
Precision Medicine: Lecture 12
Deep Learning

Michael R. Kosorok,
Nikki L. B. Freeman and Owen E. Leete

Department of Biostatistics
Gillings School of Global Public Health

University of North Carolina at Chapel Hill

Fall, 2019

Outline

Introduction

Convolutional Neural Networks

Recurrent Neural Networks

Generative Adversarial Networks

Causal Generative Neural Networks

Michael R. Kosorok, Nikki L. B. Freeman and Owen E. Leete 2/ 56

Artificial Neural Networks

I Artificial neural networks (ANN) are machine learning
methods inspired by how neurons work in the brain

I ANNs are based on a collection of connected units or
nodes called artificial neurons

I ANNs are mathematical functions of varying complexity
that map a set of input values to output values

I ANNs are flexible models that can be used with many
different types of input and output values

I By connecting the artificial neurons in different ways
ANNs have been adapted to a wide variety of tasks

Michael R. Kosorok, Nikki L. B. Freeman and Owen E. Leete 3/ 56

Artificial Neural Networks

Michael R. Kosorok, Nikki L. B. Freeman and Owen E. Leete 4/ 56

Deep Learning

I Deep learning is a class of methods based on artificial
neural networks

I The “deep” in deep learning refers to the number of
hidden layers in an ANN

I A larger number of hidden layers allows deep neural
networks to produce extremely intricate functions of its
inputs

I Deep learning models can be simultaneously sensitive to
minute details, but insensitive to large irrelevant changes

Michael R. Kosorok, Nikki L. B. Freeman and Owen E. Leete 5/ 56

Feature Engineering

I Pattern-recognition and machine-learning systems have
historically relied on carefully engineered features to
extract useful representations from the raw data

I Engineered features are common in many applications
I Example: BMI = (weight in kg)/(height in m)2

I In 2013, Andrew Ng said:

Coming up with features is difficult,
time-consuming, requires expert knowledge.
“Applied machine learning” is basically feature
engineering.

I Deep learning essentially automates the feature
engineering process

Michael R. Kosorok, Nikki L. B. Freeman and Owen E. Leete 6/ 56

Representation learning

I Representation learning is
a set of methods that
allow ML algorithms to
automatically discover
representations of the data
that make detection and
classification easier

I Deep learning methods
develop multiple levels of
representation by
compositing several simple
non-linear transformations

Source: Goodfellow et al, 2016

Michael R. Kosorok, Nikki L. B. Freeman and Owen E. Leete 7/ 56

Representation learning

Michael R. Kosorok, Nikki L. B. Freeman and Owen E. Leete 8/ 56

ANN Origins — Perceptrons

I In 1958 Frank Rosenblatt described a binary classifier
called the perceptron algorithm

I Given a d-dimensional vector of covariates xi , the class of
the observation is predicted according to the function

f (x) =

{
1 if

∑d
i=1 wixi + b > 0,

0 otherwise

where w is a vector of real-valued weights

I Perceptrons are an early form of linear classification

I ANNs are sometimes referred to as multi-layer perceptrons

Michael R. Kosorok, Nikki L. B. Freeman and Owen E. Leete 9/ 56

Activation Functions

I Each layer in an ANN is composed of a linear combination
of the node values from the previous layer

I Applying a non-linear activation function to the linear
combinations allows successive layers to learn increasingly
complex features

I While selecting a model, it is common to test many
different activation functions and find that several perform
comparably

I There are some situations where the choice of activation
functions can greatly impact the performance of ANNs

Michael R. Kosorok, Nikki L. B. Freeman and Owen E. Leete 10/ 56

Activation Functions

I Several activation functions have been published, but it is
likely that most remain unpublished

I Some of the most common activation functions are:

Logistic g(x) =
1

1 + e−x

TanH g(x) =
ex − e−x

ex + e−x

ReLU g(x) =

{
0 if x ≤ 0

x if x > 0

Michael R. Kosorok, Nikki L. B. Freeman and Owen E. Leete 11/ 56

Architecture Design

I A key design consideration for neural networks is
determining the architecture

I Architecture refers to the overall structure of the network
I How many layers
I How many units in each layer
I How should these units be connected to each other
I Which activation functions to use

