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Artificial Neural Networks

I Artificial neural networks (ANN) are machine learning
methods inspired by how neurons work in the brain

I ANNs are based on a collection of connected units or
nodes called artificial neurons

I ANNs are mathematical functions of varying complexity
that map a set of input values to output values

I ANNs are flexible models that can be used with many
different types of input and output values

I By connecting the artificial neurons in different ways
ANNs have been adapted to a wide variety of tasks
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Artificial Neural Networks
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Deep Learning

I Deep learning is a class of methods based on artificial
neural networks

I The “deep” in deep learning refers to the number of
hidden layers in an ANN

I A larger number of hidden layers allows deep neural
networks to produce extremely intricate functions of its
inputs

I Deep learning models can be simultaneously sensitive to
minute details, but insensitive to large irrelevant changes
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Feature Engineering

I Pattern-recognition and machine-learning systems have
historically relied on carefully engineered features to
extract useful representations from the raw data

I Engineered features are common in many applications
I Example: BMI = (weight in kg)/(height in m)2

I In 2013, Andrew Ng said:

Coming up with features is difficult,
time-consuming, requires expert knowledge.
“Applied machine learning” is basically feature
engineering.

I Deep learning essentially automates the feature
engineering process
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Representation learning

I Representation learning is
a set of methods that
allow ML algorithms to
automatically discover
representations of the data
that make detection and
classification easier

I Deep learning methods
develop multiple levels of
representation by
compositing several simple
non-linear transformations

Source: Goodfellow et al, 2016
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Representation learning
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ANN Origins — Perceptrons

I In 1958 Frank Rosenblatt described a binary classifier
called the perceptron algorithm

I Given a d-dimensional vector of covariates xi , the class of
the observation is predicted according to the function

f (x) =

{
1 if

∑d
i=1 wixi + b > 0,

0 otherwise

where w is a vector of real-valued weights

I Perceptrons are an early form of linear classification

I ANNs are sometimes referred to as multi-layer perceptrons
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Activation Functions

I Each layer in an ANN is composed of a linear combination
of the node values from the previous layer

I Applying a non-linear activation function to the linear
combinations allows successive layers to learn increasingly
complex features

I While selecting a model, it is common to test many
different activation functions and find that several perform
comparably

I There are some situations where the choice of activation
functions can greatly impact the performance of ANNs
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Activation Functions

I Several activation functions have been published, but it is
likely that most remain unpublished

I Some of the most common activation functions are:

Logistic g(x) =
1

1 + e−x

TanH g(x) =
ex − e−x

ex + e−x

ReLU g(x) =

{
0 if x ≤ 0

x if x > 0
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Architecture Design

I A key design consideration for neural networks is
determining the architecture

I Architecture refers to the overall structure of the network
I How many layers
I How many units in each layer
I How should these units be connected to each other
I Which activation functions to use

I Many ANNs use a chain based architecture
I The first layer is given by

h(1) = g (1)
(

W(1)Tx + b(1)
)

I Subsequent layers are given by

h(j) = g (j)
(

W(j)Th(j−1) + b(1)
)
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Output Units

I ANNs can be used for a variety of different learning tasks
by changing the output units

I Let h be the features from the final hidden layer
I Linear Units for Continuous Output Distributions

I The output units produces a vector ŷ = WTh + b
I Linear output layers are often used to produce the mean of a

conditional Gaussian distribution:

p(y | x) = N (y; ŷ, I)

I Sigmoid Units for Bernoulli Output Distributions

ŷ =
exp{wTh + b}

1 + exp{wTh + b}
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Output Units, cont.

I Softmax Units for Multinoulli Output Distributions
I A linear layer predicts unnormalized log (relative) probabilities

z = WTh + b

where zi = logP(y = i | x)
I The softmax function can normalize z to obtain the desired ŷ

softmax(z) =
exp{zi}∑
j exp{zj}

I There are many other output units that can return
images, sound, video, etc.
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Training via Backpropagation

I Multi-layer architectures can be trained by gradient
descent

I If the nodes are relatively smooth functions of the inputs,
the gradients can be calculated using the backpropagation
procedure

I For a given loss function we can determine how the
weights in the final layer need to change to lower the loss

I Repeated application of the chain rule allows us to
determine how weights in previous layers need to change

I Some activation functions are not differentiable at all
points (e.g. ReLU), but they can still be used with
gradient-based learning algorithms at all input points.
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Regularization

I DL models typically have a large number of parameters,
sometimes more parameters than training examples

I Regularization methods are required to prevent overfitting

I L1 and L2 norms can be applied to the weights for each
node, but this is uncommon in DL

