
> This Slideshow was developed to accompany the textbook , Precalculus
, By Richard Wright
) https://www.andrews.edu/~rwright/PrecalculusRLW/Text/TOC.html
> Some examples and diagrams are taken from the textbook.

Richard Wright, Andrews Academy
rwright@andrews.edu

401 fingle \mathcal{O} leasures

In this section, you will:

- Draw angles in standard position.
- Convert between degrees and radians.
- Find coterminal angles.
- Use applications of angles.

4.01 Angle Measures

> Angles in standard position
, Vertex at origin
> Initial side on positive x axis
, Terminal side rotates counterclockwise

> Coterminal Angles
 > 2 angles with same sides, but different measures

$>$ To find coterminal angles
> $\theta \pm 360^{\circ}$
π 4-01 Atngle Measures
> Degree Measures

90°		
	Quadrant II	Quadrant I
180\%		$\begin{aligned} & 0^{\circ} \\ & 3 \\ & 60^{\circ} \end{aligned}$
	Quadrant III	Quadrant IV
270°		

$\pi 4.01$ Angle ${ }^{\text {Measures }}$

> Radian Measures

, Angle where radius = arc length
> Acute $\rightarrow \theta<90^{\circ}$, $\frac{\pi}{2}$
> Obtuse $\rightarrow 90^{\circ}<\theta<180^{\circ}$
, $\frac{\pi}{2}<\theta<\pi$
> Complementary $\rightarrow \alpha+\beta=$ $90^{\circ}, \frac{\pi}{2}$
> Supplementary $\rightarrow \alpha+\beta=$ $180^{\circ}, \pi$

Coterminal

$$
-\frac{\pi}{8} \pm 2 \pi=-\frac{\pi}{8} \pm \frac{16 \pi}{8}=-\frac{17 \pi}{8}, \frac{15 \pi}{8}
$$

Supplement

$$
\begin{gathered}
S+\frac{\pi}{4}=\pi \\
S=\pi-\frac{\pi}{4}=\frac{3 \pi}{4}
\end{gathered}
$$

$$
120^{\circ}\left(\frac{\pi}{180^{\circ}}\right)=\frac{120 \pi}{180}=\frac{2 \pi}{3}
$$

$\pi 4.01$ Angle Measures
> Applications

$\pi 4.01$ Angle Measures
> Area of Sector
$>A=$ fraction of circle $\times \pi r^{2}$
$>A=\frac{\theta}{2 \pi} \times \pi r^{2}$
$>A=\frac{1}{2} \theta r^{2}$
, Where θ is in radians

$\pi 4.01$ Angle Measures

> Speeds

> Angular speed: $\omega=\frac{\theta}{t}$
> Linear speed (tangential): $v=\frac{s}{t}$
$>v=\frac{r \theta}{t}$
>v $=r \omega$

4.01 Atngle Measures

> A 6-inch diameter gear makes 2.5 revolutions per second. Find the angular speed in radians per second.
> How fast is a tooth at the edge of the gear moving in in./s?

$$
\begin{gathered}
\frac{2.5 \mathrm{rev}}{s}\left(\frac{2 \pi \mathrm{rad}}{1 \mathrm{rev}}\right)=5 \pi \frac{\mathrm{rad}}{\mathrm{~s}} \\
v=r w \\
v=(3 \mathrm{in} .)\left(5 \pi \frac{r a d}{s}\right)=15 \pi \mathrm{in.} / \mathrm{s}
\end{gathered}
$$

402 Onit Pizcle

In this section, you will:

