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Abstract. Robust driver attention prediction for critical situations is a
challenging computer vision problem, yet essential for autonomous driv-
ing. Because critical driving moments are so rare, collecting enough data
for these situations is difficult with the conventional in-car data collec-
tion protocol—tracking eye movements during driving. Here, we first
propose a new in-lab driver attention collection protocol and introduce
a new driver attention dataset, Berkeley DeepDrive Attention (BDD-A)
dataset, which is built upon braking event videos selected from a large-
scale, crowd-sourced driving video dataset. We further propose Human
Weighted Sampling (HWS) method, which uses human gaze behavior
to identify crucial frames of a driving dataset and weights them heavily
during model training. With our dataset and HWS, we built a driver
attention prediction model that outperforms the state-of-the-art and
demonstrates sophisticated behaviors, like attending to crossing pedes-
trians but not giving false alarms to pedestrians safely walking on the
sidewalk. Its prediction results are nearly indistinguishable from ground-
truth to humans. Although only being trained with our in-lab attention
data, the model also predicts in-car driver attention data of routine driv-
ing with state-of-the-art accuracy. This result not only demonstrates the
performance of our model but also proves the validity and usefulness of
our dataset and data collection protocol.

Keywords: Driver attention prediction - BDD-A dataset -
Berkeley DeepDrive

1 Introduction

Human visual attention enables drivers to quickly identify and locate potential
risks or important visual cues across the visual field, such as a darting-out pedes-
trian, an incursion of a nearby cyclist or a changing traffic light. Drivers’ gaze
behavior has been studied as a proxy for their attention. Recently, a large driver
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attention dataset of routine driving [1] has been introduced and neural networks
[21,25] have been trained end-to-end to estimate driver attention, mostly in
lane-following and car-following situations. Nonetheless, datasets and prediction
models for driver attention in rare and critical situations are still needed.

However, it is nearly impossible to collect enough driver attention data for
crucial events with the conventional in-car data collection protocol, i.e., collect-
ing eye movements from drivers during driving. This is because the vast majority
of routine driving situations consist of simple lane-following and car-following.
In addition, collecting driver attention in-car has two other major drawbacks. (i)
Single focus: at each moment the eye-tracker can only record one location that
the driver is looking at, while the driver may be attending to multiple important
objects in the scene with their covert attention, i.e., the ability to fixate one’s
eyes on one object while attending to another object [6]. (ii) False positive gazes:
human drivers also show eye movements to driving-irrelevant regions, such as
sky, trees, and buildings [21]. It is challenging to separate these false positives
from gazes that are dedicated to driving.

An alternative that could potentially address these concerns is showing
selected driving videos to drivers in the lab and collecting their eye movements
with repeated measurements while they perform a proper simulated driving task.
Although this third-person driver attention collected in the lab is inevitably dif-
ferent from the first-person driver attention in the car, it can still potentially
reveal the regions a driver should look at in that particular driving situation
from a third-person perspective. These data are greatly valuable for identify-
ing risks and driving-relevant visual cues from driving scenes. To date, a proper
data collection protocol of this kind is still missing and needs to be formally
introduced and tested.

Another challenge for driver attention prediction, as well as for other driving-
related machine learning problems, is that the actual cost of making a particular
prediction error is unknown. Attentional lapses while driving on an empty road
does not cost the same as attentional lapses when a pedestrian darts out. Since
current machine learning algorithms commonly rely on minimizing average pre-
diction error, the critical moments, where the cost of making an error is high,
need to be properly identified and weighted.

Here, our paper offers the following novel contributions. First, in order to
overcome the drawbacks of the conventional in-car driver attention collection
protocol, we introduce a new protocol that uses crowd-sourced driving videos
containing interesting events and makes multi-focus driver attention maps by
averaging gazes collected from multiple human observers in lab with great accu-
racy (Fig. 1). We will refer to this protocol as the in-lab driver attention collection
protocol. We show that data collected with our protocol reliably reveal where a
experienced driver should look and can serve as a substitute for data collected
with the in-car protocol. We use our protocol to collect a large driver attention
dataset of braking events, which is, to the best of our knowledge, the richest
to-date in terms of the number of interactions with other road agents. We call
this dataset Berkeley DeepDrive Attention (BDD-A) dataset and will make it
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Fig. 1. An example of input raw images (left), ground-truth human attention maps
collected by us (middle), and the attention maps predicted by our model (right). The
driver had to sharply stop at the green light to avoid hitting two pedestrians running
the red light. The collected human attention map accurately shows the multiple regions
that simultaneously demand the driver’s attention. Our model correctly attends to the
crossing pedestrians and does not give false alarms to other irrelevant pedestrians
(Color figure online)

