Precalculus with Limits (Larson 2nd ed.) Chapter 1 Mid-Term Exam Review

Multiple Choice

Identify the choice that best completes the statement or answers the question.

1. Find the distance between the two points (−5, 8) and (19, 53).

a. 153

b. 99

c. 102

d. 51

e. 48

Find the midpoint between the two points (2, 7) and (4, -19).

a. (3, -6)

b. (-1, -13)

c. (-1, -6) d. (3, -13)

e. (6, -6)

3. Write the standard form of the equation of the circle with the given characteristics.

center: (3, 1); radius: 4

a. $(x-1)^2 + (y-3)^2 = 4$ b. $(x-1)^2 + (y-3)^2 = 16$ c. $(x+3)^2 + (y+1)^2 = 16$

d. $(x-3)^2 + (y-1)^2 = 16$ e. $(x+1)^2 + (y+3)^2 = 4$

4. Write the standard form of the equation of the circle with the given characteristics.

center: (-4, 4); solution point: (-2, -6)

 $a_x(x-4)^2 + (y+4)^2 = 80$ b. $(x-4)^2 + (y+4)^2 = 104$

c. $(x+4)^2 + (y-4)^2 = 104$ d. $(x-4)^2 + (y-4)^2 = 8$

e. $(x+4)^2 + (y+4)^2 = 80$

5. Find the center and radius of the circle $x^2 + y^2 = 144$.

a. center: (0, 0), radius: 10

b. center: (-1, -1), radius: 12

c. center: (0, 0), radius: 12

d. center: (-1, 1), radius: 10

e. center: (-12, -10), radius: 12

6. Find the center and radius of the circle $(x-4)^2 + (y-9)^2 = 49$.

a. center: (4, 9), radius: 49

b. center: (9, 4), radius 7

c. center: (4, 9), radius 7

d. center: (−4, −9), radius 7

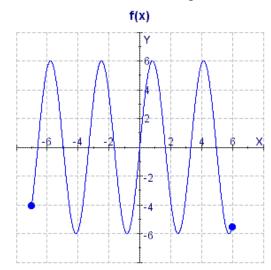
e. center: (-4, -9), radius 49

7. What is the domain of the function $f(x) = \frac{7}{4x + 12}$?

a. $(-\infty, -3] \cup [-3, \infty)$ b. $(-\infty, \infty)$ c. $(-\infty, -4] \cup [-4, \infty)$ d. $(-\infty, -3) \cup (-3, \infty)$ e. $(-\infty, -4) \cup (-4, \infty)$

8. What is the domain of the function $f(x) = \frac{x+6}{x^2-6}$?

a. $(-\infty, -3) \cup (-3, 3) \cup (3, \infty)$


b. $(-\infty, 3] \cup [3, \infty)$

c. $(-\infty, -6) \cup (-6, -3) \cup (-3, 3) \cup (3, \infty)$

 $d.(-\infty,\infty)$

 $e. (-\infty, 3) \cup (3, \infty)$

9. What is the domain and range of the function that is graphed below?

- a. Domain: (-7, 6), Range: [-6, 6]
- b. Domain: (-∞,∞), Range: [-6, 6]
- c. Domain: [-7, 6], Range: [-6, 6]
- d. Domain: [–7, 6], Range: (–∞,∞)
- e. Domain: [-6, 6], Range: [-7, 6]

- 10. What is the average rate of change of the function f(x) = 3x 7 between x = 2 and x = 3?
- a. 0
- b. 4

c. 2

d. 6

- e. 3
- 11. What is the average rate of change of the function $f(t) = t^2 3t$ between t = -4 and t = -3?
- a. -10
- b. -2
- c. -4

d. -8

- e. -7
- 12. Suppose the graph of f is given. Describe how the graph of the function can be obtained from the graph of f. y = 4f(x + 5) 3
 - a. Shift the graph of y = f(x) to the right 4 units, stretch vertically by a factor of 5, and then shift downward 3 units.
 - b. Shift the graph of y = f(x) to the left 4 units, stretch vertically by a factor of 5, and then shift downward 3 units.
 - c. Shift the graph of y = f(x) to the right 5 units, stretch vertically by a factor of 4, and then shift downward 3 units.
 - d. Shift the graph of y = f(x) to the left 5 units, stretch vertically by a factor of 4, and then shift upward 3 units.
 - e. Shift the graph of y = f(x) to the left 5 units, stretch vertically by a factor of 4, and then shift downward 3 units.
- 13. Use f(x) = 2x 8 and $g(x) = 4 x^2$ to evaluate f(g(-1)).
 - a. -2

b. 6

- c. -28
- d. -7
- e. -96
- 14. Is the line through points P(0, 5) and Q(-1, 8) parallel to the line through points R(3, 3) and S(5, -1)? Explain.
 - a. No, the lines have unequal slopes.
- b. Yes; the lines are both vertical.
- c. Yes; the lines have equal slopes.
- d. No, one line has slope, the other has no slope.