- Understand the unit circle.
- Use the unit circle to evaluate trigonometric functions.
- Use even and odd trigonometric functions.
- Use a calculator to evaluate trigonometric functions.
> $x^{2}+y^{2}=1$

$$
\begin{aligned}
& \left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right) \quad(0,1) \quad\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right) \\
& \left(-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)<\frac{3 \pi}{4} \\
& (-1,0) \leftharpoonup \pi \uparrow 180^{\circ} \\
& \left(-\frac{\sqrt{3}}{2},-\frac{1}{2}\right) \frac{7 \pi}{6} \int_{205^{\circ}}^{210^{\circ}} \\
& \left(-\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2}\right)^{\frac{5 \pi}{4}} \frac{4 \pi}{3} \stackrel{270^{\circ}}{\frac{34}{2}} \\
& \left(-\frac{1}{2},-\frac{\sqrt{3}}{2}\right) \quad(0,-1) \quad\left(\frac{1}{2},-\frac{\sqrt{3}}{2}\right)
\end{aligned}
$$

$4-02$ Vnit Eitcle

> Trigonometric Functions
(Unit circle)
$>\sin t=y$
> sine
$>\cos t=x$
) cosine
$>\tan t=\frac{y}{x}$
> tangent
$>\csc t=\frac{1}{y}$
> cosecant
$>\sec t=\frac{1}{x}$
) secant
$>\cot t=\frac{x}{y}$
) cotangent

$4-02$ Vnit Eircle

> Evaluate 6 trig functions of $t=\frac{2 \pi}{3}$

$$
\begin{gathered}
\sin \frac{2 \pi}{3}=\frac{\sqrt{3}}{2} \\
\cos \frac{2 \pi}{3}=-\frac{1}{2} \\
\tan \frac{2 \pi}{3}=\frac{\frac{\sqrt{3}}{2}}{-\frac{1}{2}}=-\sqrt{3} \\
\csc \frac{2 \pi}{3}=\frac{1}{\frac{\sqrt{3}}{2}}=\frac{2}{\sqrt{3}}=\frac{2 \sqrt{3}}{3} \\
\sec \frac{2 \pi}{3}=\frac{1}{-\frac{1}{2}}=-2 \\
\cot \frac{2 \pi}{3}=\frac{-\frac{1}{2}}{\frac{\sqrt{3}}{2}}=-\frac{1}{\sqrt{3}}=-\frac{\sqrt{3}}{3}
\end{gathered}
$$

$4-02$ Vnit Eircle

$>$ Evaluate $\quad>\csc \frac{11 \pi}{6}$
$>\sec \frac{4 \pi}{3}$
$>\cot \frac{3 \pi}{4}$
$>\sin 2 \pi$
$>\tan \frac{\pi}{2}$
> $\cos 0$

Draw angles on unit circle for reference

$$
\begin{gathered}
\sec \frac{4 \pi}{3}=\frac{1}{x}=\frac{1}{-\frac{1}{2}}=-2 \\
\sin 2 \pi=y=0 \\
\tan \frac{\pi}{2}=\frac{y}{x}=\frac{1}{0}=\text { undefined } \\
\csc \frac{11 \pi}{6}=\frac{1}{y}=\frac{1}{-\frac{1}{2}}=-2 \\
\cot \frac{3 \pi}{4}=\frac{x}{y}=\frac{-\frac{\sqrt{2}}{2}}{\frac{\sqrt{2}}{2}}=-1 \\
\cos 0=x=1
\end{gathered}
$$

$4-02$ Vnit Eircle

$>$ Evaluate $\quad>\sin \left(-\frac{11 \pi}{2}\right)$
$>\sin \left(-\frac{2 \pi}{3}\right)$
$>\cos \frac{9 \pi}{3}$

Find coterminal angles between 0 and 2π

$$
\begin{gathered}
\sin \left(-\frac{2 \pi}{3}\right)=\sin \left(\frac{4 \pi}{3}\right)=y=-\frac{\sqrt{3}}{2} \\
\cos \frac{9 \pi}{3}=\cos \pi=x=-1 \\
\sin \left(-\frac{11 \pi}{2}\right)=\sin \frac{\pi}{2}=y=1
\end{gathered}
$$

403 Right Jriangle Jrigonometry

In this section, you will:

- Use right triangles to evaluate trigonometric functions.
- Use special right triangles to evaluate trigonometric functions of common angles.