publicly available. Second, we introduce Human Weighted Sampling (HWS),
which uses human driver eye movements to identify which frames in the dataset
are more crucial driving moments and weights the frames according to their
importance levels during model training. We show that HWS improve model per-
formance on both the entire testing set and the subset of crucial frames. Third,
we propose a new driver attention prediction model trained on our dataset with
HWS. The model shows sophisticated behaviors such as picking out pedestrians
suddenly crossing the road without being distracted by the pedestrians safely
walking in the same direction as the car (Fig. 1). The model prediction is nearly
indistinguishable from ground-truth based on human judges, and it also matches
the state-of-the-art performance level when tested on an existing in-car driver
attention dataset collected during driving.

2 Related Works

Image/Video Saliency Prediction. A large variety of the previous saliency
studies explored different bottom-up feature-based models [3,4,9,20,28,32] com-
bining low-level features like contrast, rarity, symmetry, color, intensity and ori-
entation, or topological structure from a scene [12,29,32]. Recent advances in
deep learning have achieved a considerable improvement for both image saliency
prediction [13,15-17] and video saliency prediction [2,8,18]. These models have
achieved start-of-the-art performance on visual saliency benchmarks collected
mainly when human subjects were doing a free-viewing task, but models that
are specifically trained for predicting the attention of drivers are still needed.

Driver Attention Datasets. DR(eye)VE [1] is the largest and richest existing
driver attention dataset. It contains 6 h of driving data, but the data was col-
lected from only 74 rides, which limits the diversity of the dataset. In addition,
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the dataset was collected in-car and has the drawbacks we introduced earlier,
including missing covert attention, false positive gaze, and limited diversity. The
driver’s eye movements were aggregated over a small temporal window to gen-
erate an attention map for a frame, so that multiple important regions of one
scene might be annotated. But there was a trade-off between aggregation window
length and gaze location accuracy, since the same object may appear in differ-
ent locations in different frames. Reference [10] is another large driver attention
dataset, but only six coarse gaze regions were annotated and the exterior scene
was not recorded. References [24] and [27] contain accurate driver attention maps
made by averaging eye movements collected from human observers in-lab with
simulated driving tasks. But the stimuli were static driving scene images and
the sizes of their datasets are small (40 frames and 120 frames, respectively).

Driver Attention Prediction. Self-driving vehicle control has made notable
progress in the last several years. One of major approaches is a mediated
perception-based approach — a controller depends on recognizing human-
designated features, such as lane markings, pedestrians, or vehicles. Human
driver’s attention provides important visual cues for driving, and thus efforts
to mimic human driver’s attention have increasingly been introduced. Recently,
several deep neural models have been utilized to predict where human drivers
should pay attention [21,25]. Most of existing models were trained and tested on
the DR(eye)VE dataset [1]. While this dataset is an important contribution, it
contains sparse driving activities and limited interactions with other road users.
Thus it is restricted in its ability to capture diverse human attention behav-
iors. Models trained with this dataset tend to become vanishing point detectors,
which is undesirable for modeling human attention in urban driving environ-
ment, where drivers encounter traffic lights, pedestrians, and a variety of other
potential cues and obstacles. In this paper, we provide our human attention
dataset as a contribution collected from a publicly available large-scale crowd-
sourced driving video dataset [30], which contains diverse driving activities and
environments, including lane following, turning, switching lanes, and braking in
cluttered scenes.

