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Complex dynamical systems, from those appearing in physiology and ecology to Earth
systems modeling, often experience critical transitions in their behavior due to potentially
minute changes in their parameters. While the focus of much recent work, predicting
such bifurcations is still notoriously difficult. We propose an active learning approach to
the classification of parameter space of dynamical systems for which the codimension of
bifurcations is high. Using elementary notions regarding the dynamics, in combination with
the nearest neighbor algorithm and Conley index theory to classify the dynamics at a
predefined scale, we are able to predict with high accuracy the boundaries between regions
in parameter space that produce critical transitions.
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1. Introduction

Critical scientific problems are increasingly marked by the need to understand
the dynamical behavior of complex systems. Merely decomposing a problem into
isolated subsystems, and attempting to extrapolate the behavior of the whole sys-
tem from the steady state behavior of each subsystem is often insufficient. The
importance of studying the dynamics of complex systems is exemplified by the
wide range of fields in which such systems constitute major research foci [3, 19].
Examples of complex systems include scale-free networks in fields ranging from
biology and neuroscience to computer science and internet research [7, 26]; anal-
ysis of high-dimensional models in ecology and physics [5, 11, 32]; and the study
of atmospheric circulation ranging from small scale theoretical studies [20] to the
macro scale models of global circulation. The need to study directly the entire
aggregate system, instead of decomposing a system into its constituent parts is
intuitively clear in climate change models: one is interested in the time-dependent
trajectory of the entire planetary system over decades and centuries [18, 27, 29].
The mechanisms driving the climate are integrally coupled, making analysis via
decomposition difficult or impossible [10, 14, 27, 28].

A key component in the long term behavior of complex dynamical systems is
a sensitive dependence on the parameters chosen for the model, as well as the
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initial conditions. Furthermore, for physical models the parameter values are often
only known approximately, and the amount that they affect the system cannot be
precisely determined. This introduces uncertainty in every step of the modeling
process.

The classical dynamical system paradigm is to consider particular autonomous
systems with one or two parameters, and study invariant sets which may be par-
ticularly sensitive to change in parameters. In the face of the aforementioned prob-
lems, this approach often falls short. Therefore, there is a need for conceptually
new approaches to nonlinear dynamical systems with many parameters [18, 29].

One exciting new approach backs away from the traditional concept of an invari-
ant set as the principle object of study for a dynamical system and focuses instead
on the related concept of a Morse set. Morse sets have the advantage that they
are robust with respect to perturbations, including certain types of noise, while
also being computationally tractable [2, 23]. This robustness allows one to make
statements about the qualitative behavior of a system over a range of parameters.
Morse sets are also naturally ordered by the dynamics. The collection of Morse sets
with the dynamics-compatible partial ordering is a Morse decomposition, and orga-
nizes the long-term behavior of the dynamics. Additionally, Morse decompositions
have a natural combinatorial representation as a directed graph, where the vertices
correspond to the Morse sets and the edges represent the dynamics-compatible or-
dering. This object is the Morse graph and is a central object of this approach to
dynamics [2, 22].

This paper is organized as follows. In Section 2 we summarize the background
necessary for constructing Morse graphs. We then show how the Morse graph
approach can be used to construct a database of dynamical systems that can be
queried in order to locate parameters at which global changes in dynamics occur.
However, construction of the database at a reasonable grid size in high dimensional
parameter spaces is computationally expensive and inherently suffers from the curse
of dimensionality. In Section 3, we describe a novel machine learning approach to
the construction of such a database that builds on the work of Arai, et al. [2, 4].
Sections 4 and 5 describe the model with which we demonstrate our algorithm
as well as the learning algorithms used to build the database. In Section 6, we
demonstrate that by incorporating our learning algorithms we are able to compute
the Morse graphs of as few as 20% of the grid elements in a discretized parameter
space, while correctly classifying the dynamics of over 98% of parameter space.

2. Conley-Morse Database

In this section we provide a brief review on the fundamentals necessary to construct
a database of global dynamics. The reader is referred to [2, 15] for further details.

2.1. Preliminaries

Instrumental to this work is Conley index theory, an important tool for analyzing
the dynamics of both continuous and discrete dynamical systems. In particular,
the Conley Index can be used to find stationary, periodic or heteroclinic orbits,
or to prove chaotic behavior of dynamical systems. More specifically, the Conley
Index is an algebraic topological invariant of isolated invariant sets.

To simplify our exposition, we will focus primarily on the combinatorial aspects
of the database, and refrain from speaking at length on algebraic topology. Fur-
thermore, as our experimental model is a map, we will restrict our exposition to
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the discrete case, primarily following the outline of [2]. Further details on Conley
index theory can be found in [15, 23].