I Many ANNs use a chain based architecture
I The first layer is given by

h(1) = g (1)
(

W(1)Tx + b(1)
)

I Subsequent layers are given by

h(j) = g (j)
(

W(j)Th(j−1) + b(1)
)

Michael R. Kosorok, Nikki L. B. Freeman and Owen E. Leete 12/ 56

Output Units

I ANNs can be used for a variety of different learning tasks
by changing the output units

I Let h be the features from the final hidden layer
I Linear Units for Continuous Output Distributions

I The output units produces a vector ŷ = WTh + b
I Linear output layers are often used to produce the mean of a

conditional Gaussian distribution:

p(y | x) = N (y; ŷ, I)

I Sigmoid Units for Bernoulli Output Distributions

ŷ =
exp{wTh + b}

1 + exp{wTh + b}

Michael R. Kosorok, Nikki L. B. Freeman and Owen E. Leete 13/ 56

Output Units, cont.

I Softmax Units for Multinoulli Output Distributions
I A linear layer predicts unnormalized log (relative) probabilities

z = WTh + b

where zi = logP(y = i | x)
I The softmax function can normalize z to obtain the desired ŷ

softmax(z) =
exp{zi}∑
j exp{zj}

I There are many other output units that can return
images, sound, video, etc.

Michael R. Kosorok, Nikki L. B. Freeman and Owen E. Leete 14/ 56

Training via Backpropagation

I Multi-layer architectures can be trained by gradient
descent

I If the nodes are relatively smooth functions of the inputs,
the gradients can be calculated using the backpropagation
procedure

I For a given loss function we can determine how the
weights in the final layer need to change to lower the loss

I Repeated application of the chain rule allows us to
determine how weights in previous layers need to change

I Some activation functions are not differentiable at all
points (e.g. ReLU), but they can still be used with
gradient-based learning algorithms at all input points.

Michael R. Kosorok, Nikki L. B. Freeman and Owen E. Leete 15/ 56

Regularization

I DL models typically have a large number of parameters,
sometimes more parameters than training examples

I Regularization methods are required to prevent overfitting

I L1 and L2 norms can be applied to the weights for each
node, but this is uncommon in DL

I Ensembles of neural networks with different model
configurations are known to reduce overfitting

I It is impractical to have an ensemble of multiple large neural
networks

I A single model can be used to simulate having a large number
of different network architectures by randomly dropping out
nodes during training

I Dropout is a computationally efficient and remarkably effective
method to approximate an ensemble approach

Michael R. Kosorok, Nikki L. B. Freeman and Owen E. Leete 16/ 56

Regularization

I One of the most common regularization methods used for
ANNs is early stopping

I The training error almost always decreases, but validation
error tends to increases with excessive training

I A model with small validation error can be found buy
stopping the training process early

Michael R. Kosorok, Nikki L. B. Freeman and Owen E. Leete 17/ 56

Adversarial Examples

I Adversarial examples are samples of input data which are
designed/selected to cause a machine learning classifier to
misclassify it

I Adversarial examples can be used while training to make a
DL model more robust

I Samples with noise added can make the predictions less
sensitive to small differences

I Exposing a model to samples known to lie close to the decision
boundary can improve performance

I Adversarial examples have important implications for the
safety of certain applications (e.g. self driving cars)

Michael R. Kosorok, Nikki L. B. Freeman and Owen E. Leete 18/ 56

Adversarial examples

I By adding a imperceptible amount of noise, the
classification of the image can be changed

Michael R. Kosorok, Nikki L. B. Freeman and Owen E. Leete 19/ 56

Adversarial examples

These examples are likely close to the decision boundary

Mop or Puli Muffin or Chihuahua

Michael R. Kosorok, Nikki L. B. Freeman and Owen E. Leete 20/ 56

Outline

Introduction

Convolutional Neural Networks

Recurrent Neural Networks

Generative Adversarial Networks

Causal Generative Neural Networks

Michael R. Kosorok, Nikki L. B. Freeman and Owen E. Leete 21/ 56

Convolutional Neural Networks

I Convolutional Neural Networks (CNNs) are designed to
process data that come in the form of multiple arrays

