\qquad

WKS 13.1 - Conjugates Using Brönsted-Lowry's Definition (2 pages)

Give the conjugate acid of the following bases:

BASE \rightarrow	CONJUGATE ACID	BASE \rightarrow	CONJUGATE ACID
$\mathrm{H}_{2} \mathrm{O}$		ClO^{-}	
acetate		$\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$	
NH_{3}		$\mathrm{HSO}_{4}{ }^{-}$	
hydroxide		Br^{-}	
$\mathrm{CO}_{3}{ }^{2-}$		Methylamine $\left(\mathrm{CH}_{3} \mathrm{NH}_{2}\right)$	

Give the acid of the following conjugate bases:

ACID \rightarrow	CONJUGATE BASE	ACID \rightarrow	CONJUGATE BASE	
	water		OH^{-}	
	ammonia		bromide ion	
	$\mathrm{SO}_{4}{ }^{2-}$			O^{2-}
	$\mathrm{HCO}_{3}{ }^{-}$			$\mathrm{CH}_{3} \mathrm{NH}_{2}$
	cyanide ion			$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{-}$

Give the base of the following conjugate acids:

BASE \rightarrow	CONJUGATE ACID	BASE \rightarrow	CONJUGATE ACID
	HCN		hydronium
	$\mathrm{HCO}_{3}{ }^{-}$		$\mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}$
	ammonium		$\mathrm{H}_{2} \mathrm{O}$
	HF		$\mathrm{HSO}_{3}{ }^{-}$
	$\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$		HCl

\qquad

WKS 13.1 - Conjugates Using Brönsted-Lowry's Definition (continued)

Give the conjugate base of the following acids:

ACID \rightarrow	CONJUGATE BASE	ACID \rightarrow	CONJUGATE BASE
$\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$		$\mathrm{H}_{2} \mathrm{SO}_{4}$	
HBr		nitric acid	
hydrochloric acid		$\mathrm{H}_{3} \mathrm{PO}_{4}$	
$\mathrm{NH}_{4}{ }^{+}$		$\mathrm{H}_{2} \mathrm{CO}_{3}$	
HCN		hydrosulfuric acid	

Identify the acid (A), base (B), conjugate acid (CA), and conjugate base (CB) in the following reactions:
(1) $\mathrm{NH}_{3(\mathrm{~g})}+\mathrm{H}_{3} \mathrm{O}^{+}{ }_{(\mathrm{aq})} \rightarrow \mathrm{NH}_{4}{ }^{+}{ }_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$
(2) $\mathrm{CH}_{3} \mathrm{COOH}_{(\mathrm{l})}+\mathrm{NH}_{2}^{-} \rightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}{ }_{(\text {aq })}+\mathrm{NH}_{3(\mathrm{~g})}$
(3) $\quad \mathrm{NH}_{2}{ }^{-}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightarrow \mathrm{NH}_{3(\mathrm{~g})}+\mathrm{OH}_{(\mathrm{aq})}^{-}$
(4) $\mathrm{HClO}_{4(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}{ }_{(\mathrm{aq})}+\mathrm{ClO}_{4}^{-}$(aq)
\qquad

WKS 13.2 - Naming Acids (1 page)

Name the following acids. (They may not all exist, but use your rules to propose a name!)

Formula	Acid Name	Formula	Acid Name
$\mathrm{H}_{2} \mathrm{Te}$		$\mathrm{H}_{2} \mathrm{~S}$	
$\mathrm{H}_{2} \mathrm{SO}_{2}$		HNO_{2}	
HBrO_{3}		HIO	
HNO_{3}		$\mathrm{H}_{3} \mathrm{PO}_{3}$	
HCl^{2}		HF	
$\mathrm{H}_{3} \mathrm{P}$		$\mathrm{HBrO}_{2} \mathrm{SO}_{3}$	
HIO_{2}		$\mathrm{H}_{2} \mathrm{Se}^{2}$	
HClO_{3}		HI_{2}	
$\mathrm{H}_{2} \mathrm{SO}_{4}$		HClO_{4}	
HBr^{2}			

Write the formula for the following acids.