Let f : X × Λ → X be a map on a locally compact metric space X and a
parameter space Λ that is a compact, locally contractible, connected metric space.
At a particular parameter value λ we will sometimes denote f(x, λ) as fλ(x).

The fundamental mathematical structures in the study of dynamical systems are
invariant sets. A subset Z ⊂ X is invariant at the parameter λ ∈ Λ if fλ(Z) = Z.
When considering computational dynamics it is important to note that we cannot
compute at each parameter independently, and therefore are most interested in
sets which are invariant with respect to a subset of the parameter space.

We use the notation F : X × Λ → X × Λ for the extension of f to include
the parameters as explicit variables, i.e. F (x, λ) = (f(x, λ), λ) = (fλ(x), λ). For
a subset of the parameter space Λ0 ⊂ Λ, let FΛ0

: X × Λ0 → X × Λ0 denote
the restriction of F to X × Λ0. For a set S ⊂ X × Λ we denote its restriction to
Λ0 by SΛ0

:= S ∩ (X × Λ0). We say a set S ⊂ X × Λ0 is invariant over Λ0 if
FΛ0

(SΛ0
) = SΛ0

.
Within the database framework, the primary use of Conley index theory is to

identify a finite collection of invariant sets which determine the global behavior of
the dynamics within a particular compact set of parameter values. To this end, we
will review two essential structures: isolating neighborhoods and isolated invariant
sets.

Definition 2.1: An isolating neighborhood is a compact set N ⊂ X × Λ0 such
that its maximal invariant set lies in its interior, i.e.

Inv(N,FΛ0
) = {x ∈ N | FnΛ0

(x) ∈ N for all n ∈ Z} ⊂ intX×Λ0
(N),

where int(·) denotes the interior of a set. An invariant set SΛ0
is an isolated invariant

set if SΛ0
= Inv(N,FΛ0

) for some isolating neighborhood N .
The advantage of our focus on isolating neighborhoods is that they are robust

to perturbations. This fact is captured in the notion of continuation, which states
that given an isolating neighborhood, N , then N will also serve as an isolating
neighborhood for a map with sufficiently close parameters [23]. For our purposes,
the most important feature of isolating neighborhoods is that they are readily
computable [9].

2.2. Morse Decompositions

We first introduce some elementary concepts from the theory of dynamical systems.
A more in-depth treatment can be found in [17].

Definition 2.2: Consider x0 ∈ X. The ω-limit set of x0 is

ω(x0) = ω(x0, f) =
⋂
n∈N

cl({fk(x0)|k ≥ n})

while the α-limit of x0 is

α(x0) = α(x0, f) = ω(x0, f
−1)

where cl(·) denotes set closure.
The following definition is central to the mathematical and computational aspects

of this work. Morse decompositions provide a coarse, global description of the
dynamics on SΛ0

.
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Definition 2.3: A Morse decomposition M(SΛ0
) of SΛ0

is a finite collection of
disjoint isolated invariant subsets of SΛ0

indexed by the set PΛ0
, i.e.

M(SΛ0
) = {MΛ0

(p) ⊂ SΛ0
| p ∈ PΛ0

}

On the index set PΛ0
there exists a strict partial order >Λ0

such that for all
(x, λ) ∈ SΛ0

\
⋃
p∈PMΛ0

(p) there exist p, q ∈ PΛ0
, p>Λ0

q such that ω(x) ∈ MΛ0
(q)

and α(x) ∈MΛ0
(p). The sets MΛ0

(p) are known as Morse sets.
It is worth noting that while Morse sets may not be preserved under perturba-

tion, the decomposition itself is robust in the sense that the decomposition and the
associated isolating neighborhoods are preserved. In particular, Morse decomposi-
tions inherit the continuation property of isolating neighborhoods. From a compu-
tational viewpoint, since PΛ0

is a partially ordered set, a Morse decomposition can
be naturally represented as a Morse graph, a directed acylic graph MG(FΛ0

) with
vertice V = PΛ0

and edges E = {(p, q) | p>Λ0
q}.

Morse graphs are the fundamental objects of the Conley-Morse database. Morse
graphs provide a natural combinatorial representation for the dynamical system
which can be compared in order to detect changes in the dynamics across regions
in parameter space.
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Figure 1.: Dynamics for choice of (q, r) exhibiting three steady states.

2.3. An Example

To motivate our methods, we will illustrate some aspects of our approach on the
following model of spruce budworm populations, originally introduced by Lud-
wig [21]. The model is a classical example of insect outbreak as spruce budworm
can defoliate the balsam fir, leading to potentially major environmental issues in
eastern North America. We follow the exposition of Murray [24], with the budworm
population dynamics given by the following equation:

dN

dt
= rBN

(
1− N

KB

)
− BN2

A2 +N2

Here, rB is the linear birth rate of the budworm andKB is the carrying capacity of
the environment (associated with the density of foliage available on the trees). The
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predation term, BN2

A2+N2 , is that originally suggested by Ludwig for its qualitative
behavior (predation saturates for large enough N).

