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Abstract

Syntactic parsing is a key component of natural language understanding and, tradi-
tionally, has a symbolic output. Recently, a new approach for predicting syntactic
structures from sentences has emerged: directly producing small and expressive
vectors that embed in syntactic structures. In this approach, parsing produces
distributed representations. In this paper, we advance the frontier of these novel
predictors by using the learning capabilities of neural networks. We propose two
approaches for predicting the embedded syntactic structures. The first approach
is based on a multi-layer perceptron to learn how to map vectors representing
sentences into embedded syntactic structures. The second approach exploits re-
current neural networks with long short-term memory (LSTM-RNN-DRP) to di-
rectly map sentences to these embedded structures. We show that both approaches
successfully exploit word information to learn syntactic predictors and achieve a
significant performance advantage over previous methods. Results on the Penn
Treebank corpus are promising. With the LSTM-RNN-DRP, we improve the pre-
vious state-of-the-art method by 8.68%.

1 Introduction

Syntactic structure is a key component for natural language understanding [8], with several studies
showing that syntactic information helps in modeling meaning [21, 14, 25]. Consequently, a very
active area in natural language processing is building predictors of symbolic syntactic structures
from sentences; such predictors, called parsers, are commonly implemented as complex recursive
or iterative functions. Even when learned from data, the recursive/iterative nature of parsers is
generally not changed since learning is confined to a probability estimation of context-free rules
[9, 6] or learning of local discriminative predictor ([23, 26]).

1

Copyright © 2015 for this paper by its authors. Copying permitted for private and academic purposes.



Despite the effort in building explicit syntactic structures, they are rarely used in that form for se-
mantic tasks such as question answering [28], recognizing textual entailment [13], semantic textual
similarity [1]. These tasks are generally solved by learning classifiers or regressors. Hence, syntactic
structures are unfolded to obtain syntactic-rich feature vectors [14], used within convolution kernel
functions [17], or guiding the application of recursive neural networks [25]. Syntactic structures are
first discovered by parsers, then, unfolded by “semantic learners” in explicit or implicit syntactic
feature vectors.

Distributed syntactic trees [30] have offered a singular opportunity to redraw the path between sen-
tences and feature vectors used within learners of semantic tasks. These distributed syntactic trees
embed syntactic trees in small vectors. Hence, a possibility is to learn functions to map sentences in
distributed syntactic trees [29]. These functions have been called distributed representation parsers
(DRPs) [29]. However, these distributed representation parsers suffer from major limitations be-
cause, due to data sparsity, these functions can only transform part-of-speech tag sequences in syn-
tactic trees without the lexical information.

In this paper, we propose two novel approaches based on neural networks for building predictors of
distributed syntactic structures. The first model is based on a multi-layer perceptron (MLP) which
learns how to map sentences, transformed into vectors to distributed syntactic representations. The
second model is based on a recurrent neural network (RNN) with long short-term memory (LSTM)
which learns to directly map sentences to distributed trees. Both models show the ability to positively
exploit words in learning these predictors and significantly outperform previous models [29].

The paper is organized as follows: Section 2 describes the background by reporting on the dis-
tributed syntactic trees and the idea of distributed representation parsers; Section 3 introduces our
two novel approaches for distributed representation parsing: the model based on a multi-layer per-
ceptron (MLP-DRP) and the model based on long short-term memory (LSTM-RNN-DRP); Section
4 reports on the experiments and the results. Finally, section 5 draws conclusions.

2 Background

2.1 Distributed Syntactic Trees: Embedding Syntactic Trees in Small Vectors

Embedding syntactic trees in small vectors [30] is a key idea which changes how syntactic infor-
mation is used in learning. Stemming from the recently revitalized research field of Distributed
Representations (DR) [18, 24, 4, 12, 25], distributed syntactic trees [30] have shown that it is possi-
ble to use small vectors for representing the syntactic information. In fact, feature spaces of subtrees
underlying tree kernels [10] are fully embedded by these distributed syntactic trees.

