility for errors or omissions. No liabil-
ity is assumed for incidental or consequential damages in connection with or arising out of the
use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk pur-
chases or special sales, which may include electronic versions and/or custom covers and con-
tent particular to your business, training goals, marketing focus, and branding interests. For
more information, please contact:

U. S. Corporate and Government Sales
(800) 382-3419
corpsales @pearsontechgroup.com

For sales outside the U. S., please contact:

International Sales
international @ pearsoned.com

Visit us on the Web: www.awprofessional.com
Library of Congress Catalog Number: 204118158
Copyright © 2005 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by
copyright, and permission must be obtained from the publisher prior to any prohibited repro-
duction, storage in a retrieval system, or transmission in any form or by any means, electronic,
mechanical, photocopying, recording, or likewise. For information regarding permissions, write
to:

Pearson Education, Inc.

Rights and Contracts Department
One Lake Street

Upper Saddle River, NJ 07458
ISBN 0-32-132131-6

Text printed in the United States on recycled paper at R. R. Donnelley in Crawfordsville,
Indiana.

First printing, April 2005 (Updated 2/15/11)

www.awprofessional.com

To Wini, the light of my life.

This page intentionally left blank

Contents

About the Author xvii
Foreword xix
Preface xxi
PART 1. GENERAL MANAGEMENT 1
Chapter 1. Beginning at the Beginning 3
The Importance of Good Software 4

Hard Rocks in the Swamp 5
Audience 6

The Iterative Problem-Solving Clock 6

Recap 10
Chapter 2. Computational Roots 11
The Precipitator 11

The Answer 12

How This Program Worked 13

Why Was This Generation of Engineers Special? 15
Computation 16

Getting to Know the Numbers by Their First Names 17

So How About Those Computers? 18

Our Computational Heritage 20

Recap 20

xXii Contents

Chapter 3. Mountaineering 23
On Climbing Big Mountains 24
Common Causes of Failure 30
Ingredients for Success 31
The Human Factor 32
Recap 32

Chapter 4. Managing 33
Managing Teams 34
Recap 40

PART 2. SOFTWARE DIFFERENCES 41

Chapter 5. The Most Important Thing 43
Iterative Development 43
Roscoe Leroy 44
Going Over the Waterfall 45
The Other Extreme 47
Roscoe’s First Picture 47
Roscoe’s Second Picture 48
Wait a Minute! 49
Keeping the Vectors Short 49
The Application to Software Development 50
Applied Learning and Short-Vector Direction 51
Risk Targeting 51
Have You Heard This One Before? 52
More on Applied Learning 53
Business Implications 54
The Staffing Effect 55
Just Plain Horse (shoe) Sense 57
Recap 58

Chapter 6. Modeling 59
How to Explain the UML 60
What Is the UML, and Why Is It Important? 61
A Second, Less Trivial Example 61
The Third Example 63
And Now for the Relevance to Software... 65
Raising the Level of Abstraction 66
Recap 66

Chapter 7. Coding 69
How Managers Can Learn a New Programming Language 70
The Problem, Better Defined 71
What Should the Standard Problem Contain? 71
The Animal Game 72
Does the Animal Game Fit the Criteria? 73
Does It Pass the “So What?” Test? 74
It’s Your Game 76

Recap 76

Contents Xiii

Chapter 8. Getting It Out the Door 77
If You Build It, They Will Come 78

In the Beginning, There Was the Sandbox 79

Why Should the Product Build Be Hard, Anyway? 79

What About Iterative Development? 84

Recap 85

PART 3. THE PROJECT-MANAGEMENT VIEW 87
Chapter 9. Trade-Offs 89
The Project Pyramid 90

Five, Not Four 92

Enter the Pyramid 93

The Altitude Variable 94

The Pyramid’s Volume Is Constant 94

A Statistical Interlude 95

Right Idea, Wrong Distribution 97
Implications for Real Projects 99

What Does It Take to Get to a Coin Flip? 99

More Confidence 100
Important Caveats 101

It’s All About Risk 105

Recap 106
Chapter 10. Estimating 107
What If We Used Common Sense? 108
Chocolate Versus Vanilla 108

Roscoe Explains 109

Roscoe Goes Deeper 109

Roscoe’s Calendar 110

Roscoe Computes 111

Roscoe Gets into Software 111

Roscoe Reports In 111

Guess We Did Something Right 112

Roscoe Sums It Up 113

Roscoe Picks a Bone 113

Guess We Did Something Right, Part Two 114

Roscoe Admitted to Software Project Manager Fraternity 115

Recap 115
Chapter 11. Scheduling 117
Roscoe Poses the Problem: How Late Are You Gonna Be? 118

Joe Makes a Slight Comeback 119

Roscoe Returns 120

Roscoe’s Rogue’s Gallery 120

Roscoe’s Graph 121

One Last Objection 122

Roscoe’s Parting Shot 123

Recap 123

Xiv Contents

Chapter 12. Rhythm 125
A Physicist Looks at Project Progress 126

Reality Intrudes 134

What About Iterative Development? 135

One Last Graph 140

Recap 142

PART 4. THE HUMAN ELEMENT 143
Chapter 13. Politics 145
Context 146
Definition 147

Three Scenarios 147

Politics Is Inevitable, But... 148

When Things Get Political 149

The Engineering Mapping 152
High-Trust Environments 153

Other Variants of Bad Politics 154

Recap 155
Chapter 14. Negotiating 157
Communication Is Everything 158

Roscoe Explains His Theory 158

Are We Done Yet? 164

Recap 165
Chapter 15. Signing Up 167
Roscoe Gets His Nose Bloodied. .. 168

...And Immediately Cuts to the Chase 168

Vesuvius Erupts 168

How They Do It in Texas 169

The Relevance to Software 170

The Dog Ate My Homework 170

Spec Wars? 171

The Three Most Common Excuses 172

And Another Thing... 174

Thrust, Parry, and Riposte 174

Large Project Chicken 175

The End of Software Development As We Know It? 175
Elaboration Versus Construction 176

Tough Love 177

Recap 177
Chapter 16. Compensation 179
Going for the Flow 180

Flow and Software Development Performance 181
Applying the Flow Model to Compensation 182

Money Isn’t Always the Answer 191

Recap 192

Contents

PART S. THINKING LATERALLY 195
Chapter 17. History Lesson 197
Don’t Let the King Be Your Architect 198

Things Aren’t Always As They Seem 198
Checking the Design 198

Knowing What You Don’t Know 198
Continuity of Leadership 199

In a Hurry, As Usual 199

Focusing on the Wrong Features 199

When the Design Is Bad... 199

The Relevance of Testing 200
Prototype Versus Product 200

The Inquest 200

Recap 200
Chapter 18. Bad Analogies 201
Houston, We Have a Problem 201

Fig Newtons 203
Everything’s Relative 205
Quantum Nonsense 207

Heat Death 211

Other Examples 213

Good Science 213

Recap 214
Chapter 19. The Refresh Problem 215
Refreshing Embedded Software 216

The Current Situation 217

The Software Upgrade Game 218

A Modest Proposal 218

Software Upgrades, Revisited 219

Some Nice Things Come for Free 220

Why This Will Work 221
Refinement 222

What About Software Piracy? 223

Until the Sun Takes Over 223

Recap 224
Chapter 20. Not So Random Numbers 225
Roscoe Sets the Stage 226
Simulating the Batter 226