I Ensembles of neural networks with different model
configurations are known to reduce overfitting

I It is impractical to have an ensemble of multiple large neural
networks

I A single model can be used to simulate having a large number
of different network architectures by randomly dropping out
nodes during training

I Dropout is a computationally efficient and remarkably effective
method to approximate an ensemble approach
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Regularization

I One of the most common regularization methods used for
ANNs is early stopping

I The training error almost always decreases, but validation
error tends to increases with excessive training

I A model with small validation error can be found buy
stopping the training process early
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Adversarial Examples

I Adversarial examples are samples of input data which are
designed/selected to cause a machine learning classifier to
misclassify it

I Adversarial examples can be used while training to make a
DL model more robust

I Samples with noise added can make the predictions less
sensitive to small differences

I Exposing a model to samples known to lie close to the decision
boundary can improve performance

I Adversarial examples have important implications for the
safety of certain applications (e.g. self driving cars)
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Adversarial examples

I By adding a imperceptible amount of noise, the
classification of the image can be changed
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Adversarial examples

These examples are likely close to the decision boundary

Mop or Puli Muffin or Chihuahua
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Convolutional Neural Networks

I Convolutional Neural Networks (CNNs) are designed to
process data that come in the form of multiple arrays

I CNNs are used in many applications such as: image and
video recognition, recommender systems, image
classification, medical image analysis, and natural
language processing

I The few layers of a typical CNN is composed of two types
of layers

I Convolutional layers
I Pooling layers
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Convolution

I A convolution is an operation on two functions of a
real-valued argument

I Convolutions are used to look at localized areas of an
array

s(t) =

∫
x(a)w(t − a) da

I The convolution operation is typically denoted with an
asterisk

s(t) = (x ∗ w)(t)
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Convolution

I Convolutions are often used over more than one axis at a
time

I For a d-dimensional input, convolutions can be calculated
with a d-dimensional kernel K

I For an m × n image as input, we can write the
convolution as

S(i , j) = (X ∗ K )(i , j) =
∑
m

∑
n

X (m, n)K (i −m, j − n)

I Discrete convolution can be viewed as multiplication by a
matrix, where the matrix has several entries constrained
to be equal
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Convolution Layer

Source: Goodfellow et al, 2016
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Local Connectivity

Source: Goodfellow et al, 2016

I Unlike other ANNs, CNNs
have layers that are not fully
connected

I Convolutional layers have
local connections

I For example, an input image
might have thousands or
millions of pixels, but
meaningful features usually
occupy only tens or hundreds
of pixels
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Parameter Sharing

I In a convolutional neural net, each member of the kernel
is used at every position of the input

I The parameter sharing used by the convolution operation
means that rather than learning a separate set of
parameters for every location, we learn only one set

I Parameter sharing causes a layer to have a property called
equivariance to translation

I Features can be identified regardless of where they occur in an
image

I Both local connectivity and parameter sharing can greatly
reduce the number of parameters needed compared to a
similarly sized traditional neural network
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Pooling

I A pooling function replaces the output of the net at a
certain location with a summary statistic of the nearby
outputs

I Example: Max pooling operation reports the maximum output
within a rectangular neighborhood

I Pooling over spatial regions can help to make the
representation approximately invariant to small
translations of the input

I The feature generation process can learn which
transformations to become invariant to by pooling over
the outputs of a range of parameterized convolutions
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Pooling
I Example: All three filters are intended to detect a hand

written 5
I Each filter attempts to match a slightly different

orientation of the 5

Source: Goodfellow et al, 2016
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Example of CNN Architecture
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Recurrent Neural Networks

I Recurrent neural networks (RNNs) are a family of neural
networks for processing sequential data

I RNNs process an input sequence one element at a time,
maintaining in their hidden units a ‘state vector’ that
contains information about the history of the sequence

I Most RNNs can process sequences of variable length, and
can scale to much longer sequences than would be
practical for networks without sequence-based
specialization

I Both of these qualities are largely due to parameter sharing
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Unfolding Computational Graphs
I A computational graph is a way to formalize the structure

of a set of computations
I Consider a dynamical system where the state at time t is

h(t). The system depends on a function f , parameters θ,
and is driven by an external signal x(t)

h(t+1) = f (h(t), x (t); θ)

= f (f (. . . f (h(1), x (1); θ), . . . , x (t−1); θ), x (t); θ)

I This system can be represented using the graphical model

Source: Goodfellow et al, 2016

Michael R. Kosorok, Nikki L. B. Freeman and Owen E. Leete 33/ 56



Unfolding Computational Graphs

I RNNs can be described as a computational graph that has
a recurrent structure

I A recurrent computational graph can be unfolded to a
computational graph with a repetitive structure

