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Predicting Accident rAtes From generAl  
AviAtion Pilot totAl Flight hours

Is there a range of pilot flight hours over which general aviation (GA) pilots are at greatest risk? More broadly, can we 
predict accident rates, given a pilot’s total flight hours (TFH)? Many GA research studies implicitly assume that accident 
rates are a linear function of TFH when, in fact, that relation appears nonlinear. This work explores the ability of a nonlinear 
gamma-based function (Grate) to predict GA accident rates from noisy TFH data. Two sets of National Transportation Safety 
Board (NTSB)/Federal Aviation Administration (FAA) data, parsed by pilot instrument rating, produced weighted goodness-
of-fit (R2

w) estimates of .654 and .775 for non-instrument-rated (non-IR) and instrument-rated pilots (IR), respectively. 
This model class would be useful in direct prediction of GA accident rates, and as a statistical covariate to factor in flight 
risk during other types of modeling. Applied to FAA data, these models show that the range for relatively high risk may 
be far broader than first imagined, and may extend well beyond the 2,000-hour mark before leveling off to a baseline rate.

INTRODUCTION

Total flight hours has long been considered one of the risk fac-
tors in aviation, and is often used to represent either pilot flight 
experience or cumulative risk exposure (e.g., Dionne, Gagné & 
Vanasse, 1992; Guohua, Baker, Grabowski, Qiang, McCarthy 
& Rebok, 2011; Mills, 2005; Sherman, 1997). TFH has served 
as both an independent variable in its own right, as well as a 
statistical covariate, to control for the effects of experience or risk.

Investigators have often unwittingly assumed a linear rela-
tion between TFH and accident frequency and/or rate, that is, 
a straight-line prediction function ŷ=a+bx, with a as y-intercept 
and b as slope. However, evidence is emerging that such relations 
are actually nonlinear. For instance, Bazargan & Guzhva (2007) 
reported that the logarithmic transform log(TFH) significantly 
predicted GA fatalities in a logistic regression model. More 
recently, Knecht & Smith (2012) reported that a risk covariate 
starting with log(TFH), followed by a gamma transform, signifi-
cantly predicted GA fatalities in a log-linear model.

In his 2001 book, The Killing Zone, Paul Craig presented 
early evidence that GA pilot fatalities might relate nonlinearly 
to TFH. Craig showed that fatalities occur most frequently at 
a middle range of TFH (≈50-350), and hypothesized that this 
band of time may be one in which pilots are at greatest risk due to 
overconfidence at having mastered flying the aircraft, combined 
with lack of actual experience and skill in dealing with rare, chal-
lenging events. He supported this hypothesis with histograms of 
GA accident frequencies, although not with a formal model. In 
group after group, a similar pattern emerged in his data, one of 
a “skewed camel hump” with a long tail at higher TFH.

Following Craig’s findings, I investigated a nonlinear model 
for accident frequency counts (Knecht, 2012). Derived from 
NTSB and FAA data, Figure 1 illustrates this basic class of rela-
tions between TFH and fatal accident counts for a group of 831 
U.S. instrument-rated GA pilots from 1983-2011.

The “skewed camel-hump” relation appears as we focus on the 
range TFH<5000. It appears quite durable, persisting whether 
we break out different data categories (e.g., IR vs. non-IR or 

serious vs. fatal accidents) or even combine them. Figure 2 shows 
GA accident data for 832 pilots from 2003-2007 for NTSB 
SERIOUS+FATAL accident categories that were combined to 
boost frequency counts.

So, frequency count histograms do support the notion of a 
nonlinear “killing zone” somewhere in the lower range of TFH. 

Figure 1. Frequency histogram of GA IR fatal accident 
counts (y-axis) as a function of total flight hours (x-axis, bin 
width=100 TFH).

Figure 2. Frequency histogram of GA IR SERIOUS + FATAL 
accident counts as a function of TFH (bin width=100 TFH).
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And, we have successfully modeled that relation with a gamma 
probability density function (pdf ). 

But, this raises a deeper question: How can we be certain that 
this “relation” is not an artifact, merely a side-effect of the fact 
that there are simply fewer pilots at higher TFH, hence fewer 
accidents? Figure 3 shows how frequency counts for a matched 
sample of non-accident pilots also drop off markedly as TFH 
increase. 