First Steps 228

Second Steps 230
Generating More Probabilities 230

Of Course, We’ve Already Left the World of Baseball 232

Reality Is Ugly 233
Monday’s Solution 234

Lessons Learned 239

Recap 240

xvi Contents

PART 6. ADVANCED ToPICS 241
Chapter 21. Crisis 243
The Five Days of the Fish 244

The Fish Market 244

Day 1: Unaware 244

Day 2: Avoiding the Issue 244

Day 3: Enter “The Fixer” 245

Day 4: The Turning Point 245

Day 5: Two Critical Paths 246

Moral of the Story 246

Recap 247
Chapter 22. Growth 249
Growth Issues 249

The Naive Model 251
Consequences of the Model 253

An Illustrative Example 259
Non-Linearity 260

Call to Action 261
Conclusions 263
Nomograph 264
Spreadsheet 265

Recap 267
Chapter 23. Culture 269
What Is a Culture? 270

Strong and Weak Cultures 271

Defining Corporate Values 271

And the Applicability to Software Is... 274

Building a Strong Culture 275

When You’re Looking for a Job... 279

The Bottom Line 280

Recap 280
Chapter 24. Putting It All Together 281
Schlepper 282

Macher 284

Mensch 286

More on Mensches 287
Population Distribution 288

Some Final Thoughts on the Model 289

Recap 290
Acknowledgments 293

Index 297

About the Author

Joe Marasco is a retired senior vice-president and business-unit manager for Rational
Software, now one of the five brands of the IBM Corporation. He held numerous posi-
tions of responsibility in product development, marketing, and the field sales organiza-
tion, overseeing initiatives for the Rational Apex product and Visual Modeler for
Microsoft Visual Studio. In 1998, he served as Senior VP of Operations. He retired from
Rational in 2003. He holds a bachelor’s degree in chemical engineering from The Coop-
er Union, a Ph.D. in physics from the University of Geneva, Switzerland, and an M.S.A.
from the University of California, Irvine Graduate School of Management. When not
writing, he barbecues and plays golf; his ribs are much tastier than his scores.

Xvii

This page intentionally left blank

Foreword

Why should anyone listen to what Joe Marasco has to say about software development
and the people who do it?

In the spring of 1991, we awarded Joe his five-year service award. Back then,
Rational Software was small enough to individualize these awards, and Joe’s was quite
unusual. We obtained the hood ornament from a Mack truck—the classic bulldog—and
mounted it on a plaque. Everyone agreed that this award symbolized Joe’s dedication
and tenacity when it came to getting the job done.

So it wasn’t too surprising when, later that year, we selected Joe to lead a watershed
development effort at Rational. At the time, our flagship product, the Rational Environ-
ment, ran on proprietary hardware, and we realized the importance of moving it to the
UNIX platform. While this move was inevitable, it was fraught with risk; in fact, many
other companies suffered fatal damage trying to move their software solution from pro-
prietary hardware to industry standard platforms—among the carcasses littering the side
of the road were electronic design automation (EDA) companies such as Daisy and
language-specific companies such as Symbolics. The task was known to be difficult, the
result uncertain, and the need essential.

Joe, on the other hand, was positively ancient by Silicon Valley standards: he was
46. But we believed that Joe’s experience and “‘steady hand at the tiller” would see this
project through. We also knew that Joe would do whatever it took to get the project
done.

Xix

XX Foreword

The record speaks for itself. In September 1991, Joe took on the leadership of the
new team with a plan to deliver “Rational II”” in two years on two UNIX platforms. After
seven months, a limited-function subset prototype was up and running. After 16 months,
the development team was “self-hosted,” which meant that it was able to complete the
development of the product using the partially-completed product itself. And, to the
minute, the team delivered what became known as Rational Apex on two UNIX plat-
forms—IBM and Sun—in the two years that had been promised.

Apex was an extremely successful product, one that is still delivering value to cus-
tomers today. Joe was the Business Unit Manager through releases 2.0 and 3.0 and also
oversaw its porting to every significant UNIX platform and to the Windows platform as
well. More important, for the 10 years following the release of Apex 1.0 in 1993, Joe
was the “go-to” guy whenever we had a difficult product delivery problem in the com-
pany. As the company grew through merger and acquisition, Joe assumed the role of
troubleshooter, helping out wherever the need was greatest, wherever the pressure was
most intense.

One of the reasons Joe was so successful in delivering products is that he spent a lot
of time with his developers understanding the details of the products and the develop-
ment problems. But he also spent a lot of time with Rational’s customers, developing a
keen understanding of their needs. As every product delivery is the result of many com-
promises, Joe was always well informed to make good judgments when it came to prod-
uct decisions.

Near the end of his career at Rational, Joe began to write about software develop-
ment in a series of articles in Rational’s e-zine, The Rational Edge. Unlike the articles
written by our “Three Amigos,” these were much more down in the trenches, reflecting
his experiences both at Rational and in his previous environments. What we discovered
was that Joe was able to cogently articulate his experience and act as a “virtual mentor”
for budding software development managers worldwide. The response to these articles
was extremely positive, and it is a pleasure to see them all collected here in one place.

This is not a theoretical treatise on software development. That’s not what Joe was
all about. Joe was about having his teams ship products we could all be proud of, prod-
ucts that were easy to maintain and offered real value to customers. If you want to devel-
op products that you can be proud of, that lend value to your customers, this book is a
“must-read.”

Mike Devlin
General Manager
Rational software, IBM

Preface

This book draws heavily on a series of columns called Franklin’s Kite that appeared in
Rational Software’s e-zine, The Rational Edge, in the early 2000’s. These articles were
aimed at software development managers, and their goal was to help readers avoid many
of the common pitfalls that await software development projects and teams. More than
20 appeared, and we—my editor, Mike Perrow, and —noticed that readers often began
their monthly perusal of The Edge with The Kite.

My intention here is to not only to collect these articles but to sew them together in
a form that makes them even more useful for software development managers and their
managers. 1 have done that by reorganizing them thematically, instead of presenting
them in the order they originally appeared. This has caused me to do some light editing
in places where “forward-referencing” would otherwise take place. I have also paid
attention to the footnotes, many of which appeared in the original as URLs and appear
here as more formal citations where appropriate. Finally, I have added material at the
beginning and end of each chapter so that the context of each article as part of the whole
becomes clearer.

The reader will quickly note that the chapters have several different styles. Some of
them are expository, some are fairly analytical, and some are folksy “Socratic dialogs”
between the author and his avatar, one Roscoe Leroy. Roscoe is an invented character, a

XXi

XXii Preface

good technical general manager who initially knows little about software development.
I use him as a foil, allowing his “naiveté” to force me to explain things without using
technical jargon. My approach is ecumenical and subversive: I will use any technique
that permits me to get the message across. Some of these chapters will appeal to some
readers, and others will appeal to others. Whatever works is, by definition, good. I take
my cue from Horace, who wrote in The Art of Poetry, “He has won every vote who has
blended profit and pleasure, at once delighting and instructing the reader.”!
I divide the work into six parts of four chapters each. Briefly:

* General Management: These chapters deal with topics that are useful to man-
agers in general and also expose the reader to my background and biases. I include
them so that we have a common baseline for what follows.

