Predicate Logic and Quantifiers

CSE235

Predicate Logic and Quantifiers

Slides by Christopher M. Bourke Instructor: Berthe Y. Choueiry

Fall 2007

Computer Science \& Engineering 235 Introduction to Discrete Mathematics

Sections 1.3-1.4 of Rosen cse235@cse.unl.edu

Nebiask
 Introduction

Predicate
Logic and Quantifiers

CSE235

Consider the following statements:

$$
x>3, \quad x=y+3, \quad x+y=z
$$

The truth value of these statements has no meaning without specifying the values of x, y, z.

However, we can make propositions out of such statements.
A predicate is a property that is affirmed or denied about the subject (in logic, we say "variable" or "argument") of a statement.

Terminology: affirmed $=$ holds $=$ is true; denied $=$ does not hold $=$ is not true.

Predicate
Logic and Quantifiers

CSE235

Introduction
Propositional Functions

Propositional
Functions
Quantifiers
Logic
Programming
Transcribing
English into
Logic
Further
Examples \& Exercises

Propositional Functions

To write in predicate logic:

We introduce a (functional) symbol for the predicate, and put the subject as an argument (to the functional symbol): $P(x)$

Examples:

- Father (x) : unary predicate
- Brother (x, y) : binary predicate
- $\operatorname{Sum}(x, y, z)$: ternary predicate
- $\mathrm{P}(x, y, z, t): n$-ary predicate

Propositional Functions

Predicate
Logic and Quantifiers

CSE235

Introduction
Propositional
Functions

Definition

A statement of the form $P\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is the value of the propositional function P. Here, $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is an n-tuple and P is a predicate.

You can think of a propositional function as a function that

- Evaluates to true or false.
- Takes one or more arguments.
- Expresses a predicate involving the argument(s).
- Becomes a proposition when values are assigned to the arguments.

Nebiaska

Predicate Logic and Quantifiers

CSE235

Introduction
Propositional
Functions
Propositional Functions
Universe of Discourse

Quantifiers
Logic
Programming
Transcribing
English into
Logic
Further
Examples \& Exercises

Propositional Functions

Example

Example

Let $Q(x, y, z)$ denote the statement " $x^{2}+y^{2}=z^{2}$ ". What is the truth value of $Q(3,4,5)$? What is the truth value of $Q(2,2,3)$? How many values of (x, y, z) make the predicate true?

Nebraska

Predicate
Logic and Quantifiers

CSE235

Introduction
Propositional Functions

Propositional Functions
Universe of Discourse

Quantifiers
Logic
Programming
Transcribing
English into
Logic
Further
Examples \& Exercises

Propositional Functions

Example

Example

Let $Q(x, y, z)$ denote the statement " $x^{2}+y^{2}=z^{2}$ ". What is the truth value of $Q(3,4,5)$? What is the truth value of $Q(2,2,3)$? How many values of (x, y, z) make the predicate true?

Since $3^{2}+4^{2}=25=5^{2}, Q(3,4,5)$ is true.
Since $2^{2}+2^{2}=8 \neq 3^{2}=9, Q(2,2,3)$ is false.
There are infinitely many values for (x, y, z) that make this propositional function true-how many right triangles are there?

Predicate
Logic and Quantifiers

CSE235

Introduction
Propositional
Functions
Propositional
Functions
Universe of Discourse

Quantifiers
Logic
Programming
Transcribing English into
Logic
Further
Examples \&
Exercises

Consider the previous example. Does it make sense to assign to x the value "blue"?

Intuitively, the universe of discourse is the set of all things we wish to talk about; that is, the set of all objects that we can sensibly assign to a variable in a propositional function.

What would be the universe of discourse for the propositional function $P(x)=$ "The test will be on x the 23rd" be?

Nebraska

Universe of Discourse

Multivariate Functions

Introduction
Propositional
Functions
Propositional
Functions
Universe of Discourse

Quantifiers
Logic
Programming
Transcribing English into
Logic
Further
Examples \& Exercises

Moreover, each variable in an n-tuple may have a different universe of discourse.

Let $P(r, g, b, c)=$ "The rgb-value of the color c is (r, g, b) ".
For example, $P(255,0,0$, red $)$ is true, while $P(0,0,255$, green $)$ is false.

What are the universes of discourse for (r, g, b, c) ?

Nebbaska

Quantifiers

Introduction

Predicate
Logic and
Quantifiers
CSE235

Introduction
Propositional
Functions
Propositional
Functions
Quantifiers
Universal
Quantifier
Existential
Quantifier
Mixing
Quantifiers
Binding
Variables
Negation
Logic
Programming
Transcribing
English into
Logic
Fu\&kez

A predicate becomes a proposition when we assign it fixed values. However, another way to make a predicate into a proposition is to quantify it. That is, the predicate is true (or false) for all possible values in the universe of discourse or for some value(s) in the universe of discourse.

Such quantification can be done with two quantifiers: the universal quantifier and the existential quantifier.

