
INDIVIDUAL PROJECT REPORT

DEPARTMENT OF COMPUTING

IMPERIAL COLLEGE OF SCIENCE, TECHNOLOGY AND MEDICINE

Predicting Football Results Using
Machine Learning Techniques

Author:
Corentin HERBINET

Supervisor:
Dr. Jonathan

PASSERAT-PALMBACH

June 20, 2018

Submitted in partial fulfillment of the requirements for the Joint Mathematics and
Computing MEng of Imperial College London

Abstract

Many techniques to predict the outcome of professional football matches have tra-
ditionally used the number of goals scored by each team as a base measure for eval-
uating a team’s performance and estimating future results. However, the number of
goals scored during a match possesses an important random element which leads to
large inconsistencies in many games between a team’s performance and number of
goals scored or conceded.

The main objective of this project is to explore different Machine Learning techniques
to predict the score and outcome of football matches, using in-game match events
rather than the number of goals scored by each team. We will explore different
model design hypotheses and assess our models’ performance against benchmark
techniques.

In this project, we developed an ’expected goals’ metric which helps us evaluate a
team’s performance, instead of using the actual number of goals scored. We com-
bined this metric with a calculation of a team’s offensive and defensive ratings which
are updated after each game and used to build a classification model predicting the
outcome of future matches, as well as a regression model predicting the score of
future games. Our models’ performance compare favourably to existing traditional
techniques and achieve a similar accuracy to bookmakers’ models.

i

Acknowledgments

Firstly, I would like to thank my supervisor, Dr. Jonathan Passerat-Palmbach, for his
constant support and help throughout the duration of the project. His confidence in
my work encouraged me to do my best.

Secondly, I would like to thank my second marker, Prof. William Knottenbelt, for
his expertise and for taking the time to discuss my ideas and to give me interesting
insight.

Finally, I would also like to thank my family, for always believing in me, my friends,
for their fun and support, Paul Vidal, for your friendship throughout our JMC adven-
ture, and Astrid Duval, for being there when I needed it the most.

iii

Contents

1 Introduction 1
1.1 Data Science for Football . 1
1.2 Motivation . 2
1.3 Objectives . 3
1.4 Challenges . 5
1.5 Contributions . 5

2 Background 6
2.1 Football Rules & Events . 6
2.2 Machine Learning Techniques . 7

2.2.1 Generalized Linear Models . 8
2.2.2 Decision Trees . 10
2.2.3 Probabilistic classification . 11
2.2.4 Lazy learning . 13
2.2.5 Support Vector Machines . 14
2.2.6 Neural Network models . 15

2.3 Past Research . 16
2.3.1 Football prediction landscape 16
2.3.2 ELO ratings . 20
2.3.3 Expected goals (xG) models 21

3 Dataset 23
3.1 Data origin . 23
3.2 Data pre-processing . 24
3.3 Data features . 25

4 Design 28
4.1 Model components . 28
4.2 Model choices . 29

5 Implementation 35
5.1 General pipeline . 35
5.2 Luigi . 36

v

CONTENTS Table of Contents

6 Experimentation & Optimisation 39
6.1 Testing . 39

6.1.1 Cross-validation testing . 39
6.1.2 Testing metrics . 39

6.2 Choice of models . 42
6.3 Parameter optimisation . 45

6.3.1 OpenMOLE parameter optimisation 45
6.3.2 Results . 46
6.3.3 Analysis of optimal parameters 47

7 Evaluation 50
7.1 Absolute results . 50
7.2 Comparison with benchmarks . 51

7.2.1 Betting odds . 53
7.2.2 Dixon & Coles model . 53
7.2.3 Other naive benchmarks . 53

7.3 Strengths & Weaknesses . 54

8 Conclusion & Future Work 56
8.1 Summary . 56
8.2 Challenges & Solutions . 56

8.2.1 Finding data . 56
8.2.2 Model & parameter choices 57

8.3 Future extensions . 57
8.3.1 Improved data . 57
8.3.2 Monte Carlo simulations to predict future events 58
8.3.3 Player-centred models . 58
8.3.4 Team profiles . 58
8.3.5 Betting analysis . 59

References 60

Appendix 64

vi

Chapter 1

Introduction

1.1 Data Science for Football

As one of the most popular sports on the planet, football has always been followed
very closely by a large number of people. In recent years, new types of data have
been collected for many games in various countries, such as play-by-play data in-
cluding information on each shot or pass made in a match.

The collection of this data has placed Data Science on the forefront of the football
industry with many possible uses and applications:

• Match strategy, tactics, and analysis

• Identifying players’ playing styles

• Player acquisition, player valuation, and team spending

• Training regimens and focus

• Injury prediction and prevention using test results and workloads

• Performance management and prediction

• Match outcome and league table prediction

• Tournament design and scheduling

• Betting odds calculation

In particular, the betting market has grown very rapidly in the last decade, thanks to
increased coverage of live football matches as well as higher accessibility to betting
websites thanks to the development of mobile and tablet devices. Indeed, the foot-
ball betting industry is today estimated to be worth between 300 million and 450
million pounds a year [1].

1

1.2. MOTIVATION Chapter 1. Introduction

1.2 Motivation

A particularly important element of Data Science in football is the ability to evaluate
a team’s performance in games and use that information to attempt to predict the
result of future games based on this data.

Outcomes from sports matches can be difficult to predict, with surprises often pop-
ping up. Football in particular is an interesting example as matches have fixed length
(as opposed to racket sports such as tennis, where the game is played until a player
wins). It also possesses a single type of scoring event: goals (as opposed to a sport
like rugby where different events score a different number of points) that can hap-
pen an infinite amount of times during a match, and which are all worth 1 point.

The possible outcomes for a team taking part in a football match are win, loss or
draw. It can therefore seem quite straightforward to predict the outcome of a game.
Traditional predictive methods have simply used match results to evaluate team per-
formance and build statistical models to predict the results of future games.

However, due to the low-scoring nature of games (less than 3 goals per game on av-
erage in the English Premier League in the past 15 years) (Fig.1.1), there is a random
element linked to the number of goals scored during a match. For instance, a team
with many scoring opportunities could be unlucky and convert none of their oppor-
tunities into goals, whereas a team with a single scoring opportunity could score a
goal. This makes match results an imperfect measure of a team’s performance and
therefore an incomplete metric on which to predict future results.

Figure 1.1: Average number of goals scored per game in the English Premier League [2]

A potential solution to this problem can be explored by using in-game statistics to
dive deeper than the simple match results. In the last few years, in-depth match
statistics have been made available, which creates the opportunity to look further

2

Chapter 1. Introduction 1.3. OBJECTIVES

than the match result itself. This has enabled the development of ’expected goals’
metrics which estimate the number of goals a team should have been expected to
score in a game, removing the random element of goalscoring.

The emergence of new Machine Learning techniques in recent years allow for better
predictive performance in a wide range of classification and regression problems.
The exploration of these different methods and algorithms have enabled the devel-
opment of better models in both predicting the outcome of a match and the actual
score.

1.3 Objectives

This project aims to extend the state of the art by combining two popular and mod-
ern prediction methods, namely an expected goals model as well as attacking and
defensive team ratings. This has become possible thanks to the large amount of data
that is now being recorded in football matches.

Different Machine Learning models will be tested and different model designs and
hypotheses will be explored in order to maximise the predictive performance of the
model.

In order to generate predictions, there are some objectives that we need to fulfill:
Firstly, we need to find good-quality data and sanitize it to be used in our models.
In order to do so, we will need to find suitable data sources. This will allow us to
have access to a high number of various statistics to use, compared to most of the
past research that has been done on the subject where only the final result of each
match is taken into account.

The main approach we will take is to build a model for expected goal statistics in
order to better understand a team’s performance and thus to generate better pre-
dictions for the future. To build this model, we will test different Machine Learning
techniques and algorithms in order to obtain the best possible performance. We will
be able to use data for shots taken and goals scored such as the location on the pitch
or the angle to goal to estimate how many goals a team would have been expected
to score during the game, and reduce the impact of luck on the final match result.

In parallel to this, we will generate and keep track of team ratings as football matches
are played to take into account the relative strength of the opposition, in a similar
way to the popular ELO rating system. This will allow us to better gauge a team’s
current level and in consequence to generate better predictions for future games.
These two key project objectives are presented in Fig.1.2.

An important part of this project will be to build a suitable Machine Learning train-
ing and testing pipeline to be able to test new algorithms, with new features, and

3

1.3. OBJECTIVES Chapter 1. Introduction

Figure 1.2: Key project objectives to generate predictions

compare it to other models with relative ease, which will result in a general project
workflow illustrated in Fig.1.3.

Figure 1.3: Project Workflow

Finally, our models will be assessed against benchmark predictive methods including
bookmakers’ odds, using different performance metrics. A successful outcome for the
project would be the creation of both a classification model capable of predicting a
future game’s outcome, and a regression model capable of predicting a future game’s
score, whose predictive performance compare favourably to different benchmark
methods.

4

Chapter 1. Introduction 1.4. CHALLENGES

1.4 Challenges

We face a number of challenges on the path to achieving the objectives we have set
out:

• Data availability & quality: Finding a public database of football data with
the necessary statistical depth to generate expected goals metrics is an essen-
tial part of the project. However, the leading football data providers do not
make their information publicly available. We will need to scour various pub-
lic football databases to find one that is suitable for us to use. The alternative
approach in the case where we do not find a suitable database would be to
find websites displaying the required data and using web scraping techniques
to create our own usable database.

• Research and understanding of prediction landscape: In order to design
our models and test different hypotheses, we will need to undertake a thor-
ough background research of prediction techniques and develop a mathemati-
cal understanding of various Machine Learning algorithms that can be used for
our predictions.

• Testing different models and parameters: An important challenge will be
to make the model training and testing tasks as quick and easy as possible, in
order to test and compare different models. A robust pipeline will have to be
built to enable us to find the best possible models.

1.5 Contributions

• An exploration of the Machine Learning landscape as well as past research in
sports predictions, presented in Chapter 2.

• A prepared and usable dataset containing all necessary statistics to generate
expected goal metrics and calculate team ELO ratings, presented in Chapter 3.

• A model training and testing pipeline allowing us to quickly and easily generate
performance metrics for different models and hypotheses, presented in Chapter
5.

• A classification model to predict match outcomes and a regression model to
predict match results, presented in Chapters 4 and 6.

• An assessment of our models’ performance against benchmark methods, pre-
sented in Chapter 7.

5

Chapter 2

Background

2.1 Football Rules & Events

In this section, we will quickly present the rules of football, different match events
and possible outcomes.

• Simplified football rules:

– Football is a game played with two opposing teams of 11 players and a
ball, during 90 minutes.

– On each side of the pitch, a team has a target called the goal in which
they attempt to put the ball.