* Software Differences: In this section, we take a look at those things that distin-
guish software development from other management challenges.

* The Project-Management View: I take the perspective that a software-
development project is a variant of the generic project and, as such, amenable to
classical project-management techniques. On the other hand, I strive to point out
what is different about software development.

e The Human Element: I turn around in this section and look at software develop-
ment from the perspective of the people who do it. Once again, I try to compare
and contrast that which is similar to that which is different for software-
development projects.

* Thinking Laterally: Software people come at problems from many different
points of view. In this section, I expose the reader to some of the more speculative
and original ideas that he or she may not have seen before.

* Advanced Topics: The successful software-development manager is like a really
good pinball player: His reward for high scoring is given in free games. This addi-
tional “stick time” leads to his becoming even more proficient. In this section, I
talk about some of the challenges that come with success.

This book has 24 chapters.? You can read it serially, or pick out a chapter at a time; they
can stand on their own. This is a good “airplane book™; read a chapter and then think
about it for the rest of the flight. If you get just one new idea from one of the chapters
that covers the price of the book, I will have been successful.

With these prefatory remarks out of the way, let’s get down to it.

1 Horace, Satires, Epistles, and Ars Poetica (Cambridge, Massachusetts: Harvard University Press,
1999). The original Latin text is “Omne tulit punctum qui miscuit utile dulci, lectorem delectando
pariterque monenendo.” It can be found at line 343 of Ars Poetica.

2 Coincidentally, so does The Iliad.

CHAPTER 8

Getting It Out the Door

I have on occasion claimed that I can build the perfect product. Just don’t ask me to ever
ship it.

As soon as you require that I ship a product on a given date, I can guarantee you
that the product will be imperfect. It will disappoint someone along some dimension. It
will lack some feature, exhibit some annoying minor bug, or will lack some piece of
documentation. No doubt there will be rough edges in its user interface. If only we had
more time...

This is not a phenomenon unique to software products. A shipped product is always
a compromise between the product we would ideally like to ship—the one that ap-
proaches perfection—and the one we really need to ship because we must begin gener-
ating revenue. And sometimes, believe it or not, the product we ship is good enough, even
though it represents a compromise. The test is whether or not it serves the greatest good
for the greatest number.

Consider an update release of an existing product, one that will add some new fea-
tures and fix many annoying defects resulting from the previous compromised release.
You can work on this update as long as you like; the longer you take, the more features
you can add and the more bugs you can fix. But here’s another way to look at it: The
longer you wait to ship that update release, the longer your existing customers will have

1

78 The Software Development Edge

to live with the bugs in the version they are currently using. So the tradeoff becomes this:
Is it better to ship 50 bug fixes today, or 55 in another two weeks? If you have thousands
of customers who are suffering with Bug #29 on the list every day, I think I can make a
pretty good argument for shipping yesterday.

Once you realize that shipping the product is not only part of your job but in fact the
critical step—Bob Bond' would call it “running it through the tape”—you need to con-
sider exactly what is required to go from some assemblage of working bits to a package
that you can put on the loading dock or, alternatively, some set of files that you can stage
on your download server. You need to consider testing, installation, documentation,
preparing the support organization, and many, many other details. Like the death from a
thousand cuts, getting this all right can be extremely painful the first hundred or so times
you do it. It is one of those exercises that require method and persistence, and extremely
meticulous follow-up.

The purpose of this chapter is not to bludgeon you to death with the obvious. What
I focus on in this chapter is a small subset of the problem: How do we “close out” de-
velopment of the software so that we can ship the product? When we are on “final ap-
proach” to shipping the product, what changes? The answer is this: If you have been
doing it right, the change is imperceptible. If you have neglected thinking about this
problem all along, then you will suffer large, severe, and disruptive change at the end,
and your ability to ship will be endangered.

If You Build It, They Will Come’

In the world of software products, there are successes and failures, determined by the free
market system. We must, of course, add to the list of failures those projects whose prod-
ucts never see the light of day—the ones that are worked on for various lengths of time
but never ship. As obvious as it sounds, you cannot be successful unless you meet the
precursor of shipping your product.

As you cannot ship what you cannot build, actually putting together the pieces be-
comes critical. Intrinsic in this is the concept of a repeatable build process. You will build
the product over and over again, until one of your candidate releases passes muster and
you let it out the door. I now confront the issues involved in creating such a repeatable
build process for your product.

' Bob Bond ran sales and marketing at Rational for many years. He was a very positive mentor for me.

? In fact, the line from the movie “Field of Dreams” was, “If you build it, he will come,” the “he” being
either Shoeless Joe Jackson or the principal character’s father. The line has been so frequently mis-
quoted that most people use this one. Of course, at the end of the movie “they” come, as illustrated by
the stream of headlights across the Midwestern plain.

Chapter 8 Getting It Out the Door 9

In the Beginning, There Was the Sandbox

Products come out of projects, and projects tend to begin in haphazard ways. Organiza-
tions with well-defined processes have developers building their components in local
work areas, sometimes called sandboxes. They provide for mechanisms whereby the sub-
products of these sandboxes can be assembled, sometimes in ad hoc ways, so that each
development team can test its progress in the context of the whole product. Configuration
management systems allow for appropriate partitioning such that each developer (or team
of developers) has the autonomy and isolation to work on his piece without stepping on
the other guy’s toes, while at the same time providing for a loose integration context.

This works fine in the early, chaotic days when everything is changing very rapidly,
and before architectures are well-defined and interfaces are nailed down. However, before
too long even modest projects outgrow this framework. At that point, one of two things
happens: Either the organization makes the build a priority and adds some structure, or it
doesn’t. In general, those that do establish a regular “heartbeat” for the project—a peri-
odic, regular, and dependable build cycle—improve their chances for success. Those that
don’t establish this rhythm find that entropy begins to take over, and that building the
product becomes more difficult over time.’

Many organizations vastly underestimate the effort it takes to put a good build
process in place. Because of this, projects in their latter stages often have a “new” prob-
lem to deal with: In addition to having buggy software, incomplete parts, and so on, they
also struggle with something that they have taken for granted—the simple assembly of
their product. This is a trap for the unwary. In order to not fall into the trap, you need to
understand more about the process of assembling a product.

Why Should the Product Build Be Hard, Anyway?

First of all, the product you are going to ship has more pieces to it than the prototypes
you have been putting together for internal consumption. Here’s a classic example: De-
velopers and testers rarely look at the help system, because they know the product well
enough to play with it and test it. Once you are going to have outsiders try to use it, you
need a well-elaborated and working help system for people to use. Further, you need in-
structions for installing the software in different computing environments, as well as var-
ious other adjuncts that you can live without when you are only consuming your software

* Entropy is the tendency that all systems have to move from an orderly state to a disordered state when
left alone. It is a fundamental physical law. One might say that all attempts at progress, by any civiliza-
tion, fly in the face of entropy. Another way to say this is that to bring order out of chaos takes work,
and that once you stop working, entropy will cause the system to spontaneously move to a more disor-
dered state. I will talk some more about this in Chapter 18, “Bad Analogies.”

