\qquad
\qquad

2018 FINAL EXAM REVIEW PRE-CALCULUS

Please keep in mind that this exam is worth 20% of your overall grade for this SEMESTER and your semester grade is averaged into your overall GPA.

SCHEDULE OF ASSIGNMENTS		
Assignment	Due Date	\checkmark
Chapter 7 - Trig \#1-27	Thursday, May 17 ${ }^{\text {th }}$	
Chapter 8 - Polar \#1-14	Friday, May $18{ }^{\text {th }}$	
Chapter 8 - Polar \#15-28	Tuesday, May $22^{\text {nd }}$	
Chapter 9 - Matrices \#1-20	Wednesday, May $23^{\text {rd }}$	
Chapter 10 - Conics \#1-19	Thursday, May $24^{\text {th }}$	
Chapter 11 - Sequences \& Series \#1-20	Friday, May 25 ${ }^{\text {th }}$	

7th Hour Exam: Tuesday, May 29th, 9:40-11:10

Simplify the expression. (Section 7.1-7.3-NON-CALCULATOR)

1. $\frac{\cot \theta}{\csc \theta-\sin \theta}$
2. $\frac{\cos u \sec u}{\tan u}$
3. $\sin B+\cos B \cot B$
4. $\sin ^{2} \alpha+\cos ^{2} \alpha+\tan ^{2} \alpha$
5. $\sin \theta(\cot \theta+\tan \theta)$
6. $\frac{\sin 2 x}{1+\cos 2 x}$

Verify the identity. (Section 7.1-7.3 - NON-CALCULATOR)
7. $\frac{\sin x}{\tan x}+\frac{\cos x}{\cot x}=\sin x+\cos x$
8. $\frac{\cos x}{1-\sin x}+\frac{1-\sin x}{\cos x}=2 \sec x$
9. $\frac{\cos ^{2} x-\sin ^{2} x}{1-\tan ^{2} x}=\cos ^{2} x$
10. $\frac{\tan ^{2} x}{\sec x}=\sec x-\cos x$

Use an identity to find the EXACT value of the expression. (Section 7.2-7.3 - NON-CALCULATOR) 11. $\sin 15^{\circ}$
12. $\sin 67.5^{\circ}$
13. $\tan \frac{7 \pi}{12}$
14. $\tan 22.5^{\circ}$
15. $\cos 195^{\circ}$

Use a double angle identity to find $\sin 2 x, \cos 2 x$, and $\tan 2 x$ from the given information. (Section 7.3 -NON-CALCULATOR)
16. $\cos x=\frac{4}{5} ; \csc x<0$
17. $\csc x=4 ; x$ in quadrant II

Use the appropriate trigonometric identity to simplify the expression. (Sections7.2 \& 7.3 - NONCALCULATOR)
18. $2 \sin 36^{\circ} \cos 36^{\circ}$
19. $\sin 18^{\circ} \cos 27^{\circ}+\cos 18^{\circ} \sin 27^{\circ}$
20. $\sqrt{\frac{1-\cos 35^{\circ}}{2}}$

Find all solutions of the equation in the interval $[0,2 \pi$). Answers must be in radians. (Section 7.5 -NON-CALCULATOR)
21. $\sqrt{2} \cos x-1=0$
22. $3 \csc ^{2} x-4=0$
23. $\cos x \sin x-2 \cos x=0$
24. $\tan ^{2} x \cos x-\tan ^{2} x=0$
25. $2 \cos ^{2} x+\sin x=1$
26. $2 \cos 2 x+1=0$
¿. Chapter 8-Polar Coordinates \& Vectors. $\overline{\text { I }}$
Graph each point and label accordingly. Then convert the coordinate to rectangular coordinates. (Section 8.1-NON-CALCULATOR)

1. $\left(1, \frac{5 \pi}{4}\right)$
2. $\left(3,-\frac{2 \pi}{3}\right)$
3. $\left(-2, \frac{7 \pi}{6}\right)$
4. $\left(-4,-\frac{7 \pi}{2}\right)$