– Scoring a goal gives a team 1 point.

– The team with the largest number of points at the end of the game wins
the match.

– If both teams have scored the same number of goals, the game ends in a
draw.

• Domestic leagues competition format:

– Each European country usually has a domestic league where clubs play
against each other.

– There are usually 20 teams in each league, with each team playing the
others twice, once at their stadium (’home’ match) and once at the oppos-
ing team’s stadium (’away’ match).

– Winning a match gives a team 3 points, a draw gives each team 1 point.

– The team with the highest number of points at the end of the season wins
the league.

• Main match events:

– Goals: a goal is scored when the ball enters the opposing team’s goal.

6

Chapter 2. Background 2.2. MACHINE LEARNING TECHNIQUES

– Shots: a shot is when a player hits the ball towards the opposing team’s
goal with the intention of scoring. There are many different kinds of shots,
hit with different parts of the body or from different distances and angles.

– Passes: a pass is when a player hits the ball towards another player of his
team.

– Crosses: a cross is when a player hits the ball from the side of the pitch
towards the opposing team’s goal with the intention of passing the ball to
one of his teammates.

– Possession: the possession represents the fraction of the time that a team
controls the ball in the match.

– Penalties & Free Kicks: free kicks happen when a foul is committed by
the opposing team on the pitch. In that case, the team that conceded
the foul can play the ball from where the foul has happened. If the foul
happens inside the penalty box (the zone near the goal), a penalty is
awarded: the team that conceded the foul can shoot at goal from close
range without anyone from the opposing team around.

– Cards: cards are awarded whenever the referee deems a foul to be suit-
ably important. Yellow cards are awarded for smaller fouls and do not
have a direct consequence. However, two yellow cards collected by the
same player result in a red card. If a player collects a red card, they
have to leave the pitch, leaving their team with one less player. Red cards
can also be directly obtained if a dangerous foul is committed or in other
specific circumstances.

– Corners: corners are awarded to the opposing team when a team hits the
ball out of the pitch behind their goal. In this case, the ball is placed on
the corner of the pitch and can be hit without any other player around.

2.2 Machine Learning Techniques

In this section, we will present an overview of popular supervised Machine Learning
techniques, for its subsets of classification and regression.

Supervised learning is the task of learning a function that maps input data to output
data based on example input-to-output pairs. Classification happens when the out-
put is a category, whereas regression happens when the output is a continuous num-
ber. In our case, we want to predict the outcome category (home win/draw/away
win) or the number of goals scored by a team (continuous number), so we are only
interested in the supervised learning landscape of Machine Learning. We have sum-
marised some popular supervised learning methods in Fig.2.1, which we will now
cover in more detail.

7

2.2. MACHINE LEARNING TECHNIQUES Chapter 2. Background

Figure 2.1: Overview of supervised Machine Learning techniques

2.2.1 Generalized Linear Models

Generalized Linear Models are a set of regression methods for which the output
value is assumed to be a linear combination of all the input values (Fig.2.2).

Figure 2.2: Linear Regression technique [3]

8

Chapter 2. Background 2.2. MACHINE LEARNING TECHNIQUES

The mathematical formulation of the regression problem is:

y = �0 + �1x1 + ...+ �
m

x
m

+ ✏

where:

• y is the observed value/dependent variable

• the x
k

are the input values/predictor variables

• the �
k

are the weights that have to be found

• ✏ is a Gaussian-distributed error variable

Linear Regression fits a linear model with weights �̂ = (�̂1, ..., �̂m

) by minimizing
the residual sum of squares between the actual responses Y in the dataset and the
predicted responses X� where X is the matrix of input variables in the dataset. This
is the Ordinary Least Squares method:

�̂ = min
�

kX� � Y k2

Once the model has been fitted with the best possible weight �, the Linear Regres-
sion model can generate a continuous output variable given a set of input variables.

On the other hand, Logistic Regression is a classification model for a binary output
variable problem. Indeed, the output variable of the model represents the log-odds
score of the positive outcome in the classification.

ln(p(x)
1�p(x)) = �0 + �1x1 + ...+ �

m

x
m

The log-odds score is a continuous variable which is used as input in a logistic func-
tion (Fig.2.3):

�(z) = 1
1+e

�z

The logistic function outputs a number between 0 and 1 which is chosen to be the
probability of the positive classification outcome given the input variables. Setting
and optimizing a cut-off probability allows for classification decisions to be made
when presented with new input variables.

Generalized Linear Models are a popular technique as they are easy to implement
and, in many classification or regression problems, assuming linearity between pre-
dictor variables and the outcome variable is sufficient to generate robust predictions.
In addition to this, the fitted coefficients are interpretable, meaning that we can un-
derstand the direction and magnitude of association between each predictor variable
and the outcome variable.

9

2.2. MACHINE LEARNING TECHNIQUES Chapter 2. Background

Figure 2.3: Logistic function [4]

However, using Generalized Linear Models can also have some disadvantages: the
assumption that the input variables and output variable are linearly connected does
not always fit the problem and can be too simple. Furthermore, if the input variables
are highly-correlated, the performance of the model can be quite poor.

2.2.2 Decision Trees

Decision Trees are a popular Machine Learning technique to link input variables,
represented in the tree’s branches and nodes, with an output value represented in
the tree’s leaves. Trees can both be used in classification problems, by outputting
a category label, or in regression problems, by outputting a real number. Decision
Trees can be fitted using different algorithms, including the CART or ID3 decision
tree algorithms which are the most popular. These algorithms use a mix of greedy
searching and pruning so that the tree both fits and generalizes the data to new in-
put/output pairs.

Decision Trees have the advantage that they scale very well with additional data,
they are quite robust to irrelevant features and they are interpretable: the choices
at each node allow us to understand the impact of each predictor variable towards
the outcome. However, decision trees can often become inaccurate, especially when
exposed to a large amount of training data as the tree will fall victim to overfitting.
This happens when the model fits the training data very well but is not capable of
generalizing to unseen data, thus resulting in poor predictive performance.

Random Forests operate by building a large amount of decision trees during training,
taking a different part of the dataset as the training set for each tree. For classifi-

10

Chapter 2. Background 2.2. MACHINE LEARNING TECHNIQUES

cation problems, the final output is the mode of the outputs of each decision tree,
whereas for regression problems, the mean is taken. This technique is illustrated in
Fig.2.4.

This results in a model with much better performance compared to a simple decision
tree, thanks to less overfitting, but the model is less interpretable as the decisions at
the nodes of the trees are different for each tree.

Figure 2.4: Random Forest technique [5]

2.2.3 Probabilistic classification

Probabilistic classifiers are Machine Learning methods capable of predicting the
probability distribution over classes given input variables.

One of the most popular probabilistic classifiers is the Naive Bayes classifier. It is
a probabilistic classification method based on the ’naive’ assumption that every two
different features are independent, thus enabling the use of Bayes’ Theorem:

P (y|x1, ..., xn

) = P (y)P (x1,...,xn|y)
P (x1,...,xn)

where:

• y is the target class

• the x
i

are the predictor (input) variables

11

2.2. MACHINE LEARNING TECHNIQUES Chapter 2. Background

Using the independence assumption, this leads to the following:

P (y|x1, ..., xn

) / P (y)
Q

n

i=1 P (x
i

|y)

MAP (Maximum A Posteriori) estimation enables the creation of a decision rule (rule
to choose the class to return as output) by choosing the most probable hypothesis.

For Gaussian Naive Bayes, the likelihood P (x
i

|y) of the features is assumed to follow
a Gaussian distribution, as illustrated in Fig.2.5:

P (x
i

|y) = 1p
2⇡�2

y

exp(� (xi�µy)2

2�2
y

)

where the �
y

and µ
y

parameters are estimated using Maximum Likelihood Estima-
tion.

The advantages of using Naive Bayes classifiers is that they are highly scalable when
presented with large amounts of data: indeed, they take an approximately linear
time to train when adding features. However, even though the classifier can be
robust enough to ignore the naive assumption, the predicted probabilities are known
to be somewhat inaccurate.

Figure 2.5: Gaussian Naive Bayes method [6]

12

Chapter 2. Background 2.2. MACHINE LEARNING TECHNIQUES

2.2.4 Lazy learning

Lazy learning is a Machine Learning technique for which no model is actually built
but the training data is generalized when new inputs are given. They are known to
be best for large sets of data with a small number of features.

The K-nearest-neighbors algorithm is a lazy learning method for both classification
and regression that takes the k nearest training examples in the feature space and
outputs:

• for classification: the most common class among the k neighbors

• for regression: the average of the values for the k neighbors

The best choice for the k parameter depends on the training data set. Indeed, a
higher value reduces the effect of noise in the data but makes the approximation
less local with regards to other training data points. A classification example using
the k-Nearest Neighbors method is illustrated in Fig.2.6.

Figure 2.6: k-Nearest-Neighbors classification [7]

The main advantage of lazy learning methods is that the target function is approx-
imated locally, which means that it is sensitive to the local structure of the training
data. This allows these methods to easily deal with changes in the underlying data
classification or regression distributions. However, these methods come with some
drawbacks: space is required to store the training dataset as the algorithm will run
through all training data examples to find those that are closest to the input values.
This makes these techniques quite slow to evaluate when testing.

13

2.2. MACHINE LEARNING TECHNIQUES Chapter 2. Background

2.2.5 Support Vector Machines

Support Vector Machines (SVMs) are Machine Learning models for both classifica-
tion and regression. An SVM model represents the training data as points in space so
that examples falling in different categories are divided by a hyperplane (see Fig.2.7)
that is as far as possible from the nearest data point.

Figure 2.7: SVM Hyperplane for classification [8]

New inputs are mapped in the same way as the training data and classified as the
category they fall into (which side of the hyperplane). When the data is not linearly
separable, the kernel trick can be used, by using different possible kernel functions
such as Radial Basis Functions (RBF) or polynomial functions, in order to map the
data into high-dimensional feature spaces and find a suitable high-dimensional hy-
perplane.

The above classification problem can be extended to solving regression problems in
a similar way, by depending only on a subset of the training data to generate a re-
gression prediction.

Advantages for using Support Vector Machines include that they are effective in high-
dimensional spaces, that they are memory efficient thanks to the use of a subset of
training points in the decision function, and finally that they are versatile through
the use of different possible kernel functions. On the other hand, using SVMs can
have some disadvantages: they do not directly provide probability estimates for clas-
sification problems, and correctly optimising the kernel function and regularization
term is essential to avoid overfitting.

14

Chapter 2. Background 2.2. MACHINE LEARNING TECHNIQUES

2.2.6 Neural Network models

Neural Networks, also known as Artificial Neural Networks (ANNs), are systems that
are based on a collection of nodes (neurons) that model at an algorithmic level the
links between neurons in the human brain.