Nebraska

Predicate
Logic and Quantifiers

CSE235

Introduction
Propositional
Functions
Propositional
Functions
Quantifiers
Universal Quantifier Existential Quantifier

Mixing

Quantifiers
Binding
Variables
Negation
Logic
Programming
Transcribing

Universal Quantifier

Definition

Definition

The universal quantification of a predicate $P(x)$ is the proposition " $P(x)$ is true for all values of x in the universe of discourse" We use the notation

$$
\forall x P(x)
$$

which can be read "for all x "

If the universe of discourse is finite, say $\left\{n_{1}, n_{2}, \ldots, n_{k}\right\}$, then the universal quantifier is simply the conjunction of all elements:

$$
\forall x P(x) \Longleftrightarrow P\left(n_{1}\right) \wedge P\left(n_{2}\right) \wedge \cdots \wedge P\left(n_{k}\right)
$$

Predicate
Logic and Quantifiers

CSE235

Introduction
Propositional
Functions
Propositional
Functions
Quantifiers
Universal
Quantifier
Existential
Quantifier
Mixing
Quantifiers
Binding
Variables
Negation
Logic
Programming
Transcribing
English into
Logic
Fuationdr33

- Let $P(x)$ be the predicate " x must take a discrete mathematics course" and let $Q(x)$ be the predicate " x is a computer science student".
- The universe of discourse for both $P(x)$ and $Q(x)$ is all UNL students.
- Express the statement "Every computer science student must take a discrete mathematics course".
- Express the statement "Everybody must take a discrete mathematics course or be a computer science student".

Predicate
Logic and Quantifiers

CSE235

Introduction
Propositional
Functions
Propositional
Functions
Quantifiers
Universal
Quantifier
Existential Quantifier
Mixing
Quantifiers
Binding
Variables
Negation
Logic
Programming
Transcribing
English into
Logic
Fuationdr33

- Let $P(x)$ be the predicate " x must take a discrete mathematics course" and let $Q(x)$ be the predicate " x is a computer science student".
- The universe of discourse for both $P(x)$ and $Q(x)$ is all UNL students.
- Express the statement "Every computer science student must take a discrete mathematics course".

$$
\forall x(Q(x) \rightarrow P(x))
$$

- Express the statement "Everybody must take a discrete mathematics course or be a computer science student".

Nebraska

Predicate
Logic and Quantifiers

CSE235

Introduction
Propositional
Functions
Propositional
Functions
Quantifiers
Universal
Quantifier
Existential Quantifier
Mixing
Quantifiers
Binding
Variables
Negation
Logic
Programming
Transcribing
English into
Logic

- Let $P(x)$ be the predicate " x must take a discrete mathematics course" and let $Q(x)$ be the predicate " x is a computer science student".
- The universe of discourse for both $P(x)$ and $Q(x)$ is all UNL students.
- Express the statement "Every computer science student must take a discrete mathematics course".

$$
\forall x(Q(x) \rightarrow P(x))
$$

- Express the statement "Everybody must take a discrete mathematics course or be a computer science student".

$$
\forall x(Q(x) \vee P(x))
$$

Nebraska

Predicate
Logic and Quantifiers

CSE235

Introduction
Propositional
Functions
Propositional
Functions
Quantifiers
Universal
Quantifier
Existential Quantifier
Mixing
Quantifiers
Binding
Variables
Negation
Logic
Programming
Transcribing
English into
Logic
Fuith $\neq \mathrm{r} 33$

- Let $P(x)$ be the predicate " x must take a discrete mathematics course" and let $Q(x)$ be the predicate " x is a computer science student".
- The universe of discourse for both $P(x)$ and $Q(x)$ is all UNL students.
- Express the statement "Every computer science student must take a discrete mathematics course".

$$
\forall x(Q(x) \rightarrow P(x))
$$

- Express the statement "Everybody must take a discrete mathematics course or be a computer science student".

$$
\forall x(Q(x) \vee P(x))
$$

- Are hetse statements true or false?

Nebiaska Universal Quantifier

Predicate
Logic and
Quantifiers
CSE235

Introduction
Propositional

Functions

Propositional
Functions
Quantifiers
Universal Quantifier Existential Quantifier
Mixing
Quantifiers
Binding
Variables
Negation
Logic
Programming
Transcribing English into
Logic
Fulth $\neq 133$

Express the statement "for every x and for every $y, x+y>10$ "

Nebbask

Predicate Logic and Quantifiers

CSE235

Introduction
Propositional
Functions
Propositional Functions

Quantifiers

Universal

 QuantifierExpress the statement "for every x and for every $y, x+y>10$ "
Let $P(x, y)$ be the statement $x+y>10$ where the universe of discourse for x, y is the set of integers.

