Predicting Lane Change Intensity within Urban Interchange Influence Areas (IIA)

Webinar

May 3, 2021

Nagui M. Rouphail (Principal Investigator) Alan F. Karr, AFK Analytics, LLC (Statistical Consultant)
R. Thomas Chase (Research Associate) Ishtiak Ahmed (Research Assistant) Molly Burke (Undergraduate Research Assistant)
Dezhong Xu (Graduate Research Assistant)

Topic Outline 专

- Project motivation and objectives
- Project outcomes
- Methods
- Modeling Results
- Tool demonstration
- Case study
- Q\&A

Project Motivation and Objectives

- Lane changes - especially discretionary ones-- near interchange influence areas (IIAs) contribute to turbulence and have negative mobility and safety effects
- Lane changes cannot be detected using current infrastructure detection systems, possibly in the future with the advent of AV's
- To develop a tool to predict the expected intensity of lane changes at interchange influence areas (IIAs)
- To enable the identification of variables and control strategies at the IIAs that might induce fewer discretionary lane changes and thus, reduce unnecessary traffic turbulence

Outcomes: Model and Tool Development

Results

Predicted Hourly Lane Changes: 1551.75
Approximate Standard Error: 159.74
Confidence Bounds: $(1392.01,1711.49)$

Research Methodology

- Based on empirical observations of lane changes at IIAs
- Project Tasks
- Data collection
- Data extraction process
- Database summary
- Model development
- Tool architecture
- Tool development and dissemination

Data Collection

- Collection Method
- Drone videos (untethered, 300-400 ft. above ground)
- Google maps
- Automated extraction and manual verification
- Observations
- Taken in 5 min intervals, expanded to hourly rates
- Freeway Segments and definitions
- Type (basic, merge, diverge, weave)
- Length (ft)
- Number of lanes
- Lane configuration
- Distance to nearby on-ramp \pm
\rightarrow ITRE ${ }^{\bullet}$ Distance to nearby off- ramp \pm

Data Collection (continued)

- Traffic characteristics

- Vehicle counts (at mid-segment)
- Origin-destination volumes (e.g., freeway-to-ramp and ramp-to-freeway volumes)
- Heavy vehicle percentage
- Overall space mean speed (SMS)
- Lane change counts within the segment, including minimum number of lane changes per hour

Data Collection Sites: ~ 20 hrs. overall

Serial	Site	Duration (min)	HCM6 Segment type
1	I-440 EB at Western Blvd (Pilot)	895	Upstream of Merge
2	I-40 WB at Wade (facing east)	50	Downstream of Merge
3	I-40 WB at Wade (facing west)	55	Downstream of Merge
4	I-440 EB at Hillsborough St Exit	90	Upstream of Diverge
5	I-40 EB at S. Saunders St and Hammond Rd	85	Weave
6	I-40 WB at S. Saunders St and Hammond Rd	85	Weave
7	I-440 EB at Poole Rd and US-64	35	Weave
8	I-440 WB at Poole Rd and US-64	30	Weave
9	Wade Ave. WB at Blue Ridge \& I-440	125	Weave
10	I-440 EB at Ridge Rd	475	Weave
11	US-101 in Los Angeles, CA (NGSIM)	40	Weave
12	I-40 EB at I-440 (MM 293)	I-40 WB at I-440 (MM 293)	35
13	I-40 EB at I-440 (MM 309)	35	Basic
14		Basic	

ITRE

Video Data Extraction

- Automated tool (DataFromSky)
- Fast
- Stabilizes drone videos
- Tracks vehicles
- Accuracy test for lane change count showed satisfactory results for passenger cars
- Manual counting
- Very labor intensive
- Limited to heavy vehicle lane change count
- Also used for accuracy testing of the automated tool

(O) DATA FROM SKY

Example of a processed video

\Rightarrow ITRE

Extracting Lane Changes

- Method

1. Works with "DFS-Processed Videos"
2. Create gates along and across the lane markings using the offline DFS software
3. Extract gate crossing events and their timestamps
4. Track origin-destination lane for each lane change

- This method works very well for passenger cars (error < 5\%)
- Lane changes by heavy vehicles are manually extracted

Create the Analysis Database

- Database summary

- Number of directional sites: 15
- Number of data points: 247, aggregated in 5-minute observations
- Range of 5-minute observations across sites: 6 to 95
- For modeling purpose, all observations expressed in an hourly rate
- Response of interest: Total segment lane changes per hour
- Total lane changes are expressed in two components
- Mandatory (minimum number of) lane changes
- Observed range over all sites: 0% to 89% of all lane changes
- Discretionary lane changes
- Observed range over all sites: 11% to 100% of all lane changes