Each neuron can receive a signal from neurons and pass it on to other neurons.
Two neurons are connected by an edge which has a weight assigned to it, which
models the importance of this neuron’s input to the other neuron’s output. A neural
network is usually composed of an input layer, with one neuron per input variable
for the model, an output layer, composed of a single neuron which will give the
classification or regression result, and a number of hidden layers between the two,
containing a variable number of neurons in each layer. Fig.2.8 illustrates the archi-
tecture of a neural network with one hidden layer.

Figure 2.8: Neural Network diagram [9]

A neuron which receives an input p
j

from another neuron then computes its activa-
tion value through its activation function f : a

j

= f(p
j

). The neuron’s output o
j

is
then generated through its output function f

o

such that o
j

= f
o

(a
j

).

This leads us to the propagation function which calculates the input p
j

that a neuron
j receives in the network:

p
j

=
P

i

o
i

w
ij

where w
ij

is the weight between neurons i and j

Training the Neural Network model involves setting the correct weight between each

15

2.3. PAST RESEARCH Chapter 2. Background

two neurons in the system. This is done through the back-propagation algorithm
which inputs a new training example, calculates gradient of the loss function (a
function which quantifies the error between the Neural Network prediction and the
actual value) with respect to the weights and updates the weights from the output
layer all the way back to the input layer:

w
ij

(t+ 1) = w
ij

(t) + ⌘ @C

@wij

where:

• ⌘ is the learning rate and determines the magnitude of change for the weights

• C is the cost/loss function which depends on the learning type and neuron
activation functions used

The advantages in using Neural Networks as classification or regression models are
that they usually achieve a high level of predictive accuracy compared to other tech-
niques. However, they require a very large amount of training data to optimise the
model. In addition to this, neural networks are not guaranteed to converge to a
single solution and therefore are not deterministic. Finally, Neural Networks are not
interpretable: indeed, there are in general too many layers and neurons to under-
stand the direction and magnitude of association of each input variable with the
output variable through the different weights.

2.3 Past Research

We have separated the past research on football predictions in three categories.
Firstly, we will look at the general landscape of football predictions and the Machine
Learning techniques that have previously been used. Secondly, we will concentrate
on research linked to using team ratings to improve predictions. Finally, we will talk
about the papers that present models estimating the expected goals that a team is
estimated to have obtained.

2.3.1 Football prediction landscape

Generating predictions for football scores has been an important research theme
since the middle of the 20th century, with the first statistical modelling approaches
and insights coming from Moroney (1956) [10] and Reep (1971) [11] who used
both the Poisson distribution and negative binomial distribution to model the amount
of goals scored in a football match, based on past team results.

However, it was only in 1974 that Hill proved that match results are not solely based
on chance, but can be modeled and predicted using past data [12].

The first breakthrough came from Maher [13] in 1982 who used Poisson distribu-
tions to model home and away team attacking and defensive capabilities, and used

16

Chapter 2. Background 2.3. PAST RESEARCH

Figure 2.9: Poisson distribution for values of � and k [15]

this to predict the mean number of goals for each team. Following this, Dixon and
Coles [14] (1997) were the first to create a model capable of outputting probabilities
for match results and scores, again following a Poisson distribution.

The Dixon and Coles model is still seen as a traditionally successful model, and we
will use it as a benchmark against the models that we will be creating.

The Dixon and Coles model is based on a Poisson regression model, which means
that an expected number of goals for each team are transformed into goal probabil-
ities following the Poisson distribution (illustrated in Fig.2.9):

P (k goals in match)= e��

�

k

k!

where � represents the expected number of goals in the match.

The Poisson distribution enables the calculation of the probability of scoring a certain
number of goals for each team, which can then be converted into score probabilities
and finally into match outcome probabilities.

Based on past results, the Dixon and Coles model calculates an attacking and de-

17

2.3. PAST RESEARCH Chapter 2. Background

fensive rating for each team by computing Maximum Likelihood estimates of these
ratings on past match results and uses a weighting function to exponentially down-
weight past results based on the length of time that separates a result from the actual
prediction time.

Rue and Salveson [16] (2000) chose to make the offensive and defensive parame-
ters vary over time as more results happen, then using Monte Carlo simulation to
generate predictions. In 2002, Crowder et al. [17] followed up on their work to
create a more efficient update algorithm.

At the beginning of the 21st century, researchers started to model match results
(win/draw/loss) directly rather than predicting the match scores and using them to
create match result probabilities. For example, Forrest and Simmons (2000) [18]
used a classifier model to directly predict the match result instead of predicting the
goals scored by each time. This allowed them to avoid the challenge of interdepen-
dence between the two teams’ scores.

During the same year, Kuypers [19] used variables pulled from a season’s match re-
sults to generate a model capable of predicting future match results. He was also
one of the first to look at the betting market and who tried to generate profitable
betting strategies following the model he developed.

We have therefore seen that past research have tried to predict actual match scores
as well as match results. It would be interesting in this project to look at the perfor-
mance of generating a classification model for match outcome against a regression
model for match scores.

We will now take a look at more recent research done on the subject, with the use
of modern Machine Learning algorithms that will be interesting for us to investigate
when trying different predictive models.

In 2005, Goddard [20] tried to predict football match results using an ordered probit
regression model, using 15 years of results data as well as a few other explanatory
variables such as the match significance as well as the geographical distance between
the two teams. It was one of the first papers to look at other variables than actual
match results. He compared the model predictions with the betting odds for the
matches and found that there was the possibility of a positive betting return over
time. Like Goddard, we will want to use other explanatory variables in our model
than only match results, which will allow us to use different sets of features to try
obtaining the best model possible.

It is also interesting to look at the algorithms used for predictions in other team
sports: for example, in 2006, Hamadani [21] compared Logistic Regression and
SVM with different kernels when predicting the result of NFL matches (American
Football).

18

Chapter 2. Background 2.3. PAST RESEARCH

More recently, Adam (2016) [22] used a simple Generalised Linear Model, trained
using gradient descent, to obtain match predictions and simulate the outcome of
a tournament. He obtained good results, even with a limited set of features, and
recommends to add more features and to use a feature selection process, which is
something that will be interesting for us to do in this project considering the number
of different features that will be available to us.

Tavakol (2016) [23] explored this idea even further: again using a Linear Model,
he used historical player data as well as historical results between the two teams
going head to head in order to generate predictions. Due to the large number of
features available, he used feature extraction and aggregation techniques to reduce
the number of features to an acceptable level to train a Linear Model.

There are multiple ways to reduce the number of features to train a Machine Learn-
ing model: for instance, Kampakis [24] used a hierarchical feature design to pre-
dict the outcome of cricket matches. On the other hand, in 2015, Tax et al. [25]
combined dimensionality reduction techniques with Machine Learning algorithms
to predict a Dutch football competition. They came to the conclusion that they ob-
tained the best results for the PCA dimensionality reduction algorithm, coupled with
a Naive Bayes or Multilayer Perceptron classifier. It will be interesting for us to try
different dimensionality reduction techniques with our Machine Learning algorithms
if we have a large number of features we choose to use. This also shows us that a
large amount of data might not be required to build a Neural Network model and
achieve interesting results.

Bayesian networks have been tested in multiple different recent research papers for
predicting football results. In 2006, Joseph [26] built a Bayesian Network built on
expert judgement and compared it with other objective algorithms, namely Decision
Tree, Naive Bayesian Network, Statistics-based Bayesian Network and K-nearest-
neighbours. He found that he obtained a better model performance for the Network
built on expert judgement, however expert knowledge is needed and the model
quickly becomes out of date.

Another type of Machine Learning technique that has been used for a little longer is
an Artificial Neural Network (ANN). One of the first studies on ANN was made by
Purucker in 1996 [27] to predict NFL games, who used backpropagation to train the
network. One of the limitations of this study was the small amount of features used
to train the network. In 2003, Kahn [28] extended the work of Purucker by adding
more features to train the network and achieved much better results, confirming the
theory that Artificial Neural Networks could be a good choice of technique to build
sports predictive models.

Hucaljuk et al. (2011) [29] tested different Machine Learning techniques from mul-
tiple algorithm families to predict football scores:

19

2.3. PAST RESEARCH Chapter 2. Background

• Naive Bayes (probabilistic classification)

• Bayesian Networks (probabilistic graphical model)

• LogitBoost (boosting algorithm)

• K-nearest-neighbours (lazy classification)

• Random Forest (decision tree)

• Artificial Neural Networks

They observed that they obtained the best results when using Artificial Neural Net-
works. This experiment is espacially interesting to us as we will want to test different
algorithms in the same manner, to obtain the one that works the best for our data
and features.

By looking at the past research done on the subject of building models to predict
football match outcomes, we have been able to gain interesting information on the
different techniques we should try using as well as the potential pitfalls we should
avoid.

2.3.2 ELO ratings

We will now look at two areas of research that are especially important considering
the objective of our project: firstly, we will want to look at how team ratings have
previously been used to improve predictions.

The most famous rating system, still used today, was invented in 1978 by Elo [30]
to rate chess players. The name ”ELO rating” was kept for future uses, such as Buch-
dahl’s 2003 paper [33] on using ELO ratings for football to update teams’ relative
strength. These types of rating have also been used for other sports predictions, such
as tennis. Indeed, Boulier and Stekler (1999) [31] used computer-generated rank-
ings to improve predictions for tennis matches, while Clarke and Dyte (2000) [32]
used a logistic model with the difference in rankings to estimate match probabilities.

In 2010, Hvattuma used an ELO system [34] to derive covariates used in regression
models in the goal of predicting football match outcomes. He tested two different
types of ELO ratings, one taking in account the match result (win/loss/draw) and
another only taking the actual score in account. He used different testing bench-
marks to evaluate his predictions, which enabled him to see that he obtained better
results using ELO ratings than the other benchmarks he ran his model against. Rel-
ative team strength ratings are very important to us in this project to encode past
information and continuously update each team’s relative strength as new results
are added to the model.

20

Chapter 2. Background 2.3. PAST RESEARCH

We will want to explore different possibilities of keeping track and updating these
team ratings over time. Multiple approaches have already been explored: to gener-
ate predictions for the football Euro 2016 tournament, Lasek (2016) [35] compared
using ordinal regression ratings and using least squares ratings, combined with a
Poisson distribution, to generate predictions and simulate the tournament a large
number of times using Monte Carlo simulations. Viswanadha et al. (2017) [36] used
player ratings rather than team ratings to predict the outcome of cricket matches
using a Random Forest Classifier. Using player data to calculate relative player
strengths and improve our model could be a potential extension to this project. Fi-
nally, in 2013, Fenton [37] came up with a new type of team rating, called pi-rating.
This rating dynamically rates teams by looking at relative differences in scores over
time. There are clearly different ways of evaluating relative team strength and weak-
ness, and we will need to try different techniques for this project to try and obtain
the best predictions we can.