I Complex models can be succinctly represented with a
recurrent graph

I The unfolded graph provides an explicit description of
which computations to perform
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Recurrent Neural Networks

I RNNs learn a single shared model and apply the same set
of computations at each time step

I A shared model allows generalization to sequence lengths
that did not appear in the training set, and needs far
fewer training examples than would be required without
parameter sharing

I RNNs can output a result at each time step (stock market
predictions) or read an entire sequence before outputting
a result (meaning of a sentence)
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Bidirectional RNNs

I RNNs need not have a causal structure. In many
applications we want to output a prediction that may
depend on the whole input sequence

I For example, in natural language processing, the meaning
of a word might require the context of nearby words in
both directions

I Bidirectional RNNs are composed of two RNNs: one that
moves forward through time from the start of the
sequence, and another that moves backward through time
from the end of the sequence
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The Challenge of Long-Term Dependencies

I Long-Term dependencies are difficult to model because
gradients propagated over many stages tend to either
vanish or explode

I There have been attempts to avoid the problem by
staying in a region of the parameter space where the
gradients do not vanish or explode

I Unfortunately, in order to store memories in a way that is
robust to small perturbations, the RNN must enter a
region of parameter space where gradients vanish

I Even if the parameters are such that the recurrent network
is stable, long-term interactions have exponentially smaller
weights compared to short-term interactions
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Skip Connections and Leaky Units

I Skip connections obtain coarse time scales by adding
direct connections from variables in the distant past to
variables in the present

I In ordinary recurrent networks, a recurrent connection goes
from a unit at time t to a unit at time t + 1, but longer
connections are possible (t + d)

I For τ time steps, gradients now diminish exponentially as a
function of τ/d rather than τ

I Leaky Units have linear self-connections that “remember”
past values

I Leaky units accumulate a running average µ(t) of some value
v (t) by applying the update µ(t) = αµ(t−1) + (1− α)v (t)

I When α is near one, the leaky unit remembers information
about the past for a long time, and when α is near zero,
information about the past is rapidly discarded
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Long Short-Term Memory Nodes

I Leaky units use self-connections to accumulate
information, but there is no mechanism to “forget” old
information even when it would be beneficial to do so

I Long Short-Term Memory units have several “gates” to
control how the unit behaves at each time step

I Input gate: Controls when the node gets updated
I Forget gate: Controls how long information is retained
I output gate: Controls when the node has an output value

I Each gate has parameters controlling its behavior allowing
the model to learn when each behavior is beneficial
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Recursive Neural Networks

I Recursive neural networks are
a generalization of recurrent
networks, with a
computational graph which is
structured as a tree

I For a sequence of the same
length, the number of
compositions of nonlinear
operations is smaller for
recursive neural networks than
RNNs which might help deal
with long-term dependencies

Source: Goodfellow et al, 2016
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Generative Modeling

I Generative modeling is an unsupervised learning task

I A generative model is used to generate new examples that
could have been drawn from the original data distribution

I Generative adversarial networks (GANs) are a way of
training a generative model by framing it as a supervised
learning problem with two sub-models

I A generative network which learns to map from a latent space
to a data distribution of interest

I A discriminative network which distinguishes candidates
produced by the generator from the true data distribution
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Generative Adversarial Networks

I The generator model “learns”

the data distribution by

competing with the

discriminator model

I Both the generator and

discriminator models are

updated to improve their

performance

I Training continues until the

discriminator is consistently

“fooled” 50% of the time

Random
Input Vector

Generator
Model

Generated
Example

Real
Example

Discriminator
Model

Binary Classification
Real / Fake

Update
Model

Update
Model
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GAN Progress

I GANs have made considerable progress in recent years

I Image generators can fool both discriminator networks
and human observers, which misclassify up to 40 percent
of generated images
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GAN Applications

I GANs are useful for their ability to represent
high-dimensional probability distributions

I There are many potential applications of GANs
I Generation of images, video, etc.
I Data augmentation
I Missing Data imputation
I Semi-supervised learning
I Reinforcement learning

I If carefully constructed, GANs can be used to learn more
about the underlying data distributions
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Motivation

I The gold standard for discovering causal relationships is
experiments

I Experiments can be prohibitively expensive, unethical, or
impossible, so there is a need for observational causal
discovery

I Causal generative neural networks (CGNNs) learn
functional causal models by fitting a generative neural
networks that minimizes the maximum mean discrepancy

I Using deep neural networks allows CGNNs to learn more
complex causal relationships than other approaches
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Functional Causal Models