I CNNs are used in many applications such as: image and
video recognition, recommender systems, image
classification, medical image analysis, and natural
language processing

I The few layers of a typical CNN is composed of two types
of layers

I Convolutional layers
I Pooling layers

Michael R. Kosorok, Nikki L. B. Freeman and Owen E. Leete 22/ 56

Convolution

I A convolution is an operation on two functions of a
real-valued argument

I Convolutions are used to look at localized areas of an
array

s(t) =

∫
x(a)w(t − a) da

I The convolution operation is typically denoted with an
asterisk

s(t) = (x ∗ w)(t)

Michael R. Kosorok, Nikki L. B. Freeman and Owen E. Leete 23/ 56

Convolution

I Convolutions are often used over more than one axis at a
time

I For a d-dimensional input, convolutions can be calculated
with a d-dimensional kernel K

I For an m × n image as input, we can write the
convolution as

S(i , j) = (X ∗ K)(i , j) =
∑
m

∑
n

X (m, n)K (i −m, j − n)

I Discrete convolution can be viewed as multiplication by a
matrix, where the matrix has several entries constrained
to be equal

Michael R. Kosorok, Nikki L. B. Freeman and Owen E. Leete 24/ 56

Convolution Layer

Source: Goodfellow et al, 2016

Michael R. Kosorok, Nikki L. B. Freeman and Owen E. Leete 25/ 56

Local Connectivity

Source: Goodfellow et al, 2016

I Unlike other ANNs, CNNs
have layers that are not fully
connected

I Convolutional layers have
local connections

I For example, an input image
might have thousands or
millions of pixels, but
meaningful features usually
occupy only tens or hundreds
of pixels

Michael R. Kosorok, Nikki L. B. Freeman and Owen E. Leete 26/ 56

Parameter Sharing

I In a convolutional neural net, each member of the kernel
is used at every position of the input

I The parameter sharing used by the convolution operation
means that rather than learning a separate set of
parameters for every location, we learn only one set

I Parameter sharing causes a layer to have a property called
equivariance to translation

I Features can be identified regardless of where they occur in an
image

I Both local connectivity and parameter sharing can greatly
reduce the number of parameters needed compared to a
similarly sized traditional neural network

Michael R. Kosorok, Nikki L. B. Freeman and Owen E. Leete 27/ 56

Pooling

I A pooling function replaces the output of the net at a
certain location with a summary statistic of the nearby
outputs

I Example: Max pooling operation reports the maximum output
within a rectangular neighborhood

I Pooling over spatial regions can help to make the
representation approximately invariant to small
translations of the input

I The feature generation process can learn which
transformations to become invariant to by pooling over
the outputs of a range of parameterized convolutions

Michael R. Kosorok, Nikki L. B. Freeman and Owen E. Leete 28/ 56

Pooling
I Example: All three filters are intended to detect a hand

written 5
I Each filter attempts to match a slightly different

orientation of the 5

Source: Goodfellow et al, 2016

Michael R. Kosorok, Nikki L. B. Freeman and Owen E. Leete 29/ 56

Example of CNN Architecture

Michael R. Kosorok, Nikki L. B. Freeman and Owen E. Leete 30/ 56

Outline

Introduction

Convolutional Neural Networks

Recurrent Neural Networks

Generative Adversarial Networks

Causal Generative Neural Networks

Michael R. Kosorok, Nikki L. B. Freeman and Owen E. Leete 31/ 56

Recurrent Neural Networks

I Recurrent neural networks (RNNs) are a family of neural
networks for processing sequential data

I RNNs process an input sequence one element at a time,
maintaining in their hidden units a ‘state vector’ that
contains information about the history of the sequence

I Most RNNs can process sequences of variable length, and
can scale to much longer sequences than would be
practical for networks without sequence-based
specialization

I Both of these qualities are largely due to parameter sharing

Michael R. Kosorok, Nikki L. B. Freeman and Owen E. Leete 32/ 56

Unfolding Computational Graphs
I A computational graph is a way to formalize the structure

of a set of computations
I Consider a dynamical system where the state at time t is

h(t). The system depends on a function f , parameters θ,
and is driven by an external signal x(t)

h(t+1) = f (h(t), x (t); θ)