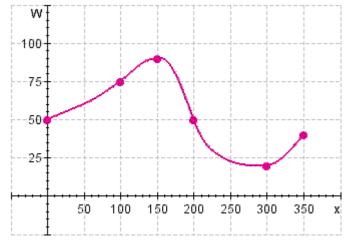
15. Which two lines are parallel?

$$5y = -3x - 5$$

II.
$$5y = -1 - 3x$$

III.
$$3y - 2x = -1$$

b. I and III


- c. II and III
- d. No two of the lines are parallel.
- 16. Is the line through points P(0, -9) and Q(2, -8) perpendicular to the line through points R(1, 4)and S(3, 3)? Explain.
 - a. Yes; their slopes are equal.
 - c. No; their slopes are not opposite reciprocals.
- b. Yes; their slopes have product -1
- d. No; their slopes are not equal.
- 17. A man is running around a circular track 200 m in circumference. An observer uses a stopwatch to time each lap, obtaining the data in the table as follows:

What was the man's average speed (rate) between 68 s and 168 s?

- a. 4 m/s
- b. 1.82 m/s
- c. 3 m/s

- d. 8m/s
- e. 5 m/s

- Time (s) Distance (m) 30 200 68 400 114 600 168 800 230 1000 300 1200 378 1400
- 18. The graph shows the depth of water W in a reservoir over a one-year period, as a function of the number of days x since the beginning of the year. What was the average rate of change in W between x = 100 and x = 200?

- a. -0.35
- b. -0.245
- c. -0.2
- d. -0.26
- e. -0.25

19. If g(x) = 2x + 1, find an equation for $g^{-1}(x)$.

a.
$$g^{-1}(x) = \frac{1}{2}x + 1$$

a.
$$g^{-1}(x) = \frac{1}{2}x + 1$$
 b. $g^{-1}(x) = \frac{1}{2}x + \frac{1}{2}$ c. $g^{-1}(x) = \frac{1}{2}x - \frac{1}{2}$

C.
$$g^{-1}(x) = \frac{1}{2}x - \frac{1}{2}$$

d.
$$g^{-1}(x) = -\frac{1}{2}x - 1$$
 e. $g^{-1}(x) = \frac{1}{2}x - 1$

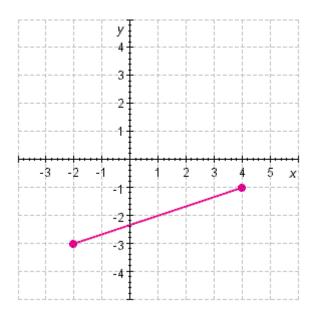
e.
$$g^{-1}(x) = \frac{1}{2}x - 1$$

- 20. What is the distance between the center of the circle $(x-1)^2 + (y+4)^2 = 16$ the vertex of the parabola $y-4=(x-1)^2$?
 - a. 4
- b. 6
- c. 2
- d. 8
- e. 10

Short Answer

21. Evaluate the function, $q(x) = \frac{-2x}{3x+5}$, at the specified value of the independent variable and then simplify.

$$q(y-3)$$


22. Find the domain of the function.

$$q(s) = \frac{8s}{s-6}$$

- 23. Describe the sequence of transformations from the related common function $f(x) = x^3$ to $g(x) = 4(x-4)^3$
- 24. Describe the sequence of transformations from the related common function $f(x) = \sqrt{x}$ to $g(x) = -\sqrt{x} + 6$
- 25. Write an equation for the function that is described by the following characteristics: the shape of $f(x) = x^2$, but moved eight units down, two units to the left, and then reflected in the *x*-axis
- 26. Find (f+g)(x) when $f(x) = 2x^2 2x + 7$ and $g(x) = 4x^2 2x + 9$
- 27. Find (f/g)(x) when $f(x) = x^2 + 7x$ and g(x) = -2 x
- 28. Evaluate the indicated function for $f(x) = x^2 3$ and g(x) = x + 7. Find(fg)(1).
- 29. Find $g \circ f$ when f(x) = x 3 and $g(x) = x^2$
- 30. Find $f \circ g$ when f(x) = -2x + 7 and g(x) = x + 2
- 31. Evaluate g(n-5) if $g(x) = \frac{x^2-6}{2x}$.
- 32. Given $f(x) = x^2 + 3$ and $g(x) = \frac{x+5}{x}$. Find $(g \circ f)(4)$. [Hint: $(g \circ f)(4) = g(f(4))$]
- 33. Find the inverse function of f.

$$f(x) = x^5 + 2$$

- 34. A pair of points is graphed.
 - (a) Find the distance between them.
 - (b) Find the midpoint of the segment that joins them.