80 The Software Development Edge

internally. So the first problem that comes up is one that might be dismissed as packag-
ing. You need more pieces to ship a product than to use it internally; and further, you need
to document all the little details that the internal team has always known or taken for
granted.* Making the product ready for outside consumers is sometimes called sanding
off the rough edges. Some of these “rough edges” can be very sharp, and because you
don’t catch them all the first time, your first consumers may cut their fingers on them.

Let’s assume, however, that this is just a logistical exercise and that with enough
planning you can avoid the “packaging” trap. In some sense, it can be put in the “an-
noying detail” category: If you ignore it, it will bite you; but if you are aware of it and
plan for it, then it is relatively easy to overcome. So, forewarned is forearmed: Treat
packaging as a purely technical problem and you will be fine.

In fact, there are three much more fundamental obstacles to success that come up
over and over again. They are distinct and interrelated, and all three must be worked on
to achieve a successful build process.

Obstacle 1: Organizational Politics

Many software development managers lose sight of the simple fact that controlling the
build process is first and foremost a political problem. To put it simply, he who controls
the build has an enormous amount of power. After all, the build cycle itself defines the
rhythm of the entire development and test organization. Think of the build cycle as the
software equivalent of a factory assembly line. The person who gets to define the char-
acteristics of the line and its speed determines, to a very real extent, the output of the fac-
tory. Line workers are very aware of their subservience to the line. The cardinal sin in
the factory is to slow down, or—Heaven forbid!-—shut down the line. The software
equivalent is submitting a set of changes that breaks the build.’®

Now the build process is something that everyone must participate in, but only one
group can control. By its very nature it is not a democratic enterprise; it requires a certain
amount of hierarchical and structural apparatus to work at all. Everyone agrees on this,
more or less. The sticky wicket is determining who gets the responsibility and authority
to make it work. That group will, from that day forward, wield a lot of power and clout.

Because human beings are, in general, reluctant to give up this sort of power, the
build process becomes a political football. Myriad discussions ensue as to who will have

* The standard vehicle for this is called the release note. The release note documents the limitations of
this version of the software, known bugs, and so on. It is an attempt to characterize the state of the de-
liverable, as it is better to tell your consumers things you know about rather than have them discover
them on their own. Sometimes the release note is called the readme file.

> There are legitimate reasons for shutting down the line, and sometimes the person on the factory floor
is the most appropriate person to do this. On the other hand, shutting down the line by mistake is defi-
nitely not a good idea.

Chapter 8 Getting It Out the Door 81

the right to do what to whom in the interest of the build process. All of the negative po-
litical tendencies of your organization will be exposed during these discussions.

The purists among you will cry out that political tendencies should be discouraged
or even condemned, pointing out that the job is hard enough from a technical point of
view and should not be “polluted” by politics. In most organizations, however, wishing
politics away will not necessarily make them go away. Politics is a fact of life that must
be dealt with.° However, you must get through this phase, as unpleasant as it first appears.
Else, you will be incapable of dealing with the next two hurdles.

Here are some specific suggestions:

e Try to get the group to agree that someone has to be in charge, because a loose
confederation approach is doomed to failure.

e Try to reach a reasonable compromise between the autonomy of the constituent
teams and the centralized authority that will be required.

* Always make sure that the management team understands the importance of the
issue and has the very best people assigned to the build.

* Later in this chapter, we will talk about having a czar of the build. Make sure it
is a person who is technically competent, firm, fair, and respected by everyone.
Install him or her early in the process and have this person guide you through the
political shoals.

e Enlist management’s support in crushing “bad politics,” should it rear its ugly head.

Obstacle 2: The Process

Having hacked through all the political jungles that accompany conceding power to the
build group, the participants must now agree on the process they will use. Just as form
follows function, the process will often be shaped to mirror the political compromises
that were made to get to this juncture. There is plenty of interaction between the first and
second obstacles. In fact, often the process obstacle presents itself early on, in Phase 1,
because it is being used as a surrogate by those who don’t want to openly admit that there
are unresolved political issues. In some organizations, we see these two obstacles
mashed together into one giant hairball, which in turn gives “process” a bad name. You
cannot use “process” to solve what are intrinsically political problems, much in the same
way that you cannot “solve” technical problems through political compromise.

¢ My perspective is that there are “good politics,” akin to the notion of “fighting fair,” and that a healthy
political process can and should work toward making good decisions. Then there are “bad politics,”
which make organizational objectives subservient to personal agendas and self-aggrandizement; this
sort of politics needs to be stamped out wherever it is found. The problem, of course, is the gray zone
in between. I treat this subject in more detail in Chapter 13, “Politics.”

82 The Software Development Edge

The basic tension at this point revolves around the people who want a strict, rigor-
ous process—sometimes called lots of rules and no mercy’—versus the people who want
a looser set of policies. Acknowledging that there is no single, simple, right answer is
usually the best place to start here. Your process will have to be tuned to your organiza-
tion, because all organizations have their peculiarities.®

That does not mean that you need to invent new process. I used the word “tune” ad-
visedly in the previous paragraph because I am firmly convinced that the best way to
deal with this issue is to start with a base process that has been demonstrated to work
before. Rational Software’s Unified Change Management (UCM), for example, has a
rich legacy of successful application. We know it works across a broad spectrum of do-
mains, applications, and organizations. Why start over? Do you really think you are go-
ing to do better?

There are a few traps you don’t want to fall into at this point. One is the religious
wars pitfall. In every organization there are process gurus who believe that they, and
only they, have the magic formula. And sure enough, every time there are others who
resist, quite certain of their own convictions.” Regardless of who is right or wrong,
these crusades are totally unproductive, often revolving around obscure details of lit-
tle importance. The strong manager needs to identify the religious process fanatics and
stifle them early. Sometimes the only answer is to tell them to put a cork in it. Re-
member always that process is not an end in and of itself; it is a means to an end—
shipping the product!"

Another trap is to think that any process, no matter how good, can substitute for
thought or judgment. For every ironclad rule, there is bound to be an exception. You will
have to watch what is going on and make midcourse corrections, no matter what your

7 I believe the world is indebted to James E. Archer for this characterization. Jim is one of the most ef-
fective development managers I know, having been the godfather for Rational’s programming environ-
ments products from the very beginning. He and I had many interesting discussions on the right
amount of process.

3

Some people argue at this point that you should endeavor to get your process “right” and then tune
your organization to fit the process. While this is a laudable objective and theoretically the right ap-
proach, I have rarely found it to be successful in practice. You cannot allow a regressive organization
the prerogative of rejecting reasonable process; on the other hand, it is difficult to implement any
process that is too far out in front of the organization that must carry it off.

©

To illustrate how far out of control this can become, the wars are often characterized as struggles be-
tween the “process Nazis” and the “anarchists.” With such value-laden labels, it is difficult to have dis-
cussions that will get to the right place.