Nebraska

Predicate Logic and Quantifiers

CSE235

Introduction
Propositional
Functions
Propositional
Functions
Quantifiers

Universal

 QuantifierExistential
Quantifier
Mixing
Quantifiers
Binding
Variables
Negation
Logic
Programming
Transcribing English into Logic

Fulthdr33

Express the statement "for every x and for every $y, x+y>10$ "
Let $P(x, y)$ be the statement $x+y>10$ where the universe of discourse for x, y is the set of integers.

Answer:

$$
\forall x \forall y P(x, y)
$$

Nebraska

Predicate Logic and Quantifiers

CSE235

Introduction
Propositional
Functions
Propositional
Functions
Quantifiers

Universal

 QuantifierExpress the statement "for every x and for every $y, x+y>10$ "
Let $P(x, y)$ be the statement $x+y>10$ where the universe of discourse for x, y is the set of integers.

Answer:

$$
\forall x \forall y P(x, y)
$$

Note that we can also use the shorthand

$$
\forall x, y P(x, y)
$$

Nebraska

Predicate
Logic and Quantifiers

CSE235

Introduction
Propositional
Functions
Propositional
Functions
Quantifiers
Universal Quantifier

Existential Quantifier

Definition

Definition

The existential quantification of a predicate $P(x)$ is the proposition "There exists an x in the universe of discourse such that $P(x)$ is true." We use the notation

$$
\exists x P(x)
$$

which can be read "there exists an x "

Again, if the universe of discourse is finite, $\left\{n_{1}, n_{2}, \ldots, n_{k}\right\}$, then the existential quantifier is simply the disjunction of all elements:

$$
\exists x P(x) \Longleftrightarrow P\left(n_{1}\right) \vee P\left(n_{2}\right) \vee \cdots \vee P\left(n_{k}\right)
$$

Nebiask
 Existential Quantifier

Example I

Predicate Logic and Quantifiers

CSE235

Introduction
Propositional
Functions
Propositional
Functions
Quantifiers
Universal
Quantifier
Existential Quantifier

Let $P(x, y)$ denote the statement, " $x+y=5$ ".
What does the expression,

$$
\exists x \exists y P(x, y)
$$

mean?
What universe(s) of discourse make it true?

Nebiasska Existential Quantifier

> Predicate Logic and Quantifiers

CSE235

Introduction
Propositional
Functions
Propositional
Functions
Quantifiers
Universal Quantifier
Existential Quantifier

Mixing

Quantifiers
Binding
Variables
Negation
Logic
Programming
Transcribing English into
Logic
Fulthdr33

Express the statement "there exists a real solution to

 $a x^{2}+b x-c=0 "$
Nebbaska

Predicate Logic and Quantifiers

CSE235

Introduction
Propositional
Functions
Propositional
Functions
Quantifiers
Universal
Quantifier
Existential Quantifier

Mixing

Quantifiers
Binding
Variables
Negation
Logic
Programming
Transcribing
English into
Logic
Fulth $\ddagger 133$

Express the statement "there exists a real solution to $a x^{2}+b x-c=0 "$

Let $P(x)$ be the statement $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$ where the universe of discourse for x is the set of reals. Note here that a, b, c are all fixed constants.

Nebbaska

Predicate
Logic and Quantifiers

CSE235

Introduction
Propositional
Functions
Propositional
Functions
Quantifiers
Universal
Quantifier
Existential Quantifier

Express the statement "there exists a real solution to $a x^{2}+b x-c=0 "$

Let $P(x)$ be the statement $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$ where the universe of discourse for x is the set of reals. Note here that a, b, c are all fixed constants.

The statement can thus be expressed as

$$
\exists x P(x)
$$

Nebiastláa Existential Quantifier

Predicate Logic and Quantifiers

CSE235

Introduction
Propositional
Functions
Propositional
Functions
Quantifiers
Universal
Quantifier
Existential Quantifier

Mixing

Quantifiers
Binding
Variables
Negation
Logic
Programming
Transcribing English into Logic

Fuđthør33

Question: what is the truth value of $\exists x P(x)$?

Nebbaska

Existential Quantifier

Example II Continued

Predicate Logic and Quantifiers

CSE235

Introduction
Propositional
Functions
Propositional
Functions
Quantifiers
Universal
Quantifier
Existential
Quantifier
Mixing
Quantifiers
Binding
Variables
Negation
Logic
Programming
Transcribing English into
Logic
Fu进ちゃ133

Question：what is the truth value of $\exists x P(x)$ ？
Answer：it is false．For any real numbers such that $b^{2}<4 a c$ ， there will only be complex solutions，for these cases no such real number x can satisfy the predicate．

How can we make it so that it is true？

Nebbaska

Existential Quantifier

Example II Continued

Predicate
 Logic and Quantifiers

CSE235

Introduction
Propositional
Functions
Propositional
Functions
Quantifiers
Universal
Quantifier
Existential
Quantifier
Mixing
Quantifiers
Binding
Variables
Negation
Logic
Programming
Transcribing
English into
Logic
Fu进ちゃ133

Question：what is the truth value of $\exists x P(x)$ ？
Answer：it is false．For any real numbers such that $b^{2}<4 a c$ ， there will only be complex solutions，for these cases no such real number x can satisfy the predicate．

How can we make it so that it is true？
Answer：change the universe of discourse to the complex numbers， \mathbb{C} ．

Nebbaska

Quantifiers
 Truth Values

Predicate
Logic and
Quantifiers
CSE235

Introduction
Propositional
Functions
Propositional
Functions
Quantifiers
Universal
Quantifier
Existential Quantifier

Mixing

Quantifiers
Binding
Variables
Negation
Logic
Programming
Transcribing
English into
Logic
Fullthqr33

In general, when are quantified statements true/false?

