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1 Problem Description

Most existing COVID-19 tests use nasal swabs and a polymerase chain reaction to detect the virus in a sample. We aim to
develop an alternative, computer vision based method of identifying whether or not a patient is infected with COVID-19, viral
pneumonia, or neither based on an X-ray image of their chest. We hope that such a model will expand access to quick, accurate
diagnoses of COVID-19, and that the architecture we produce may be able to be re-purposed to detect other lung conditions.

2 Dataset and Preprocessing

2.1 Dataset

The dataset used in this project is composed of images from two separate chest x-ray datasets. Together, these images constitute
16 classes: 15 disease classes and 1 normal class.

The COVID-19 Radiography Database [2] is a collection of about 4000 chest X-ray images, each labeled as one of three classes:
COVID-19, viral pneumonia, or “normal” (neither COVID-19 nor viral pneumonia). We used this dataset for the first part of our
project.

(a) Normal (b) COVID-19 (¢) Viral Pneumonia

Figure 1: COVID Chest X-ray dataset split into 3 classes
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The NIH Chest X-Ray Dataset [6,7] is a collection of approximately 122,000 chest X-ray images, each labeled as one of 15
classes. We used this dataset in the second part of our project.
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Figure 2: NIH Chest X-ray dataset split into 15 classes

We create a novel dataset for our project by sampling approximately 1000 images from each dataset. The total number of images
from each class are shown in Table 1.

Table 1: Dataset classes split

Class Label | # of Images
COVID 0 1000
Pneumonia 1 1000
Normal 2 1000
Atelectasis 3 1000
Consolidation 4 1000
Infiltration 5 1000
Pneumothorax 6 1000
Edema 7 628
Emphysema 8 892
Fibrosis 9 727
Effusion 10 1000
Pleural Thickening 11 1000
Cardiomegaly 12 1000
Nodule 13 1000
Mass 14 1000
Hernia 15 110

2.2 Preprocessing

Since the X-ray images are square and of varying resolution, we standardized the resolution to 256 x 256 pixels. Afterwards,
each pixel value was normalized to be between 0 and 1. Additionally, we convert each image to grayscale. Finally, we subtract
the mean value of each image’s pixels then divide by the standard deviation.

We split the dataset into training, validation, and test sets. The training set used 98% of the data, the validation set used 1% of the
data, and the test set used 1% of the data.

We created a dataloader to efficiently load the training and validation datasets, randomly shuffle the data, and batch the data.
The dataloader performs the requisite transforms (resize to 256 x 256, scale pixel values between 0 and 1) when loading the
particular batch to be used. We use a batch size of 32 for most of our models.



3 Experiments

3.1 Baseline: 4-Layer Conv Network

As a starting point, we wrote a 4 layer convolutional neural network with Dropout. Full details of this network are given in Table
2 in the Appendix. We trained this model separately on the COVID Radiography dataset and the merged dataset.

3.2 ResNet-Inspired Networks

In an attempt to capture the complexity of the merged, 16-class dataset, we drew inspiration from ResNet [8], a popular model
used for multi-class image classification. We wrote two versions of a “Conv-Skip Block" (A and B), whose exact structure
is defined in Tables 3 and 4 in the Appendix. The basic different between these blocks is that Conv-Skip Block A has three
convolutional layers, and adds the identity of the input to the later activation, while Conv-Skip Block B has only two convolutional
layers: one has a user-defined number (o) of 3x3 filters, while the other is a simple 1x1 convolution done on the identity of the
input, to be added to the later activation. Both Blocks use Dropout and Batch Normalization.

3.2.1 Model A

Our first network (defined in Table 5 in the Appendix) stacks three Conv-Skip Block As, followed by fully connected layers.
This model used no Dropout (p=0) and was trained on the merged, 16-class dataset.

3.2.2 Model B

In an attempt to counter over-fitting, Model B (Table 6 in the Appendix) has a very similar overall architecture as Model A (with
one extra convolutional layer at the beginning), but with Dropout. This model was also trained on the merged, 16-class dataset.

3.2.3 Model C

To further reduce over-fitting, Model C (Table 7 in the Appendix) removed uses Conv-Skip Block B instead of A (making for a
slightly smaller model). Dropout was also made more aggressive in this model; we increased drop probability. Model C was
trained separately on both the merged 16-class dataset, and the smaller 3-class COVID Radiography dataset.