"°In a like manner, the anarchists will be hard put to demonstrate that they can ship product without any
process. As is the case in almost all these debates, neither extreme position is defensible.

Chapter 8 Getting It Out the Door 83

process is. As called out previously, you will need to modify and tune your process in
real time as you discover what works for you and what doesn’t.

Lastly, get on with it. Perfect is the enemy of good." You will develop your process
iteratively, just the way you develop the software. Get to Iteration 1 quickly. Learn.
Change. Improve. Repeat until done.

Obstacle 3: Tools

Just as the first obstacle (politics) and the second obstacle (process) are intimately re-
lated, so are the second and the third. The third, of course, is the toolset that you will use
to implement the process. Needless to say, choosing the tools first is getting it bass-ack-
wards, but surprisingly enough, that’s the way many organizations go about it. They then
wind up with the tool determining the process, which can be loads of fun when the
process thus derived is inconsistent with the political philosophy of the organization.

Obviously, you need tools that will automate and enforce the process you have cho-
sen to use. If you have a process that admits mistakes, you will be “backing out” changes
from time to time. Does the tool support that easily? Are developers going to be check-
ing in their work to a common baseline from multiple remote sites? If so, then your tool
had better support that model. Do you want to build your entire product from top to bot-
tom every night? If so, then I hope your tool has the performance and turnaround char-
acteristics that will permit that. Do you want to automate your regression testing as part
of the build? Once again, tool support is crucial.

Even organizations that have done a good job with the first two problems sometimes
flounder with the third. And sometimes it is not the tools’ fault, either. Once again, us-
ing our factory analogy, you need someone to monitor the line and to do quality control
for the product coming off the line. Without constant vigilance, it is easy to automate a
process that produces a low-quality result. Every successful build process requires a
foreman or the equivalent thereof; sometimes he or she is called the czar (or czarina) of
the build or, more simply, the buildmeister.” The buildmeister monitors the health of the
line and makes sure that a steady stream of good-quality product is produced.

"I first heard this from Mikhail Drabkin of Riga, Latvia, and assumed it was Russian folk wisdom. He
may have in fact been (mis?)quoting Soviet Admiral Sergei Georgievich Gorshkov, although that cita-
tion turns out to be only an approximation: Gorshkov’s ended with “Good enough.” Dr. Stephen
Franklin of U.C. Irvine points out that very similar sentiments have been attributed to both Clauswitz
and Voltaire. Clauswitz is much more verbose, and there seems to be evidence that Voltaire “bor-
rowed” from an Italian proverb. Though these pithy sayings sometimes have a provenance that is diffi-
cult to pin down, one can deny neither their truth nor their wisdom.

2Here’s a cautionary, funny, and politically incorrect tale: I once made a big deal about having a czar of
the build, and then appointed a fellow who was, shall we say, altitudinally challenged. He unfortu-
nately became known as the czardine of the build. Ouch!

84 The Software Development Edge

One last semi-technical note: Beware of the old saying, “We can always write a
script that can do that.” The problem is that these scripts always start out small and sim-
ple and then grow in ways that are random and unsupervised. Scripts, unlike programs,
are rarely designed; they just grow. They become compendia of special cases and are in-
adequate to respond to the ever-increasing demands of the organization; they are brittle.
They are a maintenance nightmare, especially if the original author moves on. And they
are very, very difficult to debug. Just as the road to Hell is paved with good intentions,
the road to “build Hell” is paved with the out-of-control products of general-purpose
scripting languages."

What About Iterative Development?

Iterative development sidesteps one of the great dangers of the waterfall approach:
leaving system integration to the last minute. One of the reasons so many waterfall
projects fail is that, very late in the game, developers are trying to assemble their prod-
uct for the very first time. In addition to finding many bugs, mostly in the interfaces,
they grapple with the normal logistical and organizational problems of putting to-
gether a build chain for the first time. Often, things that pass for bugs are nothing more
than the artifacts of broken builds. But the organization is in such chaos at this point—
running out of time, nothing working, people frazzled—that it is hard to separate the
sugar from the salt. It is also a very bad time to be trying to solve political and process
problems.

By contrast, iterative development requires that you construct your build chain to
accomplish the deliverable for Iteration 1—a working program. So you begin to debug
this process early in the project, not at the end. By the time you get to Iteration 3 or 4,
the build process is actually starting to work pretty well. For the last iteration, the one
that will deliver the final bits, the build should be working like a finely lubricated
Swiss watch.

As with pretty much everything else in software development, there are a small
number of ways to get this right and almost an infinite number of ways to get it wrong.
If you view the build as a detail that will “just happen,” then the odds are against you.
Make sure you attack the build process as a conscious effort that is critical to your suc-
cess, and devote the time, energy, and resources to it that it demands. To do any less is
sheer folly.

" Some scripting languages have been favorably likened to duct tape; would you want to begin the final
assembly of your jet aircraft by having some guy yell out, “Time to get out the duct tape!”?

Chapter 8 Getting It Out the Door 85

Recap

I’ve frequently been called in late in the software development cycle when projects are
in trouble. Often, it is difficult at first to judge the depth of the yogurt. Usually the de-
velopers are focusing on how much they are “behind,” as measured in things that are
coded but just don’t work, and things that are not coded at all but should be.

While this is one important aspect, I always begin to also look at the health of the build
process. If the build process is non-existent or badly broken, it needs attention immedi-
ately. The reason for this should be obvious: at this stage of the proceedings, the lack of
a reliable, repeatable build process will impede all further progress. You can’t test what
you can’t build, and repeated testing is a necessity at this point; else, how can the devel-
opers know what they’ve fixed and what remains problematic?

Sadly, in many organizations the build process is something that is relegated to the
B Team. This is a huge mistake. You must have A-list players in this part of the organi-
zation. As soon as people understand how much you as the senior manager appreciate
the contribution of this team, you will have no problems getting volunteers.

The other thing that proves very slippery is answering the question, “How do we
know when we are done?” Getting agreement well in advance on some clear criteria is
incredibly useful; such agreement reduces the odds that the bar will move radically up
or down as the ship date looms. One of the major objectives when moving into the Tran-
sition Phase of iterative development is to define reasonable criteria for shipment. With-
out a clear “exit plan,” the project risks a series of never-ending last-minute slips.

Thus ends Part 2 on the basics. In Part 3, I will look at software development from a
project-management perspective.

