Name:	
Hour:	

PRE-CALCULUS

Please keep in mind that this exam is worth 20% of your overall grade for this SEMESTER and your semester grade is averaged into your overall GPA.

SCHEDULE OF ASSIGNMENTS					
Assignment	Due Date	\checkmark			
Chapter 7 – Trig #1–27	Thursday, May 17 th				
Chapter 8 – Polar #1–14	Friday, May 18 th				
Chapter 8 – Polar #15–28	Tuesday, May 22 nd				
Chapter 9 – Matrices #1–20	Wednesday, May 23 rd				
Chapter 10 – Conics <i>#</i> 1–19	Thursday, May 24 th				
Chapter 11 – Sequences & Series #1–20	Friday, May 25 th				

7th Hour Exam: Tuesday, May 29th, 9:40–11:10

Chapter 7 - Analytic TrigonometrySimplify the expression. (Section 7.1-7.3 - NON-CALCULATOR)1.
$$\frac{\cot \theta}{\csc \theta - \sin \theta}$$
2. $\frac{\cos u \sec u}{\tan u}$ 3. $\sin B + \cos B \cot B$

- - -

- - -

- - --

- - -

. .

4. $\sin^2 \alpha + \cos^2 \alpha + \tan^2 \alpha$

5. $\sin\theta (\cot\theta + \tan\theta)$

 $\mathbf{6.} \ \frac{\sin 2x}{1 + \cos 2x}$

Verify the identity. (Section 7.1-7.3 – NON-CALCULATOR)

7. $\frac{\sin x}{\cos x} + \frac{\cos x}{\sin x} = \sin x + \cos x$	8. $\frac{\cos x}{\cos x} + \frac{1-\sin x}{\cos x} = 2 \sec x$
$\tan x \cot x$	$1-\sin x \cos x$

9. $\frac{\cos^2 x - \sin^2 x}{1 - \tan^2 x} = \cos^2 x$

$$10. \ \frac{\tan^2 x}{\sec x} = \sec x - \cos x$$

Use an identity to find the EXACT value	e of the expression. <mark>(Sect</mark>	ion 7.2-7.3 – NON-CALCULATOR)
11. sin 15°	12. sin 67.5°	13. $\tan \frac{7\pi}{12}$

14. tan 22.5°

15. cos 195°

Use a double angle identity to find sin 2x, cos 2x, and tan 2x from the given information. (Section 7.3 – NON-CALCULATOR) 16. $cos x = \frac{4}{5}$; csc x < 017. csc x = 4; x in quadrant II

Use the appropriate trigonometric identity to simplify the expression. (Sections7.2 & 7.3 – NON-CALCULATOR)

18. 2 sin 36° cos 36°

19. $\sin 18^{\circ} \cos 27^{\circ} + \cos 18^{\circ} \sin 27^{\circ}$

20.
$$\sqrt{\frac{1-\cos 35^{\circ}}{2}}$$

Find all solutions of the equation in the interval $[0, 2\pi)$. Answers must be in radians. (Section 7.5 – NON-CALCULATOR)

21. $\sqrt{2}\cos x - 1 = 0$ **22.** $3\csc^2 x - 4 = 0$

23. $\cos x \sin x - 2 \cos x = 0$

24. $\tan^2 x \cos x - \tan^2 x = 0$

25. $2\cos^2 x + \sin x = 1$

26. $2\cos 2x + 1 = 0$

Graph each point and label accordingly. Then convert the coordinate to rectangular coordinates. (Section 8.1 – NON-CALCULATOR)

A point $P(r, \theta)$ is given in polar coordinates. Give <u>two</u> other polar representations of the point, one with r < 0 and one with r > 0. (Section 8.1 – NON-CALCULATOR)

5.
$$\left(5, \frac{5\pi}{4}\right)$$
 6. $(-3, 6\pi)$

Convert the rectangular coordinates to polar coordinates with r > 0 and $0 \le \theta \le 2\pi$. (Section 8.1 – NON-CALCULATOR)