We consider the nondimensional quantities:

u =
N

A
, r =

ArB
B

, q =
KB

A
, τ =

Bt

A

which leads to the following nondimensionalized equation:

du

dτ
= ru

(
1− u

q

)
− u2

1 + u2
= f(u, (r, q))

The system now has only two parameters, r and q, which are dimensionless quan-
tities.
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Figure 2.: Isolating neighborhoods for equilibria u1, u2, u3 from Figure 1 as a func-
tion of parameter q and a fixed r. The isolating neighborhood for u0 is omitted for
clarity.

The steady states of the system corresponds to the solutions of

f(u, (r, q)) = 0

A conventional dynamical analysis reveals that either one or three solutions exist,
depending upon the parameters, r and q [24]. For instance, for appropriate values
of r and q, the phase portrait has three equilibria as shown in Figure 1.

The smaller stable equilibrium, u1, is the refuge equilibrium while the stable
equilibrium, u3, is the outbreak equilibrium. The unstable equilibrium at the origin,
u0, corresponds to extinction.

While equilibria in this particular example can be computed analytically, more
complicated invariant sets in high dimensional spaces are, in general, not accessi-
ble to analytic methods. Furthermore, small perturbations can lead to a cascade of
changes in the internal structure of these sets, while the overall shape may remain
the same. Therefore we focus on isolated invariant sets, which are by definition
stable under perturbations and their associated isolating neighborhoods are read-
ily computable. In our simple example where the phase space is one-dimensional,
isolating neighborhoods are intervals whose boundary does not intersect an invari-
ant set, i.e. an equilibrium. In Figure 2, we depict a one-parameter family of phase
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portraits parameterized by q, for a fixed r = 0.535. The curve is the set of zeros
for f(u, (r, q)). The intervals represent isolating neighborhoods at a given value of
r and q with non-trivial isolated invariant sets which in this case are equilibria.
Similar intervals isolate the equilibrium at u0 = 0 which we chose not to depict for
the sake of clarity.

We now concentrate on the value of q = 7.5. At this value there are three isolated
invariant sets. The flow between the neighborhoods that isolate u0, u1, u2 and u3

induce a flow defined partial order on these neighborhoods. Isolated invariant sets,
together with this partial order define a Morse decomposition of the invariant set
M(Sq) at q = 7.5. This information is represented combinatorially in terms of a
Morse graph, depicted in Figure 3.

The classical bifurcation theory shows that the budworm model exhibits hystere-
sis which is a basis for predictions of outbreak dynamics [24]. Figure 4a depicts
the set of equilibria as a function of both parameters, and the Figure 4b shows the
parameter region where three non-zero equilibria coexist. In the language of Morse
decompositions, in the shaded region the Morse decomposition is that depicted in
Figure 3, while outside of this region in consists of two isolated invariant sets, one
corresponding to u0 and the other to a stable equilibrium.

Figure 3.: Morse graph for Morse decomposition for M(Sq), q = 7.5, see Figure 2.
(u0 has been included.)

This example shows a key role of classifying regions of parameter space into
different types of dynamics. Such an analysis can form a basis for interventions and
control of the system to a desired regime. The database approach that we use in
this paper, and describe in following sections, aims to compute a partitioning of the
parameter space into regions with identical Morse decompositions. In particular,
we emphasize that our techniques are amenable to computation. The emphasis on
computability is essential as analytical techniques are often of limited use in large
size problems, found in real world applications.

2.4. Combinatorial Dynamics

In this section, we review precisely how Morse graphs are computed. From [2], a
grid on a metric space Z is a collection Z nonempty compact subsets of Z with
the following properties

(1) Z =
⋃
G∈Z G

(2) G = cl(int(G)) for all G ∈ Z
(3) G ∩ int(H) = ∅ for all G 6= H ∈ Z
(4) If Y ⊂ Z is compact, then {G ∈ Z | G ∩ Y 6= ∅} is finite

In the context of a grid, we define the support function | · | from subsets of Z to
subsets of Z by |A| :=

⋃
A∈AA. Further, given Y ⊂ Z, we define

Z(Y ) := {G ∈ | int(G) ∩ Y 6= ∅}.
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For the rest of the paper we denote by X and Q the grids on phase space and
parameter space, respectively.