A point $P(r, \theta)$ is given in polar coordinates. Give two other polar representations of the point, one with $r<0$ and one with $r>0$. (Section 8.1-NON-CALCULATOR)
5. $\left(5, \frac{5 \pi}{4}\right)$
6. $(-3,6 \pi)$

Convert the rectangular coordinates to polar coordinates with r>0 and $0 \leq \theta \leq 2 \pi$. (Section 8.1 - NON-CALCULATOR)
7. $(-3,3 \sqrt{3})$
8. $(-\sqrt{2},-\sqrt{2})$

Express the complex number in polar form. (Section 8.3 - NON-CALCULATOR)
9. $-1+i$
10. $-7 i$
11. $1-i \sqrt{3}$

Find the product $z_{1} z_{2}$ and the quotient $\frac{z_{1}}{z_{2}}$. Express your answer in $a+b i$ form. (Section $8.3-$ NONCALCULATOR)
12. $z_{1}=7$ cis $\frac{\pi}{2} ; \quad z_{2}=2$ cis $\frac{2 \pi}{3}$

Find the indicated power using DeMoivre's Theorem. Write your answer in complex number form. (Section 8.3 - NON-CALCULATOR)
13. $(2 \sqrt{3}+2 i)^{5}$
14. $(-\sqrt{3}-i)^{4}$

Express the vector with initial point P and terminal point Q in component form. (Section 8.4 - NONCALCULATOR)
15. $P(1,1) ; Q(9,9)$
16. $P(-1,3) ; Q(-6,-1)$

Find $\mathbf{u}+\mathbf{v},-3 \mathbf{u}+5 \mathbf{v},|\mathbf{v}|$ (magnitude!), and $|\mathbf{u}-\mathbf{v}|$. (Section 8.4 - NON-CALCULATOR)
17. $\mathbf{u}=\langle-2,5\rangle, \mathbf{v}=\langle 2,-8\rangle$
18. $\mathbf{u}=-2 \mathbf{i}+3 \mathbf{j}, \mathbf{v}=\mathbf{i}-2 \mathbf{j}$

Find the vector in component form having the given magnitude and direction. (Section 8.4 - NONCALCULATOR)
19. $|\mathbf{v}|=50, \theta=120^{\circ}$
20. $|\mathbf{v}|=6, \theta=310^{\circ}$

Find the magnitude and direction (in degrees) of the vector. (Section 8.4 - NON-CALCULATOR)
21. $\mathbf{v}=\mathbf{i}+\mathbf{j}$
22. $\langle-2,-2 \sqrt{3}\rangle$

Find (a) u•v (dot product) (Section 8.5 - NON-CALCULATOR)and (b) the angle between \mathbf{u} and \mathbf{v} to the nearest tenth of a degree (Section 8.5-Calculator).
23. $\mathbf{u}=\langle 2,1\rangle, \mathbf{v}=\langle 3,-2\rangle$
24. $\mathbf{u}=\mathbf{i}+\sqrt{3} \mathbf{j}, \mathbf{v}=-\sqrt{3} \mathbf{i}+\mathbf{j}$
25. Determine whether $\mathbf{u}=4 \mathbf{i}$ and $\mathbf{v}=-\mathbf{i}+3 \mathbf{j}$ are orthogonal. (Section $8.5-$ NON-CALCULATOR)
26. Given $\mathbf{u}=3 \mathbf{i}+2 \mathbf{j}, \mathbf{v}=-\mathbf{i}-4 \mathbf{j}, \mathbf{w}=5 \mathbf{i}-3 \mathbf{j}$, find $\mathbf{u} \cdot(\mathbf{v}+\mathbf{w})$. (Section $8.5-$ NON-CALCULATOR)
27. Find the work done by the force $\mathbf{F}=-4 \mathbf{i}+20 \mathbf{j}$ in moving an object from $P(0,10)$ to $Q(5,25)$. (Section 8.5 - Calculator)
28. A constant force $\mathbf{F}=\langle 2,8\rangle$ moves an object along a straight line from point $(2,5)$ to the point (11, 13). Find the work done if the distance is measured in feet and the force is measured in pounds. (Section 8.5 - Calculator)