We want to give an intuitive idea how this embedding works. To explain this idea, we need to start
from the definition of tree kernels [10] used in kernel machines. In these kernels, trees T are seen as
collections of subtrees S(T ) and a kernel TK(T1, T2) between two trees performs a weighted count
of common subtrees, that is:

TK(T1, T2) =
∑

τi∈S(T1),τj∈S(T2)

ωτiωτjδ(τi, τj)

where ωτi and ωτj are the weights for subtrees τi and τj and δ(τi, τj) is the Kronecker’s delta
between subtrees. Hence, δ(τi, τj) = 1 if τi = τj else δ(τi, τj) = 0. Distributed trees, in some
sense, pack sets S(Ts1) in small vectors. In the illustration of Figure 1, this idea is conveyed by
packing images of subtrees in a small space, that is, the box under DT (Ts1). By rotating and
coloring subtrees, the picture in the box under DT (Ts1) still allows us to recognize these subtrees.
Consequently, it is possible to count how many subtrees are similar by comparing the picture in
the box under DT (Ts1) with the one under DT (Ts2). We visually show that it is possible to pack
subtrees in small boxes, hence, it should be possible to pack this information in small vectors.

The formal definition of these embeddings, called distributed syntactic trees DT (T ), is the follow-
ing:

DT (T ) =
∑

τi∈S(T )

ωi~τi =
∑

τi∈S(T )

ωidt(τi)
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Ts1 S(Ts1) DT (Ts1) ∈ Rd DT (Ts2) ∈ Rd Ts2

Figure 1: Distributed tree idea

where S(T ) is the set of the subtrees τi of T , dt(τi) = ~τi is a vector in Rd corresponding to the
subtree τi, and ωi is the weight assigned to that subtree. These vectors are obtained compositionally
using vectors for node labels and shuffled circular convolution ⊗ as a basic composition function.
For example, the last subtree of S(Ts1) in Figure 1 has the following vector:

dt(T1) = (~S ⊗ ( ~NP ⊗ ~John)⊗ ( ~V P ⊗ ( ~V B ⊗ ~killed)⊗ ( ~V P ⊗ ~Bob)))

Vectors dt(τi) have the following property:

δ(τi, τj)− ε < |dt(τi) · dt(τj)| < δ(τi, τj) + ε (1)

with a high probability. Therefore, given two trees T1 and T2, the dot product between the two
related, distributed trees approximates the tree kernel between trees TK(T1, T2), that is:

DT (T1) ·DT (T2) =
∑

τi∈S(T1),τj∈S(T2)

ωτiωτjdt(τi) · dt(τj) ≈ TK(T1, T2)

with a given degree of approximation [30]. Hence, distributed syntactic trees allow us to encode
syntactic trees in small vectors.

2.2 Distributed Representation Parsers

Building on the idea of encoding syntactic trees in small vectors [30], distributed representation
parsers (DRPs) [29] have been introduced to predict these vectors directly from sentences. DRPs
map sentence s to predicted distributed syntactic trees DRP (s) (Figure 2), and represent the ex-
pected distributed syntactic trees DT (Ts). In Figure 2, DRP (s1) is blurred to show that it is a
predicted version of the correct distributed syntactic tree, DT (Ts1). The DRP function is generally
divided in two blocks: a sentence encoder SE and a transducer P , which is the actual “parser” as
it reconstructs distributed syntactic subtrees. In contrast, the sentence encoder SE maps sentences
into a distributed representation. For example, the vector SE(s1) represents s1 in Figure 2 and
contains subsequences of part-of-speech tags.

s1 SE(s1) ∈ Rd DRP (s1) ∈ Rd

John/NN killed/VB
Bob/NN

→
Sentence
Encoder

(SE)
→ → Transducer

(P) →

Distributed Representation Parser (DRP)

Figure 2: Visualization of the distributed representation parsing

Formally, a DRP is a function DRP : X → Rd that maps sentences into X to distributed trees in
Rd. The sentence encoder SE : X → Rd maps sentences into X to distributed representation of
sentence sequences defined as follows:

SE(s) =
∑

seqi∈SUB(s)

~seqi
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where SUB(s) is a set of all relevant subsequences of s, and ~seqi are nearly orthonormal vectors
representing given sequences seqi. Also, vectors seqi are nearly orthonormal (c.f., Equation 1 ap-
plied to sequences instead of subtrees) and are obtained composing vectors for individual elements
in sequences. For example, the vector for the subsequence seq1 = John-NN-VB is:

~seq1 = ~John⊗ ~NN ⊗ ~V B

The transducer P : Rd → Rd is instead a function that maps distributed vectors representing
sentences to distributed trees. In [29], P has been implemented as a square matrix trained with a
partial least square estimate.

3 Predicting Distributed Syntactic Trees

Distributed representation parsing establishes a different setting for structured learning where a
multi-layer perceptron (MLP) can help. In this novel setting, MLP are designed to learn func-
tions that map sentences s or distributed sentences SE(s) to low dimensional vectors embedding
syntactic trees DRP (s).

We thus explored two models: (1) a model based on a multi-layer perceptron to learn to transducers
P that maps distributed sentences SE(s) to distributed trees DRP (s); (2) a model based on a
Recurrent Neural Network (RNN) with Long Short-Term Memory (LSTM) which learns how to
map sentences s as word sequences to distributed trees DRP (s).

3.1 From Distributed Sentences to Distributed Trees with Multi-Layer Perceptrons

Our first model is based on a multi-layer perceptron (MLP) to realize the transducer PMLP : Rd →
Rd (see Figure 2), which maps distributed sentences SE(s) to distributed structures DRP (s). The
overall distributed representation parser based on the multi-layer perceptron is referred to as MLP-
DRP. To define our MLP-DRP model, we need to specify: (1) the input and the expected output of
PMLP ; (2) the topology of the MLP.

We defined two classes of input and output for the transducer PMLP : an unlexicalized model (UL)
and a lexicalized model (L). In the unlexicalized model, input distributed sentences and output dis-
tributed trees do not contain words. Distributed sentences encode only sequences of part-of speech
tags. We experimented with SEQUL(s) containing sequences of part-of-speech tags up to 3. For
example, SEQUL(s1) = {NN,NN-VB,NN-VB-NN,VB,VB-NN,NN} (see Figure 2). Similarly,
distributed trees encode syntactic subtrees without words, for example, (VP (VB NN)) . On the other
hand, in the lexicalized model, input distributed sentences and output distributed trees are lexi-
calized. The lexicalized version of distributed sentences was obtained by concatenating previous
part-of-speech sequences with their first words. For example, SeqUL(s1) = {John-NN,John-NN-
VB,John-NN-VB-NN,killed-VB,killed-VB-NN,Bob-NN}. Distributed trees encode all the subtrees,
including those with words.

Then, we setup a multi-layer perceptron that maps x = SE(s) to y′ = DRP (s) and its expected
output is y = DT (Ts). The layer 0 of the network has the activation:

a(0) = σ(W (0)x+ b(0))

We selected a sigmoid function as the activation function σ:

σ(z) =
1

1 + exp(−z)
.

All intermediate n− 2 layers of the network have the following activation :

∀n ∈ [1;N − 2] : a(n) = σ(W (n−1)a(n−1) + b(n−1))

The final reconstructed layer, with output y′, is done with a linear function:

y′(x) =W (N−1)a(N−1) + b(N−1)

We learn the network weights by using the following cost function:

J(W, b;x, y′, y) = 1− y · y′

||y|| ||y′||
,
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that evaluates the cosine similarity between y and y′.

Learning unlexicalized and lexicalized MLP-DRPs is feasible even if the two settings hide different
challenges. The unlexicalized MLP-DRP exposes network learned with less information to encode.
However, the model cannot exploit the important information on words. In contrast, the lexicalized
MLP-DRP can exploit words but it has to encode more information. Experiments with the two
settings are reported in Section 4.