$4-03$ CRight Jriangle Jrigonometry

$$
\begin{aligned}
>\sin A=\frac{o p p}{h y p} & & >\csc A & =\frac{h y p}{o p p} \\
>\cos A & =\frac{a d j}{h y p} & & >\sec A
\end{aligned}=\frac{h y p}{a d j},
$$

SOH
CAH
TOA
π 4.03 CRight Jriangle Jrigonometry
> Find the values of the six trig functions

$$
\begin{aligned}
& \text { hyp }=\sqrt{5^{2}+12^{2}}=13 \\
& \sin \theta=\frac{12}{13} \\
& \cos \theta=\frac{5}{13} \\
& \tan \theta=\frac{12}{5} \\
& \csc \theta=\frac{13}{12} \\
& \sec \theta=\frac{13}{5} \\
& \cot \theta=\frac{5}{12}
\end{aligned}
$$

$\pi 4.03$ Right Jriangle Jrigonometry > Special right triangles $\quad>\sin \frac{\pi}{4}$

$$
\begin{aligned}
& \sin \frac{\pi}{4}=\frac{1}{\sqrt{2}}=\frac{\sqrt{2}}{2} \\
& \csc \frac{\pi}{3}=\frac{2}{\sqrt{3}}=\frac{2 \sqrt{3}}{3} \\
& \tan 30^{\circ}=\frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3}
\end{aligned}
$$

4-03 CRight Jriangle Jrigonometry

> Sketch a triangle and find the other 5 trig functions
$>\tan \theta=3$

$$
\begin{gathered}
\tan \theta=3=\frac{3}{1}=\frac{o p p}{a d j} \\
\sin \theta=\frac{3}{\sqrt{10}}=\frac{3 \sqrt{10}}{10} \\
\cos \theta=\frac{1}{\sqrt{10}}=\frac{\sqrt{10}}{10} \\
\tan \theta=3 \\
\csc \theta=\frac{\sqrt{10}}{3} \\
\sec \theta=\frac{\sqrt{10}}{1}=\sqrt{10} \\
\cot \theta=\frac{1}{3}
\end{gathered}
$$

404 dight Jriangle Jrigonometry and 2dentities

In this section, you will:

- Use right triangles to evaluate trigonometric functions.
- Use special right triangles to evaluate trigonometric functions of common angles.

404 Right Jriangle Jrigonometyy and 2dentities

> Basic Identities
> Reciprocal
> $\sin u=\frac{1}{\csc u}$

$$
\cos u=\frac{1}{\sec u} \quad \tan u=\frac{1}{\cot u}
$$

> $\csc u=\frac{1}{\sin u}$
$\sec u=\frac{1}{\cos u}$
$\cot u=\frac{1}{\tan u}$
> Quotient
$>\tan u=\frac{\sin u}{\cos u} \quad \cot u=\frac{\cos u}{\sin u}$
> Pythagorean
> $\sin ^{2} u+\cos ^{2} u=1$
$1+\tan ^{2} u=\sec ^{2} u$
$\cot ^{2} u+$
> Note: $\sin ^{2} u=(\sin u)^{2}$

$4-04$ Right Jriangle Jrigonometyy and 2dentities

> Cofunction Identities

$$
\begin{array}{ll}
>\sin \left(90^{\circ}-u\right)=\cos u & >\cos \left(90^{\circ}-u\right)=\sin u \\
>\tan \left(90^{\circ}-u\right)=\cot u & >\cot \left(90^{\circ}-u\right)=\tan u \\
>\sec \left(90^{\circ}-u\right)=\csc u & >\csc \left(90^{\circ}-u\right)=\sec u
\end{array}
$$

404 Right Jriangle Jrigonometry and 2dentities

> Let θ be an acute angle \quad Find $\tan \theta$ such that $\cos \theta=0.96$
> Find $\sin \theta$

$$
\begin{gathered}
\sin ^{2} \theta+\cos ^{2} \theta=1 \\
\sin ^{2} \theta+0.96^{2}=1 \\
\sin ^{2} \theta+0.0784=1 \\
\sin \theta=0.28 \\
\tan \theta=\frac{\sin \theta}{\cos \theta} \\
=\frac{0.28}{0.96} \\
=0.291
\end{gathered}
$$