Figures 2 and 3 look suspiciously similar. In fact, the Pearson 
correlation between these datasets is .845 (p<.001). This implies 
that most (r2≈.71) of the “killing zone” seen in accident frequency 
counts can be explained simply by the fact that the numbers of 
pilots tend to decrease as TFH increases.

With that in mind, what support remains for the hypothesis 
of an actual killing zone? And, if it exists, what shape does it 
truly assume? 

We can address these questions by analyzing accident rate 
histograms, in which the ith data bin is

It is not hard to appreciate how useful a modeling function 
could be here. A good model would smooth the noise in the 
data, allowing investigators to better predict rates, given TFH. 
This would be directly useful in areas such as determination of 
insurance premiums, allocation of resources for pilot training, 
accident investigation staffing, and public relations. To safety 
researchers, it would be useful as an improved statistical covari-
ate, to either factor in or out risk as a function of flight experi-
ence. This would have broad application in numerous types of 
aviation research.

With this in mind, the present work moves from fitting 
GA accident frequency count data to fitting accident rates as a 
function of GA pilot TFH. The calculation of binned accident 
rates is a key step in risk analysis because uniformly sized bins 
will control for risk exposure while rates control for the actual 
number of individuals within a given data bin. 

METHOD

The Modeling Function
Ideally, modeling functions should be motivated by theory 

involving causal processes inherent to the data. Unfortunately, 
in aviation accidents, causes tend to be numerous and hard to 
disentangle, making theory-based modeling difficult.

We therefore proceed with the less ambitious goal of simply 
trying to fit a well-behaved, continuous mathematical function 
to empirical GA accident rate data. Standard techniques are 
used, namely minimization of least-squares residuals between a 
modeling function and empirical data.

The model itself begins with a versatile probability density 
function Gpdf (Spanier & Oldham, 1987). Its x-axis represents 
TFH. The y-axis can represent either frequency count or propor-
tion (here, we will focus on proportions). The model contains a 
shape parameter, α >0, and a scale parameter, β >0.

Figure 3. A histogram of GA IR non-accident pilot counts 
from the same data cohort as Fig. 2, showing how numbers 
of pilots decrease rapidly as TFH increase (bin width=100).

Figure 4. A noisy histogram showing combined 
“serious”+“fatal” accident rates for all GA pilots 
as a function of TFH (bin width=100).1

ii
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Rates will control for the fact that our frequency counts de-
crease as TFH increases, and uniformly sized bins will control 
for the effect of exposure. Therefore, if a killing zone continues 
to persist with binned rates, then the empirical evidence for it 
would be much stronger.

The Problem With Rates
Unfortunately, analyzing accident rates is easier said than 

done. Rate data can be quite noisy, as Figure 4 depicts. 
This “noise” represents sampling error—random fluctua-

tions in rate from one bin to the next. It is a vexing problem at 
higher TFH where Eq. 1’s denominator is small compared to 
its numerator, and even small changes in frequency count can 
cause substantial variations in accident rate. Despite having tens 
of thousands of cases in the “hump,” bins in the high-TFH tail 
may, by pure chance, sometimes consist of one or two individuals, 
resulting in alarmingly high-rate bins right next to zero-rate bins. 1 Data from Knecht & Smith (2012).
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The gamma function G(α) itself is described as the Euler 
integral, defined for α > 0

Shown in Figure 5, Gpdf has the attractive feature of being able 
to represent overdispersion (variance>mean) or underdispersion 
(variance<mean), as well as having calculable confidence intervals 
around the function itself.

Gamma pdfs have been used to model a wide variety of pro-
cesses, including the size of insurance claims (Hogg & Klugman, 
1984), amounts of rainfall (Chiew, Srikanthan, Frost, & Payne, 
2005), waiting times and mean-time-to failure (Winkelman, 
2008), where it represents time until the ath event in a constant-
hazard model, and distributions of microburst wind velocity 
(Mackey, 1998).