Solve the system by hand. (Sections 9.1-9.3-Calculator)

1. $\begin{aligned} & y=x^{2}+8 x \\ & y-16=2 x\end{aligned}$
2. $\begin{gathered}x-y=4 \\ x y=12\end{gathered}$

For problems \#3-8, carry out the operation, if possible, using the given matrices. (Section 9.5 Calculator)
$A=\left[\begin{array}{ll}4 & 6 \\ 1 & 3\end{array}\right]$
$B=\left[\begin{array}{cc}2 & 5 \\ -3 & 7\end{array}\right]$
$C=\left[\begin{array}{ll}2 & 3 \\ 1 & 0 \\ 0 & 2\end{array}\right]$
$D=\left[\begin{array}{cc}10 & 6 \\ -3 & 5 \\ 2 & -1\end{array}\right]$
$E=\left[\begin{array}{ccc}1 & -2 & 4 \\ 3 & 7 & 2 \\ 0 & 9 & -1\end{array}\right]$
3. $A+B$
4. $3 C-D$
5. $C+E$
6. $D A$
7. $B A$
8. B^{2}
9. [Multiple Choice] Use the matrices above to determine which product is NOT possible.
A. $C B$
B. $A B$
C. $D E$
D. $E D$

For problems \#10-15, carry out the operation, if possible, using the given matrices. (Sections 9.6-9.7)

$$
A=\left[\begin{array}{ll}
4 & 6 \\
1 & 3
\end{array}\right] \quad B=\left[\begin{array}{cc}
2 & 5 \\
-3 & 7
\end{array}\right] \quad C=\left[\begin{array}{ll}
2 & 3 \\
1 & 0 \\
0 & 2
\end{array}\right] \quad D=\left[\begin{array}{cc}
10 & 6 \\
-3 & 5 \\
2 & -1
\end{array}\right] \quad E=\left[\begin{array}{ccc}
1 & -2 & 4 \\
3 & 7 & 2 \\
0 & 9 & -1
\end{array}\right]
$$

10. B^{-1} (NON-CALCULATOR)
11. D^{-1} (NON-CALCULATOR)
12. A^{-1} (NON-CALCULATOR)
13. E^{-1} (CALCULATOR)
14. $|A|$ (NON-CALCULATOR)
15. $|E|$ (NON-CALCULATOR)
16. Solve the matrix equation $A-2 \boldsymbol{X}=B$ for matrix X if $A=\left[\begin{array}{ll}4 & 6 \\ 1 & 3\end{array}\right]$ and $B=\left[\begin{array}{cc}2 & 5 \\ -3 & 7\end{array}\right]$. (9.5-CALCULATOR)
17. Solve the system using inverses of matrices: $\left\{\begin{array}{c}5 x+7 y+4 z=1 \\ 3 x-y+3 z=1 \\ 6 x+7 y+5 z=1\end{array}\right.$ (9.6-CALCULATOR)
18. Solve the system using Cramer's Rule: $\begin{gathered}6 x+12 y=33 \\ 4 x+7 y=20\end{gathered} \quad$ (9.7-CALCULATOR)

Graph the system of inequalities. (9.9-CALCULATOR)
19. $y>x-3$
19. $x \geq 0$
$x^{2}+y^{2} \leq 25$

$$
\text { 20. } \begin{gathered}
y \geq x^{2} \\
x^{2}+y^{2}>16 \\
y \leq 7
\end{gathered}
$$

1. Find the center and the exact radius of the circle. Then graph the circle.

$$
(x+3)^{2}+(y-4)^{2}=16
$$

Center: \qquad
Radius: \qquad

Find the equation of the circle in standard form that satisfies the given conditions.
2. The circle has center $(5,-2)$ and passes through $(-3,4)$.
3. The endpoints of the diameter of the circle are $(-1,-6)$ and $(7,-4)$.