3 Berkeley DeepDrive Attention (BDD-A) Dataset

Dataset Statistics. The statistics of our dataset are summarized and com-
pared with the largest existing dataset (DR(eye)VE) [1] in Table 1. Our dataset
was collected using videos selected from a publicly available, large-scale, crowd-
sourced driving video dataset, BDD100k [30,31]. BDD100K contains human-
demonstrated dashboard videos and time-stamped sensor measurements col-
lected during urban driving in various weather and lighting conditions. To
efficiently collect attention data for critical driving situations, we specifically
selected video clips that both included braking events and took place in busy
areas (see supplementary materials for technical details). We then trimmed
videos to include 6.5s prior to and 3.5s after each braking event. It turned
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out that other driving actions, e.g., turning, lane switching and accelerating,
were also included. 1,232 videos (=3.5h) in total were collected following these
procedures. Some example images from our dataset are shown in Fig.6. Our
selected videos contain a large number of different road users. We detected the
objects in our videos using YOLO [22]. On average, each video frame contained
4.4 cars and 0.3 pedestrians, multiple times more than the DR(eye)VE dataset
(Table1).

Table 1. Comparison between driver attention datasets

Dataset # Rides|Durations |# Drivers|# Gaze # Cars (per # Pedestrians # Braking
(hours) providers |frame) (per frame) events

DR(eye)VE [1]| 74 |6 8 8 1.0 0.04 464

BDD-A 1,232 3.5 1,232 45 4.4 0.25 1,427

Data Collection Procedure. For our eye-tracking experiment, we recruited
45 participants who each had more than one year of driving experience. The
participants watched the selected driving videos in the lab while performing a
driving instructor task: participants were asked to imagine that they were driving
instructors sitting in the copilot seat and needed to press the space key whenever
they felt it necessary to correct or warn the student driver of potential dangers.
Their eye movements during the task were recorded at 1000 Hz with an EyeLink
1000 desktop-mounted infrared eye tracker, used in conjunction with the Eyelink
Toolbox scripts [7] for MATLAB. Each participant completed the task for 200
driving videos. Each driving video was viewed by at least 4 participants. The gaze
patterns made by these independent participants were aggregated and smoothed
to make an attention map for each frame of the stimulus video (see Fig.6 and
supplementary materials for technical details).

Psychological studies [11,19] have shown that when humans look through
multiple visual cues that simultaneously demand attention, the order in which
humans look at those cues is highly subjective. Therefore, by aggregating gazes
of independent observers, we could record multiple important visual cues in one
frame. In addition, it has been shown that human drivers look at buildings,
trees, flowerbeds, and other unimportant objects non-negligibly frequently [1].
Presumably, these eye movements should be regarded as noise for driving-related
machine learning purposes. By averaging the eye movements of independent
observers, we were able to effectively wash out those sources of noise (see Fig. 2B).

Comparison with In-car Attention Data. We collected in-lab driver atten-
tion data using videos from the DR(eye) VE dataset. This allowed us to compare
in-lab and in-car attention maps of each video. The DR(eye) VE videos we used
were 200 randomly selected 10-second video clips, half of them containing brak-
ing events and half without braking events.

We tested how well in-car and in-lab attention maps highlighted driving-
relevant objects. We used YOLO [22] to detect the objects in the videos of our
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Fig. 2. Comparison between in-car and in-lab driver attention maps. (A) Proportions of
attended objects of different categories for in-car and in-lab driver attention maps. In-
car attention maps tend to highlight significantly fewer driving-relevant objects than in-
lab attention maps. (B) An example of in-car driver attention maps showing irrelevant
regions. The in-lab attention map highlights the car in front and a car that suddenly
backed up, while the in-car attention map highlights some regions of the building

dataset. We identified three object categories that are important for driving
and that had sufficient instances in the videos (car, pedestrian and cyclist). We
calculated the proportion of attended objects out of total detected instances
for each category for both in-lab and in-car attention maps (see supplementary
materials for technical details). The results showed that in-car attention maps
highlighted significantly less driving-relevant objects than in-lab attention maps
(see Fig.2A).

The difference in the number of attended objects between the in-car and in-
lab attention maps can be due to the fact that eye movements collected from a
single driver do not completely indicate all the objects that demand attention
in the particular driving situation. One individual’s eye movements are only an
approximation of their attention [23], and humans can also track objects with
covert attention without looking at them [6]. The difference in the number of
attended objects may also reflect the difference between first-person driver atten-
tion and third-person driver attention. It may be that the human observers in
our in-lab eye-tracking experiment also looked at objects that were not relevant
for driving. We ran a human evaluation experiment to address this concern.