Name	Formula	Name	Formula
Nitrous acid		Acetic acid	
Hydrobromic acid		Hypochlorous acid	
Chloric acid		Permanganic acid	
Hydrofluoric acid		Hydrochloric acid	
Hydrotelluric acid		Hyposulfurous acid	
Hypoiodous acid		Bromous acid	
Carbonic acid		Hydroselenic acid	
Phosphorous acid			
Hydrosulfuric acid			

\qquad

WKS 13.3 - pH / pOH Calculations, Part 1 (1 page)

Show all work and circle your answers! NO WORK / FORMULA SETUP $=$ NO CREDIT.

1. (a) If the hydrogen ion concentration of a solution is $1.30 \times 10^{-4} \mathrm{M}$, what is the pH of the solution? $(\mathbf{p H}=\mathbf{3 . 8 9})$
(b) What is the pOH of this same solution? $(\mathbf{p O H}=\mathbf{1 0 . 1 1)}$
(c) What is the hydroxide concentration of the solution? [7.69 $\times \mathbf{1 0}^{-11}$]
2. (a) If the hydroxide ion concentration of a solution is $2.8 \times 10^{-6} \mathrm{M}$, is it an acidic or a basic solution?

$$
(\mathrm{pH}=8.45, \text { basic })
$$

(b) What is the pH of this solution? $\quad(\mathbf{p H}=\mathbf{8 . 4 5)}$
(c) What is the hydrogen ion concentration of this solution? [3.61 $\left.\mathbf{x} \mathbf{1 0}^{-9}\right]$
(d) What is the pOH of this solution? $\quad(\mathbf{p O H}=\mathbf{5 . 6 5})$
3. (a) If the pH of a solution is 4.67 , what is the hydroxide ion concentration? $\left[4.68 \times \mathbf{1 0}^{-10}\right]$
(b) What is the pOH of this solution? $\quad(\mathbf{p O H}=\mathbf{9 . 3 3})$
(c) What is the hydrogen ion concentration? $\left[\mathbf{2 . 1 4} \times \mathbf{1 0}^{-5}\right]$
(d) Is this an acidic or basic solution? (acidic)
4. (a) If the pOH of a solution is 3.6 , what is the pH ? $\quad(\mathbf{p H}=\mathbf{1 0 . 4 0)}$
(b) What is the hydrogen ion concentration of this solution? [3.98 $\left.\mathbf{x 1 0} \mathbf{1 0}^{-11}\right]$
(c) What is the hydroxide ion concentration of this solution? [2.51 $\times \mathbf{1 0}^{-4}$]
(d) Does this solution have a higher hydrogen ion or hydroxide ion concentration? (hydroxide)
5. Which would have a more basic $\mathrm{pH}-\mathrm{a}$ solution whose hydrogen ion concentration is $3.4 \times 10^{-8} \mathrm{M}$ or a solution whose hydroxide ion concentration is $2.6 \times 10^{-5} \mathrm{M}$? ($\mathbf{2 . 6} \times 1 \mathbf{1 0}^{-5} \mathbf{M}$)
\qquad WKS $13.4-\mathrm{pH} / \mathrm{pOH}$ Calculations, Part 2 (1 page)
Calculate all of the unknown variables in the table. NO WORK / FORMULA SETUP = NO CREDIT.

	[H^{+}]	pH	[OH^{+}]	pOH	Acidic,Basic, or Neutral
1	2.30×10^{-4}	3.63	4.35×10^{-11}	10.4	Acidic
2		7.9			
3			1.05×10^{-3}		
4	3.66×10^{-3}				
5				11.5	
6		12			
7			5.5×10^{-7}		
8	7.77×10^{-11}				
9				13.0	
10		7.0			
11	9.33×10^{-6}				
12			1.11×10^{-2}		
13				2.55	
14		0.55			
15	9.05×10^{-14}				

\qquad

WKS 13.5 - Strong Acid \& Base Calculations (2 pages)

Show all work and circle your answers! NO WORK / FORMULA SETUP = NO CREDIT.