35. Find the domain of the function.

$$h(x) = \sqrt{8x - 7}$$

36. Find the domain of the function.

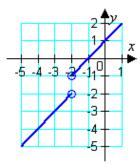
$$k(x) = \frac{\sqrt{x+5}}{x-1}$$

37. Use f(x) = 2x - 6 and $g(x) = 5 - x^2$ to evaluate the expression.

(a)
$$f(g(1)) =$$
 (b) $g(f(1)) =$

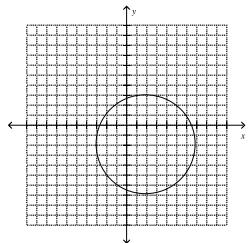
(b)
$$g(f(1)) =$$

38. Use f(x) = 2x - 5 and $g(x) = 12 - x^2$ to evaluate the expression.

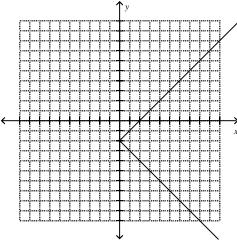

(a)
$$(f \circ f)(-1) =$$

39. Find the domain and range of the **inverse** of each function.

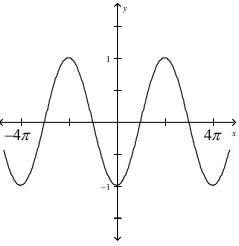
a.
$$y = \sqrt{3x + 1}$$


b.
$$\sqrt{5x-15}$$

- 40. Is $\triangle PQR$, with vertices at P(3, 3), Q(2, -2), and R(0, 1), a right triangle?
- 41. Use the graph of the function to find the domain and range of f.



42-43. Use the graph to determine the domain and range of the relation, and state whether the relation is a function.


42.

43.

44. Use the graph to determine the domain and range of the function and state whether the function has an inverse.

45. Given
$$f(x) = x^2 + 7$$
 and $g(x) = \frac{x-4}{x}$. Find $(g \circ f)(-1)$. [Hint: $(g \circ f)(4) = g(f(4))$]

46. Are the lines parallel, perpendicular, or neither?

a.
$$y = 4x + 5$$

b.
$$2x + y = 2$$

c.
$$3x - 5y = 3$$

d.
$$4x - 3y = 36$$

a.
$$y = 4x + 5$$
 b. $2x + y = 2$ c. $3x - 5y = 3$ d. $4x - 3y = 36$ $y = -\frac{1}{4}x + 5$ $2x + y = 5$ $-5x - 13y = 8$ $3x + 4y = 20$

$$2x + y = 5$$

$$-5x - 13y = 8$$

$$3x + 4y = 20$$

47. A rock is dropped off the edge of a cliff. After 2 seconds, the rock fell 25 ft. After 4 seconds the rock fell 65 ft from the edge. What is the average rate of falling per second?

48. Find each of the following given that $f(x) = x^2 + 1$ and g(x) = x - 4.

a.
$$(f+g)(2)$$
 b. $(f-g)(2)$ c. $(fg)(2)$ d. $(f/g)(2)$

b.
$$(f - g)(2)$$

Chapter 1 Mid Term Exam Review

2011-2012

Answer Section

MULTIPLE CHOICE

1. D

2. A

3. D

4. C

5. C

6. C

7. D

8. A

9. C

10. E

11. A

12. E

13. A

14. A

15. A

16. C

17. A

18. E

19. C

20. D

SHORT ANSWER

21.
$$\frac{-2y+6}{3y-4}$$

22. all real numbers $\varepsilon \neq 6$

23. horizontal shift 4 units right; then vertical stretch by a factor of 4

24. reflection in the x-axis; then vertical shift 6 units up

25.
$$g(x) = -(x+2)^2 - 8$$

25.
$$g(x) = -(x+2)^2 - 8$$
 26. $(f+g)(x) = 6x^2 - 4x + 16$

27.
$$(f/g)(x) = \frac{x^2 + 7x}{-2 - x}, x \neq -2$$
 28. -16

29.
$$(g \circ f)(x) = x^2 - 6x + 9$$

29.
$$(g \circ f)(x) = x^2 - 6x + 9$$
 30. $(f \circ g)(x) = -2x + 3$ 31. $\frac{n^2 - 10n + 19}{2n - 10}$

31.
$$\frac{n^2 - 10n + 19}{2n - 10}$$

32.
$$f^{-1}(x) = \sqrt[5]{x-2}$$
 34. $2\sqrt{10}$; (1, -2)

34.
$$2\sqrt{10}$$
; (1, -2)

35.
$$\left[\frac{7}{8},\infty\right]$$

35.
$$\left\lceil \frac{7}{8}, \infty \right\rceil$$
 36. $\left\lceil -5, 1 \right\rceil \cup \left(1, \infty \right)$ 37. 2; -11

39. domain:
$$[0, \infty)$$
, range: $[-\frac{1}{3}, \infty)$ 40.Yes 41.domain: $(-\infty, -2) \bigcup (-2, \infty)$

range: $(-\infty, -2) \prod (-1, \infty)$

42. Domain: [-3, 7] Range: [-7, 3]

No, it fails the vertical line test.

domain: $[0, \infty)$, range: $[3, \infty)$

43. Domain: [0, ∞) Range: (-∞, ∞)

No, it fails the vertical line test.

44. Domain: (-∞, ∞)

Range: [-1, 1]

No, it is not one-to-one. It fails the horizontal line test and does not have an inverse.

46. a. perpendicular

47. 20 ft/sec

b. parallel 48. a. 3 c. neither d. perpendicular b. 7

c. -10

d. -5/2