These could also have been solved using right triangles

404 Right Jriangle Jrigonometyy and 2dentities

> Let β be an acute angle $\quad>\sec \beta$ such that $\tan \beta=4$
> Find $\cot \beta$

$$
\begin{gathered}
\cot \beta=\frac{1}{\tan \beta} \\
\cot \beta=\frac{1}{4}
\end{gathered}
$$

$$
\begin{gathered}
1+\tan ^{2} \beta=\sec ^{2} \beta \\
1+4^{2}=\sec ^{2} \beta \\
\sqrt{17}=\sec \beta
\end{gathered}
$$

404 Right Jriangle Jrigonometyy and 2dentities

> Angles of Elevation and
Depression
> Both are measured from the horizontal

404 Right Jriangle Jrigonometyy and 2dentities

> A 12-meter flagpole casts a 6-meter shadow. Find the angle of elevation of the sun.

$$
\begin{aligned}
& \tan \theta=\frac{12}{6} \\
& \tan \theta=2 \\
& \theta \approx 63.4^{\circ}
\end{aligned}
$$

405 Jrigonometric functions of diny dingle

In this section, you will:

- Evaluate trigonometric functions of any angle.
- Find reference angles.
$\pi 4$-05 Jrigonometric Junctions of diny dingle
> $\sin \theta=\frac{y}{r} \quad \csc \theta=\frac{r}{y}$
$>\cos \theta=\frac{x}{r}$
$\sec \theta=\frac{r}{x}$
$>\tan \theta=\frac{y}{x} \quad \cot \theta=\frac{x}{y}$

$4-05$ Jrigonometric functions of otny dingle

$>$ Let $(-2,3)$ be a point on the terminal side of θ. Find sine, cosine, and tangent of θ.

Use Pythagorean Theorem to find r

$$
\begin{gathered}
r=\sqrt{(-2)^{2}+3^{2}}=\sqrt{13} \\
\sin \theta=\frac{3}{\sqrt{13}}=\frac{3 \sqrt{13}}{13} \\
\cos \theta=-\frac{2}{\sqrt{13}}=-\frac{2 \sqrt{13}}{13} \\
\tan \theta=-\frac{3}{2}
\end{gathered}
$$

405 trigonometric functions of Any dingle

 > Given $\sin \theta=\frac{4}{5}$ and $\tan \theta<0$ find $\cos \theta$ and $\csc \theta$.

Quadrant II (sine +, tangent -)

$$
\sin \theta=\frac{4}{5}=\frac{y}{r}
$$

Use Pythagorean theorem to find $r=-3$

$$
\begin{aligned}
& \cos \theta=-\frac{3}{5} \\
& \csc \theta=\frac{5}{4}
\end{aligned}
$$

405 Jrigonometric functions of otny dingle

> Reference Angle
, Angle between terminal side and nearest x-axis
> Find the reference angle for $\frac{5 \pi}{4}$
> Find the reference angle for $\frac{5 \pi}{3}$

Reference angle is $\frac{\pi}{3}$

$$
\cos \frac{\pi}{3}=\frac{1}{2}
$$

Quadrant IV where cos is +
Reference angle is 30°

$$
\sin 30^{\circ}=\frac{1}{2}
$$

Quadrant II where sin is +

Reference angle is $\frac{\pi}{6}$

$$
\tan \frac{\pi}{6}=-\frac{1}{\sqrt{3}}=-\frac{\sqrt{3}}{3}
$$

Quadrant IV where tan is -

405 Jrigonometric functions of diny otngle

> Let θ be an angle in $\quad>\tan \theta$ quadrant III such that
$\sin \theta=-\frac{5}{13}$. Find
$>\sec \theta$

$$
\sin \theta=-\frac{5}{13}=\frac{y}{r}
$$

$$
y=-5, r=13
$$

Use Pythagorean theorem to find $x=-12$

$$
\sec \theta=\frac{r}{x}=-\frac{13}{12}
$$

$$
\tan \theta=\frac{y}{x}=\frac{-5}{-12}=\frac{5}{12}
$$

406 Eraphs of Oine and Cosine

In this section, you will:

- Graph $y=\sin x$ and $y=\cos x$.
- Graph transformations of sine and cosine graphs.
- Write mathematical models using sine and cosine.
$\pi 4.06$ Graphs of Jine and Cosine

> $y=\sin x$

, Starts at 0
) Amplitude = 1
) Period $=2 \pi$
$>y=\cos x$
, Starts at 1
) Amplitude = 1
) Period $=2 \pi$

Point out

- Amplitude
- period
- key points

$4-06$ Graphs of Sine and Cosine

> Transformations

$$
>y=a \sin (b x-c)+d
$$

> $a=$ amplitude $=$ vertical stretch
, $b=$ horizontal shrink
> Period $T=\frac{2 \pi}{b}$
> $c=$ horizontal shift
> Phase shift $P S=\frac{c}{b}$ (Right if c is positive)
> $d=$ vertical shift
$>$ Midline $y=d$
c is like h
d is like k

4.06 Graphs of Oine and Cosine

$>\operatorname{Graph} f(x)=2 \sin x$

Same as sine, but amp = 2

4.06 Graphs of Oine and Cosine

> Graph $y=\cos \frac{x}{2}$

Period $T=\frac{2 \pi}{b}$

$$
T=\frac{2 \pi}{\frac{1}{2}}=4 \pi
$$

$4-06$ Graphs of Sine and Cosine

 > Graph $y=2 \sin \left(x-\frac{\pi}{2}\right)$

$$
\begin{gathered}
a=2 \\
b=1 \rightarrow T=2 \pi \\
h=\frac{\pi}{2} \rightarrow P S=\frac{h}{b}=\frac{\frac{\pi}{2}}{1}=\frac{\pi}{2} \text { to right }
\end{gathered}
$$

Draw $2 \sin x$ first and then do the phase shift
π

4.06 Graphs of Oine and Cosine

> Graph

$$
y=-\frac{1}{2} \sin (\pi x+\pi)+1
$$

$$
\begin{gathered}
a=-\frac{1}{2}=a m p \\
b=\pi \rightarrow T=\frac{2 \pi}{b} \rightarrow \frac{2 \pi}{\pi}=2 \\
h=-\pi \rightarrow P S=\frac{h}{b} \rightarrow-\frac{\pi}{\pi}=-1
\end{gathered}
$$

PS left 1

$$
k=1
$$

Shift up 1
Graph $\frac{1}{2} \sin \pi x$ first labeling the key points with a period of 2
Reflect over the x-axis because a is negative
Shift left 1 and up 1

407 Eraphs of Pther Jrigonometric סunctions

In this section, you will:

- Graph tangent, secant, cosecant, and cotangent
- Graph a damped trigonometric function
$>y=\tan x$
> Period $=\pi$
$>T=\frac{\pi}{b}$
> Asymptotes where tangent undefined, $\frac{\pi}{2}, \frac{3 \pi}{2}$

> $y=\cot x$
> Period $=\pi$
$>T=\frac{\pi}{b}$
> Asymptotes at $0, \pi, 2 \pi$

> Graph $y=\tan \frac{x}{4}$

| | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$$
\begin{gathered}
b=\frac{1}{4} \\
T=\frac{\pi}{b}=\frac{\pi}{\frac{1}{4}}=4 \pi \\
a=1
\end{gathered}
$$