Prior experience with GA accident frequency data shows 
that this canonical version of Gpdf is unable to deal with critical 
features of data such as amplitude, non-zero x-axis (TFH) start 
values, and the long right-hand tail inherent to real-world data. 
Therefore, a more practical model is proposed (Eq. 4), which 
we can call Grate. This includes an amplitude term A (which 
can “stretch” the entire function up or down on the y-axis), a 
location parameter δ (which can shift it left or right), an x-axis 
log-transform (which compresses larger values more than smaller 
ones), and a base-rate term b (which sets the pdf on a thin, long 
rectangle capable of moving up or down on the y-axis), added 

to reflect the notion that all flights harbor some constant risk, 
no matter how experienced the pilot.

The Empirical Data
Models need values for their parameters. The current work 

parameterizes Grate on four U.S. GA pilot datasets collected during 
another project (Knecht & Smith, 2012). Those data span the time 
period 1/1/2003-8/26/2007 (4.65 yr.), and represent GA pilots 
licensed after 1995, matched on private-pilot school type and 
examiner type for the purposes of that particular study.2 To boost 
frequency counts, two official categories of injury (Serious+Fatal) 
are now combined into a single category. The data are parsed 
by pilot instrument rating (IR vs. non-IR) and accident status 
(Accident vs. Non-accident). Table 1 shows set sizes.

These accident data come from the NTSB accident data-
base, by way of FAA’s Accident Investigation and Prevention 
Division (AVP-210). Non-accident data come from the FAA 
Comprehensive Airman Information System (CAIS, pronounced 
“CASS”), managed by the Flight Standards Service (AFS-760), 
supplemented with pilot TFH from the FAA Document Imaging 
Workflow System (DIWS), managed by the Aerospace Medical 
Certification Division (AAM-300).

Each of Table 1’s four datasets is aggregated into x-axis bins 
100 TFH wide. Experience shows that a bin width of 100 pro-
duces a reasonable balance between the number of bins and the 
population of each, given datasets in Table 1’s size range. The 
bins span a range from 0-32,500 TFH, with each bin’s x-value 
centered mid-way into its data range. Student pilots are excluded, 
so the actual data range for the first bin is 45-100. Consequently, 
x1=77.5, x2=150, x3=250...xi>1=100i-50. Bin accident rates are 
then calculated by Eq. 1 to produce one dataset for IR pilots 
and a second for non-IR pilots.

Important Considerations
First, it is important to normalize Grate. This requires some 

explanation. Accidents (which form our rate numerators in 
each TFH bin) accumulate over time, whereas the correspond-
ing number of non-accident pilots (which forms each bin’s 

2 Currently, NTSB accident data beyond 2007 are not readily available to the 
FAA, for reasons unknown.

( ) dtet t∫
∞

−−=Γ
0

1αα (3)

( )α
βδ ααβδ

Γ
−

+=Γ
−−−− 1))(ln( ))(ln(xeAb

x

rate
(4)

Figure 5. Gpdf with various values of α and β.

Table 1. Pilot statistics in the four datasets modeled. 

Pilot rating 
Accident status  Est. 

Annual 
TFHB 

Ann acc 
rate  per 
100 FH AccsA Non-accs Totals 

IR n11=   832 n12=27,528 28,360 7,805,950 .00229 
non-IR n21=1,036 n22=38,291 39,327 2,630,452 .00847 
Totals 1,868 65,819 67,687 10,436,402 .00385 

ABased on 4.65 years’ NTSB accident data. 
BBased on 2 times the reported past-6-month FH from DIWS database. 
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denominator) is based on a “snapshot” in time and is therefore 
considered a constant. Consequently, we should normalize our 
bin accident rates to reflect a standard unit time such as one 
year. In that event, each bin’s initial rate should be divided by 
the number of years over which accident data were accumulated 
(here, 4.65 years) to represent estimated accident rate per year, 
a.k.a. annualized rate.

Second, we need to clearly understand that, unlike accident 
frequency histograms, a distribution of rates is not technically a 
pdf, even though we may try to curve-fit binned rate data with 
a pdf-like function (e.g., Eq. 4).3 More specifically, to cumulate 
accident frequencies over a range of TFH, we would compute a 
pdf ’s definite integral over that range. In contrast, to cumulate 
the probability of having an accident over a range of TFH requires 
a different method (described later in Eq. 12).