Graph the ellipse and identify the center, vertices, and foci.
4. $4(x-1)^{2}+16(y+3)^{2}=64$

Center: \qquad
Vert: \qquad
Foci: \qquad

5. $\frac{(x+4)^{2}}{9}+\frac{(y-1)^{2}}{25}=1$

Center: \qquad
Vert: \qquad
Foci: \qquad

Find the standard form of the equation of each ellipse.
6. Foci $(0, \pm 4)$, vertices $(0, \pm 6)$
7. Endpoints of major axis: $(-9,4) \&(-1,4)$ Endpoints of minor axis: $(-5,6) \&(-5,2)$

Graph the hyperbola and identify the center, vertices, slopes of asymptotes, and foci.
8. $\frac{(y+3)^{2}}{4}-\frac{(x-2)^{2}}{25}=1$

Center: \qquad

9. $4(x-1)^{2}-9(y-2)^{2}=36$

Center: \qquad
Vertices: \qquad
Foci: \qquad
Asymptotes: \qquad

Find the standard form of the equation of each hyperbola.
10. Foci $(0, \pm 4)$, vertices $(0, \pm 2)$
11. Vertices $(\pm 4,0)$, Asymptotes: $y= \pm 2 x$

Graph the parabola and identify the vertex, directrix, and focus.
12. $(x-2)^{2}=-12(y+3)$

Vertex: \qquad
Dir: \qquad
Focus: \qquad

13. $(y+4)^{2}=-8(x-2)$

Vertex: \qquad

Dir: \qquad

Write an equation in standard form for the parabola satisfying the given conditions.
14. Vertex: $(-4,5)$; Focus $(-4,2)$
15. Focus: $(3,5)$; Directrix: $x=-1$

Convert the equation to standard form by completing the square. Then identify what type of conic section the equation represents. If it is a circle, ellipse, or hyperbola, then name its center. If it is a parabola, then name its vertex.
16. $y^{2}+4 y-6 x-8=0$
17. $9 y^{2}-4 x^{2}-18 y+24 x-63=0$
18. $4 x^{2}+36 y-32 x+9 y^{2}+64=0$
19. $x^{2}+y^{2}+8 x-4 y=1$

Find the first five terms of the sequence. (Section 11.1-Calculator)

1. $a_{n}=n^{2}-3$
2. $a_{n}=a_{n-1}+5 ; a_{1}=3$
3. Find the sum: $\sum_{k=1}^{4} k^{2}$ (Section 11.1-NON-CALCULATOR)
4. Write the sum using sigma notation: $2+4+6+\cdots+20$ (Section 11.1 - NON-CALCULATOR)

Determine whether the sequence is arithmetic or geometric. Then find the nth term of the sequence. (Sections 11.2-11.3-Calculator)
5. $3, \frac{3}{2}, \frac{3}{4}, \frac{3}{8}, \ldots$
6. $2,4,6,8, \ldots$
7. $-12,-8,-4,0, \ldots$
8. $-8,-2,-\frac{1}{2},-\frac{1}{8}, \ldots$
9. The $12^{\text {th }}$ term of an arithmetic sequence is 32 , and the fifth term is 18 . Find the $20^{\text {th }}$ term. (Section 11.2-Calculator)
10. Which term of the arithmetic sequence $1,4,7, \ldots$ is 88 ? (Section 11.2 - Calculator)
11. Find the partial sum of the arithmetic sequence: $-3+\left(-\frac{3}{2}\right)+0+\cdots+30$ (Section 11.2 Calculator)
12. An arithmetic sequence has first term $a=5$ and common difference $d=2$. How many terms of this sequence must be added to get 2700? (Section 11.2 - Calculator)
13. The first term of a geometric sequence is 3 , and the third term is $\frac{4}{3}$. Find the fifth term. (Section 11.3-Calculator)
16. Which term of the geometric sequence $2,6,18, \ldots$ is 118,098 ? (Section 11.3 -Calculator)
17. Find the partial sum of the geometric sequence $1+3+9+\cdots+2187$. (Section 11.3 - Calculator)
18. Find the sum of the infinite geometric series $1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\cdots$ (Section 11.3 - Calculator)
19. Use Pascal's Triangle to expand: $(3 x-5)^{5}$ (Section 11.6-Calculator)
20. Find the $18^{\text {th }}$ term in the expansion of $(4 x+3 y)^{21}$. (Section 11.6 - Calculator)