4.07 Graphs of Uther Jrigonometric Junctions

> $y=\csc x$
) Period $=2 \pi$
, Asymptotes where sine = 0
$>0, \pi, 2 \pi$

> Asymptotes where cosine $=0$
$>\frac{\pi}{2}, \frac{3 \pi}{2}$

π

4.07 Graphs of $\mathrm{Cther}^{\text {Trigonometric }}$ Junctions

> Graph $y=2 \csc \left(x+\frac{\pi}{2}\right)$

$$
\begin{gathered}
a=2 \\
b=1 \\
T=\frac{2 \pi}{b}=\frac{2 \pi}{1}=2 \pi \\
c=-\frac{\pi}{2} \\
P S=\frac{c}{b}=\frac{-\frac{\pi}{2}}{1}=-\frac{\pi}{2} \\
k=0
\end{gathered}
$$

Start by graphing $2 \sin x$
Then shift left $\frac{\pi}{2}$
Then draw asymptotes at the x-intercepts
Then draw csc graph
) The x is the damping function
> Graph the damping function and its reflection over x-axis
, Graph the trig between

408 Qnverse Jrigonometric functions

In this section, you will:

- Use the inverse sine, cosine, and tangent functions
- Evaluate inverse trigonometric functions

$4-08$ 2nverse Jrigonometric 0

> Inverse Sine
) $y=\sin ^{-1} x$
) $y=\arcsin x$
> Domain: $[-1,1]$
> Range: $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
$>\arcsin (-1)$

$$
\begin{gathered}
\arcsin (-1)=-\frac{\pi}{2} \\
\sin \theta=y=-1
\end{gathered}
$$

4-08 2nverse Jrigonometric functions

> Inverse Cosine
) $y=\cos ^{-1} x$
) $y=\arccos x$
> Domain: $[-1,1]$
> Range: $[0, \pi]$
$>\arccos \frac{1}{2}$

Think $\cos \theta=\frac{1}{2}$

$$
\arccos \frac{1}{2}=\frac{\pi}{3}
$$

4-08 2nverse Jrigonometric functions

> Inverse Tangent
) $y=\tan ^{-1} x$
> $y=\arctan x$
> Domain: $(-\infty, \infty)$
> Range: $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

4-08 2nverse Jrigonometric functions

> Evaluate

$>\arcsin \sqrt{3}$
$>\sin ^{-1}\left(\frac{1}{2}\right)$

Think $\sin \theta=\frac{1}{2} \rightarrow \theta=\frac{\pi}{6}$
Think $\sin \theta=\sqrt{3} \rightarrow$ Not possible

4-08 2nverse Jrigonometric functions

> Evaluate

$>\arctan \frac{\sqrt{3}}{3}$
$>\cos ^{-1} \frac{\sqrt{3}}{2}$

Think $\cos \theta=\frac{\sqrt{3}}{2} \rightarrow \theta=\frac{\pi}{6}$
Think $\tan \theta=\frac{\sqrt{3}}{3}=\frac{1}{\sqrt{3}}=\frac{y}{x}=\frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}} \rightarrow \theta=\frac{\pi}{6}$

409 Compositions involving Qnverse Jrigonometric סunctions

In this section, you will:

- Evaluate compositions of inverse functions

4-09 Compositions involving Qnverse Jrigonometric

π סunctions
> If $-1 \leq x \leq 1$ and $-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}$, then $\sin (\arcsin x)=x$ and $\arcsin (\sin y)=y$
$>\tan (\arctan (-14))$

Check domain of inner: arctan domain $(-\infty, \infty)$ so -14 is in domain.
Check range of outer: tan range $(-\infty, \infty)$ so -14 is in range Ans: -14

Check domain of inner: arcsin domain [-1, 1]
π is not in domain, so not possible
Check domain of inner: arccos domain $[-1,1]$ so 0.54 is included Check outer range: cos range [-1, 1] so 0.54 is included Ans: 0.54

Check domain of inner: sin domain $(-\infty, \infty)$ so $\frac{5 \pi}{3}$ is included Check range of outer: arcsin range $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ so use coterminal angle Ans $-\frac{\pi}{3}$

Check domain of inner: cos domain $(-\infty, \infty)$ so $\frac{7 \pi}{6}$ is included
Check range of outer: arccos range $[0, \pi]$ so use reference angle to find another angle with same sign and reference angle
Ans $\frac{5 \pi}{6}$