Statement	True When	False When
$\forall x P(x)$	$P(x)$ is true for every x.	There is an x for which $P(x)$ is false.
$\exists x P(x)$	There is an x for which $P(x)$ is true.	$P(x)$ is false for every x.

Table: Truth Values of Quantifiers

Nebiash
 Mixing Quantifiers I

Predicate
 Logic and Quantifiers

CSE235

Introduction
Propositional
Functions
Propositional
Functions
Quantifiers
Universal
Quantifier
Existential
Quantifier
Quantifiers
Binding
Variables
Negation
Logic
Programming
Transcribing
English into
Logic
Fuluthdr33

Existential and universal quantifiers can be used together to quantify a predicate statement; for example,

$$
\forall x \exists y P(x, y)
$$

is perfectly valid. However, you must be careful-it must be read left to right.

For example, $\forall x \exists y P(x, y)$ is not equivalent to $\exists y \forall x P(x, y)$. Thus, ordering is important.

Nebiash
 Mixing Quantifiers II

Predicate
Logic and Quantifiers

CSE235

Introduction
Propositional
Functions
Propositional
Functions
Quantifiers
Universal
Quantifier
Existential Quantifier

Mixing

Quantifiers
Binding
Variables
Negation
Logic
Programming
Transcribing
English into
Logic
Fudthdr33

For example:

- $\forall x \exists y \operatorname{Loves}(x, y)$: everybody loves somebody
- $\exists y \forall x \operatorname{Loves}(x, y)$: There is someone loved by everyone

Those expressions do not mean the same thing!
Note that $\exists y \forall x P(x, y) \rightarrow \forall x \exists y P(x, y)$, but the converse does not hold

However, you can commute similar quantifiers; $\exists x \exists y P(x, y)$ is equivalent to $\exists y \exists x P(x, y)$ (which is why our shorthand was valid).

Nebiask

Predicate Logic and Quantifiers

CSE235

Introduction
Propositional

Functions

Propositional

Functions

Quantifiers
Universal
Quantifier
Existential
Quantifier
Mixing
Quantifiers
Binding
Variables
Negation
Logic
Programming
Transcribing
English into
Logic

Mixing Quantifiers

Truth Values

Statement	True When	False When
$\forall x \forall y P(x, y)$	$P(x, y)$ is true for ev- ery pair x, y.	There is at least one pair, x, y for which $P(x, y)$ is false.
$\forall x \exists y P(x, y)$	For every x, there is a y for which $P(x, y)$ is true.	There is an for which $P(x, y)$ is false for every y.
$\exists x \forall y P(x, y)$	There is an x for which $P(x, y)$ is true for every y.	For every x, there is a y for which $P(x, y)$ is false.
$\exists x \exists y P(x, y)$	There is at least one pair x, y for which $P(x, y)$ is true.	$P(x, y)$ is false for ev- ery pair x, y.

Table: Truth Values of 2-variate Quantifiers

Nebraska Mixing Quantifiers
 Example I

Predicate Logic and Quantifiers

CSE235

Introduction
Propositional
Functions
Propositional
Functions
Quantifiers
Universal
Quantifier
Existential
Quantifier

Mixing

Quantifiers

Binding

Variables
Negation
Logic
Programming
Transcribing English into
Logic
Fu2Mфr33

Express, in predicate logic, the statement that there are an infinite number of integers.

Nebbaska

 Mixing Quantifiers

 Mixing Quantifiers
 Example I

Predicate Logic and Quantifiers

CSE235

Introduction
Propositional
Functions
Propositional
Functions
Quantifiers
Universal
Quantifier
Existential
Quantifier
Mixing
Quantifiers
Binding
Variables
Negation
Logic
Programming
Transcribing English into Logic

Fu2Mǵr33

Express, in predicate logic, the statement that there are an infinite number of integers.