We now discuss a method for exploring the dynamics of f computationally. A
combinatorial multi-valued map F : X ⇒ X assigns to each element G ∈ X a
finite (and possibly empty) subset of X as follows. It is defined as follows. Consider
f(|G|) and its combinatorial enclosure formed by the collection of all grid elements
H ∈ X such that |H| ∩ f(|G|) 6= ∅. Then the multivalued map F is defined as

F(G) := {H ∈ X | |H| ∩ f(|G|)}.

Furthermore, the combinatorial enclosure gives an outer approximation of f by
defining

|F|(x) :=
⋃

G∈X :x∈G
|F(G)|.

This provides rigorous bounds on the dynamics of f . An essential component of
this approach is the use of interval arithmetic software to construct F , providing a
rigorous bound on any approximation error as well [34]. Efficient algorithms exist
to compute isolating neighborhoods and Conley indices from the combinatorial
enclosure F . Furthermore,, F is represented as a graph, opening up its analysis to
efficient graph algorithms as well [15].

In order to construct Morse graphs, we first start with the recurrent set of FQ,
defined by

RQ := {G ∈ SQ | there exists a nontrivial path from G to G in SQ}

The recurrent set RQ can be partitioned into equivalence classes {MQ(p) | p ∈
PQ} called combinatorial Morse sets by the equivalence relation G ' H if and only
if there exists a path in FQ from G to H and a path in FQ from H to G. This
gives a strict partial order on the indexing set PQ by setting p >Qq if there exists
G ∈MQ(p), H ∈MQ(q) and a path from G to H in FQ.

By construction, the combinatorial Morse decomposition can be represented by
a directed graph. We define the Morse graph MG(FQ) to be the acylic directed
graph with vertices consisting of the elements of PQ and the minimal set of directed
edges (p, q) which generate p>Qq under transitivity.

2.5. Comparing Morse Graphs

We now review how to use Morse graphs to compare dynamics over different regions
in parameter space. Suppose that for each Q in Q we have computed MG(FQ). In
order to compare each MG, we define the clutching graph and clutching function.

Definition 2.4: Consider Q0, Q1 ∈ Q where Q0 ∩ Q1 6= ∅. The clutching graph
J (Q0, Q1) is the bipartite graph with vertices PQ0

∪ PQ1
and edges (p, q) ∈ E if

MQ0
(p) ∩MQ1

(q) 6= ∅.
If every vertex in PQ0

in the clutching graph J (Q0, Q1) has a unique edge, then
we define the clutching function ι : PQ0

→ PQ1
by ι(p) := q for each edge (p, q) of

J (Q0, Q1).
ConsiderQ0, Q1 ∈ Q and their corresponding Morse graphs MG(FQ0

), MG(FQ1
),

where Q0 ∩ Q1 6= ∅. If the clutching function ι is defined for the clutching graph
J (Q0, Q1), and ι gives a directed graph isomorphism from MG(FQ0

) to MG(FQ1
),

then we consider MG(FQ0
) and MG(FQ1

) to be equivalent. As in Arai et al. [2],
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we say that the equivalence classes of {MG(FQ) | Q ∈ Q} with respect to the
transitive closure of this relation are continuation classes.

The purpose for requiring that ι define a directed graph isomorphism as opposed
to merely a bijection is that differences in the partial order may indicate differences
in the dynamics. In [2] it is shown that if MG(FQ0

) and MG(FQ1
) belong to the

same continuation class then there is a path in parameter space along which the
underlying Morse decompositions are related by continuation. However, compared
to classical notions of equivalence, two Morse graphs belonging to the same con-
tinuation class is a relatively weak form of equivalence. In general, this is due to
investigating the dynamics at the level of grid elements. We refer the reader to [2]
for further elaboration.

The position we take in this paper is that continuation classes are a significant
and useful notion for constructing a database of global dynamics. In other words,
the database consists of a combinatorial representation of the set of continuation
classes, and their relative connectivity. This concept is formalized in an efficient
manner in the following definition [2].

Definition 2.5: The continuation graph of F is a graph whose vertices are the
continuation classes {(MG(j),Q(j)) | j = 1, . . . , J} where Q(k) ⊂ Q is the set
of parameter boxes associated with the k-th continuation class, and MG(k) =
MG(FQ) for some Q ∈ Q(k).