Parameter Estimation
The NonlinearModelFit function of Mathematica 7.0 (Wol-

fram, 2008) is used to estimate parameters for Eq. 4. For 
unconstrained parameters, NonlinearModelFit offers a range of 
standard numerical methods (e.g., Newton-Gauss, quasi-Newton, 
Levenberg-Marquardt). For constrained parameters (the method 
used here), where starting and/or final parameter values are forced 
to lie within some range pmin<pt<pmax, the Karush-Kuhn-Tucker 
(KKT) method was used.

The Problem of Noise
Noisy data such as Figure 4’s pose great difficulty for standard 

least-squares minimization. Parameters often fail to converge in 
rugged ratescapes, or may converge to a local minimum rather 
than a global one. 

To confront the noise, we first tried the simplest approach of 
using wider data bins. Surprisingly, this had almost no effect. 
Accidents within these particular data tended to bunch up in 
several adjacent bins, leaving no way to smooth them without 
resorting to arbitrary “bin widths of convenience,” which would 
negate our attempt to standardize risk exposure by having equal 
bin widths.

We next tried another standard tactic, namely dropping 
outliers. Outliers can be defined in various ways, but a rule of 
thumb is to drop all data points (here, rates) greater than 2.5-3 
standard deviations (s) from the group sample mean ȳ

This method was tested but abandoned for several reasons. 
Not only was it based on an (here invalid) assumption of distri-
butional normality, but useful information was destroyed, and 
the extremely long tail of the fitting function resulted in an s so 
small that we end up dropping very few of the obviously noisy 
values in the tail that threatened our curve-fit.

A third standard approach was next tried, involving data-
smoothing using moving averages. Unfortunately, this also had 
the effect of destroying information by smearing, greatly altering 
the “camel hump” representing the majority of the data.

A fourth approach was then considered. Simulated annealing 
(Kirkpatrick, Gelatt, & Vecchi, 1983) would involve adding 
noise to each parameter’s starting value before engaging in the 
gradient-descent, residual error-minimization process. Then, 
as that process progressed, we would “cool the noise,” allowing 
parameter estimates to bounce around and out of local minima 
until a global near-minimum could be found.

Nonetheless, in the case of noisy rate data, even such an 
elegant approach unfortunately would still leave us one major 
logical problem: All our data bins—including the noisy—would 
have equal opportunity to influence the residual sum-of-squares 
during the data-fit. Any “one bin, one vote” approach would 
implicitly allow all bins equal influence, no matter how many 
individuals each bin represented or what that bin’s expected 
variance was. This would confer inordinately large influence to 
sparsely populated bins, as well as to larger bins having inher-
ently low reliability.

After being frustrated by the problems outlined above, we 
finally settled on the standard procedure of weighting empty 
bins by 0 while weighting non-empty bin’s accident rate ri by 
the inverse of its sample variance (1/si

2). This is easily done in 
Mathematica by supplying a vector Weights→w to Nonlinear-
ModelFit, where w={w1, w2 ... wi}.

Since our data are rates are proportions, 0≤ri≤1, the ith bin 
weight wi becomes

ni being the ith bin’s total frequency count (accidents+non-
accidents) used to derive ri, and Ni being the number of pilots 
in the general population with that range of TFH.

In this particular instance, we do not know Ni, so we shall 
assume a constant sample ratio ni/Ni, making the term 1-(ni/Ni) 
constant for all bins. Since weights only need to be expressed 
relative to each other during curve-fitting, we can eliminate this 
constant term, leading to a functional weight of

Unfortunately, Eq. 7 is ill-behaved when ri=0 or 1, leading 
to division by zero. This can arise when either TFH bins are too 
narrow or when TFH is large, making the bin sample size ni too 
small, since few pilots have high TFH. Figure 6 (top) illustrates 
the problem.

∑
=

−
−

=
n

i
i yy

n
s

1

2)(
1

1 (5)

3 The area under a pdf is always constrained to equal 1.0. The area under a 
distribution of rates is unconstrained.
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To address this issue, Eq. 7 is modified slightly by adding a 
term ε designed to constrain behavior at 0 and 1:

As Figure 6 shows, when ε is small, Eq. 8 closely approximates 
Eq. 7 over most of its range but self-limits gracefully at ri=0 and 1. 