Let $P(x, y)$ be the statement that $x<y$. Let the universe of discourse be the integers, \mathbb{Z}.

```
Nebbaska

\section*{Mixing Quantifiers}
```

Example I

```

Predicate
Logic and
Quantifiers
CSE235

Introduction
Propositional
Functions
Propositional
Functions
Quantifiers
Universal
Quantifier
Existential
Quantifier
Mixing
Quantifiers
Binding
Variables
Negation
Logic
Programming
Transcribing
English into
Logic
Fuan¢\&ı33

Express, in predicate logic, the statement that there are an infinite number of integers.

Let \(P(x, y)\) be the statement that \(x<y\). Let the universe of discourse be the integers, \(\mathbb{Z}\).

Then the statement can be expressed by the following.
\[
\forall x \exists y P(x, y)
\]

\title{
Nebraska Mixing Quantifiers \\ \\ Example II: More Mathematical Statements
} \\ \\ Example II: More Mathematical Statements
}

Predicate
Logic and
Quantifiers
CSE235
Express the commutative law of addition for \(\mathbb{R}\).

Introduction
Propositional
Functions
Propositional
Functions
Quantifiers
Universal Quantifier
Existential
Quantifier
```

Mixing

```
Quantifiers
Binding
Variables

Negation
Logic
Programming
Transcribing English into Logic

Fuandr33

\title{
Nebiask \\ \\ Mixing Quantifiers
} \\ \\ Mixing Quantifiers
}

Example II: More Mathematical Statements

\section*{Predicate Logic and Quantifiers}

CSE235

Introduction
Propositional
Functions
Propositional
Functions
Quantifiers
Universal
Quantifier
Existential
Quantifier
Mixing
Quantifiers
Binding
Variables
Negation
Logic
Programming
Transcribing English into Logic

Fuथthdr33

Express the commutative law of addition for \(\mathbb{R}\).
We want to express that for every pair of reals, \(x, y\) the following identity holds:
\[
x+y=y+x
\]

\section*{Mixing Quantifiers}

Example II: More Mathematical Statements

Predicate
Logic and Quantifiers

CSE235

Introduction
Propositional
Functions
Propositional
Functions
Quantifiers
Universal
Quantifier
Existential
Quantifier

\section*{Mixing}

Quantifiers
Binding
Variables
Negation
Logic
Programming
Transcribing English into Logic

Fuथthdr33

Express the commutative law of addition for \(\mathbb{R}\).
We want to express that for every pair of reals, \(x, y\) the following identity holds:
\[
x+y=y+x
\]

Then we have the following:
\[
\forall x \forall y(x+y=y+x)
\]

\title{
Nebiašáa Mixing Quantifiers
}

Example II: More Mathematical Statements Continued

> Predicate Logic and Quantifiers

CSE235

Introduction
Propositional
Functions
Propositional
Functions
Quantifiers
Universal Quantifier
Existential
Quantifier
```

Mixing

```

Quantifiers
Binding
Variables
Negation
Logic
Programming
Transcribing English into Logic

Fuथ2g

Express the multiplicative inverse law for (nonzero) rationals \(\mathbb{Q} \backslash\{0\}\).

\section*{Nebbaska}
```

Predicate Logic and Quantifiers
CSE235
Introduction
Propositional
Functions
Propositional
Functions
Quantifiers
Universal
Quantifier
Existential
Quantifier

```

\section*{Mixing}
```