This page intentionally left blank

Index

A

abstraction, 66
acceleration, 127
of a vertical ball toss, 129-130
accidental degeneracy, 231
accuracy, 109
achieving flow, 181
acquisitions, 277-278
adding
employees, 250
useful hours to product, consequences of
naive model, 256
algorithms, quadratic algorithms, 172
altitude variable, 94
American-born engineering students, 15
analogies, 202
Newton’s Laws of Motion, 203-205
oil changes, 217

physics, 201-203
quantum mechanics, 207-211
relativity, 205-207
thermodynamics, 211-212
anarchy, 47
“The Animal Game,” 72-74
So What? test, 74-75
anticipating obstacles, managing teams,
35-36
applications, mission-critical applications, 4
applied learning
iterative development, 53-54
short vectors, 51
Archer, James E., 82
Arrow, Kenneth, 212
assumptions, naive model, 252-253
attrition, 267
audience for this book, 6
avoiding issues, 244

297

298

B

bad science, 213
Barry, Dave, 17
bartering, 149, 151
baseball, fantasy baseball, 226-228, 230,
232-235, 239
batch processing, 19
batteries, 218
solar power, 223
batterychip, 220-221, 223
“Being in the zone,” 180
Bernstein, Dave, 55
Bilenko, Herman, 17
Boehm, Barry, 113
Bond, Bob, 78
Booch, Grady, 137
Borgenstam, Curt, 198
Brooklyn Bridge, 199
Brooks, Frederick P, 102, 118, 250
Brownian Motion, 47
build processes, 79
difficulty of, 79-82
organizational politics, 80-81
tools, 83-84
iterative development, 84
build rhythm, 125
buildmeister, 83
business implications, waterfall develop-

ment versus interative development,
54-55

C

calculating, 225-226
Leroy, Roscoe; adventures while

being shipwrecked, 226-228, 230,
232-235, 239

calculators, 18

calibrating schedules, 120, 122-123

candidate releases, 78

cell phones, 217

Index

Central Limit Theorem, 104
Cha, Sandra E., 269
Chaos Theory, 213
Churchill, 284
citizenship, 272
Clauuswitz, 83
closure, communicating with engineers, 162
code, counting lines of, 114
code reviews, 59
code rot, 216
coding, 69
cognitive dissonance, 102
commitment, 168, 174-175
deadlines, 171-172
definition of, 170
elaboration and construction, 176-177
excuses, 170-173
high-trust environments, 175
honoring, 174
large project chicken, 175
scheduling, 175-176
Texas handshake, 169-170
communication, 158-159, 162-164
closure, 162
establishing ownership, 160-161
iteration, 164-165
not suggesting solutions, 161-162
pseudoscientific jargon, 213
remember who you’re dealing with,
159-160
compartmentalization effect, 108
compensation, 179, 191-192, 276
flow, 182
Cone of Correct Compensation,
185-191
diagonal cases, 186-187
job-based models, 184-185
skills-based models, 183-184
productivity/performance, 181-182
win-win, 190-191
competition, 29

Index

completion, 138
compromise, 148-149
computations, 16-18
computers, engineers from 1960-1970,
18-19
Cone of Correct Compensation, 185-191
mapping team members, 191
Conestoga, PA, 50
consequences of naive model, 253-255,
257-258
adding useful hours to product, 256
cost, 257-259
multipliers, 254-256
constants in the software development
business, 5-6
constraints, 161
construction, 137, 139-140
commitment, 176-177
continuity
culture, 276
growth, 276-277
mergers and acquisitions, 277-278
new efforts, 278-279
single big customers or partners, 278
of leadership, 199
contribution of new hires during transition,
251-252
Cool Hand Luke, 119
Cooper Union, 15
core values, 272
corner cases, 227
corporate values, defining, 271-272
customer focus, 273
integrity, 272-273
results, 273-274
correct compensation, 183
cost
consequences of naive model, 257-259
labor cost, 260
counting lines of code, 114

299

crisis, 243
avoiding issues, 244
critical paths, 246
dealing with, 247-248
fish, 244-246
fish markets, 244
fixing problems, 245
turning points, 245-246
crossing the chasm, 131
Cskiszenthmihalyi, Mihaly, 180, 288
cultural differences, politics, 146
culture, 270, 280
continuity, 276
growth, 276-277
mergers and acquisitions, 277-278
new efforts, 278-279
single big customers or partners, 278
job hunting, 279-280
leadership by examples, 276
strong cultures, 271, 280
weak cultures, 271
curves. See also graphs
completion curves, 138, 140
force curves, 133-134
human behavior, 130-131
learning curves, 130, 138, 140
percent completion curves, 126
project velocity, 132
and reality, 134-135
S-curves, 130
customer focus, 273
customers, 276
continuity, 278
czar of the build, 83

D

Dangerfield, Rodney, 158
Dante, 276
Darwin, Charles; Theory of Evolution, 213

300

Davis, Derrick, 91

deadlines, commitment, 171-172

debuggers, 210

decisiveness, 28

derivatives, 127

design, Vasa, 199

devices, 217
buying batteries packaged with

software, 218-223

cell phones, 217
upgrading, 217

diagonal cases, flow and compensation,
186-187

dialects, 60

dice, 226

distributing software development
projects, 96

distribution, project pyramid, 97-99

documentation, 8-9

Dr. Dobb’s Journal, 126

Drabkin, Mikhail, 83

drafting, 15

drag, effect of new hires on existing
team, 252

E

Edmonson, Amy C., 269
education, 14
educational system, 12
Einstein, Albert
relativity, analogies, 205-207
Special Theory of Relativity, 207
Theory of Relativity, 207
elaboration, 137, 139-140
commitment, 176-177
electromagnetism, 211
embedded software, refreshing, 216-217
empathizing, 7-9
empire building, 155
employees
adding, 250

Index

attrition, 267
new hires, 250

contributions during transition,
251-252
effect on existing team, 252
evaluating, 262
engineering, 13
engineering discipline, 4
engineering mapping, 153
engineers, 153
1960-1970, 15-16
computers, 18-19
heritage of, 20
politics, 152-153
entropy, 79, 211
error rates, 215
establishing ownership, 160-161
estimating, 107-111, 113-114, 119-120
schedules, commitment, 175-176
estimation, 17
eternal verities, 5
Euclid, 112
evaluating new hires, 262
evolution, 213
examples
leadership, 276
of naive model, 259-260
of politics, 147-148
excuses for breaking commitments, 172-173
experience, selecting teams, 25

F

failure, common causes of, 30-31

false-positives, 3

fantasy baseball, 226-228, 230,
232-235, 239

Faraday, Michael, 211

“Father Knows Best,” 13

featuritis, 199

feedback, 9

Feynman, 18

Index

“Field of Dreams,” 78
finite horizon, 97
first-level disconnect, 69
fish

crisis, 244

death of, 244-246

moral of story, 246
fish markets, 244
fixing problems, 245
flow

achieving, 181

compensation, 182

Cone of Correct Compensation,
185-191
diagonal cases, 186-187
job-based models, 184-185
skills-based models, 183-184
productivity/performance, 181-182
flow channels, 180-181, 288
focus, 29
managing teams, 34, 37
forces curves, 133-134
FORTH, 75
FORTRAN, 19
Franklin, Dr. Stephen, 83
frugality, 93

G

Galileo, 127, 206

generating probabilities, 230

GIGO (Garbage In, Garbage Out), 19
goals, 27-29. See also milestones
Godel’s Incompleteness Theorem, 213
Godfather offers, 37

gonifs, 283

good science, 213

Gorshkov, Sergei Georgievich, 83
Gould, Stephen Jay, 213

Grady, Booch, 113

graphics, 59-60

301

graphs. See also curves
parabolic position graphs, 130
project completion graphs, 130
total forces on a project, 141-142
Gresham’s Law, 277
Gresham, Sir Thomas, 277
growth, 249
attrition, 267
continuity, 276-277
employees, 249-251
mergers and acquisitions, 277
naive model, 251
assumptions, 252-253
consequences, 253-255, 257-258
contribution of new hires during
transition, 251-252
drag created by new hires on existing
team, 252
nomographs, 264-265
non-linearity, 260-261
productivity, 263-264
spreadsheets, 265, 267
suggestions for, 261-262
guidelines, iteration estimating
guidelines, 115
Guisan, Olivier, 287