Database Summary

Variable type	Variable name	Mean	Median	St. deviation	Minimum	Maximum
Geometric	Segment length (ft)	625	-	-	213	1,610
	Number of lanes	4	-	-	3	6
	Min. lane change required (freeway-to-ramp)	1	-	-	0	2
	Min. lane change required (ramp-to-freeway)	1	-	-	0	2
	Signed distance to nearby on-ramp ($\pm \mathrm{ft}$)	-126	-	-	-2,720	3,132
	Signed distance to nearby off-ramp ($\pm \mathrm{ft}$)	649	-	-	-2,960	6,369
Traffic	Passenger car flow rate (pc/hr)	4,965	5,200	1,598.9	1,416	8,376
	Heavy vehicle flow rate (v/hr)	263	192	240.5	0	1,560
	Total flow rate per lane (v/hr/ln)*	1,248	1,284	276.8	336	1,731
	VMT per hr*	562	451	334.8	193	1,808
	Avg. speed (mi/hr)	50	52	17.8	6	81
	Avg. density (v/mi/ln)*	33	27	27.2	10	206
	Minimum lane changes per hr. *	878	1,110	572.0	0	1,896
	Total lane changes per hr.	1,373	1,392	828.4	108	4,128

Modeling Approach for Lane Change Prediction

- Tested various types of statistical models
- Recommended Regression tree approach
- Observations are split into multiple homogeneous sets based on most significant splitters in the input variables
- Validation
- Self-validated as the tree is developed by a 10 -fold cross validation technique
- Site-specific validation

Total Lane changes

Modeling Results

Partition Model to Predict Total Lane Changes Minimum Lane Changes Present as Predictor 22 Terminal Nodes

Objectives
Outcomes

Modeling Results

Model Performance

Item	No Model	Model with Mandatory Lane Changes	Model without Mandatory Lane Changes
Number of terminal nodes in tree	NA	22	11
RMSE* (LC per hour)	$828.4^{* *}$	121.9	216.3
Relative RMSE***	60%	8.8%	15.8%

Mean number of lane changes across all observations: 1,373 lc./hr.

* RMSE= Root Mean Square Error (in lane changes per hour)
** For NO Model, RMSE equivalent to standard deviation
*** Relative RMSE = RMSE / Mean \# of lane changes per hour

Site-specific Validation

Model with Mandatory Lane Changes
Relative RMSE

Omitted Site	Relative RMSE	
	Full Model	Omitted Model
I-40 S Saunders E	0.07	0.18
I-40 S Saunders W	0.11	0.22
I-40/440 Basic E	0.28	0.29
I-40/440 Basic W	0.49	0.48
I-40/440 East Split	0.18	0.32
I-40W Weave E	0.34	0.33
I-40W Weave W	0.20	0.47
I-440 at Poole Rd E	0.08	0.22
I-440 at Poole Rd W	0.08	0.18
I-440E at Hillsborough Ext.	0.21	0.20
RidgeRd	0.06	0.25
US101_Dnstrm	0.14	0.78
US101_Upstrm	0.29	0.68
US101_Wve	0.12	1.68
Wade W at I-440	18	0.05

Key Findings from Models

- Overall, low levels of lane changing are associated with:
- Low mandatory lane change frequency, low VMT, and low speed(congested conditions)
- Other important variables effecting the prediction:
- Segment length, distance to nearby ramps, and total and passenger car flow rate
- Range of relative RMSE across all sites:
- With mandatory lane changes known : 0.05-0.49
- Without mandatory lane changes : 0.1-0.98
- Higher values are associated with basic segments as all lane changes are discretionary

Model Limitations: Statistical

- Most important: sparsity of data
- 247 data points
- 11 input variables
- $2^{11}=2048$
- Discrete (therefore, discontinuous) predictions
- Nearly equal inputs may result in quite different predictions
- Some terminal nodes entail large confidence bounds
- Surrogate standard errors range from 59 to 467
- Potentially unreliable predictions
- Out-of-range inputs produce warnings, inputs near "boundaries" do not

Model Limitations: Generalizability

- Dataset DOES NOT contain
- Some site geometries (e.g., left entrances)
- Bad weather (reflects use of drones)
- Construction
- Incidents
- Prospective evaluation of treatments should be done with care
- Model does not predict locations of lane changes

Objectives
Outcomes
Methods

Partition Model to Predict Total Lane Changes
Minimum Lane Changes Present as Predictor 22 Terminal Nodes

ITRE

Tool Description and Demonstration

Tool Description

- Architecture
- Web-based interface of the lane change prediction tool
- User guide for the tool
- Description and explanation of inputs and outputs of the tool
- Excel-based calculator
- HCM-based estimates of minimum lane changes and space mean speed
- Recommended to use only when field data are unavailable
- ReadMe file for the calculator
- Description and explanation of inputs and outputs of the calculator

Tool Architecture

ITKE
NCSU/ITRE Network

Web Interface Demonstration http://itredatalab.org/ Password: IIAlcpt2020)\%

User Guide \& Excel-based Calculator

Case Study

- Site Description
- Wade Ave. EB between I-40W \& Edwards Mill Rd.
- Distance to nearest on-ramp: -357.5 ft
- Distance to nearest off-ramp: +357.5 ft

Data Collection

- 35 minutes of drone footage (=7 data points)
- Total flow rate: 2,300-3,035 vph
- Heavy vehicle: 7-15\%
- Minimum lane changes: 380-694 per hour (65-90\% of total lane changes)
- Avg. speed: 65-69 mph
- Total lane changes: 432-794 per hour

Model with MLC (Data 6-7)

Model with MLC (Data 1-5)

Model without MLC (Data 1-7)

Demonstrate the Excel-based Calculator

-

THANK YOU

Questions?