2.6. Conley-Morse Database

We will now summarize the process to construct the complete database for a given
dynamical system. The first step is to choose the resolution for the grids X and Q,
on the phase and parameter spaces, respectively. The next step is to construct the
combinatorial multi-valued map F on X ×Q. Then the Morse graph MG(FQ) must
be determined for each Q ∈ Q. For each pair of adjacent grid elements, Q0, Q1 in
the parameter space, the clutching graph J (Q0, Q1) must then be formed, with the

(a) (b)

Figure 4.: (a) Equilibria states in a general cusp catastrophe model. In the region
of the fold, three equilibrium states exist. One equilibrium exists in other regions.
The dashed vertical line shows the arrangement of the equilibria in phase space for
an arbitrary pair of parameters (q, r) in the cusp region. The repeller and attractors
in the Morse graph in Figure 3 correspond to u1, u2, and u3. (b) Parameter space
showing the projection of the folded region on the right.
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clutching function ι tested to determine if it defines a directed graph isomorphism.
Unfortunately, exhaustively computing upon parameter space in this fashion is

very computationally demanding. In fact, the computational burden of producing
the Conley-Morse database has inspired previous machine learning approaches [4].
We expand upon this work by introducing novel machine learning algorithms and
ideas for approximating the database computation.

Now that we have introduced the Conley-Morse database, recall that in this
paper our focus is on predicting the locations of potential bifurcations. In the
setting of the database, this corresponds to discerning the edges between regions
of grid elements which belong to the same continuation class.

3. Learning the Conley-Morse Database

As we want to refrain from computing the entire parameter space, we do not form
the clutching graph to check the pairwise intersection of Morse sets in the phase
space. Thus, we cannot assign the correct continuation classes for intersecting grid
elements in parameter space. Instead, we define two grid elements to belong to the
same equivalence class if there exists a directed graph isomorphism between their
corresponding Morse graphs.

Definition 3.1: Let G and H be directed graphs. A directed graph isomorphism
between G and H is a bijection h that maps V (G) to V (H) and E(G) to E(H)
such that each (u, v) ∈ E(G) is mapped to (h(u), h(v)) ∈ E(H).

For Q0, Q1 ∈ Q, we define MG(FQ0
) ∼ MG(FQ1

) if there exists a directed
graph isomorphism between them. As a result of our changes to the Conley-Morse
database framework, our equivalence classes are coarser than continuation classes.
Nevertheless, we show that our algorithms still detect a significant portion of phase
transitions.

4. Leslie Model

We illustrate our approach on a nonlinear Leslie population model. This model and
its relevance to population biology is discussed further in [35]. In the Leslie model,
the population is partitioned into d generations, each with population x1, . . . , xd,
and an associated reproduction rate. The nonlinearity stems from the assumption
that fertility decreases exponentially with the total size of the population.

For our experiments we consider the two generation Leslie model with a three
dimensional parameter space Λ := {(θ1, θ2, p) ∈ [8, 37] × [3, 50] × [0.5, 0.9]}, given
by:

(x, λ) =

[x1

x2

]
,

θ1

θ2

p

 7→ f(x, λ) =

[
(θ1x1 + θ2x2)e−0.1(x1+x2)

px1

]

Mirroring [2], we select a 80× 80× 40 grid for the three-dimensional parameter
space, which we label traditionally as x, y, and z axes, respectively. Since in [2]
they perform performed an exhaustive computation on this subset of parameter
space, we are able to compare our weaker notion of equivalence with the result pro-
vided by their continuation classes. Fixing z, we obtain a brute-force, or ‘ground
truth’, result without the use of learning algorithms, but with our notion of weaker
equivalence. We compare this with the continuation class results from [2] in the
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continuation diagram in Figure 5. In the continuation diagram, regions of parame-
ter space which are same color correspond to an continuation or equivalence class.
For instance, one difference between our two notions of equivalence can be seen
upper left region in Figure 5b, which is detected to be of the same class as other
regions of the same color, whereas in Figure 5a the same region is distinguished
from the others. However, in all of these figures the colors are arbitrary, thus the
difference in color between Figure 5a and 5b is not representative of anything.

(a) Original (finer) classes
(b) Coarsened classes

Figure 5.: A slice of parameter space at z = 1. (a) Continuation classes from the
original paper by Arai et al.; (b) Classes obtained without machine learning algo-
rithms, but using the coarser notion of equivalence. Classes labels, C∗, correspond
between (a) and (b) as well as to those in figures below. (color online)

Recall that in Arai et al., a Morse graph MG(FQ0
) is computed for each grid

element Q0 ∈ Q. The clutching graph J (Q0, Q1) is then formed for all adjacent
boxes Q0, Q1 ∈ Q, and the clutching function ι is tested to determine if it defines a
directed graph isomorphism. The equivalence classes with respect to the transitive
closure form the continuation classes. In the continuation diagram, grid elements
of identical colors indicate that they belong to the same continuation classes.