7. $(-3, 3\sqrt{3})$ **8.** $(-\sqrt{2}, -\sqrt{2})$

Express the complex	x number in polar form. <mark>(Section 8.3</mark> –	NON-CALCULATOR)
9. $-1+i$	10. –7 <i>i</i>	11. $1 - i\sqrt{3}$

Find the product $z_1 z_2$ and the quotient $\frac{z_1}{z_2}$. Express your answer in a + bi form. (Section 8.3 – NON-CALCULATOR) 12. $z_1 = 7 \operatorname{cis} \frac{\pi}{2}$; $z_2 = 2 \operatorname{cis} \frac{2\pi}{3}$

Find the indicated power using DeMoivre's Theorem. Write your answer in complex number form. (Section 8.3 – NON-CALCULATOR)

13. $(2\sqrt{3}+2i)^5$ **14.** $(-\sqrt{3}-i)^4$

Express the vector with initial point P and terminal point Q in component form. (Section 8.4 – NON-CALCULATOR)

15. P(1,1); Q(9,9) **16.** P(-1,3); Q(-6,-1)

Find $\mathbf{u} + \mathbf{v}$, $-3\mathbf{u} + 5\mathbf{v}$, $|\mathbf{v}|$ (magnitude!), and $|\mathbf{u} - \mathbf{v}|$. (Section 8.4 – NON-CALCULATOR) 17. $\mathbf{u} = \langle -2,5 \rangle$, $\mathbf{v} = \langle 2,-8 \rangle$ 18. $\mathbf{u} = -2\mathbf{i} + 3\mathbf{j}$, $\mathbf{v} = \mathbf{i} - 2\mathbf{j}$

Find the vector in component form having the given magnitude and direction. (Section 8.4 – NON-CALCULATOR)

19. $|\mathbf{v}| = 50, \ \theta = 120^{\circ}$

20. $|\mathbf{v}| = 6$, $\theta = 310^{\circ}$

Find the magnitude and direction (in degrees) of the vector. (Section 8.4 – NON-CALCULATOR) 21. $\mathbf{v} = \mathbf{i} + \mathbf{j}$ 22. $\langle -2, -2\sqrt{3} \rangle$ Find (a) $u \cdot v$ (dot product) (Section 8.5 – NON-CALCULATOR) and (b) the angle between u and v to the nearest tenth of a degree (Section 8.5 - Calculator).

23.
$$\mathbf{u} = \langle 2, 1 \rangle, \mathbf{v} = \langle 3, -2 \rangle$$
 24. $\mathbf{u} = \mathbf{i} + \sqrt{3}\mathbf{j}, \mathbf{v} = -\sqrt{3}\mathbf{i} + \mathbf{j}$

25. Determine whether $\mathbf{u} = 4\mathbf{i}$ and $\mathbf{v} = -\mathbf{i} + 3\mathbf{j}$ are orthogonal. (Section 8.5 – NON-CALCULATOR)

26. Given $\mathbf{u} = 3\mathbf{i} + 2\mathbf{j}$, $\mathbf{v} = -\mathbf{i} - 4\mathbf{j}$, $\mathbf{w} = 5\mathbf{i} - 3\mathbf{j}$, find $\mathbf{u} \cdot (\mathbf{v} + \mathbf{w})$. (Section 8.5 – NON-CALCULATOR)

27. Find the work done by the force $\mathbf{F} = -4\mathbf{i} + 20\mathbf{j}$ in moving an object from P(0, 10) to Q(5, 25). (Section 8.5 - Calculator)

28. A constant force $\mathbf{F} = \langle 2, 8 \rangle$ moves an object along a straight line from point (2, 5) to the point (11, 13). Find the work done if the distance is measured in feet and the force is measured in pounds. **(Section 8.5 - Calculator)**

CHAPTER 9 – Systems, Matrices & Inequalities

Solve the system by hand. (Sections 9.1-9.3 - Calculator)