4 Results and Analysis

4.1 Trained on COVID-19 Radiography Dataset

Our first task was to train our models on the full set of images provided in the radiography 3-class dataset. The task was to
classify X-ray images as either normal, pneumoniac or COVID lungs. For this dataset, we used a suite of CNNs with different
variations and techniques, as described in the following sections. We split our data into train, test, and validation splits, each with
a roughly even distribution of labels (we chose a 98-1-1 split).

4.1.1 Baseline: 4-Layer CNN

Our 4-layer baseline network converged quickly (Figure 6, Appendix); after training for 10 epochs, we observed a test-set
accuracy of 90% and a validation-set accuracy of 92% Given that this relatively simple model performed so well, we try
Model C, a more complex model, on the same dataset to see if we can boost performance.

4.1.2 Model C

After running Model C for 15 epochs, we observe a test-set accuracy of 92% and a validation-set accuracy of 91%, slightly
outperforming our 4-layer conv network. We further experimented with learning rate and hidden sizes, although none of these
experiments yielded significant improvements in performance.

4.2 Trained on Novel Expanded Dataset: NIH Chest X-Ray

After exhausting our models’ capabilities on the 3-class radiography dataset, we increase the complexity of our task by including
16 classes (see Dataset section for a description).



4.2.1 Model A

We first train model A, heavily inspired by the ResNet architecture, on the 16-class dataset. We observe dramatic over-fitting,
with our train accuracy reaching a peak of 92% after 20 epochs, but a validation accuracy that never exceeded 28 % . Figure 3
shows the learning curves; we see a steadily decreasing training loss alongside a monotonically increasing validation loss. For
our next set of experiments, we decide to reduce the complexity of the model and introduce various regularization techniques in
an attempt to combat the observed over-fitting problem.
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Figure 3: Learning Curves from Model A on 16-class dataset

4.2.2 Model B

We train Model B, hoping it might reduce over-fitting by adding a penalty to the loss function through dropout regularization.
After 15 epochs, we observed a training-set accuracy of 73% with a validation accuracy of 19%. Figure 7 in the Appendix
shows the learning curves; we see over-fitting once again, with worsened performance on both data splits, when compared to
Model A.

4.2.3 Model C

We test out a much smaller and less-complicated model, Model C, on the same dataset and observe results. After 8 epochs,
we observed a train accuracy of 65% and a test-set accuracy of 30%. Although the discrepancy between train and validation
accuracies was smaller than those observed with Model A and Model B, it is clear that Model C has a harder time picking up
features of the dataset, likely due to the smaller number of learnable parameters. See Figure 4 for learning curves from Model C.
We treat Model C as our best model for this task, since it achieved the highest accuracy on unseen data.
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Figure 4: Learning Curves from Model C on 16-class dataset



4.3 Analysis

Our final metrics on the 16-class extended task were much worse than our metrics for the 3-class dataset, showing us that the
extended dataset presents a much more challenging classification task. We saw dramatic over-fitting with more complex models,
and a lack of generalizability and sometimes under-fitting with the less-complicated models that we tried. These results suggest
that a model, given more and more learnable parameters, tends to memorize this data rather than pick up on generalizable
patterns. Since the 3-class version of this task seemed to be have a much more learnable objective, we hypothesize that some of
the classes introduced in the NIH dataset are harder to differentiate from one another than the classes present in the Covid-19
Chest X-ray dataset (pneumonia, covid, healthy). To test this hypothesis, we generate a confusion matrix for Model C on the test
set (see Figure 5 below). We see that our model was did a good job of detecting COVID lungs, healthy lungs, and pneumonia
lungs, which were the three classes present in the Covid-19 Chest X-ray dataset. The model had a much more difficult time
discriminating between the other lung diseases introduced in the NIH dataset. As a reference, we ran a pre-trained ResNet-18
model, and we observed the same trends (over-fitting to training dataset with poor performance on unseen data).

To further understand the errors our best model made on the 16-class data, we calculated the percentage of test examples whose
correct class was within the top 3 from our predictions. It was good to see that although Model C achieved a test accuracy of
30%, around 53% of test examples had the correct label in the top 3 classes in our output.