3.2 From Word Sequences to Distributed Trees with Long Short Term Memory

Our second model is more ambitious: it is an end-to-end predictor of distributed syntactic trees
DRP (s) from sentences s. We based our approach on recurrent neural networks (RNN) since RNNs
have already proven their efficiency to learn complex sequence-to-sequence mapping in speech
recognition [16] and in handwriting [15]. Moreover, RNNs have been also successfully used to
learn mapping functions between word sequences through sentence embedding vectors [7, 2].

Our end-to-end predictor of distributed syntactic structures is built on the recurrent neural network
model with long-short term memory (LSTM-RNN) [20] to overcome the vanishing gradient prob-
lem. However, to increase computational efficiency, in this model the activation of the output gate
of each cell does not depend on its memory state.

Figure 3: Structure of our LSTM-RNN-DRP encoder and a detail of the LSTM neuron

The resulting distributed representation parser LSTM-RNN-DRP is then defined as follows: Input
sentences s are seen as word sequences. To each word in these sequences, we assigned a unit base
vector xt ∈ RL where L is the size of the lexicon. xt is 1 in the t-th component representing the
word and 0 otherwise. Words are encoded with 4 matrices Wi,Wc,Wf ,Wo ∈ Rm×L. Hence, m is
the size of word encoding vectors. The LSTM cells are defined as follows: xt is an input word to
the memory cell layer at time t. it is the input gate define by:

it = σ(Wixt + Uiht−1 + bi), (2)

where σ is a sigmoid. C̃t is the candidate values of the states of the memory cells:

C̃t = tanh(Wcxt + Ucht−1 + bc). (3)

ft is the activation of the memory cell’s forget gates:

ft = σ(Wfxt + Ufht−1 + bf ). (4)

Given it, ft and C̃t, Ct memory cells are computed with:

Ct = it ? C̃t + ft ? Ct−1, (5)

where ? is the element-wise product. Given the state of the memory cells, we compute the output
gate with:

ot = σ(Woxt + Uoht−1 + b1)

ht = ot ? tanh(Ct)
(6)

The non recurrent part of this model is achieved by an average pooling of the sequence representation
h0, h1, ..., hn, the 4 matrix W∗ are concatenated into a single one: W , the U∗ weight matrix into U
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and the bias b∗ into b (see Figure 3). Then, a pre-nonlinear function is computed with W , U and b,
following by a linear function:

z2 = σ(Wxt + Ut−1 + b)

z =W2z2 + b2
(7)

Finally, the cost function of this model is the cosine similarity between the reconstructed output z
and DT (Ts).

4 Experiments

This section explores whether our approaches can improve existing models for learning distributed
representation parsers (DRPs). Similarly to [29], we experimented with the classical setting of
learning parsers adapted to the novel task of learning DRPs.

In these experiments, all trainings are done with a maximum number of epochs of 5000. If a better
result is not found on the validation set after a patience of 30 epochs, we stop the training. All deep
learning experiments are done with the Theano toolkit [5, 3]. The dimension of the embedded vector
after the mean pooling is fixed to 1024 and the second layer size is fixed to 2048. There dimensions
are fixed empirically.

4.1 Experimental set-up

The experiment is based on the revised evaluation model for parsers adapted to the task of learning
distributed representation parsers [29]. Here we use the Penn Treebank corpus for learning and
predicting the embedded syntactic structures. The distributed version of the Penn Treebank contains
distributed sentences SE(s) along related oracle distributed syntactic trees DT (Ts) for all the sec-
tions of the Penn Treebank. Distributed syntactic trees are provided for three different λ values: 0,
0.2 and 0.4. As in tree kernels, λ governs weights ωτi of subtrees τi. For each λ, there are two
versions of the data sets: an un-lexicalized version (UL), where sentences and syntactic trees are
considered without words, and a lexicalized version (L), where words are considered. Because the
LSTM-RNN-DRP approach is based on word sequence, only the lexicalized results are reported. As
for parsing, the datasets from the Wall Street Journal (WSJ) section are divided in: sections 20-21
with 39,832 distributed syntactic trees for training, section 23 with 2,416 distributed syntactic trees
for testing and section 24 with 1,346 distributed syntactic trees for parameter estimation.

