Precalculus with Limits (Larson $2^{\text {nd }}$ ed.) Chapter 1 Mid-Term Exam Review

Multiple Choice

Identify the choice that best completes the statement or answers the question.

1. Find the distance between the two points $(-5,8)$ and $(19,53)$.
a. 153
b. 99
c. 102
d. 51
e. 48
2. Find the midpoint between the two points (2, 7) and (4, -19).
a. $(3,-6)$
b. $(-1,-13)$
c. $(-1,-6)$
d. $(3,-13)$
e. $(6,-6)$
3. Write the standard form of the equation of the circle with the given characteristics. center: (3, 1); radius: 4
a. $(x-1)^{2}+(y-3)^{2}=4$
b. $(x-1)^{2}+(y-3)^{2}=16$
c. $(x+3)^{2}+(y+1)^{2}=16$
d. $(x-3)^{2}+(y-1)^{2}=16$
e. $(x+1)^{2}+(y+3)^{2}=4$.
4. Write the standard form of the equation of the circle with the given characteristics. center: $(-4,4)$; solution point: $(-2,-6)$
a. $(x-4)^{2}+(y+4)^{2}=80$
b. $(x-4)^{2}+(y+4)^{2}=104$
c. $(x+4)^{2}+(y-4)^{2}=104$
d. $(x-4)^{2}+(y-4)^{2}=8$
e. $(x+4)^{2}+(y+4)^{2}=80$.
5. Find the center and radius of the circle $x^{2}+y^{2}=144$.
a. center: $(0,0)$, radius: 10
b. center: $(-1,-1)$, radius: 12
c. center: (0, 0), radius: 12
d. center: $(-1,1)$, radius: 10
e. center: $(-12,-10)$, radius: 12
6. Find the center and radius of the circle $(x-4)^{2}+(y-9)^{2}=49$.
a. center: $(4,9)$, radius: 49
b. center: $(9,4)$, radius 7
c. center: $(4,9)$, radius 7
d. center: $(-4,-9)$, radius 7
e. center: $(-4,-9)$, radius 49
7. What is the domain of the function $f(x)=\frac{7}{4 x+12}$?
a. $(-\infty,-3] \cup[-3, \infty)$
b. $(-\infty, \infty)$
c. $(-\infty,-4] \cup[-4, \infty)$
d. $(-\infty,-3) \cup(-3, \infty)$
e. $(-\infty,-4) \cup(-4, \infty)$
8. What is the domain of the function $f(x)=\frac{x+6}{x^{2}-9}$?
a. $(-\infty,-3) \cup(-3,3) \cup(3, \infty)$
b. $(-\infty, 3] \cup[3, \infty)$
c. $(-\infty,-6) \cup(-6,-3) \cup(-3,3) \cup(3, \infty)$
d. $(-\infty, \infty)$
e. $(-\infty, 3) \cup(3, \infty)$
9. What is the domain and range of the function that is graphed below?

a. Domain: $(-7,6)$, Range: $[-6,6]$
b. Domain: $(-\infty, \infty)$, Range: $[-6,6]$
c. Domain: $[-7,6]$, Range: $[-6,6]$
d. Domain: $[-7,6]$, Range: $(-\infty, \infty)$
e. Domain: [-6, 6], Range: [-7, 6]
10.What is the average rate of change of the function $f(x)=3 x-7$ between $x=2$ and $x=3$?
a. 0
b. 4
c. 2
d. 6
e. 3
10. What is the average rate of change of the function $f(t)=t^{2}-3 t$ between $t=-4$ and $t=-3$?
a. -10
b. -2
c. -4
d. -8
e. -7
11. Suppose the graph of f is given. Describe how the graph of the function can be obtained from the graph of f.