The input is in arctan so they are ratio of sides. Use those to make a triangle. Use Pythagorean theorem to find r
Evaluate cos of that angle in the triangle Ans: $\frac{4}{5}$

The input is in arccos so they are ratio of sides. Use those to make a triangle. Use Pythagorean theorem to find y
Evaluate sin of that angle in the triangle
Ans: $\frac{\sqrt{5}}{3}$

The input is in arctan so they are ratio of sides. Use those to make a triangle.
Use Pythagorean theorem to find $r=\sqrt{x^{2}+1}$
Evaluate sec of that angle in the triangle
Ans: $\frac{\sqrt{x^{2}+1}}{1}$

410 dtpplications of Right Jriangle Jrigonometry

In this section, you will:

- Solve problems with right triangles and trigonometry

> Solve

410 dtplications of Right Jriangle Jrigonometyy

> A ladder leaning against a house reaches 24 ft up the side of the house. The ladder makes a 60° angle with the ground. How far is the base of the ladder from the house?

Draw picture

$$
\begin{gathered}
\tan 60^{\circ}=\frac{24}{x} \\
\sqrt{3}=\frac{24}{\mathrm{x}} \\
x=\frac{24}{\sqrt{3}}=\frac{24 \sqrt{3}}{3}=8 \sqrt{3} \approx 13.86 \mathrm{ft}
\end{gathered}
$$

411 Bearings and סimple dtarmonic Motion

In this section, you will:

- Solve problems involving bearings
- Solve problems involving simple harmonic motion

4-11 Bearings and Bimple dtarmonic Mlotion
> Bearings show direction $\quad>30^{\circ} \mathrm{S}$ of W
> $30^{\circ} \mathrm{N}$ of E

411 Bearings and Oimple dtarmonic Olotion

> A sailboat leave a pier and heads due west at 8 knots. After 15 minutes the sailboat tacks, changing course to $16^{\circ} \mathrm{W}$ of N at 10 knots. Find the sailboat's bearing and distance from the pier after 12 minutes on this course.

Draw a diagram and find all components of the $16^{\circ} \mathrm{W}$ of N Add the x components
Add the y components
Draw a new triangle with those sums
Use Pythagorean theorem to find the hypotenuse
Use inverse tangent to find the angle
3.19 mi at $37.0^{\circ} \mathrm{N}$ of W

4-11 Bearings and Oimple dtarmonic Olotion

> Simple Harmonic Motion (SHM)
> $y=a \sin \omega x$
> $y=a \cos \omega x$
> Period $T=\frac{2 \pi}{\omega}$
> Frequency (cycles per

second) $f=\frac{\omega}{2 \pi}$
> Equilibrium is the centerline

4-11 Bearings and Oimple dtarmonic OLotion

 > Find a model for simple harmonic motion with displacement at $t=0$ is 0 , amplitude of 4 cm , and period of 6 sec.$$
\begin{gathered}
a=4 \mathrm{~cm} \\
T=\frac{2 \pi}{\omega} \rightarrow 6=\frac{2 \pi}{\omega} \rightarrow \omega=\frac{\pi}{3}
\end{gathered}
$$

Starts at 0 so use sine

$$
\begin{gathered}
y=a \sin \omega t \\
y=4 \sin \left(\frac{\pi}{3} t\right)
\end{gathered}
$$

411 Bearings and Bimple ftarmonic Olotion

> Given the equation for simple harmonic motion

$$
d=4 \cos 6 \pi t
$$

> Find maximum displacement
> Find frequency
> Find value of d when $t=4$
> Find the least positive value of t for which $d=0$

4 (amplitude)
$f=\frac{\omega}{2 \pi}=\frac{6 \pi}{2 \pi}=3$
$d=4 \cos 6 \pi 4=4$
$0=4 \cos 6 \pi t \rightarrow 0=\cos 6 \pi t \rightarrow \frac{\pi}{2}=6 \pi t \rightarrow \frac{1}{12}=t$