2.3.3 Expected goals (xG) models

The second theme that is important to us for this project is building an expected
goals model. This is a quite modern concept that aims to analyse match data to un-
derstand how many goals a team should have scored considering the statistics that
have been observed during the match. Using an expected goals model enables us
to eliminate some of the randomness that is associated with actual goals scored and
get a better picture of a team’s performance, and therefore strength.

In 2012, MacDonald [38] created an expected goals model to evaluate the perfor-
mance of NHL (Hockey) matches, using two metrics:

• The Fenwick rating (shots and missed shots)

• The Corsi rating (shots, missed shots and blocked shots)

This enabled the evaluation of a team’s performance to understand if, for example,
they were wasteful with their goal opportunities, or if they did not manage to create
enough goalscoring opportunities. Very good results were obtained for this expected
goals model, with more efficient estimates for future results. A possible extension
for this paper would be to use the opponent’s data to calculate the expected goals.
That is exactly what we will be trying to do with football: using both teams’ data to
understand how many goals each team were expected to score in a match, and use
this value to improve future predictions.

In 2015, Lucey [40] used features from spatio-temporal data to calculate the likeli-
hood of each shot of being a goal. This includes shot location, defender proximity,
game phase, etc. This allows us to quantify a team’s effectiveness during a game and
generate an estimation for the number of goals they would have been expected to
score. This example is particularly interesting for us, as we have geospatial data for
shots and goals scored in matches. We will use that data to build an advanced ex-
pected goals model to better understand how a team has actually performed during

21

2.3. PAST RESEARCH Chapter 2. Background

the game.

Similarly, Eggels (2016) [39] used classification techniques to classify each scoring
opportunity into a probability of actually scoring the goal, using geospatial data
for the shot as well as which part of the body was used by the player. Difference
classification techniques were tested including logistic regression, decision trees and
random forest. We will also need in this project to test different methods of quanti-
fying the probability of scoring a goal for each opportunity.

Finally, one of the most interesting examples for out project comes from a website
named FiveThirtyEight [41], who combine an expected goals model with a team
rating system to predict the outcome of future football matches. In essence, they
keep an offensive and defensive rating for each time depending on an average of
goals scored and expected goals that are recorded in each game. This allows them
to forecast future results and run Monte Carlo simulations to try and predict compe-
tition winners. It is interesting to note that the weight given to the expected goals
decrease if a team is leading at the end of a match, which would be an hypothesis
for us to explore.

For our project, we will take inspiration from these methods, but we will improve the
expected goals model by testing different Machine Learning algorithms and adding
features in order to try and output the best possible predictions.

22

Chapter 3

Dataset

3.1 Data origin

We have obtained a dataset from the Kaggle Data Science website called the ’Kaggle
European Soccer Database’ [42]. This database has been made publicly available
and regroups data from three different sources, which have been scraped and col-
lected in a usable database:

• Match scores, lineups, events: http://football-data.mx-api.enetscores.com/

• Betting odds: http://www.football-data.co.uk/

• Players and team attributes from EA Sports FIFA games: http://sofifa.com/

It includes the following:

• Data from more than 25,000 men’s professional football games

• More than 10,000 players

• From the main football championships of 11 European countries

• From 2008 to 2016

• Betting odds from various popular bookmakers

• Team lineups and formations

• Detailed match events (goals, possession, corners, crosses, fouls, shots, etc.)
with additional information to extract such as event location on the pitch (with
coordinates) and event time during the match.

We will only be using 5 leagues over two seasons as they possess geographical data
for match events that we will need to build our expected goals models:

• English Premier League

• French Ligue 1

23

3.2. DATA PRE-PROCESSING Chapter 3. Dataset

• German Bundesliga

• Spanish Liga

• Italian Serie A

We will only be using data from the 2014/2015 as well as 2015/2016 seasons as they
are the most recent seasons available in the database and the only ones containing
the data that we need.
This gives us usable dataset of:

• 3,800 matches from the top 5 European leagues

• 88,340 shots to analyse

• More than 100 different teams

3.2 Data pre-processing

An important step before building our model is to analyse and pre-process the data
to make sure that it is in a usable format for us to use when training and testing
different models.

Three pre-processing steps were taken in order to achieve this:

• Part of the data that we needed, namely all match events such as goals, posses-
sion, corners, etc. was originally in XML format in the database. We therefore
built a script in R to extract this data and store it in new tables, linked to the
’Matches’ table thanks to a foreign key mapping to the match ID. An extract of
the XML for a goal in one match is presented below:

<goal>

<value>

<comment>n</comment>

<stats>

<goals>1</goals>

<shoton>1</shoton>

</stats>

<event_incident_typefk>406</event_incident_typefk>

<coordinates>

<value>18</value>

<value>67</value>

</coordinates>

<elapsed>35</elapsed>

<player2>35345</player2>

<subtype>header</subtype>

<player1>26777</player1>

24

Chapter 3. Dataset 3.3. DATA FEATURES

<sortorder>1</sortorder>

<team>9826</team>

<id>3647567</id>

<n>200</n>

<type>goal</type>

<goal_type>n</goal_type>

</value>

</goal>

• Some data elements were set to NULL, which led to us deleting some unusable
rows and in other cases to us imputing values to be able to use the maximum
possible amount of data. For instance, the possession value was missing for
some games, so we entered a balanced value of 50% possession for each team
in this case.

• Finally, having extracted the geographical coordinates for each shot in the
dataset, we generated distance and angle to goal values which we added to
our goals and shots database tables.
The following formula was used to generate the distance to goal of a shot,
where the coordinates of the goal are (lat=0, lon=23):

D(lat, lon) =
p

lat2 + (lon� 23)2

The following formula was used to generate the angle of a shot:

A(lat, lon) = tan�1(|lon�23|
lat

)

3.3 Data features

A simplified diagram of the database structure and features is presented in Fig.3.1.
We will now present the different tables and features that we have in our database
and that we can use in our models:

• Matches table

– ID

– League ID

– Season

– Date

– Home team ID

– Away team ID

25

3.3. DATA FEATURES Chapter 3. Dataset

Figure 3.1: Structure of the Database

– Home team goals scored

– Away team goals scored

– Home team possession

– Away team possession

– Home win odds

– Draw odds

– Away win odds

• Events tables:
Here is a list of the different match events tables that we have extracted:

– Goals

– Shots on target

– Shots off target

– Corners

– Crosses

– Cards

– Fouls

For each of these match event tables, we have the following features:

– ID

– Type

26

Chapter 3. Dataset 3.3. DATA FEATURES

– Subtype

– Game ID

– Team ID

– Player ID

– Distance to goal (only for goals and shots)

– Angle to goal (only for goals and shots)

– Time elapsed

Extracts of the database and row values examples are available in the Appendix.

27

Chapter 4

Design

In this chapter, we will present the general design of our model and the choices we
have made.

Our model is a mixture of multiple regression and classification algorithms used to
generate different metrics that are finally used as inputs for our classification model
(for match outcomes) and regression model (for match scores).

4.1 Model components

In this section, we will introduce the different components of our model and explain
their role.

A diagram of our different components and how they are linked is presented in
Fig.4.1.

Figure 4.1: Diagram of model components

28

Chapter 4. Design 4.2. MODEL CHOICES

We have five main model components which we will present one by one:

• Shot xG generation:
This component’s objective is to generate an expected goal value for each shot
representing the probability that the shot results in a goal, with some adjust-
ments to reflect specific match situations.

• Match xG generation:
This component’s objective is to generate a shot-based expected goals value for
each match by looking at the expected goals values for each shot during that
match. In addition to this, a non-shot-based expected goals value is generated
using match information other than shots.

• ELO calculation:
This component’s objective is to generate offensive and defensive team ELO
ratings after each match using expected goals values and the actual perfor-
mance. ELO ratings are recalculated after each match and the team ratings are
stored for use in our predictive classification and regression models.

• Classification model training:
This component’s objective is to train and test a classification model capable of
taking two teams’ ELO ratings and generating a prediction for a match between
these two teams between a home team win, a draw and an away team win.

• Regression model training:
This component’s objective is to train and test a regression model capable of
taking two teams’ ELO ratings and generating a prediction for the expected
number of goals each team will score. These values are then used to generate
a prediction for the match outcome.

4.2 Model choices

We will now dive into more detail for each component of the model, presenting the
choices we have made and explaining how each value is obtained.

• Shot xG generation:

– To generate an expected goals value for each shot, we firstly take all shots
in our database, including goals, shots on target that did not result in a
goal (shots that were stopped on their way to goal by another player) and
shots off target (shot attempts that do not go in the direction of the goal.

– We then separate each shot into a specific category depending on the type
of shot:

⇤ ’Normal’ shots: lobs, shots from distance, deflected shots, blocked
shots, etc.

29

4.2. MODEL CHOICES Chapter 4. Design

⇤ Volleys (shots hit with the foot when the ball is still in the air)
⇤ Headers (shots hit with the head)
⇤ Direct free-kicks (shots that result from a free kick that can be directly

shot at goal)
⇤ Indirect free-kicks (shots that result from a free kick that cannot be

directly shot at goal)
⇤ Bicycle kicks (shots taken above the level of the shoulders)
⇤ Own goals (goals scored by players into their own net)
⇤ Penalties

– Next, we assign an outcome value of 1 to each shot that resulted in a goal,
and 0 to each shot that did not result in a goal.

– This allows us to build a separate classification model for each shot type,
taking as predictor variables the distance to goal and the angle to goal,
with the outcome variable reflecting if the shot resulted in a goal or not.
We have chosen to build a separate classification model for each shot type
as we make the assumption that each type of these goals have different
probabilities of resulting in a goal if taken from the same exact location
on the pitch.

– For each shot, we calculate the probability of scoring as an expected goals
value using the suitable classification model, entering as input the shot
distance and angle to goal, as illustrated by Fig.4.2.

Figure 4.2: Diagram of shot distance and angle used to predict xG

30

Chapter 4. Design 4.2. MODEL CHOICES

– Once we have our expected goals value for a shot, we proceed with an ad-
justment based on if the team is already leading and by how many goals.
We decide to make different adjustments if a team is winning by a single
goal, with the match final outcome still in the balance, and when a team
is winning by two goals or more, making the lead more comfortable for
the side that is winning. Adjusting the expected goals value is done to
reflect the fact that a team that is losing will become more attacking to try
and equalise or gain a result from the match, thus making it easier for the
winning team to attack and score goals, and making the shot worth less
than if the teams had the same number of goals for example.