Quantifiers
Binding
Variables
Negation
Logic
Programming
Transcribing English into Logic
Fu2hфı33
Predicate
Quantifiers
CSE235

```

\section*{Mixing Quantifiers}

Example II: More Mathematical Statements Continued
    Express the multiplicative inverse law for (nonzero) rationals \(\mathbb{Q} \backslash\{0\}\).

We want to express that for every real number \(x\), there exists a real number \(y\) such that \(x y=1\).

\section*{Mixing Quantifiers}

Example II: More Mathematical Statements Continued

Predicate Logic and Quantifiers

CSE235

Introduction
Propositional
Functions
Propositional
Functions
Quantifiers
Universal
Quantifier
Existential
Quantifier
Mixing
Quantifiers
Binding
Variables
Negation
Logic
Programming
Transcribing English into
Logic
Fuandı33

Express the multiplicative inverse law for (nonzero) rationals \(\mathbb{Q} \backslash\{0\}\).

We want to express that for every real number \(x\), there exists a real number \(y\) such that \(x y=1\).

Then we have the following:
\[
\forall x \exists y(x y=1)
\]

\title{
Nebraska Mixing Quantifiers \\ Example II: False Mathematical Statements
}

\author{
Predicate Logic and Quantifiers \\ CSE235
}

Introduction
Propositional
Functions
Propositional
Functions
Quantifiers
Universal
Quantifier
Existential
Quantifier
Mixing
Quantifiers

\section*{Binding}

Variables
Negation
Logic
Programming
Transcribing English into
Logic
Fuаһ६ф133
Is commutativity for subtraction valid over the reals?

\section*{Nebbask}

Predicate Logic and Quantifiers

CSE235

Introduction
Propositional
Functions
Propositional
Functions
Quantifiers
Universal
Quantifier
Existential
Quantifier
Mixing
Quantifiers
Binding
Variables
Negation
Logic
Programming
Transcribing English into Logic

Fuаъфı33

Is commutativity for subtraction valid over the reals?
That is, for all pairs of real numbers \(x, y\) does the identity \(x-y=y-x\) hold? Express this using quantifiers.

\section*{Nebbaska}

Predicate Logic and Quantifiers

CSE235

Introduction
Propositional
Functions
Propositional
Functions
Quantifiers
Universal
Quantifier
Existential
Quantifier
Mixing
Quantifiers
Binding
Variables
Negation
Logic
Programming
Transcribing English into Logic

Is commutativity for subtraction valid over the reals?
That is, for all pairs of real numbers \(x, y\) does the identity \(x-y=y-x\) hold? Express this using quantifiers.

The expression is
\[
\forall x \forall y(x-y=y-x)
\]

\title{
Nebiaska Mixing Quantifiers
}

Example II: False Mathematical Statements Continued
Predicate Logic and Quantifiers
CSE235

Introduction
Is there a multiplicative inverse law over the nonzero integers?

\section*{Nebbask}

Predicate Logic and Quantifiers

CSE235

Introduction
Propositional
Functions
Propositional
Functions
Quantifiers
Universal
Quantifier
Existential
Quantifier

\section*{Mixing}

Quantifiers
Binding
Variables
Negation
Logic
Programming
Transcribing English into Logic

Fu24фdr33

\section*{Mixing Quantifiers}

Example II: False Mathematical Statements Continued

Is there a multiplicative inverse law over the nonzero integers?
That is, for every integer \(x\) does there exists a \(y\) such that \(x y=1\) ?

\section*{Mixing Quantifiers}

Example II: False Mathematical Statements Continued

Predicate
Logic and
Quantifiers
CSE235

Introduction
Propositional
Functions
Propositional
Functions
Quantifiers
Universal
Quantifier
Existential
Quantifier
Mixing
Quantifiers
Binding
Variables
Negation
Logic
Programming
Transcribing
English into
Logic
Fu2Ahdr33

Is there a multiplicative inverse law over the nonzero integers?
That is, for every integer \(x\) does there exists a \(y\) such that \(x y=1\) ?

This is false, since we can find a counter example. Take any integer, say 5 and multiply it with another integer, \(y\). If the statement held, then \(5=1 / y\), but for any (nonzero) integer \(y\), \(|1 / y| \leq 1\).

\section*{Nebiasía Mixing Quantifiers}

\section*{Exercise}

Predicate
Logic and
Quantifiers
CSE235

Introduction
Propositional
Functions
Propositional
Functions
Quantifiers
Universal
Quantifier
Existential
Quantifier
Mixing
Quantifiers
Binding
Variables
Negation
Logic
Programming
Transcribing English into Logic

Express the statement "there is a number \(x\) such that when it is added to any number, the result is that number, and if it is multiplied by any number, the result is \(x\) " as a logical expression.

Solution:

\section*{Exercise}

Predicate Logic and Quantifiers

CSE235

Introduction
Propositional
Functions
Propositional
Functions
Quantifiers
Universal
Quantifier
Existential
Quantifier
Mixing
Quantifiers
Binding
Variables
Negation
Logic
Programming
Transcribing English into
Logic

Express the statement "there is a number \(x\) such that when it is added to any number, the result is that number, and if it is multiplied by any number, the result is \(x\) " as a logical expression.

Solution:
- Let \(P(x, y)\) be the expression " \(x+y=y\) ".

\section*{Exercise}

Predicate
Logic and
Quantifiers
CSE235

Introduction