The evaluation measure is the cosine similarity cos(DRP (s), DT (Ts)) between predicted dis-
tributed syntactic trees DRP (s) and distributed syntactic trees DT (Ts) of the distributed Penn
Treebank, computed for each sentence in the testing and averaged on all the sentences.

We compared our novel models with respect to the model in [29], ZD-DRP (the baseline), and we
respect the chain of building distributed syntactic representations that involve a symbolic parser SP ,
that is, DSP (s) = DT (SP (s)). In line with[29], as symbolic parser SP, we used the Bikel’s parser.

4.2 Results and discussion

The question we want to answer with these experiments is whether MLP-DRP and LSTM-RNN-
DRP can produce better predictors of distributed syntactic trees from sentences. To compare with
previous results, we experimented with the distributed Penn Treebank set.

We experimented with d=4096 as the size of the space for representing distributed syntactic trees.
We compared with a previous approach, that is ZD-DRP [29] and with the upper-bound of the
distributed symbolic parser DSP.

Our novel predictors of distributed syntactic trees outperform previous models for all the values of
the parameters (see Table 1). Moreover, our MLP-DRP captures better structural information than
the previous model ZD-DRP. In fact, when λ is augmented, the difference in performance between
our MLP-DRP and ZD-DRP increases. With higher λ, larger structures have higher weights. Hence,
our model captures these larger structures better than the baseline system. In addition, our model is
definitely closer to the distributed symbolic parser DSP in the case of unlexicalized trees. This is
promising, as the DSP is using lexical information whereas our MLP-DRP does not.

6



Table 1: Predicting distributed trees on the Distributed Penn Treebank (section 23): average cosine
similarity between predicted and oracle distributed syntactic trees. ZD-DRP is a previous baseline
model, MLP-DRP is our model and DSP is a the Bikel’s parser with a distributed tree function.

unlexicalized trees lexicalized trees
Model λ = 0 λ = 0.2 λ = 0.4 λ = 0 λ = 0.2 λ = 0.4
ZD-DRP (baseline) 0.8276 0.7552 0.6506 0.7192 0.6406 0.0646
MLP-DRP 0.8358 0.7863 0.7038 0.7280 0.6740 0.4960
LSTM-RNN-DRP - - - 0.7162 0.7274 0.5207
DSP 0.8157 0.7815 0.7123 0.9073 0.8564 0.6459

Our second approach LSTM-RNN-DRP, based on the word sequence, outperforms the other ap-
proaches for lexicalized setup. Results show a high improvement compared to the baseline (+8.68%
absolute with λ = 0.2) and it shows this model can represent lexical information better than MLP-
DRP under the same conditions.

Finally, our new models reduce the gap in performances with the DSP on the lexicalized trees by
dramatically improving over previous models on λ = 0.4. The increase in performance of our ap-
proaches with respect to ZD-DRP is extremely important as it confirms that MLP-DRP and LSTM-
RNN-DRP can encode words better.

5 Conclusion

This paper explores two novel methods to merge symbolic and distributed approaches. Predicting
distributed syntactic structures is possible and our models show that neural networks can definitely
play an important role in this novel emerging task. Our predictor based on a Multi-Layer Perceptron
and Long-Short Term Memory Recurrent Neural Network outperformed previous models. This last
method, RNN-LSTM-DRP is able, other than the word level, to predict the syntactic information
from the sentence. This is a step forward to use these predictors that may change the way syntactic
information is learned.

Future research should focus on exploring the promising capability of encoding words shown by
recurrent neural networks with long-short term memory. But we think a combinaison of both our
approaches can also increase the quality of our predictor due to the fact that each approach en-
code different information of the tree. This should lead a better predictor of distributed syntactic
structures.
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