= f (f (. . . f (h(1), x (1); θ), . . . , x (t−1); θ), x (t); θ)

I This system can be represented using the graphical model

Source: Goodfellow et al, 2016

Michael R. Kosorok, Nikki L. B. Freeman and Owen E. Leete 33/ 56

Unfolding Computational Graphs

I RNNs can be described as a computational graph that has
a recurrent structure

I A recurrent computational graph can be unfolded to a
computational graph with a repetitive structure

I Complex models can be succinctly represented with a
recurrent graph

I The unfolded graph provides an explicit description of
which computations to perform

Michael R. Kosorok, Nikki L. B. Freeman and Owen E. Leete 34/ 56

Recurrent Neural Networks

I RNNs learn a single shared model and apply the same set
of computations at each time step

I A shared model allows generalization to sequence lengths
that did not appear in the training set, and needs far
fewer training examples than would be required without
parameter sharing

I RNNs can output a result at each time step (stock market
predictions) or read an entire sequence before outputting
a result (meaning of a sentence)

Michael R. Kosorok, Nikki L. B. Freeman and Owen E. Leete 35/ 56

Bidirectional RNNs

I RNNs need not have a causal structure. In many
applications we want to output a prediction that may
depend on the whole input sequence

I For example, in natural language processing, the meaning
of a word might require the context of nearby words in
both directions

I Bidirectional RNNs are composed of two RNNs: one that
moves forward through time from the start of the
sequence, and another that moves backward through time
from the end of the sequence

Michael R. Kosorok, Nikki L. B. Freeman and Owen E. Leete 36/ 56

The Challenge of Long-Term Dependencies

I Long-Term dependencies are difficult to model because
gradients propagated over many stages tend to either
vanish or explode

I There have been attempts to avoid the problem by
staying in a region of the parameter space where the
gradients do not vanish or explode

I Unfortunately, in order to store memories in a way that is
robust to small perturbations, the RNN must enter a
region of parameter space where gradients vanish

I Even if the parameters are such that the recurrent network
is stable, long-term interactions have exponentially smaller
weights compared to short-term interactions

Michael R. Kosorok, Nikki L. B. Freeman and Owen E. Leete 37/ 56

Skip Connections and Leaky Units

I Skip connections obtain coarse time scales by adding
direct connections from variables in the distant past to
variables in the present

I In ordinary recurrent networks, a recurrent connection goes
from a unit at time t to a unit at time t + 1, but longer
connections are possible (t + d)

I For τ time steps, gradients now diminish exponentially as a
function of τ/d rather than τ

I Leaky Units have linear self-connections that “remember”
past values

I Leaky units accumulate a running average µ(t) of some value
v (t) by applying the update µ(t) = αµ(t−1) + (1− α)v (t)

I When α is near one, the leaky unit remembers information
about the past for a long time, and when α is near zero,
information about the past is rapidly discarded

Michael R. Kosorok, Nikki L. B. Freeman and Owen E. Leete 38/ 56

Long Short-Term Memory Nodes

I Leaky units use self-connections to accumulate
information, but there is no mechanism to “forget” old
information even when it would be beneficial to do so

I Long Short-Term Memory units have several “gates” to
control how the unit behaves at each time step

I Input gate: Controls when the node gets updated
I Forget gate: Controls how long information is retained
I output gate: Controls when the node has an output value

I Each gate has parameters controlling its behavior allowing
the model to learn when each behavior is beneficial

Michael R. Kosorok, Nikki L. B. Freeman and Owen E. Leete 39/ 56

Recursive Neural Networks

I Recursive neural networks are
a generalization of recurrent
networks, with a
computational graph which is
structured as a tree

I For a sequence of the same
length, the number of
compositions of nonlinear
operations is smaller for
recursive neural networks than
RNNs which might help deal
with long-term dependencies