In contrast, in Figure 5b, we present classification using a coarser equivalence
relationship, where two Morse graphs are equivalent if they are isomorphic. This
represents our ‘ground-truth’ for classification. The boundaries between the clus-
ters of identically colored grid elements in parameter space are potentially critical
transitions in the dynamical behavior. It should be noted that while Conley-Morse
database results are rigorous at the pre-specified resolutions, the results depend
upon resolution in both parameter space and phase space. For the purposes of this
paper, our resolutions are identical to those in [2]. However, for future analysis
the efficiency of machine learning allows us to use much finer resolutions in both
parameter and phase space.

5. Methodology

In this section we provide a review of the requisite machine learning techniques,
and give a description of our algorithms.
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5.1. Active learning

Active learning is a form of supervised learning in which it is possible for the
learning algorithm to perform interactive queries of the data in order to generate
a training set [31, 33]. The rationale for active learning is that a machine learning
classifier can achieve greater accuracy with a smaller training set if it is allowed to
choose which samples to learn from.

Active learning is primarily motivated by instances where labeling data is expen-
sive. In the setting of predicting bifurcations, labeling data corresponds to comput-
ing Morse graphs. As this is one of the most computationally intensive parts of the
construction of the Conley-Morse database, the active learning paradigm applies
naturally to building the database.

The most popular form of active learning is uncertainty sampling, where samples
are chosen based on where the classifier is least certain of classification. In other
words, samples which change the potential classification by small amounts are of
little value, whereas samples which can change the classification substantially are
of high value.

In order to incorporate this philosophy into the framework of the Conley-Morse
database, we rely on the continuation properties of the Morse graphs. We make a
heuristic assumption that regions enclosed by grid elements with isomorphic Morse
graphs likely belong to the same continuation class. As such, queries within such
a region are thought to be of low value. In selecting a random query, an active
learning subroutine decides whether the query is of high value, and if so, adds it
to the training set. The goal of our active learning subroutine is to iterate this
procedure in order to build up a small, yet informative training set.

5.2. Algorithmic Preliminaries

The k-Nearest Neighbor (k-NN) classification algorithm is a well-established
method for classifying or labeling objects based on the closest training examples
in a feature space. For more detail, see [1].

For our purposes, the feature space is the discretized parameter space Q of a
dynamical system. The class of a grid element Q0 in the Q is the equivalence class
to which the associated Morse graph MG(FQ0

) belongs.

5.3. Delaunay Triangulation

To interactively construct an effective training set, our goal is to choose a minimal
number of informative samples. To do this, we consider the geometry of the current
training set in parameter space, and accept queries from boundary regions.

In order to judge whether a query is in such a region, it is natural to turn to
computational geometry. Our computational geometry approach is to consider the
Delaunay triangulation of the elements of the current training set.

Definition 5.1: A Delaunay triangulation for a set P of points in a plane is a
triangulation D(P ) such that no point in P is inside the circumcircle of any triangle
in D(P ).

The benefit of the Delaunay triangulation is that it produces ‘fat’ simplices by
maximizing the minimum angle of all the angles in the triangulation. Such triangles
are more effective for our purposes. Using point location algorithms, it is straight-
forward to determine the location of the query in the triangulation, and compare
Morse graphs of the vertices that make up the encompassing simplex. If the vertices
of the encompassing simplex have isomorphic Morse graphs, the query is discarded
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as a low-information point, otherwise it is accepted into the training set. Compu-
tational geometry, in the form of the Voronoi diagram, has previously been used in
conjunction with the nearest-neighbor classification algorithm [12]. However, our
approach is disparate in that our active learning techniques are tailored to the
dynamics rather than the classification algorithm.

The time complexity of the implemented Delaunay triangulation algorithm is
O(n log n) in the planar case, while the complexity of the point location algorithm
is O(log n) [8]. We consider this an acceptable computational overhead in order to
generate an effective training set. However, for dimension d, the complexity of the

Delaunay triangulation is O(nb
d+1

2
c+1) [8]. Above two dimensions this overhead is

quite large, and this approach becomes infeasible for large training sets. In order
to circumvent this problem, we consider two different directions. First, we split the
three dimensional domain into slices along the z axis. Second, we develop a similar
active learning algorithm that performs at a lower complexity.

We denote the Delaunay triangulation based algorithm AlgorithmD, and give
pseudocode below. First, recall Q denotes the discretized parameter space. We will
denote the training set by T and for a grid element Q ∈ Q, we will abuse notation
slightly by defining MG(Q) as the label of the Morse graph of Q. We define the test
set as R := Q\T , and apply the 1-NN algorithm to R to obtain the classification
of all the grid elements in R.

AlgorithmD(Q,m)

1 M ← m � Max size of training set
2 T ← uniform random samples from Q.

� Initial training set used to construct

� a preliminary triangulation.