Human Evaluation. To verify that our in-lab driver attention maps highlight
regions that should indeed demand drivers’ attention, we conducted an online
study to let humans compare in-lab and in-car driver attention maps. In each
trial of the online study, participants watched one driving video clip three times:
the first time with no edit, and then two more times in random order with over-
laid in-lab and in-car attention maps, respectively. The participant was then
asked to choose which heatmap-coded video was more similar to where a good
driver would look. In total, we collected 736 trials from 32 online participants.
We found that our in-lab attention maps were more often preferred by the partic-
ipants than the in-car attention maps (71% versus 29% of all trials, statistically
significant as p = 1x1072%, see Table 2). Although this result cannot suggest that
in-lab driver attention maps are superior to in-car attention maps in general, it
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Table 2. Two human evaluation studies were conducted to compare in-lab human
driver attention maps with in-car human driver attention maps and attention maps
predicted by our HWS model, respectively. In-car human driver attention maps were
preferred in significantly less trials than the in-lab human driver attention maps. The
attention maps predicted by our HWS model were not preferred in as many trials as the
in-lab human driver attention maps, but they achieved significantly higher preference
rate than the in-car human driver attention maps

# trials | Attention maps Preference rate
Study 1| 736 In-car human driver | 29%
In-lab human driver | 71%
Study 2 | 462 HWS model predicted | 41%
In-lab human driver | 59%

does show that the driver attention maps collected with our protocol represent
where a good driver should look from a third-person perspective.

In addition, we will show in the Experiments section that in-lab attention
data collected using our protocol can be used to train a model to effectively
predict actual, in-car driver attention. This result proves that our dataset can
also serve as a substitute for in-car driver attention data, especially in crucial
situations where in-car data collection is not practical.

To summarize, compared with driver attention data collected in-car, our
dataset has three clear advantages: multi-focus, little driving-irrelevant noise,
and efficiently tailored to crucial driving situations.

4 Attention Prediction Model

4.1 Network Configuration

Our goal is to predict the driver attention map for a video frame given the
current and previous video frames. Our model structure can be divided into
a visual feature extraction module, a visual feature processing module, and a
temporal processing module (Fig. 3).

-
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Fig. 3. An overview of our proposed model that predicts human driver’s attention from
input video frame. We use AlexNet pre-trained on ImageNet as a visual feature extrac-
tor. We also use three fully convolutional layers (Conv2D) followed by a convolutional
LSTM network (Conv2D LSTM)
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The visual feature extraction module is a pre-trained dilated fully convolu-
tional neural network, and its weights are fixed during training. We used Ima-
geNet pre-trained AlexNet [14] as our visual feature extraction module. We chose
to use the features from the convb layer. In our experiment, the size of the input
was set to 1024 x 576 pixels, and the feature map by AlexNet was upsampled to
64 x 36 pixels and then fed to the following visual feature processing module.

The visual feature processing module is a fully convolutional neural network.
It consists of three convolutional layers with 1 x 1 kernels and a dropout layer
after each convolutional layer. It further processes the visual features from the
previous extraction module and reduces the dimensionality of the visual features
from 256 to 8. In our experiments, we observed that without the dropout layers,
the model easily got stuck in a suboptimal solution which simply predicted a
central bias map, i.e. an attention map concentrated in a small area around the
center of the frame.

The temporal processor is a convolutional LSTM network with a kernel size
of 3 x 3 followed by a Gaussian smooth layer (o set to 1.5) and a softmax layer.
It receives the visual features of successive video frames in sequence from the
visual feature processing module and predicts an attention map for every new
time step. Dropout is used for both the linear transformation of the inputs and
the linear transformation of the recurrent states. We had also experimented with
using an LSTM network for this module and observed that the model tended
to incorrectly attend to only the central region of the video frames. The final
output of this model is a probability distribution over 64 x 36 grids predicting
how likely each region of the video frame is to be looked at by human drivers.
Cross-entropy is chosen as the loss function to match the predicted probability
distribution to the ground-truth.
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Fig. 4. Human Weighted Sampling: (A) For each video frame, we measure the KL
divergence between the collected driver attention maps and the mean attention map
for that entire video clip (=10s). We use this computed KL divergence as a weight
value to sample image frames during training phase, i.e., training a model more often
with uncommon attention maps. Histograms show that more uncommon attention
maps were selected for training the model, e.g., seeing pedestrians or traffic lights is
weighted more than just seeing the vanishing point of roads. (B) Normalized sampling
weights as a function of KL divergence values. A normalized sampling weight value of
1 indicates that the video frame is sampled once on average during a single epoch
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4.2 Human Weighted Sampling (HWS)