Upon looking through the NIH dataset, it appears that certain diseases have a lot of variation in the images corresponding to
that label. It’s possible that some of these diseases manifest differently in different patients, leading to higher variation in chest
X-ray features (see Figure 8 for example images for cardiomegaly). Furthermore, the labels for this dataset were created through
an NLP bootstrapping algorithm; although the expected accuracy is said to be higher than 90%, perhaps noise introduced by
mislabeled examples makes it harder for models to learn an objective function.
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Figure 5: Confusion Matrix (y = true label, x = prediction)
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5 Appendix

Github repo: https://github.com/arvindvs/COVID-19-detection

Table 2: 4-layer CNN Architecture

Layer

num. output features

size of output

kernel size

Input

Conv2D C1
MaxPool2D
RelLU
Dropout(p=0.1)
Conv2D C2
MaxPool2D
RelLU
Dropout(p=0.2)
Conv2D C3
MaxPool2D
ReLLU
Dropout(p=0.5)
Conv2D C4
MaxPool2D
ReLU

Flatten

Linear FC1
RelLLU

Linear FC2
RelLU

Linear FC3
Softmax

1
16
16
16
16
32
32
32
32
64
64
64
64
128
128
128
1

1
1
1
1
1
1

256 x 256
256 x 256
128 x 128
128 x 128
128 x 128
128 x 128
64 x 64
64 x 64
64 x 64
64 x 64
32x32
32x32
32x32
32x32
16 x 16
16 x 16
32,768
2048
2,048
512

512

16

1

5x5
2x2

5x5
2x2

3x3
2x2

3x53
2x2

Table 3: Conv-Skip Block A (i, h, o, p)

Layer

num. output features

size of output

kernel size

Input
Conv2D C1
Batchnorm
RelLLU
Conv2D C2
Add Input
ReLU
Conv2D C3
RelLU
Dropout(p)
MaxPool

i
h
h
h
i
i
i
0
0
0
0

NxN
NxN
NxN
NxN
NxN
NxN
NxN
NxN
NxN
NxN
N/2 x N/2

3x3

3x3

3x3




Table 4: Conv-Skip Block B (i, o, p)

Layer num. output features size of output kernel size
Input i NxN -
Conv2D C1 0 NxN 3x3
Batchnorm 0 NxN -
ReLLU 0 NxN -
Conv2D C2(Input) o NxN 1x1
Add C2(Input) 0 NxN -
ReLU 0 NxN -
Dropout(p) 0 NxN -
MaxPool 0 N/2 x N/2 -
Table 5: Model A
Layer num. output features  size of output  kernel size
Input 1 256 x 256 -
Conv-SkipA(h=16, p=0.0) SB1 32 128 x 128 -
Conv-SkipA(h=16, p=0.0) SB2 64 64 x 64 -
Conv-SkipA(h=16, p=0.0) SB3 32 32x32 -
Flatten 1 32,768 —
Linear FC1 1 512 -
RelLU 1 512 -
Linear FC2 1 16 -
Softmax 1 1 -
Table 6: Model B
Layer num. output features size of output kernel size
Input 1 256 x 256 -
Conv2D C1 16 256 x 256 5x5
RelLU 16 256 x 256 -
Conv-SkipA(h=16, p=0.1) SB1 64 128 x 128 -
Conv-SkipA(h=32, p=0.2) SB2 128 64 x 64 -
Conv-SkipA(h=64, p=0.3) SB3 128 32x32 -
Flatten 1 32,768 —
Linear FC1 1 512 -
RelLU 1 512 -
Linear FC2 1 16 -
Softmax 1 1 -
Table 7: Model C
Layer num. output features size of output kernel size
Input 1 256 x 256 -
Conv2D C1 16 256 x 256 5x5
MaxPool2D 16 128 x 128 2x2
RelLU 16 128 x 128 -
Conv-SkipB(p=0.1) SB1 32 64 x 64 -
Conv-SkipB(p=0.3) SB2 64 32x32 -
Conv-SkipB(p=0.6) SB3 128 16x 16 -
Flatten 1 32,768 —
Linear FC1 1 512 -
RelLU 1 512 -
Linear FC2 1 16 -
Softmax 1 1 -
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Figure 6: Learning Curves on 4-layer Conv Network on 3-class dataset
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Figure 7: Learning Curves from Model B on 16-class dataset
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Figure 8: COVID Chest X-ray dataset split into 3 classes
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