Parameter Start Values and Evolution
In multidimensional parameter spaces with unknown local 

minima, the choice of start values can be critical. A hybrid ap-
proach was used here. Start values were first selected that roughly 
approximated the shape of the binned data, namely A=1, α=6, 
β=0.5, δ=b=0. Figure 7 shows the shape of that plot.

To allow parameters to evolve in a manner emulating an-
nealing, NonlinearModelFit was set up to use weighted binned 
data and to run inside a For[i=1, γ >1.0, i=i+1] loop. Inside the 
For[] loop, to emulate noise injected at each iteration, the value 
of each parameter pj was multiplied by a random real number 
drawn from the range 1.0±γ. with γ starting at 0.02. 

During each (ith) iteration of the For[] loop, NonlinearModelFit 
was itself allowed to run for i iterations, after which i increased 
by 1 while γ decreased by a small fixed amount (.0002). γ thus 
emulated the cooling rate. Eventually, γ fell below 1.0, halting 
the injection of parameter noise and terminating the For[] loop 
after one final gradient descent.

Running this method repeatedly on a given dataset, we 
could broadly sample the parameter space. After inspection 

of the graphic data-fit plots verified a good fit, and multiple 
runs showed parameters similar to three significant Figures, we 
could be confident that those parameter values represented a 
near-optimal data-fit.

RESULTS

Modeling the Accident Rate Histograms
Below are the curve-fits for the empirical data, our two ac-

cident rate histograms. Figure 8 represents non-IR pilots, Figure 
9, IR pilots. Grate models are overlaid and parameter estimates 
given beneath. 

Figure 6. (red, solid lines) With Eq. 7, as r→0 or 1, 1/(r (1-
r))→ ∞; (top, dashed, blue line) With ε =.001, Eq. 8 gives a 
good approximation across most of r, from around 
.006<r<.994., but gracefully self-limits at r=0 and 1. 

Figure 7. Graph of Eq. 4 with A=1, α=6, β=0.5,δ=b=0.

Figure 8. Non-IR GA accident rates (median TFH=250.5).

Figure 9. IR GA accident rates (median TFH=823.5).

Parameter A α β δ b R2
w

N=39327 .0130 64.38 .0924 .3648 .0025 .654

Parameter A α β δ b R2
w

N=28360 .0174 51.35 .0890 2.243 .0011 .775
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Each Figure shows accident rate (y-axis) plotted by TFH-of-
pilot-at-the-time-of-accident (x-axis, bin width = 100). Each 
bin’s raw number of accidents (based on 4.65 years’ data) was 
divided by the total number of pilots (accident+non-accident) 
in the same range of TFH to produce a bin rate for that 100-hr 
range.4 The resulting rates were then divided by 4.65 to represent 
one average year’s rates before starting the curve-fitting process. 
Keep in mind that the height of the y-axis represents the prob-
ability of having an accident over a 100-FH span, x±50.
Grate is based on Eq. 4 with data weighted by Eq. 8 (ε =.001). 

Relative weights are drawn in green and have been scaled to fit 
within the Figure. Empty bins (ni=0) were weighted 0 to prevent 
them from influencing the curve-fit. The yellow band surround-
ing Grate represents its 95% confidence interval (CI).

Model Evaluation
A model’s ability to predict empirical data can be expressed by 

a variety of metrics. One of the simplest measures of goodness-
of-fit is the coefficient of determination, R2. R2 varies between 0 
and 1 and estimates the proportion of explained variance. The 
weighted form of R2 is nominally

with weighted means, for instance ȳw, of the form

However, Eq. 9 can throw values < 0 with nonlinear data, so 
we opt for the robust form of R2

w= r2
w, the square of the weighted 

correlation coefficient

With these data, Eq. 11 yields r2
w-non-IR = .654 and r2

w-IR = 
.775, both in the “moderate” range of fit. This is surprisingly 
high, given the noisy data. The explanation is straightforward. 
We see from the distribution of weights and the .95CIs that 
these relatively high r2

w values are due to the weighting function 
(Eq. 8) assigning large weights mostly to low values of TFH. 
The large majority of pilots have low TFH (median values x˜NIR 
=250.5, x˜IR=823.5). Large ns increase the numerator of Eq. 8, 
thus bin weight. In practical terms, weights are simply reliability 
estimates that are higher when based on larger numbers coupled 
with proportions close to 0 or 1. The .95CI reflects this. As 
weights shrink, .95CI widens.