Propositional
Functions
Propositional
Functions
Quantifiers
Universal
Quantifier
Existential
Quantifier
Mixing
Quantifiers
Binding
Variables
Negation
Logic
Programming
Transcribing English into
Logic

Express the statement "there is a number \(x\) such that when it is added to any number, the result is that number, and if it is multiplied by any number, the result is \(x\) " as a logical expression.

Solution:
- Let \(P(x, y)\) be the expression " \(x+y=y\) ".
- Let \(Q(x, y)\) be the expression " \(x y=x\) ".

\section*{Exercise}

Predicate
Logic and
Quantifiers
CSE235

Introduction
Propositional
Functions
Propositional
Functions
Quantifiers
Universal
Quantifier
Existential
Quantifier
Mixing
Quantifiers
Binding
Variables
Negation
Logic
Programming
Transcribing English into
Logic

Express the statement "there is a number \(x\) such that when it is added to any number, the result is that number, and if it is multiplied by any number, the result is \(x\) " as a logical expression.

Solution:
- Let \(P(x, y)\) be the expression " \(x+y=y\) ".
- Let \(Q(x, y)\) be the expression " \(x y=x\) ".
- Then the expression is
\[
\exists x \forall y(P(x, y) \wedge Q(x, y))
\]

Predicate Logic and Quantifiers

CSE235

Introduction
Propositional
Functions
Propositional
Functions
Quantifiers
Universal
Quantifier
Existential
Quantifier

\section*{Mixing}

Quantifiers
Binding
Variables
Negation
Logic
Programming
Transcribing English into
Logic

Express the statement "there is a number \(x\) such that when it is added to any number, the result is that number, and if it is multiplied by any number, the result is \(x\) " as a logical expression.

Solution:
- Let \(P(x, y)\) be the expression " \(x+y=y\) ".
- Let \(Q(x, y)\) be the expression " \(x y=x\) ".
- Then the expression is
\[
\exists x \forall y(P(x, y) \wedge Q(x, y))
\]
- Over what universe(s) of discourse does this statement hold?

Predicate Logic and Quantifiers

CSE235

Introduction
Propositional

\section*{Functions}

Propositional
Functions
Quantifiers
Universal
Quantifier
Existential
Quantifier

\section*{Mixing}

Quantifiers

Express the statement "there is a number \(x\) such that when it is added to any number, the result is that number, and if it is multiplied by any number, the result is \(x\) " as a logical expression.

Solution:
- Let \(P(x, y)\) be the expression " \(x+y=y\) ".
- Let \(Q(x, y)\) be the expression " \(x y=x\) ".
- Then the expression is
\[
\exists x \forall y(P(x, y) \wedge Q(x, y))
\]
- Over what universe(s) of discourse does this statement hold?
- This is the additive identity law and holds for \(\mathbb{N}, \mathbb{Z}, \mathbb{R}, \mathbb{Q}\) but does not hold for \(\mathbb{Z}^{+}\).

\section*{Nebiask \\ Binding Variables I}

Predicate
Logic and Quantifiers

CSE235

Introduction
Propositional
Functions
Propositional
Functions
Quantifiers
Universal
Quantifier
Existential Quantifier
Mixing
Quantifiers
Binding Variables
Negation
Logic
Programming
Transcribing
English into
Logic
Fuथtぁdr33

When a quantifier is used on a variable \(x\), we say that \(x\) is bound. If no quantifier is used on a variable in a predicate statement, it is called free.

\section*{Example}

In the expression \(\exists x \forall y P(x, y)\) both \(x\) and \(y\) are bound. In the expression \(\forall x P(x, y), x\) is bound, but \(y\) is free.

A statement is called a well-formed formula, when all variables are properly quantified.

\section*{Nebiask \\ Binding Variables II}

Predicate
Logic and
Quantifiers
CSE235

Introduction
Propositional
Functions
Propositional
Functions
Quantifiers
Universal
Quantifier
Existential
Quantifier
Mixing
Quantifiers
Binding
Variables
Negation
Logic
Programming
Transcribing
English into
Logic
Fuथれфd33

The set of all variables bound by a common quantifier is the scope of that quantifier.

\section*{Example}

In the expression \(\exists x, y \forall z P(x, y, z, c)\) the scope of the existential quantifier is \(\{x, y\}\), the scope of the universal quantifier is just \(z\) and \(c\) has no scope since it is free.

\section*{Nebiaska}

Predicate
Logic and Quantifiers

CSE235

Just as we can use negation with propositions, we can use them with quantified expressions.

\section*{Lemma}

Let \(P(x)\) be a predicate. Then the following hold.
\[
\begin{aligned}
& \neg \forall x P(x) \equiv \exists x \neg P(x) \\
& \neg \exists x P(x) \equiv \forall x \neg P(x)
\end{aligned}
\]

This is essentially a quantified version of De Morgan's Law (in fact if the universe of discourse is finite, it is exactly De Morgan's law).

\section*{Negation}

Truth Values

Predicate
Logic and
Quantifiers
CSE235

Introduction
Propositional
Functions
Propositional
Functions
Quantifiers
Universal
Quantifier
Existential
Quantifier
Mixing
Quantifiers
Binding
Variables
Negation
Logic
Programming
Transcribing
English into
Logic
Fu2Shdr33
\begin{tabular}{|l|l|l|}
\hline Statement & True When & False When \\
\hline \hline\(\neg \exists x P(x) \equiv\) & For every \(x, P(x)\) is & There is an \(x\) for \\