3 C(T )← {MG(Q) | Q ∈ T }.
4 Compute D(T ) � Delaunay triangulation of the current training set T .

5 repeat Q0 ← uniform random sample from Q\T
6 Find S0 ∈ D(T ), such that Q0 ∈ S0

7 if All the vertices of S0 have isomorphic Morse graphs
8 then T ← T ∪ {Q0} and C(T )← C(T ) ∪ {MG(Q0)}.
9 until |T | = M

10 return T

Remark 1 : After creating the training set we utilize the 1-NN classification al-
gorithm to classify the remaining test set. However it is worth noting that this
approach is not limited to a nearest neighbor classification. For instance, our ap-
proach can be adopted to be compatible with a variety of different machine learning
classifiers.

Remark 2 : In general the problem determining if two directed graphs are iso-
morphic is notoriously difficult, though it is not known to be NP-Complete [30].
In practice, a Morse graph has only a few vertices, and the isomorphism problem
does not present a computational issue. For moving beyond the Leslie model, we
are investigating heuristics for the graph isomorphism problem.

5.4. Nearest Neighbor Sampler

Our second active learning algorithm also considers the elements of the current
training set which surround a query. However, the approach this time is not com-
putational geometry, but combinatorial. To discern which elements surround a
random query, we use a k-NN algorithm to obtain the k nearest neighbors. We
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then check whether the majority of the corresponding Morse graphs of the neigh-
bors are isomorphic. If so, the query is discarded, otherwise the query is accepted
into the training set.

This approach benefits from the wealth of exact and approximate k-NN algo-
rithms, and their respective data structures, which have been recently developed
for dealing with high dimensional data [13, 16, 36]. For dynamical systems with
high dimensional parameter spaces, this method scales more efficiently than a De-
launay triangulation approach.

We now introduce our nearest-neighbor based algorithm, entitled AlgorithmN,
and which is very similar in spirit to AlgorithmD above.

AlgorithmN(Q, k,m)

1 M ← m � Max size of training set

2 T ← uniform random samples from Q
� Initial training set used to construct

� a preliminary triangulation.

3 repeat Q0 ← uniform random sample from Q\T
4 C(T )← {MG(Q) | Q ∈ T }.
5 Nk(Q0)← k nearest neighbors of Q0 in T .
6 if majority MG(Q) for Q ∈ Nk(Q0) not isomorphic

� Using specified majority rule

7 then T ← T ∪ {Q0} and C(T )← C(T ) ∪ {MG(Q0)}
8 until |T | = M
9 return T

Remark 3 : In Line 6 of AlgorithmN, any majority voting rule can be used. In
our implementation, we used a simple majority rule, requiring at most half of the
elements of N to be isomorphic in order to add the associated Q0 to the training
set.

6. Results

In this section we describe the results of our experiments using the parameter space
of the three dimensional Leslie Model shown in Section 4. In accordance with [2],
we set the resolution of the grid on the three-dimensional parameter space of the
Leslie Model as 80× 80× 40.

We validated our algorithms on both two dimensional slices of the domain and
the entire three dimensional domain. As previously stated, the 1-NN classifier with
Euclidean distance is used to assign labels to the grid elements of the test set.

6.1. Two Dimensional Slices

In order to efficiently use the Delaunay triangulation we consider Q in slices along
the z axis. Considering the domain in two dimensions lends itself to parallelization
of the classification process, which further increases efficiency. Each two dimen-
sional domain is 80× 80, creating a total size of 6400 grid elements.

First a size n is chosen for the training set, which for our experiments was 640 or
1280 samples, i.e. 10% or 20% of the domain. As described above, we start with a
small initial set of m random samples. For our experiments we set m = 75, which
allows for sufficient initial coverage. The rest of the training set, or n−m elements,
is then generated with an active learning subroutine. The remaining 6400− n grid
elements determine R = Q\T . For our experiments, vectors in R are classified



April 30, 2013 Mathematical and Computer Modelling of Dynamical Systems criticalTransitions

14

(a) z = 1, |T | = 640 (b) z = 9, |T | = 1280

Figure 6.: (a) z slice 1, training set size 10% of Q, misclassification of 244 points,
or 3.8125% classification error; (b) z slice 9, training set size 20% of Q, misclas-
sification of 79 points, or 1.234% classification error. As in Figure5, classes that
correspond across the slices are labeled the same. Notice that in (b) class C ′2 is
a newly detected class, while the dynamics detected in classes C2 and C3 do not
show up in the z = 9 slice of parameter space.

using the 1-NN algorithm, which gives CR. We define the prediction error ε for P
as the number of elements that are misclassified:

ε(P ) =
1

|Q|
∑
Q∈Q

δ(MG(Q), CR(Q))

where CR(Q) is the predicted class of Q, MG(Q) is the actual class of Q, and δ is
the Kronecker delta function, given by

δ(x, y) =

{
1, if x = y

0, if x 6= y

6.1.1. AlgorithmD

In this section we review the results of AlgorithmD for the two dimensional
case. In Figure 6 we show the classification for the two dimensional domains, z = 1
and z = 9. We test our algorithms on training sets of size 10% and 20% of the total
domain, or 640 and 1280 points, respectively.