1. What is the pH of 0.80 M hydrobromic $\operatorname{acid?(\mathbf {pH}=\mathbf {0.097})}$
2. If the pH of a sulfuric acid solution is known to be 3.25 , what is the molar concentration of the acid solution? $\left(\mathbf{2 . 8} \times 10^{-4} \mathrm{M}\right)$
3. (a) If the pH of a barium hydroxide solution is known to be 12.50 , what is the hydroxide ion concentration? $\left.\mathbf{(3 . 1 6} \times 10^{-2} \mathrm{M}\right)$
(b) What is the barium ion concentration? $\left(\mathbf{1 . 5 8} \times \mathbf{1 0}^{-2} \mathbf{M}\right)$
(c) What is the molar concentration of the base solution? $\left(\mathbf{1 . 5 8} \times \mathbf{1 0}^{-\mathbf{2}} \mathbf{M}\right)$
4. (a) What is the hydroxide ion concentration of a 0.166 M calcium hydroxide solution? ($\mathbf{0 . 3 3} \mathbf{~ M}$)
(b) What is the hydrogen ion concentration of the solution? $\left(\mathbf{3 . 0 3} \times \mathbf{1 0}^{-14}\right)$
(c) What is the pH of the solution? $\quad(\mathbf{p H}=\mathbf{1 3 . 5 2)}$
(d) What is the Ca^{+2} ion concentration in this solution? $(\mathbf{0 . 1 6 6} \mathbf{M})$
5. If the pH of a cesium hydroxide solution is known to be 9.75 , what is the molar concentration of the base solution? $\left(5.62 \times 10^{-5} \mathrm{M}\right)$
6. If the pH of a hydroiodic acid solution is known to be 3.21 , what is the molar concentration of the acid solution? (6.17×10^{-4})
\qquad

WKS 13.5 - Strong Acid \& Base Calculations (continued)

Show all work and circle your answers! NO WORK / FORMULA SETUP = NO CREDIT.

7. (a) A solution was prepared using 28.3 g of potassium hydroxide and then diluting to a final volume of 2.0000 L . What is the molarity of the base solution? (0.252 M)
(b) What is the pH of the solution? (13.40)
8. (a) A strong monoprotic acid was prepared by diluting 1.35 mL of a concentrated, 12.0 M solution to a final volume of 0.250 L . Calculate the final molarity of the solution. HINT: Think about dilution from last unit! ($\mathbf{0 . 0 6 4 8} \mathbf{~ M}$)
(b) What is the molar concentration of the hydrogen ion? ($\mathbf{0 . 0 6 4 8} \mathbf{~ M}$)
(c) What is the pH of the solution? (1.19)
(d) What color would phenolphthalein be in this solution?
9. Which would have a higher $\mathrm{pH}-\mathrm{a} 0.035 \mathrm{M}$ potassium hydroxide solution or a 0.018 M calcium hydroxide solution? Explain. $\left(\mathbf{C a}(\mathbf{O H})_{2}\right)$
10. Which would have the more acidic $\mathrm{pH}-\mathrm{a} 0.0025 \mathrm{M}$ strontium hydroxide solution or a solution whose hydrogen ion concentration is 1.44×10^{-13} ? $\left(.0025 \mathbf{M ~ S r}(\mathbf{O H})_{2}\right)$
11. If the barium ion concentration of a barium hydroxide solution is known to be 0.25 M , what is the pH of the solution? ($\mathbf{p H}=13.70$)
\qquad

WKS 13.6 - Titration Calculations \& Neutralization Reactions (1 page)

Solve the following titration problems. NO WORK / FORMULA SETUP = NO CREDIT.

1. What is the molarity of a solution of barium hydroxide if 50.0 mL are titrated to an endpoint by 15.0 mL of a solution of hydrobromic acid that is $0.00300 \mathrm{M} ?\left(4.5 \times \mathbf{1 0}^{-4} \mathbf{M ~ B a}(\mathbf{O H})_{2}\right)$
2. What is the concentration of a strontium hydroxide solution if 20.0 mL of it is neutralized by 25.0 mL of a 0.0500 M hydrochloric acid solution? ($\mathbf{0 . 0 3 1 3} \mathbf{M}$)
3. If 25.0 mL of vinegar solution (acetic acid) is neutralized 15.0 mL of 0.500 M NaOH , what is the molarity of the vinegar? ($\mathbf{0 . 3 0 0} \mathbf{~ M}$)

Write the balanced neutralization reactions for the following:

4. Cesium Hydroxide and Sulfuric Acid
5. Calcium Hydroxide and Hydrobromic Acid
6. Sodium Hydroxide and Perchloric Acid
7. Lithium Hydroxide and Hydroselenic Acid
\qquad

WKS 13.7 - A Little Bit of Everything Review! (2 pages)

1. Put the following in order of most acidic to most basic.
a. pH 3.6
c. $\mathrm{pOH}=13.2$
JUSTIFICATION:
b. $\left[\mathrm{H}^{+}\right]=1.25 \times 10^{-7}$
d. $\left[\mathrm{OH}^{-}\right]=5.89 \times 10^{-2}$
2. Which of the following represents a polyprotic acid?
a. HCl
c. $\mathrm{H}_{3} \mathrm{PO}_{4}$
b. $\mathrm{H}_{2} \mathrm{Se}$
d. Both B and C

JUSTIFICATION:

3. You have a solution that should be at a pH of 11 . You check the pH and find out that it is currently at a pH of 10.5. In order to change the pH to the desired value of 11 , you should add:
a. water -pH 7
c. vinegar- pH 4
b. lye - pH 13
d. ammonia -pH 10

JUSTIFICATION:
4. Examine the following equation:

$$
\underset{\text { I. }}{\mathrm{BO}_{3}^{-3}} \rightarrow \underset{\text { II. }}{\mathrm{HBO}_{3}^{-2}} \rightarrow \underset{\text { III. }}{\mathrm{H}_{2} \mathrm{BO}_{3}^{-1}} \rightarrow \underset{\text { IIV. }}{\mathrm{H}_{3} \mathrm{BO}_{3}}
$$

Which of the above would be considered amphiprotic?
a. I \& IV
c. I \& II
b. II \& III
d. III \& IV

JUSTIFICATION:
5. Fill out the following chart with regards to acids and bases:

	ACIDS	BASES
Usually have in the formula:		
Arrhenius' definition says:		
Bronsted-Lowry's definition says:		
Has a pH range of:		
Will turn this color with litmus paper:		
Will turn this color in phenolphthalein:		
Will do this when put with a metal: (include identity of gas, if formed)		

6. Fill out the following chart with regards to strong vs. weak acids and bases:

	Strong Acids and Bases	Weak Acids and Bases
To what \% do they ionize?		
Are they a strong conductor or a poor conductor?		
Would their pH be closer or farther away from 7 (neutral)?		
Which arrow do we show in their ionization reaction?		

\qquad

WKS 13.7 - A Little Bit of Everything Review! (continued)

7. Write a reaction using phosphoric acid and ammonia as reactants. Identify each reactant and product as being an acid, base, conjugate acid, or conjugate base. (Use Bronsted-Lowry's definition to help you!)
8. What is the difference between strength and concentration (in regards to acids and bases)?
9. What is the pH of a 0.32 M solution of calcium hydroxide? (13.81)
10. If the pH of a cesium hydroxide solution is known to be 9.75 , what is the molar concentration of the original base solution? $\left(\mathbf{5 . 6 2} \times 10^{-5} \mathrm{M}\right)$
11. What is the $\left[\mathrm{OH}^{-}\right]$of a sulfuric acid solution with a pH of 1.34 ? What is the original concentration of the acid? ($2.19 \times 10^{-13} \mathrm{M}, 2.29 \times 10^{-2} \mathrm{M}$)
12. How many grams of strontium hydroxide must be dissolved to make a 8.78 L solution with a pH of 12.12 ? What is the hydroxide ion concentration? What is the strontium ion concentration? $\left(\mathbf{7 . 0 2} \mathbf{g}, \mathbf{0 . 0 1 3 2} \mathbf{M}, 6.59 \times 10^{-3} \mathrm{M}\right)$
13. What is the molarity of a solution of $\mathrm{Ba}(\mathrm{OH})_{2}$ if 50.0 mL are titrated to an endpoint by 15.0 mL of a solution of $\mathrm{H}_{2} \mathrm{SO}_{4}$ that is $0.300 \mathrm{M} ?(\mathbf{0 . 0 9 0 0} \mathbf{~ M})$
14. What is the purpose of a buffer?