Human driver attention datasets, as well as many other driving related datasets,
share a common bias: the vast majority of the datasets consist of simple driving
situations such as lane-following or car-following. The remaining small propor-
tion of driving situations, such as pedestrians darting out, traffic lights changing,
etc., are usually more crucial, in the sense that making errors in these moments
would lead to greater cost. Therefore, ignoring this bias and simply using mean
prediction error to train and test models can be misleading. In order to tackle
this problem, we developed a new method that uses human gaze data to deter-
mine the importance of different frames of a driving dataset and samples the
frames with higher importance more frequently during training.

In simple driving situations human drivers only need to look at the center
of the road or the car in front, which can be shown by averaging the attention
maps of all the frames of one driving video. When the attention map of one
frame deviates greatly from the average default attention map, it is usually
an important driving situation where the driver has to make eye movements
to important visual cues. Therefore, the more an attention map varies from
the average attention map of the video, the more important the corresponding
training frame is. We used the KL divergence to measure the difference between
the attention map of a particular frame and the average attention map of the
video. The KL divergence determined the sampling weight of this video frame
during training.

The histogram of the KL divergence of all the training video frames of our
dataset is shown in Fig.4. As we expected, the histogram was strongly skewed
to the left side. Our goal was to boost up the proportion of the frames of high
KL divergence values by weighted sampling. The sampling weight was deter-
mined as a function of KL divergence (Dxp,) illustrated in Fig.4B. The middle
part of this function (Dkp, € [1,3]) was set to be proportional to the inverse of
the histogram so that after weighted sampling the histogram of KL divergence
would become flat on this range. The left part of the function (Dky, <1) was set
to a low constant value so that those frames would be sampled occasionally but
not completely excluded. The right part of the function was set to a saturated
constant value instead of monotonically increasing values in order to avoid over-
fitting the model to this small proportion of data. Besides, the attention maps
collected in the beginning and the end of each video clip can deviates from the
average default attention map merely because the participants were distracted
by the breaks between video clips. We therefore restricted the sampling weights
of the first second and the last 0.5s of each video to be less or equal to once
per epoch. The histogram of KL divergence after weighted sampling is shown in
Fig.4A. In our experiment, we needed to sample the training frames in contin-
uous sequences of 6 frames. For a particular sequence, its sampling weight was
equal to the sum of the sampling weights of its member frames. These sequences
were sampled at probabilities proportional to the sequence sampling weights.
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5 Results and Discussion

Here, we first provide our training and evaluation details, then we summarize
the quantitative and qualitative performance comparison with existing gaze pre-
diction models and variants of our model. To test how natural and reasonable
our model prediction look to humans, we conduct a human evaluation study
and summarize the results. We further test whether our model trained on in-lab
driver attention data can also predict driver attention maps collected in-car.

5.1 Training and Evaluation Details

We made two variants of our model. One was trained with a regular regime,
i.e., equal sampling during training, and the other was trained with Human
Weighted Sampling (HWS). Except for the sampling method during training,
our default model and HWS model shared the same following training settings.
We used 926 videos from our BDD-A dataset as the training set and 306 videos as
the testing set. We downsampled the videos to 1024 x 576 pixels and 3 Hz. After
this preprocessing, we had about 30k frames in our training set and 10k frames
in our testing set. We used cross-entropy between predicted attention maps and
human attention maps as the training loss, along with Adam optimizer (learning
rate = 0.001, 51 = 0.9, B2 = 0.999, ¢ = 1 x 10~8). Each training batch contained
10 sequences and each sequence had 6 frames. The training was done for 10,000
iterations. The two models showed stabilized testing errors by iteration 10,000.