Source: Goodfellow et al, 2016

Michael R. Kosorok, Nikki L. B. Freeman and Owen E. Leete 40/ 56

Outline

Introduction

Convolutional Neural Networks

Recurrent Neural Networks

Generative Adversarial Networks

Causal Generative Neural Networks

Michael R. Kosorok, Nikki L. B. Freeman and Owen E. Leete 41/ 56

Generative Modeling

I Generative modeling is an unsupervised learning task

I A generative model is used to generate new examples that
could have been drawn from the original data distribution

I Generative adversarial networks (GANs) are a way of
training a generative model by framing it as a supervised
learning problem with two sub-models

I A generative network which learns to map from a latent space
to a data distribution of interest

I A discriminative network which distinguishes candidates
produced by the generator from the true data distribution

Michael R. Kosorok, Nikki L. B. Freeman and Owen E. Leete 42/ 56

Generative Adversarial Networks

I The generator model “learns”

the data distribution by

competing with the

discriminator model

I Both the generator and

discriminator models are

updated to improve their

performance

I Training continues until the

discriminator is consistently

“fooled” 50% of the time

Random
Input Vector

Generator
Model

Generated
Example

Real
Example

Discriminator
Model

Binary Classification
Real / Fake

Update
Model

Update
Model

Michael R. Kosorok, Nikki L. B. Freeman and Owen E. Leete 43/ 56

GAN Progress

I GANs have made considerable progress in recent years

I Image generators can fool both discriminator networks
and human observers, which misclassify up to 40 percent
of generated images

Michael R. Kosorok, Nikki L. B. Freeman and Owen E. Leete 44/ 56

GAN Applications

I GANs are useful for their ability to represent
high-dimensional probability distributions

I There are many potential applications of GANs
I Generation of images, video, etc.
I Data augmentation
I Missing Data imputation
I Semi-supervised learning
I Reinforcement learning

I If carefully constructed, GANs can be used to learn more
about the underlying data distributions

Michael R. Kosorok, Nikki L. B. Freeman and Owen E. Leete 45/ 56

Outline

Introduction

Convolutional Neural Networks

Recurrent Neural Networks

Generative Adversarial Networks

Causal Generative Neural Networks

Michael R. Kosorok, Nikki L. B. Freeman and Owen E. Leete 46/ 56

Motivation

I The gold standard for discovering causal relationships is
experiments

I Experiments can be prohibitively expensive, unethical, or
impossible, so there is a need for observational causal
discovery

I Causal generative neural networks (CGNNs) learn
functional causal models by fitting a generative neural
networks that minimizes the maximum mean discrepancy

I Using deep neural networks allows CGNNs to learn more
complex causal relationships than other approaches

Michael R. Kosorok, Nikki L. B. Freeman and Owen E. Leete 47/ 56

Functional Causal Models

I A functional causal model (FCM) on a vector of random
variables X = (X1,X2, . . . ,Xd) is a triplet C = (G, f , E),
where:

I G is a graph
I f characterizes the relationships between X ’s
I E is an error distribution

I FCMs can be represented by a set of equations

Xi ← fi(XPa(i ,G),Ei), Ei ∼ E , for i = 1, . . . , d

where XPa(i ;G) are the “parents” of Xi in graph G
I For notational simplicity Xi interchangeably denotes an

observed variable and a node in the graph G

Michael R. Kosorok, Nikki L. B. Freeman and Owen E. Leete 48/ 56

Functional Causal Models

Source: Goudet et al., 2018

I FCMs can be represented as a directed acyclic graph
(DAG) as in the example above

I There exists a direct causal relation from Xj to Xi iff there
exists a directed edge Xj to Xi in G

Michael R. Kosorok, Nikki L. B. Freeman and Owen E. Leete 49/ 56

Causal Generative Neural Networks

I Let X = (X1, . . . ,Xd) denote a set of continuous random
variables with joint distribution P

I If the joint density function associated with P is
continuous and strictly positive on a compact subset of
Rd and zero elsewhere, it can be shown that there is a
CGNN that approximates P with arbitrary accuracy

I Rather than use a discriminator model to evaluate the
generator, CGNNs train the generator to minimize the
maximum mean discrepancy (MMD) between the real and
generated data