1.
$$y = x^2 + 8x$$

 $y - 16 = 2x$
2. $x - y = 4$
 $xy = 12$

For problems #3-8, carry out the operation, if possible, using the given matrices. (Section 9.5 - Calculator)

$$A = \begin{bmatrix} 4 & 6 \\ 1 & 3 \end{bmatrix} \quad B = \begin{bmatrix} 2 & 5 \\ -3 & 7 \end{bmatrix} \quad C = \begin{bmatrix} 2 & 3 \\ 1 & 0 \\ 0 & 2 \end{bmatrix} \quad D = \begin{bmatrix} 10 & 6 \\ -3 & 5 \\ 2 & -1 \end{bmatrix} \quad E = \begin{bmatrix} 1 & -2 & 4 \\ 3 & 7 & 2 \\ 0 & 9 & -1 \end{bmatrix}$$

3. $A + B$
4. $3C - D$
5. $C + E$

6. *DA*

7. BA

8. *B*²

9. [Multiple Choice] Use the matrices above to determine which product is NOT possible.

	A . <i>CB</i>	B . <i>AB</i>	C . <i>DE</i>	D . ED
--	----------------------	----------------------	----------------------	---------------

For problems #10-15, carry out the operation, if possible, using the given matrices. (Sections 9.6-9.7)

$$A = \begin{bmatrix} 4 & 6 \\ 1 & 3 \end{bmatrix} \quad B = \begin{bmatrix} 2 & 5 \\ -3 & 7 \end{bmatrix} \quad C = \begin{bmatrix} 2 & 3 \\ 1 & 0 \\ 0 & 2 \end{bmatrix} \quad D = \begin{bmatrix} 10 & 6 \\ -3 & 5 \\ 2 & -1 \end{bmatrix} \quad E = \begin{bmatrix} 1 & -2 & 4 \\ 3 & 7 & 2 \\ 0 & 9 & -1 \end{bmatrix}$$

10. B^{-1} (NON-CALCULATOR) 11. D^{-1} (NON-CALCULATOR) 12. A^{-1} (NON-CALCULATOR)

13. E^{-1} (CALCULATOR)

14. |A| (NON-CALCULATOR) 15. |E| (NON-CALCULATOR)

16. Solve the matrix equation A - 2X = B for matrix X if $A = \begin{bmatrix} 4 & 6 \\ 1 & 3 \end{bmatrix}$ and $B = \begin{bmatrix} 2 & 5 \\ -3 & 7 \end{bmatrix}$. (9.5 - CALCULATOR)

17. Solve the system using <u>inverses</u> of matrices: $\begin{cases} 5x + 7y + 4z = 1\\ 3x - y + 3z = 1\\ 6x + 7y + 5z = 1 \end{cases}$ (9.6 - CALCULATOR)

18. Solve the system using <u>Cramer's Rule</u>: 6x + 12y = 334x + 7y = 20 (9.7 - CALCULATOR)

Graph the system of inequalities. (9.9 - CALCULATOR)

Find the equation of the circle in standard form that satisfies the given conditions.

- **2**. The circle has center (5, -2) and passes through (-3, 4).
- **3**. The endpoints of the diameter of the circle are (-1, -6) and (7, -4).

Graph the ellipse and identify the center, vertices, and foci.

4. $4(x-1)^2 + 16(y+3)^2 = 64$ Vert: Foci: Foci: y = 1Center: Foci: Foci: y = 1Center: Foci: Foc

Find the standard form of the equation of each ellipse.

6. Foci $(0, \pm 4)$, vertices $(0, \pm 6)$

7. Endpoints of major axis: (-9,4) & (-1,4) Endpoints of minor axis: (-5,6) & (-5,2)

Graph the hyperbola and identify the center, vertices, slopes of asymptotes, and foci.