We therefore decide to set a time t in the match after which the value of
a shot will decrease linearly until the end of the game towards a weight
k between 0 and 1. We will later try different times for which to start
decreasing shot values, with the hypothesis that the time where substitu-
tions are usually made could be a good starting point as managers often
bring on a more attacking player for a more defensive one in order to
catch up in the score. We will also try different values k if a team is lead-
ing by 1 goal or by 2 goals and more. Fig.4.3 illustrates our hypothesis by
showing the value of a goal as the game is progressing.

Figure 4.3: Diagram of value of shot xG over time when team is leading

– Finally, we proceed with a final adjustment, which is to decrease the value
of a shot by a certain coefficient if the player’s team has a higher number
of players on the pitch due to a red card given to one of the opposing
team’s players. This is due to the fact that a team with less players will
have on average a worse performance than if the two teams have the same
number of players, making it easier to attack and score for the opponent.
We also decide to increase the value of a shot by another coefficient if the
player’s teams have a lower number of players on the pitch, for the same
reason as mentioned above.

31

4.2. MODEL CHOICES Chapter 4. Design

• Match xG generation:

– Firstly, for each match, we sum of each team’s shot expected goals values
to generate a shot-based expected goals value for each team at the end of
a match.

– We also decide to build a non-shot-based expected goals metric for each
team by evaluating other information than shots:
⇤ possession
⇤ number of corners
⇤ number of crosses
⇤ number of yellow cards
⇤ number of yellow cards for the opponent
⇤ number of fouls
⇤ number

– We therefore decide to train a regression model which takes as input
these previously mentioned statistics for each team and takes as output
the number of actual goals the team has scored. We take this decision as
dangerous situations on the pitch that can result in goals can often not
lead to a shot being taken. We believe that using other information al-
lows us to better assess a team’s performance and their likelihood to score
goals.

– Once we have built this regression model, we look at each match and
generate a non-shot-based expected goals metric for the home team and
for the away team depending on their in-match statistics.

– Both the shot-based and non-shot-based expected goal values will be used
to recalculate ELO ratings after each match.

• ELO calculation:

– Our main method for ELO calculation is to store team ratings and modify
the ratings after each match has been completed, in order to keep a metric
of team strength and weakness.

– Each team will possess 6 different ratings that will be stored and updated:
⇤ General offensive rating
⇤ General defensive rating
⇤ Home offensive rating
⇤ Away offensive rating
⇤ Home defensive rating
⇤ Away defensive rating

– Each offensive rating represents the number of goals the team would be
expected to score against an average team at that point in time, while
each defensive rating represents the number of goals the team would be
expected to conceded against an average team at that point in time.

32

Chapter 4. Design 4.2. MODEL CHOICES

– For each match played at home, a team will have their general and home
ratings updated, and for each match played away, a team will have their
general and home ratings updated. This allows us to keep track of specific
strengths, for instance a team might be extremely strong at home but very
poor away, which will result in strong home ratings but average general
ratings.

– The ratings are recalculated using the following formula:

ELO(t+ 1) = ELO(t) + ⌘(actual(t)� expected(t))

In other words, we update an ELO rating after each match by taking the
pre-match ELO rating, and adding a weighted difference between the
actual number of expected goals and the expected amount of expected
goals. If the actual number of expected goals is greater than the expected
amount, then the ELO rating will increase, otherwise it will decrease. This
works for both offensive and defensive ratings, by simply taking the op-
ponent’s expected goals values to recalculate the defensive ratings. This
formula works in a similar way to a back-propagation algorithm which ad-
justs a value at each iteration using a coefficient, similar to a learning rate.

The actual number of expected goals value is a weighted average of a
team’s shot-based expected goals value and non-shot-based expected goals
value recorded in the match, which were generated previously. The weights
given to each metric will be optimised when training the model.

The expected number of expected goals value is a weighted average of:
⇤ a team’s general offensive rating
⇤ this team’s home/away-specific offensive rating
⇤ the opposing team’s general defensive rating
⇤ the opposing team’s home/away-specific defensive rating

The weights used for this calculation will be optimised when training the
model.

– We had to decide how to set the ELO ratings for the first time, before
the start of the 2014/2015 season for which we started to generate ex-
pected goals values. We decided to take set each team’s ELO ratings to
the average number of goals scored/conceded during the previous season
(2013/2014). For promoted teams (teams that played in the lower divi-
sion in the previous season), we took an average of the relegated teams’
average number of goals scored/conceded. This follows the assumption
that promoted teams are in general part of the teams that have the most
difficulties when arriving in the country’s top football league.

– Finally, we adjust every team’s ratings between two seasons towards the
mean of the league by a certain coefficient that we will attempt to optimise
for our models.

33

4.2. MODEL CHOICES Chapter 4. Design

– Having recalculated the ELO ratings of each team after each match, we
link them to the following match that a team is playing so that the ratings
can be used to predict the result of the following match.

• Classification model training:

– Now that we have generated our ELO ratings for each team and each
match, we can train a classification model to predict the outcome (home
win/draw/away win) of a match.

– We use both teams’ offensive and defensive ratings, both general and
home/away-specific, as well as an interaction term of each team’s general
offensive rating multiplied by the opponent’s defensive rating, as predic-
tor variables, and the actual outcome of the match as dependent variable
to train our model.

– We use cross-validation to train our model multiple times using different
training sets, and generating performance metrics on the test set for which
we then take the average for all cross-validation training runs.

• Regression model training:

– In parallel, we also train a regression model to predict the actual score of
the match.

– We first double the training data, to take our training examples’ ELO rat-
ings from the point of view of the home team attacking and then from the
point of view of the away team attacking.

– We add a variable to each data point to represent if the team is playing at
home (1) or away (0) in order to model the home advantage in matches.

– We use these ratings as predictor variables for our regression model, with
the actual number of goals scored as outcome variable.

– Again, we use cross-validation to train our model and generate regression
testing metrics.

– Finally, we use the predictions for the number of goals by each team to
model the match score probabilities using a Poisson distribution, which we
then sum to get the probability of each outcome in the match. We then
use these probabilities to generate classification metrics and evaluate the
classification performance of our regression model.

34

Chapter 5

Implementation

5.1 General pipeline

In this section, we will present the general pipeline that we have set up in order to
easily be able to train and test different models and compare their performances.

The pipeline we have created is illustrated in Fig.5.1.

Figure 5.1: General project pipeline

The pipeline consists of the following elements:

• Our database tables are stored in the Imperial Postgres database which allows
us to easily read and write to different tables while having access to a large
amount of memory space without being limited. We have two versions of
our pipeline: one of them writes the results to the database after each value
generation (shot xG, match xG, etc.), which allows us to independently test

35

5.2. LUIGI Chapter 5. Implementation

and tweak different parts of the model without having to recalculate values
every time. The other version of the pipeline simply reads the data from the
database but does not write to it, allowing us to run multiple possible versions
of the model, with different parameters, in parallel. This proves to be especially
useful when optimising the model parameters.

• We have used Python 2 to write out scripts for each component in the pipeline,
using the Pandas library [43] which gives us many useful Data Science tools
and allows us to extract data from the Postgres database and use DataFrames
to manipulate the data throughout the pipeline.

• We used the Scikit-Learn [44] library for Python for their easy implementation
of different Machine Learning algorithms which allowed us to try and optimise
different classification and regression techniques that we wanted to test.

• We created a CSV file to which we could write after each training/testing run
to store the model performance metrics and keep track of which models per-
formed best.

• Finally, we used the Luigi [45] library for Python in order to link the different
components of our pipeline together. This will be presented in more detail in
the next section of the report.

5.2 Luigi

Luigi [45] is an open-source Python created by Spotify which allows its users to build
pipelines of batch jobs, with an integrated visualiser page. We used Luigi to build
our pipeline of model training and testing so that we could easily keep track of the
different Machine Learning techniques and parameter choices we were going to test.

Luigi comes with an integrated dependency handler as well as error handling in case
one component of our pipeline failed during model training and testing. The differ-
ent tasks and errors can be visualised thanks to a local web server, as illustrated in
Fig.5.2.

We did not use Luigi to its full potential in creating batch jobs with many different
parameters as our approach was more incremental with only a few testing runs ev-
ery time we tweaked our model. However, Luigi allowed us to test different parts
of the pipeline independently, for instance testing different ELO calculation methods
without having to recalculate expected goal values.

Fig.5.3 illustrates the dependency graph for an example where we wanted to recal-
culate all expected goals values and train new models. We can see the contrast with
Fig.5.4 where we simply wanted to try new ELO calculation methods without having
to recalculate xG metrics for each shot and match.

36

Chapter 5. Implementation 5.2. LUIGI

Figure 5.2: Luigi visualiser page

Figure 5.3: Luigi dependency graph

37

5.2. LUIGI Chapter 5. Implementation

Figure 5.4: Luigi dependency graph without xG calculation

38

Chapter 6

Experimentation & Optimisation

In this chapter, we will present the experiments that we undertook to optimise our
model and obtain the best possible performance.

6.1 Testing

In this section, we will look at different testing methods and metrics that we have
used as a base to optimise our model.

6.1.1 Cross-validation testing

Cross validation is a method when training a model in order to avoid overfitting,
which is the situation when the model fits the training data very well but cannot
generalise to data that has not been seen before.

Cross-validation therefore uses a split between a training data set and a testing data
set. The training set is used to train the model, whereas the predictive performance
of the trained model is then tested on the test set. To keep a high number of samples
with which to train the model, cross-validation runs the training and testing routines
multiple times, with a different part of the dataset used as test data for each itera-
tion. The model evaluation metrics are then averaged across all training iterations.
This principle is illustrated in Fig.6.1.

The disadvantage of using cross-validation to train and test a new model is that the
training time is multiplied by the number of cross-validation iterations. In general,
though, it is worth sacrificing model training speed in order to reach a more robust
final model that is less prone to overfitting.

6.1.2 Testing metrics

Different testing metrics have been used in order to evaluate the performance of our
regression and classification models.

39

6.1. TESTING Chapter 6. Experimentation & Optimisation

Figure 6.1: Diagram of the cross-validation model training technique [46]

For our regression model, we have looked at two different metrics:

• Mean Absolute Error:

MAE =
Pn

i=1 |yi�ŷi|
n

where:

– y
i

is the actual value
– ŷ

i

is the value predicted by the regression model

Using the Mean Absolute Error allows us to interpret our model’s performance
as we know the average distance between the actual value and the model’s
predicted value. However, it is not always the best metric on which to make
model decisions.

• Root Mean Squared Error:

RMSE =
p
(ŷ

i

� y
i

)2

where:

– y
i

is the actual value
– ŷ

i

is the value predicted by the regression model

The Root Mean Squared Error is a metric that, compared to the Mean Abso-
lute Error, is not interpretable. However, the RMSE gives a larger weight to
predictions that are far away from the actual value. As we want our model to
obtain a robust predictive performance for all possible examples, we will want
to penalise these large errors and we have therefore chosen both RMSE and
MAE as the testing metrics we want to minimise.