To our knowledge, [21] and [25] are the two deep neural models that use dash
camera videos alone to predict human driver’s gaze. They demonstrated similar
results and were shown to surpass other deep learning models or traditional
models that predict human gaze in non-driving-specific contexts. We chose to
replicate [21] to compare with our work because their prediction code is public.
The model designed by [21] was trained on the DR(eye)VE dataset [1]. We
will refer to [21]’s model as DR(eye)VE model in the following. The training
code of [21] is not available. We implemented code to fine-tune their model on
our dataset, but the fine-tuning did not converge to any reasonable solution,
potentially due to some training parameter choices that were not reported. We
then tested their pre-trained model directly on our testing dataset without any
training on our training dataset. Since the goal of the comparison was to test the
effectiveness of the combination of model structure, training data and training
paradigm as a whole, we think it is reasonable to test how well DR(eye)VE
model performs on our dataset without further training. For further comparison,
we fine-tuned a publicly available state-of-the-art image gaze prediction model,
SALICON [13] on our dataset. We used the open source implementation [26].
We also tested our models against a baseline model that always predicts the
averaged human attention map of training videos.

Kullback-Leibler divergence (KL divergence, Dgy,), Pearson’s Correlation
Coefficient (CC), Normalized Scanpath Saliency (NSS) and Area under ROC
Curve (AUC) are four commonly used metrics for attention map prediction
[5,21,25]. We calculated the mean prediction errors in these four metrics on the
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Table 3. Performance comparison of human attention prediction. Mean and 95% boot-
strapped confidence interval are reported

Entire testing set Testing subset where Dk, (GT, Mean) > 2

KL divergence Correlation coefficient | KL divergence Correlation coefficient

Mean | 95% CI Mean | 95% CI Mean |95% CI Mean |95% CI
Baseline 1.50 |(1.45, 1.54) |0.46 |(0.44, 0.48) 1.87 |(1.80, 1.94) |0.36 |(0.34, 0.37)
SALICON [13] |1.41 |[(1.39, 1.44) |0.53 |(0.51, 0.54) 1.76 |(1.72, 1.80) |0.39 |(0.37, 0.41)
DR(eye)VE [21] 1.95 |(1.87, 2.04) |0.50 |(0.48, 0.52) 2.63 [(2.51, 2.77) |0.35 |(0.33, 0.37)
Ours (default) [1.24 |(1.21,1.28) |0.58 |(0.56, 0.59) 1.71 [(1.65, 1.79) |0.41 |(0.40, 0.43)
Ours (HWS) 1.24 |(1.21, 1.27) | 0.59 |(0.57, 0.60) |1.67 |(1.61, 1.73)|0.44 |(0.42, 0.45)

testing set to compare the different models. In order to test how well the models
perform at important moments where drivers need to watch out, we further
calculated the mean prediction errors on the subset of testing frames where
the attention maps deviate significantly from the average attention maps of the
corresponding videos (defined as KL divergence greater than 2.0). We will refer
to these frames as non-trivial frames. Our models output predicted attention
maps in the size of 64 x 36 pixels, but the DR(eye)VE model and the SALICON
outputs in bigger sizes. For a fair comparison, we scaled the DR(eye)VE model
and the SALICON model’s predicted attention maps into 64 x 36 pixels before
calculating the prediction errors.

Another important evaluation criterion of driver attention models is how suc-
cessfully they can attend to the objects that demand human driver’s attention,
e.g. the cars in front, the pedestrians that may enter the roadway, etc. Therefore,
we applied the same attended object analysis described in the Berkeley Deep-
Drive Attention Dataset section. We used YOLO [22] to detect the objects in
the videos of our dataset. We selected object categories that are important for
driving and that have enough instances in both our dataset and the DR(eye)VE
dataset for comparison (car, pedestrian and cyclist). We calculated the propor-
tions of all the detected instances of those categories that were actually attended
to by humans versus the models. The technical criterion of determining attended
objects was the same as described in the Berkeley DeepDrive Attention Dataset
section.