$$
y=4 f(x+5)-3
$$

a. Shift the graph of $y=f(x)$ to the right 4 units, stretch vertically by a factor of 5 , and then shift downward 3 units.
b. Shift the graph of $y=f(x)$ to the left 4 units, stretch vertically by a factor of 5 , and then shift downward 3 units.
c. Shift the graph of $y=f(x)$ to the right 5 units, stretch vertically by a factor of 4, and then shift downward 3 units.
d. Shift the graph of $y=f(x)$ to the left 5 units, stretch vertically by a factor of 4 , and then shift upward 3 units.
e. Shift the graph of $y=f(x)$ to the left 5 units, stretch vertically by a factor of 4 , and then shift downward 3 units.
13. Use $f(x)=2 x-8$ and $g(x)=4-x^{2}$ to evaluate $f(g(-1))$.
a. -2
b. 6
c. -28
d. -7
e. -96
14. Is the line through points $P(0,5)$ and $Q(-1,8)$ parallel to the line through points $R(3,3)$ and $S(5,-1)$? Explain.
a. No, the lines have unequal slopes.
b. Yes; the lines are both vertical.
c. Yes; the lines have equal slopes.
d. No, one line has slope, the other has no slope.
15. Which two lines are parallel?
I. $\quad 5 y=-3 x-5$
a. I and II
c. II and III
II. $5 y=-1-3 x$
b. I and III
d. No two of the lines are parallel.
16. Is the line through points $P(0,-9)$ and $Q(2,-8)$ perpendicular to the line through points $R(1,4)$ and $S(3,3)$? Explain.
a. Yes; their slopes are equal.
b. Yes; their slopes have product -1
c. No; their slopes are not opposite reciprocals.
d. No; their slopes are not equal.
17. A man is running around a circular track 200 m in circumference. An observer uses a stopwatch to time each lap, obtaining the data in the table as follows:

What was the man's average speed (rate) between $68 s$ and $168 s$?
a. $4 \mathrm{~m} / \mathrm{s}$
b. $1.82 \mathrm{~m} / \mathrm{s}$
C. $3 \mathrm{~m} / \mathrm{s}$

Time (s)	Distance (m)
30	200
68	400
114	600
168	800
230	1000
300	1200
378	1400

18. The graph shows the depth of water W in a reservoir over a one-year period, as a function of the number of days x since the beginning of the year. What was the average rate of change in W between $x=100$ and $x=200$?

a. -0.35
b. -0.245
c. -0.2
d. -0.26
e. -0.25
19. If $g(x)=2 x+1$, find an equation for $g^{-1}(x)$.
a. $g^{-1}(x)=\frac{1}{2} x+1$
b. $g^{-1}(x)=\frac{1}{2} x+\frac{1}{2}$
c. $g^{-1}(x)=\frac{1}{2} x-\frac{1}{2}$
d. $g^{-1}(x)=-\frac{1}{2} x-1$
e. $g^{-1}(x)=\frac{1}{2} x-1$
20. What is the distance between the center of the circle $(x-1)^{2}+(y+4)^{2}=16$ the vertex of the parabola $y-4=(x-1)^{2}$?
a. 4
b. 6
c. 2
d. 8
e. 10

Short Answer

21. Evaluate the function, $q(x)=\frac{-2 x}{3 x+5}$, at the specified value of the independent variable and then simplify.

$$
q(y-3)
$$

22. Find the domain of the function.
$q(s)=\frac{8 s}{s-6}$
23. Describe the sequence of transformations from the related common function $f(x)=x^{3}$ to g. $g(x)=4(x-4)^{3}$
24. Describe the sequence of transformations from the related common function $f(x)=\sqrt{x}$ to g. $g(x)=-\sqrt{x}+6$
25. Write an equation for the function that is described by the following characteristics:
the shape of $f(x)=x^{2}$, but moved eight units down, two units to the left, and then reflected in the x-axis
26. Find $(f+g)(x)$ when $\quad f(x)=2 x^{2}-2 x+7$ and $g(x)=4 x^{2}-2 x+9$.
27. Find $(f / g)(x)$ when $f(x)=x^{2}+7 x$ and $g(x)=-2-x$.
28. Evaluate the indicated function for $f(x)=x^{2}-3$ and $g(x)=x+7$. Find $(f g)(1)$.
29. Find $g \circ f$ when $f(x)=x-3$ and $g(x)=x^{2}$
30. Find $f \circ g$ when $f(x)=-2 x+7$ and $g(x)=x+2$
31. Evaluate $g(n-5)$ if $g(x)=\frac{x^{2}-6}{2 x}$.
32. Given $f(x)=x^{2}+3$ and $g(x)=\frac{x+5}{x}$. Find $(g \circ f)(4)$. [Hint: $(g \circ f)(4)=g(f(4))]$
33. Find the inverse function of f.
$f(x)=x^{5}+2$
34. A pair of points is graphed.
(a) Find the distance between them.
(b) Find the midpoint of the segment that joins them.