40

Chapter 6. Experimentation & Optimisation 6.1. TESTING

For our classification model, we have also looked at two different metrics:

• Accuracy:

Acc = ntrue

ntotal

where:

– n
t

rue is the number of examples that the classifier has correctly predicted

– n
t

otal is the total number of examples

Accuracy is a simple metric that allows us to understand the performance of
our classification model by seeing what proportion of examples it has correctly
predicted. The accuracy is always between 0 and 1, and better performance
is achieved for higher accuracy. However, the accuracy metric is missing some
important information to quantify our classifier’s performance.

• F1 Score:

F1 = 2 precision⇤recall
precision+recall

where:

– precision = tp

tp+fp

tp is the number of true positive classifications (number of examples cor-
rectly classified as positive)
fp is the number of false positive classifications (number of examples
wrongly classified as positive)

– recall = tp

tp+fn

tp is the number of true positive classifications
fn is the number of false negative classifications (number of examples
wrongly classified as negative)

The F1 score is less easy to understand and interpret compared to the accu-
racy, especially for a multilabel classification problem as we have here (three
possible outcomes). In this case, the F1 score is calculated for each category
and the average is taken as the final F1 score.

The F1 score is in general recognised to be more useful than accuracy as it
takes false positives and false negatives into account. It is especially useful for
uneven class distribution, as we have here (home wins happen more often than
draws or away wins). We will therefore use the F1 score as well as Accuracy as
metrics to maximise in order to choose the classification model with the best
performance.

41

6.2. CHOICE OF MODELS Chapter 6. Experimentation & Optimisation

6.2 Choice of models

In this section, we will look at the experiments undertaken to choose the regression
and classification models we will be using in our final model at different stages of
our pipeline.

• Shot xG classification model
We have seen that we need a classification model for each shot type capable of
predicting the probability of the shot resulting in a goal given the distance to
goal and the angle to goal. We will therefore test and compare four different
classification models capable of generating probability predictions:

– Logistic Regression

– k-Nearest-Neighbors

– Gaussian Naive Bayes

– Random Forest Classifier

The results we obtained using the same parameters, keeping all other elements
of the pipeline constant and training a new general classification model, are
presented in Fig.6.2. We can see that we obtain the best accuracy by using the
Gaussian Naive Bayes model, which we will choose in order to build our shot
xG classification models.

Figure 6.2: Accuracy for different shot xG classification models

42

Chapter 6. Experimentation & Optimisation 6.2. CHOICE OF MODELS

• Non-shot-based xG regression model
We have seen that we need a regression model capable of predicting an ex-
pected number of goals given the different in-game statistics excluding shots.
We will therefore test and compare four different regression models:

– Linear Regression

– SVM Regressor with RBF kernel

– SVM Regressor with Linear kernel

– Random Forest Regressor (with a forest of 10 decision trees)

The results we obtained using the same parameters, keeping all other elements
of the pipeline constant and training a new general classification model, are
presented in Fig.6.3. We can see that we obtain the best accuracy by using
the Random Forest Regressor model with a forest size of 10 decision trees,
which we will choose to implement in order to build our non-shot-based xG
regression model.

Figure 6.3: Accuracy for different non-shot-based xG regression models

• General outcome classification model
We have seen that we need a classification model capable of predicting the
outcome of a game given the different ELO ratings of the two teams playing
against each other. We will therefore test and compare eight different classifi-
cation models capable of generating probability predictions:

43

6.2. CHOICE OF MODELS Chapter 6. Experimentation & Optimisation

– Logistic Regression

– k-Nearest-Neighbors

– Gaussian Naive Bayes

– Random Forest Classifier

– SVM with RBF kernel

– SVM with polynomial kernel

– SVM with linear kernel

– Neural Network (Multilayer Perceptron with one hidden layer of 100 neu-
rons: this has been optimised as the best Neural Network architecture for
this task)

The results we obtained using the same parameters, keeping all other elements
of the pipeline constant and training our match outcome classification model,
are presented in Fig.6.4. We can see that we obtain the best accuracy by using
the SVM model with a linear kernel function, which we will choose in order to
build our match outcome classification models.

Figure 6.4: Accuracy for different match outcome classification models

• Match score regression model
We have seen that we need a regression model capable of predicting expected
number of goals for each team given offensive and defensive ELO ratings as
well as home advantage. We will therefore test and compare six different
regression models:

– Linear Regression

– SVM Regressor with RBF kernel

– SVM Regressor with Linear kernel

44

Chapter 6. Experimentation & Optimisation 6.3. PARAMETER OPTIMISATION

– SVM Regressor with Polynomial kernel

– Random Forest Regressor

– Neural Network (Multilayer Perceptron with two hidden layers of 100
neurons: this has been optimised as the best Neural Network architecture
for this task)

The results we obtained using the same parameters, keeping all other elements
of the pipeline constant and training a new match score regression model, are
presented in Fig.6.5. We can see that we obtain the lowest Mean Absolute
Error by using the Neural Network model, which we will choose in order to
build our match score regression model.

Figure 6.5: MAE for different match score regression models

6.3 Parameter optimisation

In this section, we will explain which parameters we wanted to optimise and the
method that was used to do so.

6.3.1 OpenMOLE parameter optimisation

OpenMOLE [47] is a software which enables parameter optimisation through the
use of Genetic Algorithms.

The software takes as input a model, a number of parameters to test as well as their
ranges, and two metrics to minimize. It then runs multiple batches of parallel tests
with random parameters for each run. The use of Genetic Algorithms enables the
reproduction of the tests that generate the best results in order to converge towards

45

6.3. PARAMETER OPTIMISATION Chapter 6. Experimentation & Optimisation

a minimum, while discarding parameter values that generate poor results.

The final output of this calibration method is a set of parameters called the Pareto
frontier solutions for which one of the two metrics to minimise cannot be minimised
without increasing the other metric. This principle is illustrated in Fig.6.6.

Figure 6.6: Diagram of the openMOLE parameter optimisation method [47]

6.3.2 Results

Two batches of optimisations were run for the same parameters: one to optimise
the match score regression model, and the other to optimise the match outcome
classification model. The optimisation ran for 6 hours, evaluating a total of 130,000
different parameter combinations.

The parameters to optimise and their ranges given to the software were:

• Weight on shot xG if the team has a player advantage: [0,1]

• Weight on shot xG if the team has a player disadvantage: [1,2]

• Weight k on shot xG at end of game if winning by 1 goal: [0.5,1]

• Weight k on shot xG at end of game if winning by 2 goals or more: [0.5,1]

• ELO ratings adjustment towards mean between seasons: [0,0.5]

• ’Learning rate’ ⌘ for ELO ratings after each game: [0,0.25]

• Weight of shot-based xG compared to non-shot-based xG: [0,1]

• Weight of home/away-specific ELO ratings compared to general ratings in ELO
recalculation: [0,1]

The metrics to optimise given to the software were:

• for the regression model: minimise RMSE, maximise Accuracy

• for the classifiction model: maximise F1 Score and Accuracy

46

Chapter 6. Experimentation & Optimisation 6.3. PARAMETER OPTIMISATION

The results of the parameter optimisation for the match score regression model are
as follows:

• Weight on shot xG if the team has a player advantage: 0.95

• Weight on shot xG if the team has a player disadvantage: 1.9

• Weight k on shot xG at end of game if winning by 1 goal: 0.6

• Weight k on shot xG at end of game if winning by 2 goals or more: 0.85

• ELO ratings adjustment towards mean between seasons: 0.01

• ’Learning rate’ ⌘ for ELO ratings after each game: 0.15

• Weight of shot-based xG compared to non-shot-based xG: 0.5

• Weight of home/away-specific ELO ratings compared to general ratings in ELO
recalculation: 0

The results of the parameter optimisation for the match outcome classification model
are as follows:

• Weight on shot xG if the team has a player advantage: 0.9

• Weight on shot xG if the team has a player disadvantage: 1.25

• Weight k on shot xG at end of game if winning by 1 goal: 0.52

• Weight k on shot xG at end of game if winning by 2 goals or more: 0.9

• ELO ratings adjustment towards mean between seasons: 0.135

• ’Learning rate’ ⌘ for ELO ratings after each game: 0.12

• Weight of shot-based xG compared to non-shot-based xG: 0.6

• Weight of home/away-specific ELO ratings compared to general ratings in ELO
recalculation: 0.2

6.3.3 Analysis of optimal parameters

We have very interestingly seen that the optimal parameters for the match score re-
gression model and the match outcome classification are different. Although they
approximately agree on most parameters, there are a few for which the difference is
significant.

• Weight on shot xG if the team has a player advantage: both models agree that
the weight should be close to 1 (0.9 and 0.95). We can interpret this parameter
value meaning that teams with a player disadvantage will not attack as much as
they normally would, and that they will concentrate on defending, thus making
still difficult to score against them even if they are at a player disadvantage.

47

6.3. PARAMETER OPTIMISATION Chapter 6. Experimentation & Optimisation

• Weight on shot xG if the team has a player disadvantage: both models are quite
far apart for this parameter (1.25 and 1.95). They do agree on the fact that
shots’ xG value should be increased when playing with a player disadvantage
as it is in general very difficult to create chances in this case.

• Weight k on shot xG at end of game if winning by 1 goal: both models agree
that a shot’s value should be decreased by nearly half (0.52 and 0.6) by the
end of the game when leading by 1 goal (optimised for the shot xG value to
start decreasing at the 70th minute). This shows us that a team chasing a one
goal lead will take risks to equalise near the end of the game and therefore
make it easier for the opposing team to attack and to create chances.

• Weight k on shot xG at end of game if winning by 2 goals or more: both models
agree that a shot’s value should be decreased by only a little (0.85 and 0.9) by
the end of the game when leading by 2 goals or more (optimised for the shot
xG value to start decreasing at the 70th minute). This shows us that a team
chasing a two goal lead will not take that many risks to equalise near the end
of the game as the outcome is difficult to change, and will only make it a little
easier for the opposing team to attack and to create chances compared to if the
teams had the same number of goals.

• ELO ratings adjustment towards mean between seasons: both optimised pa-
rameter are very far off, with the optimal parameter being of 0.01 for the
regression model and 0.135 for the classification model. This suggests that the
number of goals scored or conceded for a team at the beginning of a season is
quite similar than for the end of the previous season. On the other hand, the
probability of winning/drawing/losing is not quite the same as the end of the
previous season, so it should be adjusted towards the league’s mean.