I A functional causal model (FCM) on a vector of random
variables X = (X1,X2, . . . ,Xd) is a triplet C = (G, f , E),
where:

I G is a graph
I f characterizes the relationships between X ’s
I E is an error distribution

I FCMs can be represented by a set of equations

Xi ← fi(XPa(i ,G),Ei), Ei ∼ E , for i = 1, . . . , d

where XPa(i ;G) are the “parents” of Xi in graph G
I For notational simplicity Xi interchangeably denotes an

observed variable and a node in the graph G
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Functional Causal Models

Source: Goudet et al., 2018

I FCMs can be represented as a directed acyclic graph
(DAG) as in the example above

I There exists a direct causal relation from Xj to Xi iff there
exists a directed edge Xj to Xi in G
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Causal Generative Neural Networks

I Let X = (X1, . . . ,Xd) denote a set of continuous random
variables with joint distribution P

I If the joint density function associated with P is
continuous and strictly positive on a compact subset of
Rd and zero elsewhere, it can be shown that there is a
CGNN that approximates P with arbitrary accuracy

I Rather than use a discriminator model to evaluate the
generator, CGNNs train the generator to minimize the
maximum mean discrepancy (MMD) between the real and
generated data
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Maximum Mean Discrepancy

I MMD measures whether two distributions are the same

I Let F be a class of functions f : X → R and let p, q be
distributions

MMD(F , p, q) = sup
f ∈F

(Ex∼p[f (x)]− Ey∼q[f (y)])

I For samples X ∼ p of size m and Y ∼ q of size n then
the estimate of the MMD is

M̂MD(F ,X ,Y ) = sup
f ∈F

(
1

m

m∑
i=1

f (Xi)−
1

n

n∑
i=1

f (Yi)

)
I Under certain conditions MMD(F , p, q) = 0 iff p = q
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Scoring Metric

I The maximum over F is made tractable by assuming that
F is the unit ball of a RKHS with kernel k

I For an estimated distribution P̂ we want to know if it is
close to the true distribution P

I The estimated MMD between the n-sample observational

data D, and an n-sample D̂ from P̂ is

M̂MDk(D, D̂) =
1

n2

n∑
i,j=1

k(xi , xj) +
1

n2

n∑
i,j=1

k(x̂i , x̂j)−
2

n2

n∑
i,j=1

k(xi , x̂j)

I The estimated FCM Ĉ is trained by maximizing

S(Ĝ,D) = −M̂MDk(D, D̂)− λ|Ĝ|
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Searching Causal Graphs

I An exhaustive explorations of all DAGs with d variables
using brute force search is infeasible for moderate d

I To solve this issue the authors assume that the skeleton of
the graph G is obtainable from domain knowledge

I The CGNN follows a greedy procedure to find G and fi :
I Orient each Xi − Xj as Xi → Xj or Xj → Xi by selecting the

2-variable CGNN with the best score
I Follow paths from a random set of nodes until all nodes are

reached and no cycles are present
I For a number of iterations, reverse the edge that leads to the

maximum improvement of the score S(G,D) over a d-variable
CGNN, without creating a cycle

I At the end of this process, we evaluate a confidence score for
any edge Xi → Xj as

VXi→Xj = S(G,D)− S(G − {Xi → Xj},D)
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Dealing with Hidden Confounders

I The search method relies on the no unmeasured
confounders assumption

I If this assumption is violated, we know that each edge
Xi − Xj in the skeleton is due to one out of three
possibilities

I Xi → Xj

I Xi ← Xj

I Xi ← Ei,j → Xj for some unobserved variable Ei,j

I The search method can be modified to allow for
confounders as follows:

I Each equation in the FCM is extended to:

Xi ← fi (XPa(i,G),Ei,Ne(i,S),Ei )

where Ne(i ,S) is the set of indicies of variables adjacent to Xi

in the skeleton
I In this case, regularization by λ|Ĝ| promotes simple graphs
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Discovering v-structures

I Consider the random variables (A,B ,C ) with skeleton
A− B − C , four causal structures are possible

I A→ B → C
I A← B ← C
I A← B → C
I A→ B ← C

I All four structures are Markov equivalent, and therefore
indistinguishable from each other using statistics alone

I Previous methods have had difficulty identifying the
correct structure

I CGNNs can accurately discriminate between the
v-structures using the MMD criteria
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Conclusion

I CGNNs are a new framework to learn functional causal
models from observational data

I CGNNs combine the power of deep learning and the
interpretability of causal models

I CGNNs are better able to identify the causal structure of
relationships compared to other methods

I There is still a need to characterize the sufficient
identifiability conditions for this approach
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