Michael R. Kosorok, Nikki L. B. Freeman and Owen E. Leete 50/ 56

Maximum Mean Discrepancy

I MMD measures whether two distributions are the same

I Let F be a class of functions f : X → R and let p, q be
distributions

MMD(F , p, q) = sup
f ∈F

(Ex∼p[f (x)]− Ey∼q[f (y)])

I For samples X ∼ p of size m and Y ∼ q of size n then
the estimate of the MMD is

M̂MD(F ,X ,Y) = sup
f ∈F

(
1

m

m∑
i=1

f (Xi)−
1

n

n∑
i=1

f (Yi)

)
I Under certain conditions MMD(F , p, q) = 0 iff p = q

Michael R. Kosorok, Nikki L. B. Freeman and Owen E. Leete 51/ 56

Scoring Metric

I The maximum over F is made tractable by assuming that
F is the unit ball of a RKHS with kernel k

I For an estimated distribution P̂ we want to know if it is
close to the true distribution P

I The estimated MMD between the n-sample observational

data D, and an n-sample D̂ from P̂ is

M̂MDk(D, D̂) =
1

n2

n∑
i,j=1

k(xi , xj) +
1

n2

n∑
i,j=1

k(x̂i , x̂j)−
2

n2

n∑
i,j=1

k(xi , x̂j)

I The estimated FCM Ĉ is trained by maximizing

S(Ĝ,D) = −M̂MDk(D, D̂)− λ|Ĝ|

Michael R. Kosorok, Nikki L. B. Freeman and Owen E. Leete 52/ 56

Searching Causal Graphs

I An exhaustive explorations of all DAGs with d variables
using brute force search is infeasible for moderate d

I To solve this issue the authors assume that the skeleton of
the graph G is obtainable from domain knowledge

I The CGNN follows a greedy procedure to find G and fi :
I Orient each Xi − Xj as Xi → Xj or Xj → Xi by selecting the

2-variable CGNN with the best score
I Follow paths from a random set of nodes until all nodes are

reached and no cycles are present
I For a number of iterations, reverse the edge that leads to the

maximum improvement of the score S(G,D) over a d-variable
CGNN, without creating a cycle

I At the end of this process, we evaluate a confidence score for
any edge Xi → Xj as

VXi→Xj = S(G,D)− S(G − {Xi → Xj},D)

Michael R. Kosorok, Nikki L. B. Freeman and Owen E. Leete 53/ 56

Dealing with Hidden Confounders

I The search method relies on the no unmeasured
confounders assumption

I If this assumption is violated, we know that each edge
Xi − Xj in the skeleton is due to one out of three
possibilities

I Xi → Xj

I Xi ← Xj

I Xi ← Ei,j → Xj for some unobserved variable Ei,j

I The search method can be modified to allow for
confounders as follows:

I Each equation in the FCM is extended to:

Xi ← fi (XPa(i,G),Ei,Ne(i,S),Ei)

where Ne(i ,S) is the set of indicies of variables adjacent to Xi

in the skeleton
I In this case, regularization by λ|Ĝ| promotes simple graphs

Michael R. Kosorok, Nikki L. B. Freeman and Owen E. Leete 54/ 56

Discovering v-structures

I Consider the random variables (A,B ,C) with skeleton
A− B − C , four causal structures are possible

I A→ B → C
I A← B ← C
I A← B → C
I A→ B ← C

I All four structures are Markov equivalent, and therefore
indistinguishable from each other using statistics alone

I Previous methods have had difficulty identifying the
correct structure

I CGNNs can accurately discriminate between the
v-structures using the MMD criteria

Michael R. Kosorok, Nikki L. B. Freeman and Owen E. Leete 55/ 56

Conclusion

I CGNNs are a new framework to learn functional causal
models from observational data

I CGNNs combine the power of deep learning and the
interpretability of causal models

I CGNNs are better able to identify the causal structure of
relationships compared to other methods

I There is still a need to characterize the sufficient
identifiability conditions for this approach

Michael R. Kosorok, Nikki L. B. Freeman and Owen E. Leete 56/ 56

	Introduction
	Convolutional Neural Networks
	Recurrent Neural Networks
	Generative Adversarial Networks
	Causal Generative Neural Networks