H

Hamming, Richard, 22

Hawthorne Effect, 210

heat death, 212

Heisenberg’s Uncertainty Principle, 209-210
Hello world, 71

Heppenheimer, T. A., 20

high-trust environments, 148, 153-154, 175
Highsmith, James, 24

honoring commitments, 174

horseshoes, miscalibrations, 46

human behavior, curves, 130-131

human factor, 32

302

human nature, 270
humility, 282

humor, managing teams, 38
Hybertsson, Henrik, 199

I

ICD (implanted cardioverter defibrillator), 3
impedance mismatch, 163
imprinting, 33
inception, 137, 140
increasing probability of success, 100-101
The Inferno, 276
input mistakes, 18
inquest, Vasa, 200
inspiration, managing teams, 35
instincts, trusting when managing teams, 39
integrity, 272-273

and software, 274
interations, 48, 114

communication, 164-165

estimating guidelines, 115

phases, 137-139
issues, avoiding, 244
iterative development, 43-44, 118

applied learning, 53-54

build processes, 84

project pyramid, 103

rhythm, 135-137

technology, 57-58

versus waterfall development

business implications, 54-55
staffing effects, 55-57

J-K

Jacobsson, Hein, 199
job-based model, compensation, 184-185
job hunting, culture and values, 279-280

K&R, 70
Kant, Immanuel, 201

Index

Katzenbach, Jon R., 34

Kennedy, John F., 12

Kernighan, Brian W., 70

Kludge, 198

koan, 192

Krantz, Gene, 274

Kroll, Per, 44

Kruchten, Philippe, 44, 137, 222
culture, 270

KSLOC (kilo source lines of code), 113

L

labor content, 257
labor cost, 260
Laika, 12
large project chicken, 175
Larsen, Howard, 180
Laws of Motion, analogies, 203-205
leaders, 35, 147
leadership
continuity of, 199
customer-focused culture, 276
by example, 276
pay for performance, 276
learning
new programming languages, 70-71
standard problems, 71-74, 76
Rational Unified Process, 138
learning and completion curves, 140
learning curves, 130
Lencione, Patrick, 269
Leroy, Pascal, 97, 220
Leroy, Roscoe, 44-45
calculating, 226-228, 230, 232-235, 239
calendars, 110-111
commitment, 168-169, 174-175
deadlines, 171-172
definition of, 170
excuses, 170-173
honoring, 174

Index

large project chicken, 175
Texas handshake, 169-170
communication, 158-159, 162-164
closure, 162
establishing ownership, 160-161
iteration, 164-165
not suggesting solutions, 161-162
remember who you’re dealing with,
159-160
estimating, 108-111, 114, 120
long vectors, 48-49
short vectors, 47
square roots, 111
life of software, 215-216
life outside of work, managing teams, 38-39
lifetime meal tickets, 14
light, 213
speed of lights, 206
limitations of project pyramid, 101-105
listening, 7-8
managing teams, 36
lognormal, 97
lognormal distribution, 101, 104
long vectors, 48-49
lots of rules and no mercy, 82
Lovitt, John, 192

M

machers, 281, 284-286, 289
malice, avoiding when managing teams,
37-38
managers
audience for this book, 6
learning new programming languages,
70-71
standard problems, 71-74, 76
managing teams, 34
anticipating obstacles, 35-36
avoiding malice, 37-38
focus, 34

303

focus on facts, 37
humor, 38
inspiration, 35
life outside of work, 38-39
listening, 36
stability, 37
trust your instincts, 39
mapping
politics, 152-153
team members, 191
Marasco, Andrew, 20
Maxwell, James Clerk, 211
Mayo, Elton; Hawthorne Effect, 210
measurements, 209
mechanical drawing, 16
menschs, 281, 286-288
Meretsky, Wayne, 40
mergers, 277-278
milestones, 26-27
miscalibrations, horseshoes, 46
missile gap, 12
mission-critical applications, 4
mistakes, learning from others, 34
modeling UML, 60-61
abstraction, 66
first example, 61
relevance to software, 65-66
second example, 61-63
third example, 63-65
models
naive model. See naive model
non-linear relationships, 260-261
momentum, 133
Monday, 226
solution to fantasy baseball probabilities,
234-236, 238-239
monitoring, 27
Moore, Geoffrey, 131
motion, Newton’s Laws of Motion (analo-
gies), 203-205
mountain climbing, 23

304

multipliers, consequences of naive model,
254-256
The Mythical Man-Month, 250

N

naive model, 251
assumptions, 252-253
consequences of, 253-255, 257-258
adding useful hours to products, 256
cost, 257-259
nailing the multiplier, 254-256

contribution of new hires during
transition, 251-252
drag created by new hires on existing
team, 252
example of, 259-260
Nagasaki bomb, 12
negative payoff, 97
negotiating, 157
net force, 127
new efforts, continuity, 278-279
new hires, 250
contributions during transition, 251-252
effect on existing teams, 252
evaluating, 262
growth, 263
Newton, Sir Isaac, 127
Laws of Motion, analogies, 203-205
Newton’s Second Law, 126-127
nomographs, 264-265
non-linear relationships, 260-261
non-linearity, 260-261
notation, abstraction, 66

o

observation, 7-8

OD (organizational development), 249
“off by a factor of ten,” 17

Ohm’s Law, 65

Index

Ohms, 64

oil changes, 217

organizational politics, difficulty of build
processes, 80-81

organizing teams, 25-26

overpaid, 182

ownership, 160-161

P

parabolic position graphs, 130
Parkinson’s Law, 53
partners, continuity, 278
paths in crisis, 246
paying for software upgrades, 218
batteries packaged with software,
218-223
people
machers, 284-286
menschs, 286-288
population distribution, 288-290
schleppers, 282-284
percent completion curve, 126
performance, 181-182
period of transition, 251
Perrow, Mike, 147
personality, 270
Peter Principle, 187
phases, 281
iterations, 137-139
machers, 284-286
menschs, 286-288
schleppers, 282-284
physics
acceleration of a vertical ball toss,
129-130
analogies, 201-203
electromagnetism, 211
entropy, 211

Newton’s Laws of Motion, analogies,
203-205

Index

Netwon’s Second Law, 126-127
quantum mechanics, 207-211
thermodynamics, 211-212
trajectory of a vertical ball toss, 129
velocity of a vertical ball toss, 128-129
piracy, 223
planck, 208-209
planning
decisiveness, 28
goals, 29
handling risk, 27-28
milestones, 27
monitoring and recordkeeping, 27
scheduling, 26-27
scope, 24
plateaus, 131
PM (project management), 249
political process, definition of, 147
politics, 145, 150
bad politics, 152, 154-155
compromise, 148-149
context of, 146
good politics, 150-151
high-trust environments, 153-154
mapping, 152-153
neutral politics, 151
scenarios, 147-148
population distribution, 288-290
position, 127
potential, 182
precision, 109
predictability, 123
scheduling, 119
primacy of time, 90
prioritizing risks, 52-53
probabilities, 226, 228-229, 232-235, 239
generating more, 230
probability of success, 94
project pyramid, 99-100
increasing, 100-101
problem-solving, 21