\(\forall x \neg P(x)\) & false. & which \(P(x)\) is true. \\
\hline\(\neg \forall x P(x) \equiv\) & There is an \(x\) for & \(P(x)\) is true for every \\
\(\exists x \neg P(x)\) & which \(P(x)\) is false. & \(x\). \\
\hline \hline
\end{tabular}

Table: Truth Values of Negated Quantifiers

\section*{Nebraska}

Predicate
Logic and Quantifiers

CSE235

Introduction
Propositional

\section*{Functions}

Propositional
Functions
Quantifiers

\section*{Prolog}

Prolog (Programming in Logic) is a programming language based on (a restricted form of) Predicate Calculus. It was developped by the logicians of the artificial intelligence community for symbolic reasoning.
- Prolog allows the user to express facts and rules
- Facts are proposational functions: student(juana), enrolled(juana,cse235), instructor(patel,cse235), etc.
- Rules are implications with conjunctions: teaches \((X, Y)\) :- instructor \((X, Z)\), enrolled \((Y, Z)\)
- Prolog answers queries such as:
?enrolled(juana,cse478)
?enrolled(X,cse478)
?teaches(X,juana)
by binding variables and doing theorem proving (i.e., applying inference rules) as we will see in Section 1.5.

\section*{Nebraska}

Predicate
Logic and Quantifiers

CSE235

Introduction
Propositional Functions

Propositional Functions

Quantifiers
Logic
Programming
Transcribing English into Logic

Further Examples \& Exercises

\section*{English into Logic}

Logic is more precise than English.
Transcribing English to Logic and vice versa can be tricky.
When writing statements with quantifiers, usually the correct meaning is conveyed with the following combinations:
- Use \(\forall\) with \(\Rightarrow\)

Example: \(\forall x \operatorname{Lion}(x) \Rightarrow\) Fierce \((x)\)
\(\forall x \operatorname{Lion}(x) \wedge\) Fierce \((x)\) means "everyone is a lion and everyone is fierce"
- Use \(\exists\) with \(\wedge\)

Example: \(\exists x \operatorname{Lion}(x) \wedge \operatorname{Drinks}(x, \operatorname{coffee})\) : holds when you have at least one lion that drinks coffee \(\exists x \operatorname{Lion}(x) \Rightarrow \operatorname{Drinks}(x\), coffee) holds when you have people even though no lion drinks coffee.

Predicate Logic and Quantifiers

CSE235

Introduction
Propositional
Functions
Propositional
Functions
Quantifiers
Logic
Programming
Transcribing
English into
Logic
Further
Examples \& Exercises

\section*{Examples? Exercises?}
- Rewrite the expression,
\[
\neg \forall x(\exists y \forall z P(x, y, z) \wedge \exists z \forall y P(x, y, z))
\]
- Let \(P(x, y)\) denote " \(x\) is a factor of \(y\) " where \(x \in\{1,2,3, \ldots\}\) and \(y \in\{2,3,4, \ldots\}\). Let \(Q(y)\) denote " \(\forall x[P(x, y) \rightarrow((x=y) \vee(x=1))]\) ". When is \(Q(y)\) true?

\section*{Nebbaska}

Predicate
Logic and Quantifiers

CSE235

Introduction
Propositional
Functions
Propositional
Functions
Quantifiers
Logic
Programming
Transcribing
English into
Logic
Further
Examples \& Exercises

\section*{Examples? Exercises?}
- Rewrite the expression,
\[
\neg \forall x(\exists y \forall z P(x, y, z) \wedge \exists z \forall y P(x, y, z))
\]
- Answer: Use the negated quantifiers and De Morgan's law.
\[
\exists x(\forall y \exists z \neg P(x, y, z) \vee \forall z \exists y \neg P(x, y, z))
\]
- Let \(P(x, y)\) denote " \(x\) is a factor of \(y\) " where \(x \in\{1,2,3, \ldots\}\) and \(y \in\{2,3,4, \ldots\}\). Let \(Q(y)\) denote " \(\forall x[P(x, y) \rightarrow((x=y) \vee(x=1))]\) ". When is \(Q(y)\) true?

\section*{Nebbaska}

Predicate
Logic and Quantifiers

CSE235

Introduction
Propositional Functions

Propositional Functions

Quantifiers
Logic
Programming

\section*{Transcribing}

English into
Logic
Further
Examples \& Exercises

\section*{Examples? Exercises?}
- Rewrite the expression,
\[
\neg \forall x(\exists y \forall z P(x, y, z) \wedge \exists z \forall y P(x, y, z))
\]
- Answer: Use the negated quantifiers and De Morgan's law.
\[
\exists x(\forall y \exists z \neg P(x, y, z) \vee \forall z \exists y \neg P(x, y, z))
\]
- Let \(P(x, y)\) denote " \(x\) is a factor of \(y\) " where \(x \in\{1,2,3, \ldots\}\) and \(y \in\{2,3,4, \ldots\}\). Let \(Q(y)\) denote " \(\forall x[P(x, y) \rightarrow((x=y) \vee(x=1))]\) ". When is \(Q(y)\) true?
- Answer: Only when \(y\) is a prime number.

\section*{Extra Question}

Predicate
Logic and Quantifiers CSE235

Introduction
Propositional Functions

Propositional
Functions
Quantifiers
Logic
Programming
Transcribing
English into
Logic
Further
Examples \& Exercises

Some students wondered if
\[
\forall x, y P(x, y) \equiv \forall x P(x, y) \wedge \forall y P(x, y)
\]

This is certainly not true. In the left-hand side, both \(x\) and \(y\) are bound. In the right-hand side, \(x\) is bound in the first predicate, but \(y\) is free. In the second predicate, \(y\) is bound but \(x\) is free.

All variables that occur in a propositional function must be bound to turn it into a proposition.

Thus, the left-hand side is a proposition, but the right-hand side is not. How can they be equivalent?```