Figure 7 shows the Delaunay triangulation of the final training set over the
classifications given by the 1-NN algorithm. This image illustrates the algorithm’s
ability to enhance resolution around the boundaries of the equivalence classes in
parameter space.

In Table 1 is the misclassification of the database by compiling all of the z
slice calculation, along with a comparison to a training set generated uniformly at
random. For brevity, we will not discuss the results of the indvidual slices, however
there are noticeable differences between slices. Due to these differences, we are
currently investigating incorporating an adaptive budget to allocate the training
set based on the complexity of the slices.
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Figure 7.: Delaunay triangulation of T generated using AlgorithmD; z = 9,
|T | = 1280.

6.1.2. AlgorithmN

In this section we review the results of AlgorithmN for the two dimensional
case. As expected, a slightly elevated misclassification rate is the price for increased
computational efficiency. Figure 8 show a plot of misclassification compared to a
training set generated uniformly at random. In order to highlight the regions of the
parameter space AlgorithmN focuses on, we plot the training set over a 1-NN
classification below. The color of the training set elements darken in proportion to
the size of the current training set.

Figure 8.: Plot of training set for AlgorithmN on z = 1, |T | = 1280, Misclassi-
fication of 123 grid elements, or 1.92% of Q; The shade of a training set element
depends upon when it was selected in the process of constructing T . Classes cor-
respond to those in Figures 5 and 6.

6.1.3. Slices in x and y Directions.

In order to further validate this algorithm, we ran both AlgorithmD and
AlgorithmN on slices in the x and y direction as well. For brevity, we only
show the results for 20% of the domain.
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Training Set % AlgorithmD AlgorithmN Uniform
10% 4.5 4.9 7.13
20% 1.1 2.78 4.98

Table 1.: Results for compilation of 2D z slices for AlgorithmD, AlgorithmN
and Uniform Sampling.

6.2. Three Dimensional Domain

In this section we display results from AlgorithmN applied to the entire three
dimensional domain, instead of dividing the domain into slices. We only include re-
sults for AlgorithmN, as the overhead of constructing the Delaunay triangulation
in three dimensions yields AlgorithmD unwieldy.

Training Set % AlgorithmN Uniform
10 % 5.74 7.46
20% 3.19 5.86

Table 2.: Results for 3D Variants of AlgorithmN and Uniform Sampling.

7. Discussion

In this paper we introduced an approach to predict bifurcations using machine
learning incorporated into the Conley-Morse database framework. This approach
to the study of complex dynamical systems provides a rich description of the sys-
tem in both the phase space and the parameter space. This is especially relevant
in the biological sciences, where obtaining precise values of parameters often re-
quires extensive collection of experimental data. For instance, certain models of
chemotaxis [25] involve upwards of seventeen parameters, some only known ap-
proximately, and that range across eight orders of magnitude. In the database
framework described in Section 2, the parameters vary over a range of values, with
the rigorous results valid over that entire region in parameter space. Usually a
substantial effort must be spent validating and tuning model parameters [6]. The
database framework shifts this emphasis to the analysis of the database results to
find a range of parameters where model prediction is consistent with the data.

Even though computationally efficient, the database description of the parame-
ter space still suffers from the curse of dimensionality. We have shown that active
sampling techniques based on assumptions of the underlying dynamics in combi-
nation with a straightforward k-NN classifier can lead to very accurate predictions
of regions around potential bifurcations, thereby alleviating some of the compu-
tational burden due to high-dimensional parameter spaces. In particular, one can
approximate the Conley-Morse database with greater than 97% accuracy through
computing only 20% of the total Morse graphs.

We are currently working to incorporate adaptive computation into the database
construction in order to provide rigorous continuation classes at lower computa-
tional cost. Furthermore, we are also investigating additional nonlinear systems
with higher dimensional parameter spaces. The presentation and exposition of this
paper has focused on dynamical systems in the form of discrete maps. However,
similar theoretical ideas apply to dynamical systems represented by differential
equations, and extending the Conley-Morse database to differential equations is
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currently being investigated. In contrast to maps, constructing the combinatorial
representation requires rigorous numerical calculation, which incurs a much greater
computational cost than evaluating a map. Therefore, a machine learning approach
such as the one presented in this paper becomes even more relevant in such a set-
ting.
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