The downside of high reliability at low TFH is lower reliability 
at high TFH. Figures 8 and 9 show the penalty imposed by rate 
noise. We can predict fairly reliably within the low-end range 

of about 45-250 TFH for non-IR (representing about 50% of 
non-IR pilots) and about 45-500 TFH for IR pilots (≈30%). 
More accurate prediction awaits the arrival of larger datasets, 
an important point we will revisit in the Discussion section.

USING Grate

Grate can either be used as a point-estimate of relative accident 
risk, or as a measure of cumulative risk over a known range of 
TFH. The latter is preferable but requires accurate values of TFH 
for each pilot at known start and end times. These are rarely 
available. Therefore, both estimators are defined.

A Point-Estimate of GA Flight Risk
To estimate the relative accident rate for a given value of 

THF=x, (meaning the range from x-50 to x+50, flown over the 
course of 1 year), simply populate Eq. 4’s parameters given the 
instrument rating of the pilot, and insert x. A variety of math-
ematical and statistical programs will handle the computation, 
including estimating G(α)—Mathematica, MATLAB, SPSS, 
SAS, and Excel, to name a few.

To illustrate, for non-IR pilots with the median value of 
TFHxNIR=250.5, Eq. 4 becomes

With G(64.38) ≈ 9.611×1087, Grate = .0068 (≈1 in 150) ex-
pected serious-to-fatal accidents per 100 TFH, which we can 
see is correct from Figure 8.5 

This point-estimate can be used as a statistical covariate to 
control for estimated relative flight risk when the data contain 
only a single value of TFH for each pilot. What the point-estimate 
essentially embodies is an estimated average probability of having 
an accident while flying 100 flight hours over the course of one 
year, given that value of TFH=x as the midpoint (i.e., x±50).

What we need to keep in mind while using such a point-
estimate is the implicit assumption that a) all pilots fly the same 
number of hours per year, and b) their accident rate does not 
change during that time. Naturally, both assumptions are false 
for any given pilot and can only be safely ignored where large 
sample sizes tend to dampen statistical randomness. 

In spite of these deficiencies, the point estimate should mark 
an improvement over a linear assumption of flight risk because 
it embodies a nonlinear relation derived from a reasonably large 
sample of GA pilots.

We now turn to a second, more comprehensive estimate of 
flight risk.

4 Since each rate bin is 100 TFH wide, the per-FH rate is simply the height 
of the y-axis divided by 100.
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5Gamma can be easily determined using the Microsoft Excel function 
=EXP(GAMMALN(α))
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A Cumulative Estimate of GA Flight Risk
In the fortunate circumstance where our data contain two 

separate, time-stamped values of TFH for each pilot,6 we can 
represent each pilot’s annualized accident probability as

where t2-t1 is the number of years over which the number of 
hours (TFH2-TFH1) were flown. The term Grate(x) is the value of 
Eq. 4, appropriate to the pilot’s instrument rating, at TFH=x. 
Bin width is dx, which we could ideally shrink to zero to find 
the limit of the definite product ∏. Note that the constant 
1/100 corrects for the original bin width of 100 TFH that we 
first used during curve-fitting. That is, Grate is now renormalized 
to an hourly rate, and the total number of bins used to calculate 
the limit of Eq. 12 would be (TFH2-TFH1)/dx.

Eq. 12 represents an idealized process of finding the overall 
probability of having an accident over a specified period of time. 
Each separate bin’s probability pi of having an accident is first 
transformed into the probability 1-pi of not having an accident 
over the small period dx. These separate 1-pis are then multiplied 
together to let ∏ represent the probability pnoAcc of not having 
any accident across TFH2-TFH1. This then makes 1-pnoAcc the 
probability of having at least one accident during TFH2-TFH1. 
Finally, (1-pnoAcc)/(t2-t1) represents that as an annualized rate.

Finding a closed solution for the limit of Eq. 12 is elusive 
and unnecessary in practice. We can let dx=1.0 and get solutions 
accurate to about four decimal places—precise enough for our 
noisy empirical data. Eq. 12 then reduces to

Eq. 13 is easily computed by a variety of common programs, 
using a simple For[] loop. Excel will do this as a macro, SPSS 
will do it with syntax, and so forth.