5.2 Evaluating Attention Predictor

Quantitative Analysis of Attention Prediction. The mean prediction
errors of different models are summarized in Table 3 (measured in Dk, and CC)
and Table S1 (measured in NSS and AUC) in supplementary materials. Both
of our models significantly outperformed the DR(eye)VE model, the SALICON
model and the baseline model in all metrics on both the entire testing set and
the subset of non-trivial frames. Our model trained with HWS was essentially
trained on a dataset whose distribution was altered from the distribution of the
testing set. However, our HWS model showed better results than our default
model even when being tested on the whole testing set. When being tested on
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Fig. 5. Analysis of attended objects for human attention and different models tested
on our dataset (A) and the DR(eye)VE dataset (B). Error bars show 95% bootstrapped
confidence intervals

the subset of non-trivial frames, our HWS model outperformed our default model
even more significantly. These results suggest that HWS has the power to over-
coming the dataset bias and better leveraging the knowledge hidden in crucial
driving moments.

The results of the attended object analysis are summarized in Fig. 5A. Cars
turned out to be easy to identify for all models. This is consistent with the
fact that a central bias of human attention is easy to learn and cars are very
likely to appear in the center of the road. However, for pedestrians and cyclists,
the DR(eye)VE model, SALICON model and baseline model all missed a large
proportion of them compared with human attention ground-truth. Both of our
models performed significantly better than all the other competing models in the
categories of pedestrians and cyclists, and our HWS model matched the human
attention performances the best.

Importantly, our HWS model did not simply select objects according to their
categories like an object detection algorithm. Considering the category that has
the highest safety priority, pedestrian, our models selectively attended to the
pedestrians that were also attended to by humans. Let us refer to the pedestrians
that were actually attended to by humans as the important pedestrians and the
rest of them as non-important pedestrians. Among all the pedestrians detected
by the object detection algorithm, the proportion of important pedestrians was
33%. If our HWS model were simply detecting pedestrians at a certain level and
could not distinguish between important pedestrians and non-important pedes-
trians, the proportion of important pedestrians among the pedestrians attended
to by our model should also be 33%. However, the actual proportion of impor-
tant pedestrians that our HWS model attended to was 48% with a bootstrapped
95% confidence interval of [42%, 55%)]. Thus, our HWS model predicts which of
the pedestrians are the ones most relevant to human drivers.

Qualitative Analysis of Attention Prediction. Some concrete examples
are shown in Fig. 6 (see supplementary information for videos). These examples
demonstrates some important driving scenarios: pedestrian crossing, cyclist get-
ting very close to the vehicle and turning at a busy crossing. It can be seen from
these examples that the SALICON model and the DR(eye)VE model mostly
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Original video Human gaze  SALICON DR(eye)VE Ours (default) Ours (HWS)

Fig. 6. Examples of the videos in our dataset, ground-truth human attention maps
and the prediction of different models. The red rectangles in the original video column
highlight the pedestrians that pose a potential hazard. Row 1: the driver had the green
light, but a pedestrian was about to cross the road while speaking on a phone without
looking at the driver. Another pedestrian was present in the scene, but not relevant to
the driving decision. Row 2: the driver had a yellow light and some pedestrians were
about to enter the roadway. Another pedestrian was walking in the same direction as
the car and therefore not relevant to the driving decision. Row 3: a cyclist was very
close to the car. Row 4: the driver was making a right turn and needed to yield to the
crossing pedestrian. Other pedestrians were also present in the scene but not relevant
to the driving decision (Color figure online)

only predicted to look at the center of the road and ignored the crucial pedes-
trians or cyclists. In the examples of row 1, 2 and 3, both our default model and
HWS model successfully attended to the important pedestrian/cyclist, and did
not give false alarm for other pedestrians who were not important for the driving
decision. In the challenging example shown in row 4, the driver was making a
right turn and needed to yield to the crossing pedestrian. Only our HWS model
successfully overcame the central bias and attended to the pedestrian appearing
in a quite peripheral area in the video frame.

Human Evaluation. To further test how natural and reasonable our HWS
model’s predicted attention maps look to humans, we conducted an online Turing
Test. In each trial, a participant watched one driving video clip three times: the
first time with no edit, and then two times in random order with the ground-
truth human driver attention map and our HWS model’s predicted attention
map overlaid on top, respectively. The participant was then asked to choose
whether the first or the second attention map video was more similar to where
a good driver would look.