8 . $\frac{(y+3)^2}{4} - \frac{(x-2)^2}{25} = 1$	Center:	I	I							9	y						
	Vertices:									7 6 5				·····			
	Foci:									3 2 1				•••••			
	Asymptotes:		•9	1 -8	-7 -1	6 -5	-4 -	-3 -2	2 -1	-1 -2	12	3	4 5	56	7	89	x
										-4 -5 -6			-				
		"								-8 -9							v
9 . $4(x-1)^2 - 9(y-2)^2 = 36$	Center:	I	I							9	у						I
7. $4(x-1) - 9(y-2) = 50$	Vertices:									8 7 6							
										5 4 3 2							
	Foci: Asymptotes:		-9	9 -8	-7 -	6 -5	; -4	-3 -:	2 -1	-1	1 4	2 3	4 !	56	-	8 9	x
	Asymptotes									-3 -4							
										-6 -7 -8							
		I							1						l		

Find the standard form of the equation of each hyperbola.

10. Foci $(0, \pm 4)$, vertices $(0, \pm 2)$

11. Vertices (± 4 , 0), Asymptotes: $y = \pm 2x$

Graph the parabola and identify the vertex, directrix, and focus.

Graph the parabola and identify	the vertex, directrix, and focus.	и 9	I
12 . $(x-2)^2 = -12(y+3)$	Vertex:	7 6 5 4	
	Dir:	-9-8-7-6-5-4-3-2-1 <u>1</u> 123456789	•
	Focus:		×
			N
		II → Y → 9 8 7	I
13 . $(y+4)^2 = -8(x-2)$	Vertex:		
	Dir:	2 1 -9 -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 9	x
	Focus:		
			N

Write an equation in standard form for the parabola satisfying the given conditions.

14. Vertex: (-4, 5); Focus (-4, 2) **15.** Focus: (3, 5); Directrix: x = -1

Convert the equation to standard form by completing the square. Then identify what type of conic section the equation represents. If it is a circle, ellipse, or hyperbola, then name its center. If it is a parabola, then name its vertex.

16.
$$y^2 + 4y - 6x - 8 = 0$$

17. $9y^2 - 4x^2 - 18y + 24x - 63 = 0$

19. $x^2 + y^2 + 8x - 4y = 1$ **18.** $4x^2 + 36y - 32x + 9y^2 + 64 = 0$

Chapter 11 – Sequences & Series

Find the first five terms of the sequence. (Section 11.1 - Calculator) 1. $a_n = n^2 - 3$ 2. $a_n = a_{n-1} + 5$; $a_1 = 3$

3. Find the sum:
$$\sum_{k=1}^{4} k^2$$
 (Section 11.1 – NON-CALCULATOR)

4. Write the sum using sigma notation: $2 + 4 + 6 + \dots + 20$ (Section 11.1 – NON-CALCULATOR)

Determine whether the sequence is arithmetic or geometric. Then find the nth term of the sequence. (Sections 11.2-11.3 - Calculator)

5. 3, $\frac{3}{2}$, $\frac{3}{4}$, $\frac{3}{8}$, ... **6.** 2, 4, 6, 8, ...

7. -12, -8, -4, 0, ... **8**. -8, -2, $-\frac{1}{2}$, $-\frac{1}{8}$, ...

9. The 12th term of an arithmetic sequence is 32, and the fifth term is 18. Find the 20th term. (Section 11.2 - Calculator)

10. Which term of the arithmetic sequence 1, 4, 7, ... is 88? (Section 11.2 - Calculator)

11. Find the partial sum of the arithmetic sequence: $-3 + \left(-\frac{3}{2}\right) + 0 + \dots + 30$ (Section 11.2 - Calculator)

12. An arithmetic sequence has first term a = 5 and common difference d = 2. How many terms of this sequence must be added to get 2700? (Section 11.2 - Calculator)

13. The first term of a **geometric sequence** is 3, and the third term is $\frac{4}{3}$. Find the fifth term. (Section 11.3 - Calculator)

17. Find the partial sum of the geometric sequence $1 + 3 + 9 + \dots + 2187$. (Section 11.3 - Calculator)

18. Find the sum of the infinite geometric series $1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + \cdots$ (Section 11.3 - Calculator)

19. Use Pascal's Triangle to expand: $(3x - 5)^5$ (Section 11.6 - Calculator)

20. Find the 18th term in the expansion of $(4x + 3y)^{21}$. (Section 11.6 - Calculator)