35. Find the domain of the function. $\quad h(x)=\sqrt{8 x-7}$
36. Find the domain of the function. $\quad k(x)=\frac{\sqrt{x+5}}{x-1}$
37. Use $f(x)=2 x-6$ and $g(x)=5-x^{2}$ to evaluate the expression.
(a) $f(g(1))=$ \qquad (b) $g(f(1))=$ \qquad
38. Use $f(x)=2 x-5$ and $g(x)=12-x^{2}$ to evaluate the expression.
(a) $(f \circ f)(-1)=$ \qquad
(b) $(g \circ g)(4)=$ \qquad
39. Find the domain and range of the inverse of each function.
a. $y=\sqrt{3 x+1}$
b. $\sqrt{5 x-15}$
40. Is $\triangle P Q R$, with vertices at $\mathrm{P}(3,3), \mathrm{Q}(2,-2)$, and $\mathrm{R}(0,1)$, a right triangle?
41. Use the graph of the function to find the domain and range of f.

42-43. Use the graph to determine the domain and range of the relation, and state whether the relation is a function.
42.

43.

44. Use the graph to determine the domain and range of the function and state whether the function has an inverse.

45. Given $f(x)=x^{2}+7$ and $g(x)=\frac{x-4}{x}$. Find $(g \circ f)(-1)$.
[Hint: $(g \circ f)(4)=g(f(4))]$
46. Are the lines parallel, perpendicular, or neither?
a. $y=4 x+5$
b. $2 x+y=2$
C. $3 x-5 y=3$
d. $\begin{aligned} 4 x-3 y & =36 \\ 3 x+4 y & =20\end{aligned}$

$$
y=-\frac{1}{4} x+5
$$

$$
2 x+y=5
$$

$-5 x-13 y=8$
$-5 x-13 y=8$
47. A rock is dropped off the edge of a cliff. After 2 seconds, the rock fell 25 ft . After 4 seconds the rock fell 65 ft from the edge. What is the average rate of falling per second?
48. Find each of the following given that $f(x)=x^{2}+1$ and $g(x)=x-4$.
a. $(f+g)(2)$
b. $(f-g)(2)$
c. $(f g)(2)$
d. $(f / g)(2)$

Chapter 1 Mid Term Exam Review MULTIPLE CHOICE

1. D
2. A
3. D
4. C
5. C
6. C
7. D
8. A
9. C
10. E
11. A
12. E
13. A
14. A
15. A
16. C
17. A
18. E
19. C
20. D

SHORT ANSWER

21. $\frac{-2 y+6}{3 y-4} \quad$ 22. all real numbers $s \neq 6$
22. horizontal shift 4 units right; then vertical stretch by a factor of 4
23. reflection in the x-axis; then vertical shift 6 units up
24. $g(x)=-(x+2)^{2}-8$
25. $(f+g)(x)=6 x^{2}-4 x+16$
26. $(f / g)(x)=\frac{x^{2}+7 x}{-2-x}, x \neq-2$
27. -16
28. $(g \circ f)(x)=x^{2}-6 x+9$
29. $(f \circ g)(x)=-2 x+3$
30. $\frac{n^{2}-10 n+19}{2 n-10}$
31. $\begin{array}{r}24 \\ 19\end{array}$
32. $f^{-1}(x)=\sqrt[5]{x-2}$
33. $2 \sqrt{10} ;(1,-2)$
34. $\left[\frac{7}{8}, \infty\right)$
35. $[-5,1) \cup(1, \infty)$
36. $2 ;-11$
37. $-19 ;-4$
38. domain: $[0, \infty)$, range: $\left[-\frac{1}{3}, \infty\right)$
domain: $[0, \infty)$, range: $[3, \infty)$
39. Domain: $[-3,7]$

Range: [-7, 3]
No, it fails the vertical line test.
44. Domain: $(-\infty, \infty)$
40.Yes

> 41.domain: $(-\infty,-2) \cup(-2, \infty)$
> range: $(-\infty,-2) \cup(-1, \infty)$
43. Domain: $[0, \infty)$

Range: $(-\infty, \infty)$
No, it fails the vertical line test.

Range: [-1, 1]
No, it is not one-to-one. It fails the horizontal line test and does not have an inverse.
46. a. perpendicular
b. parallel
c. neither
d. perpendicular
47. $20 \mathrm{ft} / \mathrm{sec}$
48. a. 3
b. 7
c. -10
d. $-5 / 2$