Note that the experiment settings and instructions were the same as the
online study described in the dataset section, except that one compares model
prediction against the in-lab driver attention maps, and the other compares the
in-car driver attention maps against the in-lab driver attention maps. Therefore,
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the result of this Turing Test can be compared with the result of the previous
online study. In total, we collected 462 trials from 20 participants. If our HWS
model’s predicted attention maps were perfect and indistinguishable from the
ground-truth human driver attention maps, the participants would had to make
random choices, and therefore we would expect them to choose our model predic-
tion in about 50% of the trials. If our HWS model’s prediction was always wrong
and unreasonable, we would expect a nearly zero chosen rate for our model pre-
diction. Our results showed that in 41% of all trials the participants chose our
HWS model’s predicted attention maps as even better than the in-lab human
attention maps (see Table2). In the previous online study, the in-car attention
maps of DR(eye)VE only achieved a chosen rate of 29%. This result suggests
that our HWS model’s predicted attention maps were even more similar to where
a good driver should look than the human driver attention maps collected in-car
(permutation test p = 4 x 107°).

5.3 Predicting In-car Driver Attention Data

To further demonstrate that our model has good generalizability and that our
driver attention data collected in-lab is realistic, we conducted a challenging test:
we trained our model using only our in-lab driver attention data, but tested it
on the DR(eye)VE dataset, an in-car driver attention dataset. Note that the
DR(eye)VE dataset covers freeway driving, which is not included in our dataset
due to the small density of road user interactions on freeway. The high driv-
ing speed on freeway introduces strong motion blur which is not present in our
dataset videos. Furthermore, drivers need to look further ahead in high speed
situations, so the main focus of driver gaze pattern shifts up as the driving speed
increases. In order to adapt our model to these changes, we selected 200 ten-
second-long video clips from the training set of the DR (eye)VE dataset and col-
lected in-lab driver attention maps for those video clips (already described in the
Berkeley DeepDrive Attention Dataset section). We fine-tuned our HWS model
with these video clips (30 min in total only) and the corresponding in-lab driver
attention maps, and then tested the model on the testing set of the DR(eye)VE
dataset (with in-car attention maps). The mean testing errors were calculated in
Dy, and CC because the calculation of NSS and AUC requires the original fixa-
tion pixels instead of smoothed gaze maps and the original fixation pixels of the
DR(EYE)VE dataset were not released. Our fine-tuned model showed a better
mean value in KL Divergence and a worse mean value in CC than the DR(eye)VE
model (see Table4). But the 95% bootstrapped confidence intervals for the two
models in both metrics overlapped with each other. So overall we concluded
that our fine-tuned model matched the performance of the DR(eye) VE model.
Note that the DR (eye)VE model was trained using the DR(eye) VE dataset and
represents the state-of-the-art performance on this dataset.

We also calculated proportions of attended objects of important categories for
our fine-tuned model and the DR(eye) VE model (Fig. 5B). Our fine-tuned model
showed significantly higher proportions of attended objects in the car, pedestrian
and cyclist categories and was more similar to the in-lab driver attention than
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Table 4. Test results obtained on the DR (eye) VE dataset by the state-of-the-art model
(DR(eye)VE) and our finetuned model. Mean and 95% bootstrapped confidence inter-
val are reported

KL divergence Correlation coefficient

Mean | 95% CI Mean | 95% CI
DR(eye)VE 1.76 | (1.65,1.87) 0.54 | (0.51, 0.56)
Ours (finetuned) | 1.72 |(1.66, 1.81) | 0.51 | (0.48, 0.53)

the DR(eye)VE model. Note that we have shown in the Berkeley DeepDrive
Attention Dataset section that humans rated the in-lab attention maps as more
similar to where a good driver should look from a third-person perspective than
the in-car attention maps.

6 Conclusions

In this paper, we introduce a new in-lab driver attention data collection protocol
that overcomes drawbacks of in-car collection protocol. We contribute a human
driver attention dataset which is to-date the richest and will be made public. We
propose Human Weighted Sampling which can overcome common driving dataset
bias and improve model performance in both the entire dataset and the subset
of crucial moments. With our dataset and sampling method we contribute a
novel human driver attention prediction model that can predict both in-lab and
in-car driver attention data. The model demonstrates sophisticated behaviors
and show prediction results that are nearly indistinguishable from ground-truth
to humans.
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