• ’Learning rate’ ⌘ for ELO ratings after each game: Both models agree on the fact
that the ELO ratings learning rate should be approximately the same (0.12 and
0.15). A higher learning rate for the regression model suggests that scoring
and conceding goals depends more on the form of recent games than winning
and losing games, which is more stable over time.

• Weight of shot-based xG compared to non-shot-based xG: Both models agree
that half or more (0.5 and 0.6) of a team’s match xG metric should come from
their shots compared to other in-game statistics. This does mean that non-shot-
based xG is quite important in the model and does reflect a better chance of
winning a game/scoring goals.

• Weight of home/away-specific ELO ratings compared to general ratings in ELO
recalculation: Both models agree that the weight of home/away-specific ELO
ratings does not should not affect a team’s predicted amount of xG too much
compared to general attacking and defensive ratings. For the model score
regression model, home/away-specific ratings should not even be taken into

48

Chapter 6. Experimentation & Optimisation 6.3. PARAMETER OPTIMISATION

account, meaning that only looking at the general offensive and defensive rat-
ings should give a good idea of the xG value a team is expected to generate in
a match.

49

Chapter 7

Evaluation

In this chapter, we will evaluate our models in absolute terms as well as compar-
ing their predictive performance against benchmark methods that have been used in
past research on the subject. We will also be able to check our predictions against
actual betting odds to see if we come close to professional bookmakers’ complex
models.

As we are looking to obtain the best model we can, there is no specific accuracy
that we need to attain to be successful in this project. The comparison with other
benchmarks will be the best way of knowing if using a combination of expected goals
model and team ratings is better than simpler models that have been used in the past.

7.1 Absolute results

• Match outcome classification model results:
For our final classification model, we obtain a predictive Accuracy of 0.511 and
a F1 Score of 0.382.
This means that our model is able to predict the correct outcome of a match in
more than 50% of games.
Also, when using actual goals instead of our expected goals metrics in the same
model, we only obtain an accuracy of 0.496 and a F1 score of 0.361. We can
see that using expected goals does not give us a large predictive advantage
over using actual goals. However, due to the limitations in the data to estimate
shot xG probability, we can say that this difference could only increase as better
quality data is used to generate xG metrics.

• Match score regression model results:
For our final regression model, we obtain a RMSE value of 1.153, a MAE value
of 0.861 and, using the Poisson distribution to generate match outcome prob-
abilities, an Accuracy of 0.446.
This means that, on average, our model predicts a number of goals for a team
that is 0.861 goals away from reality. This could seem to be quite large, how-

50

Chapter 7. Evaluation 7.2. COMPARISON WITH BENCHMARKS

ever it is worth remembering that there exists a high number of outliers, such
as very high number of goals, something that is nearly never predicted by the
model, which tends to be more conservative.
We can also see that our Accuracy performance of 0.446 is quite poor com-
pared to our classification model and other benchmark models (Fig.7.1). This
could lead to the hypothesis that the Poisson distribution does not accurately
model the distribution of goals in a game of football.
Finally, when using actual goals instead of our expected goal metrics in the
same model, we obtain a worse RMSE value of 1.202 as well as a worse Ac-
curacy of 0.427. We can again see that using expected goals rather than ac-
tual goals in our models has generated a better predictive performance, even
though our ’actual goals’ model performs quite well compared to other bench-
mark models (Fig.7.1).

7.2 Comparison with benchmarks

In this section, we will compare different performance metrics of our final models
with benchmark models.

In Fig.7.1, we can see a comparison of the classification accuracy for our final models
as well as benchmark models.

Figure 7.1: Accuracy for our final models and benchmark models

In Fig.7.2, we can see a comparison of the classification F1 score for our final models
as well as benchmark models.

Finally, in Fig.7.3, we can see a comparison of the root mean squared error for our
final models as well as benchmark models.

51

7.2. COMPARISON WITH BENCHMARKS Chapter 7. Evaluation

Figure 7.2: F1 Score for our final models and benchmark models

Figure 7.3: RMSE for our final models and benchmark models

52

Chapter 7. Evaluation 7.2. COMPARISON WITH BENCHMARKS

7.2.1 Betting odds

Our dataset contained the betting odds from Bet365, one of the United Kingdom’s
most popular bookmakers, for each game that we attempted to predict.

Choosing the smallest odds value as the most probable outcome of a game for the
bookmakers’ model, we obtain an Accuracy of 0.521, which means that bookmakers
manage to predict the correct outcome for 52.1% of matches in our dataset.

When comparing the performance metrics of the bookmaker’s model to the clas-
sification model we created in this project, we can see that our final classification
model has marginally worse classification accuracy (0.511 vs 0.521). However, we
obtain the same F1 score as the bookmaker’s model (0.382). This shows us that our
final classification model performs quite well in general, as bookmakers use complex
models trained on many seasons and have access to more data than we had in our
database.

7.2.2 Dixon & Coles model

We implemented the Dixon and Coles model in Python in order to generate perfor-
mance metrics and compare them to our own final models’ performance.

Firstly, we decided to try implementing the classical Dixon and Coles model using
actual match results, as well as implementing the same model but this time using
expected goals instead of actual goals. As we can see in our comparison graphs
(Figs.7.1, 7.2 and 7.3), the expected goals Dixon and Coles model consistently out-
performs the actual goals model accross our performance metrics (Accuracy: 0.381
vs 0.375, F1 Score: 0.341 vs 0.324, RMSE: 1.138 vs 1.172).

When comparing our final models to our Dixon and Coles implementation, we find
that our match outcome classifier outperforms the Dixon and Coles model in terms
of Accuracy and F1 score by a consequent margin. Indeed, our Accuracy of 0.511 is
much larger than the Dixon and Coles accuracy of 0.375, and our F1 score of 0.382
is again larger than the Dixon and Coles model F1 score of 0.324.

However, the Dixon and Coles model’s Root Mean Squared Error in predicting model
scores comes very close to our final regression model’s RMSE score: 1.172 for the
Dixon and Coles model against 1.153 for our final regression model. It is interesting
to note that the best-performing model in terms of RMSE is the Dixon and Coles
model using expected goals data, with a RMSE of 1.138.

7.2.3 Other naive benchmarks

One naive benchmark we can use is for our classifier to always predict a Home win
as that is the most probable outcome on average.

53

7.3. STRENGTHS & WEAKNESSES Chapter 7. Evaluation

This gives us an Accuracy of 0.429, which we can use as a lower bound for the ex-
pected accuracy of an intelligent match outcome classification model. We can see
that our regression model, when used for classification by using the Poisson distri-
bution to estimate outcome probabilities, achieves a marginally better accuracy of
0.446, which is quite disappointing.

Finally, another naive benchmark we can use is to randomly choose one of the three
outcomes, which gives us a classification accuracy of 0.33. A model with lower
accuracy can be said to perform worse than a random model. We can observe than
the classification accuracy of the Dixon and Coles model is only slightly higher than
that at 0.375. This is quite a low accuracy for the Dixon and Coles model and could
be due to the small amount of data for the Dixon and Coles model to calculate each
team’s ratings using Maximum Likelihood.

7.3 Strengths & Weaknesses

The strengths of this project are:

• We have built an easy-to-use pipeline that can easily be reproduced and reused
in other Machine Learning projects.

• Using ELO ratings allows for the model to be improved after each game by
calculating expected goals and recalculating the ELO ratings, without the need
to train the whole model again.

• We achieved a classification accuracy comparable to the bookmakers’ complex
models and higher than traditional models such as the Dixon & Coles model
which suggests that expected goals as a metric is today an essential part of foot-
ball modelling techniques in order to achieve higher predictive performance.

• The parameter optimisation step enabled us to understand the relative impor-
tance of some elements in the model when predicting the outcome or result of
future matches.

• We have explored a wide range of different Machine Learning models and
parameters to optimise our model’s performance as much as we could.

However, the project also possesses some weaknesses:

• We hit an upper bound in classification accuracy when optimising the param-
eters and our choice of Machine Learning models. This could be due to the
high variance of football matches results, which could explain why we could
not achieve better performance, or to our model’s design which could have
disallowed us from achieving better classification accuracy.

• We only train our models using data from 2 seasons and 5 leagues: having
more data available would help make the model more robust and better gen-
eralize training data.

54

Chapter 7. Evaluation 7.3. STRENGTHS & WEAKNESSES

• We did not have another dataset to train our model on, which means that the
obtained results should be verified using another dataset.

• To use the model and generate a prediction, specific data is needed (e.g. coor-
dinates of each shot in a game) which makes the model difficult to use without
the right data.

55

Chapter 8

Conclusion & Future Work

8.1 Summary

Our main objective of building an expected goals model by exploring different Ma-
chine Learning techniques has been accomplished. Indeed, we used modern Ma-
chine Learning algorithms such as Neural Networks, Random Forest and Support
Vector Machines techniques to generate match outcome and match score predictions.

We managed to find and improve a database containing enough information to gen-
erate expected goals metrics, through both shots and other in-game statistics, and
ELO team ratings.

A model training and testing pipeline was built to quickly and easily tweak our model
and try different hypotheses, using Luigi to link our different model components to-
gether.

We have also compared our predictions to benchmark methods in order to better
understand our models’ predictive performance. We have crucially found that our
expected goals models achieve a similar performance to bookmakers’ odds, and that
using expected goals instead of actual goals in traditional models such as the Dixon
& Coles model, helps achieve better predictive performance.

8.2 Challenges & Solutions

8.2.1 Finding data

One of the main challenges encountered during the project was to find suitable data
to use to build an expected goals model. A lot of time was spent doing research to
find public databases which enabled me to find the Kaggle database that we have
used for this project.

56

Chapter 8. Conclusion & Future Work 8.3. FUTURE EXTENSIONS

However, I believed that I could find more interesting data to build better models so
I set out to scrape data from the WhoScored.com website [48] which contains a very
large amount of data for each game. After familiarising myself with some popular
Web Scraping tools, I realised that the website had an anti-scraping protection that
was near impossible to break, as they wanted to avoid their data being put into
public databases. I spent a lot of time trying to find ways around this protection,
however after some time we decided with my supervisor that it would be wiser to go
to our fall-back position of using the Kaggle database and start to build our model.

8.2.2 Model & parameter choices

Difficult model choices had to be made to start of the project in terms of model de-
sign, which then led to an incremental approach using simple shot expected goals
and ELO calculations, then adding elements that made the model more accurate.

The large number of parameters to optimise made it near impossible to find a set
of best parameters by testing different values for each parameter step-by-step. I
am very thankful that my supervisor, Dr. Jonathan Passerat-Palmbach, talked to
me about the OpenMOLE parameter optimisation method using Genetic Algorithms,
and helped me optimise my model parameters, which allowed the model to achieve
better predictive performance.

8.3 Future extensions

There are many directions in which this project could be taken with more time and
resources.