305

problem-solving clock, 6-9
problems, fixing, 245
product versus prototype, 200
productivity. See also growth
flow, 181-182
growth, 263-264
new hires, 263
programming languages, managers learning
new languages, 70-71
standard problems, 71-74, 76
project completion graphs, 130
project management (PM), 249
project managers, adjusting schedules for,
122-123
project pyramid, 90-91, 93
altitude variable, 94
distribution, 97-99
iterative development, 103
limitations of, 101-105
probability of success, 99-101
risk, 92, 105
scaling, 95-97
volume, 94-95
project velocity curves, 132
projects
failure, common causes of, 30-31
human factor, 32
success of, 31-32
prototype versus product, 200
prototyping, 51
pseudoscientific jargon, 213
pyramid model, results of, 101

Q-R
quadratic algorithms, 172
quality, 92-93
of software, 4-5
quantum mechanics, analogies, 207-211
Queen Elizabeth I, 277
quick studies, 131

306

ramps, 130
random number generators, 226
random numbers, 228, 234. See also
probabilities
Raskin, Jef, 220
rates of change, 127
Rational Software, 5-6
acquisition, 278
Rational Unified Process, 137
reality and curves, 134-135
recordkeeping, 27
refreshing embedded software, 216-217
registers, 272
relativity, analogies, 205-207
religion, culture, 271
repeatable build process, 78
resources, 92
respect, 158
results
iterations and phases, 138-140
values, 273-274
rhythm
build rhythm, 125
curves of human behavior, 131
iterataive development, 135-137
risk, 27-28, 92
prioritizing, 52-53
project pyramid, 105
risk targeting, 51-52
Ritchie, Dennis M., 70
Roebling, John, 199
Royce, Walker, 44, 113, 137

S

S-curves, 130
Sadler, Mark, 214
sandbaggers, 120
sandbagging, 176
sandboxes, 79

Index

Sandstro, Anders, 198
Sarbanes-Oxley Act of 2002, 276
scaling, 250
project pyramid, 95-97
scarcity premiums, 183
scenarios of politics, 147-148
scheduling, 26-27, 117-118, 120-121
adjusting schedules for different
managers, 122-123
calibrating, 120, 122-123
commitments, 175-176
estimates, 119
final week, 123
predictability, 119, 123
Roscoe’s graph, 122
square root, 120
“two-schedule” game, 117
schleppers, 281-284, 289
schrodinger, 208
science, 13, 213
physics. See physics
scope, 92-93
prelude to planning, 24
scope creep, 127
scope management, 90
searching for a job, values and culture,
279-280
selecting teams, 25
shipping the product, 77-78
build processes, difficulty of, 79-84
Shooman, Martin L., 251
short vectors, 47, 49
applied learning, 51
software development, 50
signing up. See commitment, 167
skill levels, 180
skills-based model, compensation, 183-184
slide rules, 16-17
slope, 127
Smith, Douglas K., 34
So What? Test, The Animal Game, 74-75

Index

software
importance of good software, 4-5
life of, 215-216
packaged with batteries, 218-223
upgrading, 218
packaging batteries with software,
218-223
and values, 274-275
software developmenet managers, 6
software development, short vectors, 50
software development projects,
developing, 96
software piracy, 223
solar power, 223
sound, 206
space race, 12
Special Theory of Relativity, 207
speed, 93, 129
speed of light, 206
speed of sound, 206
spreadsheets, growth, 265-267
Sputnik, 12
Sputnik 1II, 12
square roots
estimating, 114
Leroy, Roscoe, 111
scheduling, 120
stability, managing teams, 37
staffing effects, waterfall development
versus interative development, 55-57
standard problems, learning new
programming languages, 71-74, 76
starter dough, 278
states. See phases
stogies, 50
strong cultures, 271, 280
subscriptions, 218
success
definition of, 101-102
of projects, ingredients for, 31-32

307

sunk cost, 215
synthesizing, 8-9

T

tables
Mapping Politics, 153
Learning and Completion Metrics for
Phases in the Rational Unified
Process, 138
Product of Total Force Peak Value and
Time Interval Length, 141
Results of Using the Pyramid Model and
Lognormal Distribution, 101
tangents, slope of, 127
team members, mapping, 191
teams
competition, 29
managing, 34
anticipating obstacles, 35-36
avoiding malice, 37-38
focus, 34
focus on facts, 37
humor, 38
inspiration, 35
life outside of work, 38-39
listening, 36
stability, 37
trust instincts, 39
organizing, 25-26
selecting, 25
testing, 8-9, 200
tetrahedron model, 92
Texas handshake, 169-170
Theory of Relativity, 207
Thermodynamics, analogies, 211-212
“throwing money at the problem,” 12
time, 92
tools, difficulty of build processes, 83-84
trade-offs, project pyramid. See project
pyramid

308

traditions, 276

trajectory of a vertical ball toss, 128
transition, 137, 140

trusting instincts, managing teams, 39
Turing’s Machine, 213

turning points, in crisis, 245-246
“two-schedule” game, 117

Tzu, Sun, 152

U

UCM (Unified Change Management), 82
UML (Unified Modeling Language), 60-61
abstraction, 66
first example, 61
relevance to software, 65-66
second example, 61-63
third example, 63-65
undecideability, 213
underpaid, 183
update releases, 77
upgrading
devices, 217
software, 218

packaging software with batteries,
218-223
Urmi, Jaak, 197

\%

values
core values, 272
corporate values, defining, 271-274
customer focus, 273
integrity, 272-273
job hunting, 279-280
results, 273-274
and software, 274-275
Vasa, 197-199
design, 199

Index

inquest, 200
leadership, 199
product versus prototype, 200
testing, 200
Vasa Museum, 197
vectors, 49
long vectors, 48-49
short vectors, 47, 49
applied learning, 51
software development, 50
velocity, 127
percent completion curves, 132
of a vertical ball toss, 128
Voltaire, 83
volume, project pyramid, 94-95

W

Walker, John, 52
waterfall approach, 46
waterfall development versus iterative
development
business implications, 54-55
staffing effects, 55-57
weak cultures, 271
Westheimer, F. H., 52
Wideman, Max, 105
iron triangle, 90
Williams, Ted, 240
win-win, compensation, 190
Woods, Tiger, 122

	Contents
	About the Author
	Foreword
	Preface
	Chapter 8. Getting It Out the Door
	If You Build It, They Will Come
	In the Beginning, There Was the Sandbox
	Why Should the Product Build Be Hard, Anyway?
	What About Iterative Development?
	Recap

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J-K
	L
	M
	N
	O
	P
	Q-R
	S
	T
	U
	V
	W