To illustrate, suppose an IR pilot has 347 TFH reported on 3 
Feb, 2012, and 633 TFH on 13 Jun, 2014 (i.e., over 861 days). 
With parameters from Figure 9, and G(51.35)=1.202⋅1065, Grate 
becomes

and Eq. 13 is

Pseudocode for ∏ will resemble
myPi=1.0;
For[x=347 to 633; 
myPi = myPi *(1-(Grate(x)/100));
x=x+1
];
Final=(365/861)*(1- myPi);

Here, Eq. 13 evaluates to about 0.0100 effective annual prob-
ability of having a serious-to-fatal accident, given the number 
of hours flown.

DISCUSSION

Can total flight hours predict general aviation accident rates? If 
so, what does that relation look like? Is there a “killing zone”—a 
range of TFH over which GA pilots are at greatest risk? These 
questions interest pilots, aviation policy makers, and insurance 
underwriters alike. 

Craig (2001) proposed that such a killing zone does indeed 
exist, and that it spans the range of approximately 50 to 350 total 
flight hours. Unfortunately, his analysis relied solely on  accident 
frequency counts, which fails to control for the number of non-
accident pilots having equivalent TFH. The use of accident rates 
solves that problem by dividing the number of accident pilots 
by the number of non-accident pilots in each bin of our TFH 
frequency histograms.

Now, given this more proper methodology, if such a killing 
zone truly exists, what does it look like? Many aviation research 
studies implicitly assume a straight-line relation between accident 
rates and TFH. They merely assume that risk decreases as pilots 
get more experienced. In fact, that relation appears markedly 
nonlinear. 

The present work uses a nonlinear, gamma-based function 
(Grate) to predict GA accident rates, even from extremely noisy 
TFH data. Two log-transformed sets of 2003-2007 NTSB/FAA 
data produced weighted goodness-of-fit (R2

w) of .654 and .775 for 
non-instrument-rated and instrument-rated pilots, respectively, 
considered to be “moderately good” by convention.

6 All raw data should be checked to ensure that t2>t1 and TFH2> TFH1. 
Experience with self-reported FAA data proves that this is usually (but not 
always) the case.
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Figures 10 and 11 show the rate data with the modeling 
function superimposed. The yellow region surrounding each 
modeling curve represents the .95 confidence interval.

Consistent with our intuition and the frequency count 
studies, these models suggest that a “killing zone” indeed ex-
ists. Accident rates seem to increase for GA pilots early in their 
post-certification careers, reaching a peak, and then declining 
with greater flight experience. 

However, that zone may be far broader than earlier imagined. 
Relatively high risk for an individual pilot may extend well be-
yond the 2,000-hour mark before leveling off to a baseline rate.

For now, we should consider these conclusions tentative. 
First, the 67,687 pilots in these datasets constitute just over 
10% of those currently licensed in the U.S. While this might 
represent an excellent dataset size in other venues, the relatively 
small number of pilots at high TFH leads to considerable noise 
in high-TFH rates. Data-weighting can overcome part of the 
problem but leads to wide confidence intervals at high TFH, 
reflecting the low statistical reliability of high-TFH data. 

The net effect is that, at this point in time, we have high con-
fidence in our data only at relatively low values of TFH. Better 
results await improved cross-communication between the FAA 
and NTSB databases, which will result in much larger sample 
sizes and much greater reliability across the full spectrum of TFH.

Figure 11. Annualized IR GA accident rates (median 
TFH=823.5).

We end with an appeal to the FAA and NTSB. The data needed 
to compute accident rates such as these come from multiple 
sources that are hard to access in the U.S. These include the 
FAA CAIS and DIWS databases, as well as the NTSB Aviation 
Accident Database. These databases do not intercommunicate 
well, and could be greatly improved by sharing a common pilot 
identifier code. The FAA has such an identifier called UniqueID, 
and sharing that with the NTSB would allow researchers to 
conduct studies with far greater sample sizes and reliability than 
is currently possible.

Nonetheless, we have explored a methodology here that will 
hopefully prove useful, either in its own right, or as a stimulus 
to further research.
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