8.3.1 Improved data

Firstly, I believe that the model can definitely be improved with more interesting
data regarding match events. For instance, one weakness of the shot expected goals
estimation is that we do not know the position of the opposing team’s players at
the time of the shot. It is clear that, for instance, having a player between the ball
and the goal would dramatically reduce the probability of the shot resulting in a goal.

Also, we had no information regarding the geographical location and type of passes
that were made in the game. As many dangerous scoring positions do not result in
a shot, having passes data would allow the model to better estimate the number of
expected goals a team should have scored in a game.

Getting data from the WhoScored.com website would allow the collection of a very
large amount of interesting data for each match. WhoScored.com is a popular foot-
ball statistics website that presents very interesting data on a huge range of games
from all the top championships worldwide since 2009. Its data is provided by Opta

57

8.3. FUTURE EXTENSIONS Chapter 8. Conclusion & Future Work

[49], the largest sports data provider in the world today. WhoScored.com is espe-
cially interesting to use as it displays valuable match data such as:

• Possession, shots, dribbles, crosses, tackles, etc.

• Player formation and ratings

• Match events with their time of occurrence and position on the football pitch

• Shots data (zone from which the shot is taken, part of the body, from which
game situation, ...) which is extremely valuable to build an expected goals
model

8.3.2 Monte Carlo simulations to predict future events

Monte Carlo simulations are run a large number of times and rely on random sam-
pling to generate predictions.

Now that we have created our expected goals model, we could run Monte Carlo
simulations thousands of times on one season of a league to see which team has the
highest probability of winning the championship, for example.

The advantage of Monte Carlo techniques is that they can be used to generate pre-
dictions into the future for competitions that have not started for example.

8.3.3 Player-centred models

With more time, we could add a player-centric element to our expected goals models
by using player data to better understand how many goals a team was expected to
score in a game.

For example, we could use a player’s shooting accuracy or the knowledge about his
strongest foot to better assign probabilities to each shot or match event that this
player takes part in.

Instead of looking at team performance with expected goals, we could also look
at individual player performance to better predict team performance using all the
players taking part in a match, or generating team selections that have the highest
probability of winning a match.

8.3.4 Team profiles

All the team data such as the teams’ possession, number of crosses, number of tack-
les, number of headers, etc., could be used to classify each team into different cate-
gories of playing styles.

58

Chapter 8. Conclusion & Future Work 8.3. FUTURE EXTENSIONS

Models could then be built to understand the interaction between the playing styles
of two different teams and help predict the outcome of a match where these two
teams face each other.

This would add to the ELO offensive and defensive team ratings and could help us
understand some of the outliers that cannot be predicted simply by using the ELO
ratings.

8.3.5 Betting analysis

Another potential future extension to this project could be to look at betting odds
to see whether our model could recommend good value bets and profitable betting
strategies that generate a profit on the long run.

Other than looking at betting odds for traditional bookmakers, the predictions could
be used to try and generate profitable strategies on Augur [50], a Blockchain-powered
forecasting tool where people bet against each other rather than against a book-
maker. This could lead to better betting opportunities compared to bookmakers,
who use a risk model in order to minimise potential losses.

59

Bibliography

[1] Size of the betting industry [http://www.bbc.co.uk/sport/football/
24354124

1]. pages 1

[2] Average goals per match in the Premier League [http:
//www.skysports.com/football/news/11095/10752408/

the-evolution-of-full-backs-how-they-became-integral-to-success

2].
pages 2

[3] Linear Model diagram from scikit-learn website [http://scikit-learn.org/
stable/modules/linear_model.html

3]. pages 8

[4] Logistic Function plot [http://www.thefactmachine.com/
logistic-regression/

4]. pages 10

[5] Architecture of the Random Forest model [https://www.researchgate.net/
figure/Architecture-of-the-random-forest-model_fig1_301638643

5].
pages 11

[6] Diagram of the Gaussian Naive Bayes model [https://www.researchgate.net/
figure/Illustration-of-how-a-Gaussian-Naive-Bayes-GNB-classifier-works-For-each-data-point_

fig1_255695722

6]. pages 12

[7] Diagram of the k-Nearest-Neighbors model [http://scikit-learn.org/stable/
auto_examples/neighbors/plot_classification.html

7]. pages 13

[8] Plot of the SVM Hyperplane [http://scikit-learn.org/stable/modules/svm.
html

8]. pages 14

[9] Diagram of the neural network model [http://scikit-learn.org/stable/
modules/neural_networks_supervised.html

9]. pages 15

[10] M. J. Moroney. Facts from figures, 3rd edn.. Penguin: London, 1956. pages 16

[11] C. Reep. Skill and chance in ball games. Journal of the Royal Statistical Society
Series A 131: 581-585, 1971. pages 16

[12] I.D. Hill. Association football and statistical inference. Applied Statistics 23: 203-
208, 1974. pages 16

[13] M. J. Maher. Modelling association football scores. Statistica Neerlandica, 1982.
pages 16

60

BIBLIOGRAPHY BIBLIOGRAPHY

[14] M.J. Dixon, S.C. Coles. Modelling association football scores and inefficiencies in
the football betting market. Applied Statistics, 1997. pages 17

[15] Plot of the Poisson distribution [https://www.umass.edu/wsp/resources/
poisson/

10]. pages 17

[16] H. Rue, O. Salvesen. Prediction and retrospective analysis of soccer matches in a
league. Statistician, 2000. pages 18

[17] M. Crowder, M. Dixon, A. Ledford, M. Robinson. Dynamic modelling and pre-
diction of English Football League matches for betting. Statistician, 2002. pages
18

[18] D. Forrest, R. Simmons. Forecasting sport: The behaviour and performance of
football tipsters. International Journal of Forecasting, 2000. pages 18

[19] T. Kuypers. Information and efficiency: An empirical study of a fixed odds betting
market. Applied Economics, 2000. pages 18

[20] J. Goddard. Regression models for forecasting goals and match results in associa-
tion football. International Journal of Forecasting, 2005. pages 18

[21] B. Hamadani. Predicting the outcome of NFL games using machine learning. Stan-
ford University, 2006. pages 18

[22] A. Adam. Generalised linear model for football matches prediction. KULeuven,
2016. pages 19

[23] M. Tavakol, H. Zafartavanaelmi and U. Brefeld. Feature Extraction and Aggrega-
tion for Predicting the Euro 2016. Leuphana University of Luneburg, 2016. pages
19

[24] S. Kampakis, W. Thomas. Using Machine Learning to Predict the Outcome of
English County twenty over Cricket Matches. University College London. pages
19

[25] N. Tax, Y. Joustra. Predicting The Dutch Football Competition Using Public Data:
A Machine Learning Approach. Transactions on Knowledge and Data Engineer-
ing, 2015. pages 19

[26] A. Joseph, N.E. Fenton, M. Neil. Predicting football results using Bayesian nets
and other machine learning techniques. Knowledge-Based Systems, 2006. pages
19

[27] M.C. Purucker. Neural network quarterbacking. IEEE Potentials, 1996. pages 19

[28] J. Kahn. Neural network prediction of NFL football games. World Wide Web Elec-
tronic Publication, 2003. pages 19

61

BIBLIOGRAPHY BIBLIOGRAPHY

[29] Hucaljuk, J.; Rakipovic, A. Predicting football scores using machine learning tech-
niques. MIPRO, 2011 Proceedings of the 34th International Convention, 2011.
pages 19

[30] A.E. Elo. The rating of chessplayers, past and present. Arco Publishing, 1978.
pages 20

[31] B.L. Boulier, H.O. Stekler. Are sports seedings good predictors? An evaluation.
International Journal of Forecasting, 1999. pages 20

[32] S.R. Clarke, D. Dyte. Using official ratings to simulate major tennis tournaments.
International Transactions in Operational Research, 2000. pages 20

[33] J. Buchdahl. Fixed odds sports betting: Statistical forecasting and risk manage-
ment. High Stakes, 2003. pages 20

[34] Lars Magnus Hvattuma, Halvard Arntzen. Using ELO ratings for match result
prediction in association football. International Journal of Forecasting, 2010.
pages 20

[35] J. Lasek. Euro 2016 Predictions Using Team Rating Systems. ECML/PKDD, 2016.
pages 21

[36] Sasank Viswanadha, Kaustubh Sivalenkal, Madan Gopal Jhawar, Vikram
Pudi. Dynamic Winner Prediction in Twenty20 Cricket: Based on Relative Team
Strengths. Mahindra Ecole Centrale, Hyderabad, India, 2017. pages 21

[37] Anthony Costa Constantinou, Norman Elliott Fenton. Determining the level of
ability of football teams by dynamic ratings based on the relative discrepancies
in scores between adversaries. Journal of Quantitative Analysis in Sports, 2013.
pages 21

[38] Brian Macdonald. An Expected Goals Model for Evaluating NHL Teams and Play-
ers. MIT Sloan Sports Analytics Conference, 2012. pages 21

[39] Harm Eggels, Ruud van Elk, Mykola Pechenizkiy. Explaining soccer match out-
comes with goal scoring opportunities predictive analytics. Eindhoven University
of Technology, 2016. pages 22

[40] Patrick Lucey, Alina Bialkowski, Mathew Monfort, Peter Carr, Iain Matthews.
Quality vs Quantity: Improved Shot Prediction in Soccer using Strategic Features
from Spatiotemporal Data. MIT Sloan Sports Analytics Conference, 2015. pages
21

[41] FiveThirtyEight football predictions [https://projects.fivethirtyeight.
com/soccer-predictions/

11]. pages 22

[42] Kaggle European Soccer Database [https://www.kaggle.com/hugomathien/
soccer

12]. pages 23

62

BIBLIOGRAPHY BIBLIOGRAPHY

[43] Pandas Python library [https://pandas.pydata.org/13]. pages 36

[44] Scikit-Learn Python library [http://scikit-learn.org/stable/index.
html

14]. pages 36

[45] Luigi: Python module to build batch jobs pipeline [https://github.com/
spotify/luigi

15]. pages 36

[46] Diagram of the cross-validation model training technique [https://en.
wikipedia.org/wiki/Cross-validation_(statistics)

16]. pages 40

[47] openMOLE parameter optimisation method diagram [https://next.openmole.
org/Calibration.html

17]. pages 45, 46

[48] WhoScored.com football statistics website [https://www.whoscored.com/18].
pages 57

[49] Opta Sport data provider [http://www.optasports.com/19]. pages 58

[50] Augur: Decentralized prediction markets [http://www.augur.net/20]. pages 59

63

BIBLIOGRAPHY BIBLIOGRAPHY

Appendix: Dataset Examples

Figure 1: Screen capture of the Matches table in our database

64

BIBLIOGRAPHY BIBLIOGRAPHY

Figure 2: Screen capture of the Shots table in our database

65

